
R

Virtex-4 FPGA
User Guide

UG070 (v2.6) December 1, 2008

Virtex-4 FPGA User Guide www.xilinx.com UG070 (v2.6) December 1, 2008

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2004–2008 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx
in the United States and other countries. The PowerPC name and logo are registered trademarks of IBM Corp. and used under license. All
other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

R

Date Version Revision

08/02/04 1.0 Initial Xilinx release. Printed Handbook version.

09/10/04 1.1 In Chapter 1, “Clock Resources”:
Removed Table 1-6: "BUFGMUX_VIRTEX4 Attributes". Updated Table 1-1, Table 1-2,
Table 1-5, the new Table 1-6. Revised Figure 1-2, Figure 1-5, Figure 1-6, Figure 1-7,
Figure 1-9, Figure 1-10, Figure 1-13, Figure 1-14, and Figure 1-16. Associated text around
these tables and figures were revised.

In Chapter 2, “Digital Clock Managers (DCMs)”, changes to “FACTORY_JF Attribute” and
in Table 2-6.

In Chapter 9, “System Monitor”:
Changed in Figure 9-4, Figure 9-5, Figure 9-7, Figure 9-8, Figure 9-9, Figure 9-10, Figure 9-21,
Figure 9-25, Figure 9-26, and Figure 9-27. Changes to the equation in the Temperature Sensor
section. The following tables had changes: Table 9-3, Table 9-5, Table 9-6, Table 9-9, Table 9-
11, Table 9-12, Table 9-14, and Table 9-15. Changes to the entire System Monitor Calibration,
System Monitor VHDL and Verilog Design Example sections.

02/01/05 1.2 In Chapter 1, “Clock Resources”, revised “Global Clock Buffers”, “Clock Regions”, and
“Clock Capable I/O” sections.

In Chapter 4, “Block RAM,” revised “Reset,” page 151 description and Table 4-13.

In Chapter 6, “SelectIO Resources,” removed the device configuration section. The Virtex-4
Configuration Guide describes this information in detail. Edited “SSTL (Stub-Series
Terminated Logic),” page 281. Replaced LVDS_25_DCI with LVDCI_25 in “Compatible
example:,” page 302. Added rule “7” to “DCI in Virtex-4 FPGA Hardware,” page 241. Added
“Simultaneous Switching Output Limits,” page 306.

Removed Chapter 9: System Monitor.

UG070 (v2.6) December 1, 2008 www.xilinx.com Virtex-4 FPGA User Guide

04/11/05 1.3 Chapter 1: Revised Table 1-1, page 26, Figure 1-14, and “BUFR Attributes and Modes”
section including Figure 1-21, page 43.

Chapter 2: Revised FACTORY_JF value in Table 2-6, page 65. Added “Phase-Shift Overflow”
section. Clarified global clock discussion in “Global Clock Buffers”, “Clock Regions”, and
“Clock Capable I/O”.

Chapter 4: Added “Built-in Block RAM Error Correction Code” section. Revised Figure 4-6
and Figure 4-8, page 123.

Chapter 5: Revised Table 5-1 and Table 5-2, page 184.

Chapter 6: Revised Table 6-29, page 290.

Chapter 7: Revised “REFCLK - Reference Clock” and added Table 7-10, page 326.

Chapter 8: Added “ISERDES Latencies,” page 379 and “OSERDES Latencies,” page 394.
Revised “Guidelines for Using the Bitslip Submodule” section.

09/12/05 1.4 Chapter 2: Revised FACTORY_JF value in Table 2-6, page 65. The LOCKED signal
description is updated in Figure 2-20 and Figure 2-21.

Chapter 6: Revised the “Simultaneous Switching Output Limits” section.

Chapter 8: Added more information to “Clock Enable Inputs – CE1 and CE2,” page 369.

03/21/06 1.5 Chapter 1: Updated description under Table 1-1. Updated Figure 1-21, page 43.

Chapter 4: Changed Table 4-8, page 144 and added a note. Updated the discussions in
NO_CHANGE Mode and Cascadable Block RAM sections. Removed synchronous FIFO
application example.

Chapter 5: Revised slice label in Figure 5-30, page 224.

Chapter 6: Added to the “Xilinx DCI” section. Added IBUF to the
“PULLUP/PULLDOWN/KEEPER for IBUF, OBUFT, and IOBUF” discussion. Added VCCO
numbers in the +1.5V column in Table 6-5, page 258. Corrected Figure 6-70, page 292. Added
notes 4 and 5 to Table 6-38, page 299. Updated 3.3V I/O Design Guidelines “Summary,”
page 306. Added “HSLVDCI (High-Speed Low Voltage Digitally Controlled Impedance),”
page 259 section. Added 1.2V to Table 6-40, page 308, and added link to SSO calculator to
text above table. Added HSLVDCI to Table 6-42, page 310. Revised Virtex-4 (SX Family)
FF668 in Table 6-43.

Chapter 8: Revised “Clock Enable Inputs – CE1 and CE2”.

Chapter 9, “Temperature Sensing Diode”: Added the Virtex-4 temperature-sensing diode.

10/06/06 1.6 Chapter 7, “SelectIO Logic Resources”: Modified text in section “REFCLK - Reference
Clock” and deleted former Table 7-10.

Date Version Revision

Virtex-4 FPGA User Guide www.xilinx.com UG070 (v2.6) December 1, 2008

01/04/07 2.0 • Chapter 1, “Clock Resources”:
♦ “I/O Clock Buffer - BUFIO”: Added “in the same region” to BUFIO ability to drive

BUFRs.
♦ “BUFG VHDL and Verilog Templates”: Corrected typo in VHDL template.
♦ “Regional Clocks and I/O Clocks”: Added reference to the PACE tool for identifying

clock regions.
• Chapter 2, “Digital Clock Managers (DCMs)”:

♦ “Status Flags”: Corrected descriptions for Clock Events 2, 3, and 4.
♦ “Input Clock Requirements”: Clarified when DCM output clocks are deskewed.
♦ “Reset Input — RST”: Updated RST hold time to 200 ms after clock stabilization.
♦ “Frequency Synthesizer Characteristics”: Added reference and link to a macro for

monitoring LOCKED.
• Chapter 4, “Block RAM”:

♦ “Data Flow”: Added paragraph clarifying ADDR setup/hold requirements.
♦ Table 4-11: Corrected typo to ALMOST FULL.
♦ “RAMB16 Port Mapping Design Rules”: Corrected logic level tie for unused

ADDR[A|B] pins to High.
♦ “Synchronous Clocking”: Clarified synchronous write/read timing.
♦ Deleted SIM_COLLISION_CHECK statements from all templates.

• Chapter 6, “SelectIO Resources”:
♦ Figure 6-53: Corrected internal termination resistor designation.
♦ Table 6-1: Updated LVTTL DC voltage specifications.
♦ Table 6-31 and following: Globally corrected OBUFGDS to OBUFTDS.
♦ “Differential Termination Attribute”: Corrected paragraph describing use of

DIFF_TERM attribute.
♦ “Xilinx DCI”: Added reference to section “Driver with Termination to VCCO/2 (Split

Termination).”
♦ Figure 6-64: Corrected I/O standard name to DIFF_SSTL2_II.
♦ Table 6-38: Corrected I/O standard name to DIFF_HSTL_II_18_DCI.

• Chapter 7, “SelectIO Logic Resources”:
♦ “IDELAYCTRL Locations”: Reworded description of IDELAYCTRL locations in clock

regions.
♦ Table 7-6: Added “when in Variable mode” to function descriptions of C, INC, and CE

ports.
♦ Table 7-9: Added Note (1) to TIDELAYRESOLUTION.
♦ Added requirement to wait 8 clock cycles after increment or decrement before

sampling IDELAY.
♦ Figure 7-12: Modified to show 8 clock cycle wait time.
♦ Modified timing description to match new Figure 7-12.
♦ “IDELAY VHDL and Verilog Instantiation Template”: Changed port map for C, CE,

INC, and RST from open to zero (both Verilog and VHDL).
♦ Deleted synthesis translate_off/synthesis translate_on statements

from all IDELAY instantiation templates.

Date Version Revision

UG070 (v2.6) December 1, 2008 www.xilinx.com Virtex-4 FPGA User Guide

01/04/07
(cont’d)

2.0
(cont’d)

• Chapter 8, “Advanced SelectIO Logic Resources”:
♦ Table 8-1: REV: Added instruction to connect to GND.
♦ Table 8-2: Corrected BITSLIP_ENABLE value from “String” to “Boolean”.
♦ “Registered Outputs – Q1 to Q6”: Added clarification on bit in/out sequence.
♦ “High-Speed Clock for Strobe-Based Memory Interfaces – OCLK”: Added instruction

to ground OCLK when INTERFACE_TYPE is NETWORKING.
♦ “BITSLIP_ENABLE Attribute”: Specified setting according to setting of

INTERFACE_TYPE.
♦ “INTERFACE_TYPE Attribute”: Added recommendation to use MIG when ISERDES

is in Memory Mode. Added Figure 8-6 to illustrate ISERDES internal connections in
Memory Mode.

♦ Added section “ISERDES Clocking Methods.”
♦ “ISERDES Width Expansion”: Added explanatory paragraph regarding master/slave

ISERDES use with differential/single-ended inputs.
♦ “Guidelines for Expanding the Serial-to-Parallel Converter Bit Width”: Corrected a

number of master/slave and input/output reversals.
♦ “Verilog Instantiation Template to use Width Expansion Feature”: Corrected a number

of errors in the template.
♦ “ISERDES Latencies”: Deleted former Table 8-4 and most of the text in this section and

replaced with statement relating latency to INTERFACE_TYPE.
♦ Deleted synthesis translate_off/synthesis translate_on statements

from all ISERDES instantiation templates.
♦ “Data Parallel-to-Serial Converter”: Added recommendation to apply a reset to

OSERDES prior to use.
♦ “OSERDES Width Expansion”: Added explanatory paragraph regarding master/slave

OSERDES use with differential/single-ended outputs.
♦ “OSERDES VHDL Template” in Chapter 8: Removed erroneous semicolon following

TRISTATE_WIDTH.

03/15/07 2.1 • “ILOGIC Resources”: Added sentence clarifying SR and REV sharing between
ILOGIC/ISERDES and OLOGIC/OSERDES.

• Figure 7-1: Removed OFB/TFB inputs and associated MUXes.
• Figure 8-2: Removed OFB/TFB inputs.
• “DIFF_SSTL2_II_DCI, DIFF_SSTL18_II_DCI Usage”: Removed incorrect bidirectional

link requirements and reference to on-chip differential termination.
• “DCI in Virtex-4 FPGA Hardware”: Modified point 3 detailing when VRP/VRN reference

resistors are not required.
• “PULLUP/PULLDOWN/KEEPER for IBUF, OBUFT, and IOBUF”: Added a paragraph

recommending against using these circuits to drive a logic level on a board-level trace.
• “Frequency Synthesizer Characteristics”: Updated information regarding the setting of

AUTOCALIBRATE and CONFIG STEPPING.
• Added new section “FIFO16 Error Condition and Work-Arounds” in Chapter 4,

including VHDL/Verilog source files in UG070.zip.
• Table 6-41: Added SSO data for FF676 device/package combinations.

Date Version Revision

Virtex-4 FPGA User Guide www.xilinx.com UG070 (v2.6) December 1, 2008

04/10/07 2.2 • Added section “Cascading DCMs” in Chapter 2.
• Table 7-9: Deleted Note (1).
• Figure 7-12: Added assumption that IOBDELAY_VALUE = 0 to text.
• Section “IDELAY Timing”: Revised descriptions of Clock Events 1, 2, and 3 in Figure 7-12.
• Added new section “Note on Instability after an Increment/Decrement Operation”.
• Table 7-12: Revised description of CE port.
• Chapter 8, “Advanced SelectIO Logic Resources”: ISERDES and OSERDES sections

extensively revised and expanded with many new figures and tables.

08/10/07 2.3 • Figure 2-5 and associated text: Updated.
• Figure 2-20: Corrected reset requirement from 3 periods to 200 ns.
• Figure 2-22, associated text: Corrected number of clock cycles in Clock Event 4.
• “Frequency Synthesizer Characteristics” in Chapter 2: Added note to indicate no need for

the LOCKED monitoring macro on recent step devices.
• “SelectIO Resources Introduction” in Chapter 6: Added note that differential and

VREF-dependent inputs are powered by VCCAUX.
• “DCI in Virtex-4 FPGA Hardware” in Chapter 6: Removed erroneous reference to SSTL3

standard.
• “Lower Capacitance I/O Attributes” in Chapter 6: Added RSDS_25 to list of standards

that do not have differential driver circuits.
• Added Note (1) to Table 6-40.
• Table 6-43: Included FX family devices and added note (3) for Banks 9 and 10.
• “Temperature Sensor Examples” in Chapter 9: Added information on Texas Instruments

temperature sensor.

04/10/08 2.4 • Table 2-6, page 65: Added CLK_FEEDBACK and DCM_AUTOCALIBRATION attribute
rows. Added descriptions to CLKFX_DIVIDE and CLKFX_MULTIPLY rows.

• “DCM_AUTOCALIBRATION Attribute,” page 68: New section.
• Figure 2-9, page 84 and Figure 2-11, page 85: Removed element from Q output.
• Under Figure 3-5, page 104: Clarified bullet regarding RST must be Low before REL has

an effect.
• Figure 4-11, page 142: Removed REGCEN.
• Table 6-40, page 308: Added LVCMOS15_16_fast, LVDCI_DV2_18, and LVTTL24_fast.
• “REFCLK - Reference Clock,” page 342: Changed IDELAYCTRL_REF_PRECISION units

to MHz.
• Figure 7-21, page 355: Corrected OFFDDRB labeling.

06/17/08 2.5 • Figure 2-4, page 73: Revised the contents of the DCM block.
• “System-Synchronous Setting (Default),” page 73: Added text to the end of the section

describing cases when the DESKEW_ADJUST parameter has no effect.

12/01/08 2.6 • “Asynchronous Clocking,” page 119: Added the results of performing a read and write
operation.

• Figure 6-6, page 238: Moved VREF to be inside the FPGA.
• “DCI in Virtex-4 FPGA Hardware,” page 241: Added SSTL18_I_DCI to the list of DCI

outputs that do not require reference resistors on VRP/VRN.
• Figure 7-10, page 330: Updated figure title.

Date Version Revision

Virtex-4 FPGA User Guide www.xilinx.com 7
UG070 (v2.6) December 1, 2008

Revision History . 2

Preface: About This Guide
Guide Contents . 21
Additional Documentation . 21
Additional Support Resources . 22
Conventions . 22

Typographical . 22
Online Document . 23

Chapter 1: Clock Resources
Global and Regional Clocks . 25

Global Clocks . 25
Regional Clocks and I/O Clocks . 25

Global Clocking Resources . 25
Global Clock Inputs . 26

Global Clock Input Buffer Primitives . 26
Power Savings by Disabling Global Clock Buffer . 27
Global Clock Buffers . 27

Global Clock Buffer Primitives . 28
Additional Use Models . 36

Clock Tree and Nets - GCLK . 38
Clock Regions . 38

Regional Clocking Resources . 39
Clock Capable I/O . 40
I/O Clock Buffer - BUFIO . 40

BUFIO Primitive . 40
BUFIO Use Models . 41

Regional Clock Buffer - BUFR . 41
BUFR Primitive . 42
BUFR Attributes and Modes. 42
BUFR Use Models . 43

Regional Clock Nets . 45
VHDL and Verilog Templates . 45

BUFGCTRL VHDL and Verilog Templates . 45
VHDL Template . 45
Verilog Template . 46
Declaring Constraints in UCF File . 47

BUFG VHDL and Verilog Templates . 47
VHDL Template . 47
Verilog Template . 48
Declaring Constraints in UCF File . 48

BUFGCE and BUFGCE_1 VHDL and Verilog Templates . 48
VHDL Template . 48
Verilog Template . 49

Table of Contents

8 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

R

Declaring Constraints in UCF File . 49
BUFGMUX and BUFGMUX_1 VHDL and Verilog Templates 49

VHDL Template . 49
Verilog Template . 50
Declaring Constraints in UCF File . 50

BUFGMUX_VIRTEX4 VHDL and Verilog Templates . 50
VHDL Template . 50
Verilog Template . 51
Declaring Constraints in UCF File . 51

BUFIO VHDL and Verilog Templates . 52
VHDL Template . 52
Verilog Template . 52
Declaring Constraints in UCF File . 52

BUFR VHDL and Verilog Templates . 53
VHDL Template . 53
Verilog Template . 53
Declaring Constraints in UCF File . 54

Chapter 2: Digital Clock Managers (DCMs)
DCM Summary . 55
DCM Primitives. 57

DCM_BASE Primitive . 58
DCM_PS Primitive . 58
DCM_ADV Primitive . 58

DCM Ports . 59
Clock Input Ports . 59

Source Clock Input — CLKIN. 59
Feedback Clock Input — CLKFB . 59
Phase-Shift Clock Input — PSCLK . 60
Dynamic Reconfiguration Clock Input — DCLK . 60

Control and Data Input Ports . 61
Reset Input — RST . 61
Phase-Shift Increment/Decrement Input — PSINCDEC . 61
Phase-Shift Enable Input — PSEN . 61
Dynamic Reconfiguration Data Input — DI[15:0]. 61
Dynamic Reconfiguration Address Input — DADDR[6:0] . 61
Dynamic Reconfiguration Write Enable Input — DWE . 62
Dynamic Reconfiguration Enable Input — DEN . 62

Clock Output Ports . 62
1x Output Clock — CLK0 . 62
1x Output Clock, 90° Phase Shift — CLK90 . 62
1x Output Clock, 180° Phase Shift — CLK180 . 62
1x Output Clock, 270° Phase Shift — CLK270 . 62
2x Output Clock — CLK2X. 62
2x Output Clock, 180° Phase Shift — CLK2X180 . 63
Frequency Divide Output Clock — CLKDV. 63
Frequency-Synthesis Output Clock — CLKFX . 63
Frequency-Synthesis Output Clock, 180° — CLKFX180 . 63

Status and Data Output Ports . 63
Locked Output — LOCKED . 63
Phase-Shift Done Output — PSDONE . 63
Status or Dynamic Reconfiguration Data Output — DO[15:0] . 64

Virtex-4 FPGA User Guide www.xilinx.com 9
UG070 (v2.6) December 1, 2008

R

Dynamic Reconfiguration Ready Output — DRDY . 64
DCM Attributes . 65

CLK_FEEDBACK Attribute . 66
CLKDV_DIVIDE Attribute . 67
CLKFX_MULTIPLY and CLKFX_DIVIDE Attributes . 67
CLKIN_DIVIDE_BY_2 Attribute . 67
CLKIN_PERIOD Attribute . 67
CLKOUT_PHASE_SHIFT Attribute . 68
DCM_AUTOCALIBRATION Attribute . 68
DCM_PERFORMANCE_MODE Attribute . 68
DESKEW_ADJUST Attribute . 69
DFS_FREQUENCY_MODE Attribute . 69
DLL_FREQUENCY_MODE Attribute . 69
DUTY_CYCLE_CORRECTION Attribute . 69
FACTORY_JF Attribute. 69
PHASE_SHIFT Attribute . 69
STARTUP_WAIT Attribute . 70

DCM Design Guidelines . 70
Clock Deskew . 70

Clock Deskew Operation . 70
Input Clock Requirements . 71
Input Clock Changes. 71
Output Clocks. 72
DCM During Configuration and Startup . 72
Deskew Adjust . 73
Characteristics of the Deskew Circuit . 74
Cascading DCMs . 74

Frequency Synthesis . 75
Frequency Synthesis Operation . 75
Frequency Synthesizer Characteristics . 76

Phase Shifting . 76
Phase-Shifting Operation . 76
Interaction of PSEN, PSINCDEC, PSCLK, and PSDONE . 79
Phase-Shift Overflow . 80
Phase-Shift Characteristics . 80

Dynamic Reconfiguration . 81
Connecting DCMs to Other Clock Resources in Virtex-4 Devices. 82

IBUFG to DCM . 82
DCM to BUFGCTRL . 82
BUFGCTRL to DCM . 82
DCM to and from PMCD . 82

Application Examples . 82
Standard Usage . 82
Board-Level Clock Generation . 83
Board Deskew with Internal Deskew . 85
Clock Switching Between Two DCMs . 88

VHDL and Verilog Templates, and the Clocking Wizard. 89
DCM Timing Models . 94

Reset/Lock . 94
Fixed-Phase Shifting . 95
Variable-Phase Shifting . 95
Status Flags . 96

10 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

R

Legacy Support . 97

Chapter 3: Phase-Matched Clock Dividers (PMCDs)
PMCD Summary . 99
PMCD Primitives, Ports, and Attributes . 101
PMCD Usage and Design Guidelines. 102

Phase-Matched Divided Clocks . 102
Matched Clock Phase . 102
Reset (RST) and Release (REL) Control Signals . 103
Connecting PMCD to other Clock Resources . 105

IBUFG to PMCD . 105
DCM to PMCD . 105
BUFGCTRL to PMCD . 105
PMCD to BUFGCTRL . 106
PMCD to PMCD . 106

Application Examples . 106
DCM and a Single PMCD . 106
DCM and Parallel PMCDs . 106
IBUFG, BUFG, and PMCD . 107
PMCD for Further Division of Clock Frequencies . 108

VHDL and Verilog Templates, and the Clocking Wizard. 109
VHDL Template . 111
Verilog Template . 112

Chapter 4: Block RAM
Block RAM Summary . 115
Block RAM Introduction . 116
Synchronous Dual-Port and Single-Port RAMs . 116

Data Flow . 116
Read Operation . 118
Write Operation . 118
Operating Modes . 118

WRITE_FIRST or Transparent Mode (Default) . 118
READ_FIRST or READ-BEFORE-WRITE Mode . 119
NO_CHANGE Mode . 119

Conflict Avoidance . 119
Asynchronous Clocking . 119
Synchronous Clocking . 120

Additional Block RAM Features in Virtex-4 Devices . 120
Optional Output Registers . 120
Independent Read and Write Port Width Selection . 121
Cascadable Block RAM . 121

FIFO Support . 122
Byte-Wide Write Enable . 123

Block RAM Library Primitives . 124
Block RAM Port Signals. 124

Clock - CLK[A|B] . 124
Enable - EN[A|B] . 124
Write Enable - WE[A|B] . 125
Register Enable - REGCE[A|B] . 125

Virtex-4 FPGA User Guide www.xilinx.com 11
UG070 (v2.6) December 1, 2008

R

Set/Reset - SSR[A|B] . 125
Address Bus - ADDR[A|B]<14:#> . 125
Data-In Buses - DI[A|B]<#:0> & DIP[A|B]<#:0> . 125
Data-Out Buses - DO[A|B]<#:0> and DOP[A|B]<#:0> . 126
Cascade - CASCADEIN[A|B] . 126
Cascade - CASCADEOUT[A|B] . 126
Inverting Control Pins . 126
GSR . 126
Unused Inputs . 126

Block RAM Address Mapping. 127
Block RAM Attributes . 127

Content Initialization - INIT_xx . 127
Content Initialization - INITP_xx . 128
Output Latches Initialization - INIT (INIT_A & INIT_B) . 128
Output Latches Synchronous Set/Reset - SRVAL (SRVAL_A & SRVAL_B) 128
Optional Output Register On/Off Switch - DO[A|B]_REG . 129
Clock Inversion at Output Register Switch - INVERT_CLK_DO[A|B]_REG 129
Extended Mode Address Determinant - RAM_EXTENSION_[A|B] 129
Read Width - READ_WIDTH_[A|B] . 129
Write Width - WRITE_WIDTH_[A|B] . 129
Write Mode - WRITE_MODE_[A|B] . 129
Block RAM Location Constraints . 129

Block RAM Initialization in VHDL or Verilog Code . 130
Block RAM VHDL and Verilog Templates. 130

RAMB16 VHDL Template . 130
RAMB16 Verilog Template . 134

Additional RAMB16 Primitive Design Considerations . 139
Data Parity Buses - DIP[A/B] and DOP[A/B] . 139
Optional Output Registers . 139
Independent Read and Write Port Width . 139
RAMB16 Port Mapping Design Rules . 139
Cascadable Block RAM . 140
Byte-Write Enable . 140

Additional Block RAM Primitives . 141
Instantiation of Additional Block RAM Primitives . 143

Block RAM Applications . 143
Creating Larger RAM Structures . 143

Block RAM Timing Model . 143
Block RAM Timing Parameters . 144
Block RAM Timing Characteristics . 145

Clock Event 1 . 145
Clock Event 2 . 145
Clock Event 4 . 146
Clock Event 5 . 146

Block RAM Timing Model . 146
Built-in FIFO Support . 147

EMPTY Latency . 148
Top-Level View of FIFO Architecture. 149
FIFO Primitive . 149
FIFO Port Descriptions . 150

12 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

R

FIFO Operations . 151
Reset . 151
Operating Mode . 151

Standard Mode . 151
First Word Fall Through (FWFT) Mode . 151

Status Flags . 151
Empty Flag . 151
ALMOSTEMPTY Flag. 152
Read Error Flag. 152
Full Flag . 152
Write Error Flag . 152
ALMOSTFULL Flag . 152

FIFO Attributes . 153
FIFO ALMOSTEMPTY / ALMOSTFULL Flag Offset Range 153

FIFO VHDL and Verilog Templates . 154
FIFO VHDL Template . 154
FIFO Verilog Template . 155

FIFO Timing Models and Parameters . 156
FIFO Timing Characteristics . 157

Case 1: Writing to an Empty FIFO . 158
Case 2: Writing to a Full or Almost Full FIFO. 159
Case 3: Reading From a Full FIFO . 160
Case 4: Reading From an Empty or Almost Empty FIFO . 162
Case 5: Resetting All Flags . 163

FIFO Applications . 164
Cascading FIFOs to Increase Depth . 164
Cascading FIFOs to Increase Width . 164

FIFO16 Error Condition and Work-Arounds . 165
FIFO16 Error Condition . 165
Solution 1: Synchronous/Asynchronous Clock Work-Arounds 165

Synchronous Clock Work-Around . 165
Asynchronous Clock Work-Around . 166
WRCLK Faster than RDCLK Design. 166
RDCLK Faster than WRCLK Design. 167
User-Programmable Flag Settings in the Composite FIFO . 167
Status Flags . 168
Resource Utilization . 168
Performance Expressed in Maximum Read and/or Write Clock Frequency 168
CORE Generator Tool Implementation. 168
Software Updates . 169
Software IP Cores . 169

Solution 2: Work-Around Using a Third Fast Clock . 170
Design Description . 170
Notes: . 172
Timing Diagram . 172
Resource Utilization . 173
Performance . 173
Design Files. 173

Solution 3: FIFO Flag Generator Using Gray Code. 174
Design Description . 174
Notes: . 176
Resource Utilization . 176

Virtex-4 FPGA User Guide www.xilinx.com 13
UG070 (v2.6) December 1, 2008

R

Performance . 176
Design Files. 177

Solution Summary . 177
Built-in Block RAM Error Correction Code . 178

Top-Level View of the Block RAM ECC Architecture . 178
Block RAM ECC Primitive . 179
Block RAM ECC Port Description . 179
Error Status Description . 180
Block RAM ECC Attribute . 180
Block RAM ECC VHDL and Verilog Templates . 180

Block RAM ECC VHDL Template . 180
Block RAM ECC Verilog Template . 181

Chapter 5: Configurable Logic Blocks (CLBs)
CLB Overview . 183

Slice Description . 184
CLB/Slice Configurations. 184
Look-Up Table (LUT) . 187
Storage Elements. 187
Distributed RAM and Memory (Available in SLICEM only) . 188
Read Only Memory (ROM). 191
Shift Registers (Available in SLICEM only) . 192
Shift Register Data Flow . 195
Multiplexers . 196
Designing Large Multiplexers. 198
Fast Lookahead Carry Logic . 202
Arithmetic Logic . 204

CLB / Slice Timing Models . 204
General Slice Timing Model and Parameters . 205

Timing Parameters . 205
Timing Characteristics . 207

Slice Distributed RAM Timing Model and Parameters
(Available in SLICEM only) . 208

Distributed RAM Timing Parameters . 209
Distributed RAM Timing Characteristics . 209

Slice SRL Timing Model and Parameters (Available in SLICEM only) 211
Slice SRL Timing Parameters . 212
Slice SRL Timing Characteristics. 212

Slice Carry-Chain Timing Model and Parameters . 213
Slice Carry-Chain Timing Parameters. 215
Slice Carry-Chain Timing Characteristics . 215

CLB Primitives and Verilog/VHDL Examples . 216
Distributed RAM Primitives . 216
VHDL and Verilog Instantiations . 217
Port Signals . 217

Clock - WCLK. 217
Enable - WE . 217
Address - A0, A1, A2, A3 (A4, A5) . 217
Data In - D. 217
Data Out - O, SPO, and DPO . 217
Inverting Control Pins . 217
Global Set/Reset - GSR . 217

14 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

R

Attributes. 218
Content Initialization - INIT . 218
Initialization in VHDL or Verilog Codes . 218
Location Constraints . 218
Creating Larger RAM Structures . 219
VHDL and Verilog Templates . 219

Shift Registers (SRLs) Primitives and Verilog/VHDL Example 221
SRL Primitives and Submodules . 221
Initialization in VHDL or Verilog Code . 223
Port Signals . 223

Clock - CLK. 223
Data In - D. 223
Clock Enable - CE (optional) . 223
Address - A0, A1, A2, A3 . 223
Data Out - Q . 223
Data Out - Q15 (optional) . 223
Inverting Control Pins . 223
Global Set/Reset - GSR . 223

Attributes. 224
Content Initialization - INIT . 224

Location Constraints . 224
Fully Synchronous Shift Registers . 225
Static-Length Shift Registers . 225
VHDL and Verilog Instantiation . 226

VHDL and Verilog Templates . 226
Multiplexer Primitives and Verilog/VHDL Examples . 227

Multiplexer Primitives and Submodules . 228
Port Signals . 228

Data In - DATA_I . 228
Control In - SELECT_I . 228
Data Out - DATA_O . 229

Multiplexer Verilog/VHDL Examples . 229
VHDL and Verilog Instantiation. 229
VHDL and Verilog Submodules . 229

Chapter 6: SelectIO Resources
I/O Tile Overview . 233
SelectIO Resources Introduction . 234
SelectIO Technology Resources General Guidelines . 234

Virtex-4 FPGA I/O Bank Rules . 235
3.3V I/O Support . 235
Reference Voltage (VREF) Pins . 235
Output Drive Source Voltage (VCCO) Pins . 235

Virtex-4 FPGA Digitally Controlled Impedance (DCI) . 236
Introduction . 236
Xilinx DCI . 236
Controlled Impedance Driver (Source Termination) . 237
Controlled Impedance Driver with Half Impedance (Source Termination) 237
Input Termination to VCCO (Single Termination) . 238
Input Termination to VCCO/2 (Split Termination) . 239
Driver with Termination to VCCO (Single Termination) . 240
Driver with Termination to VCCO/2 (Split Termination) . 241

Virtex-4 FPGA User Guide www.xilinx.com 15
UG070 (v2.6) December 1, 2008

R

DCI in Virtex-4 FPGA Hardware. 241
DCI Usage Examples . 243

Virtex-4 FPGA SelectIO Primitives . 246
IBUF and IBUFG . 247
OBUF . 247
OBUFT . 247
IOBUF . 248
IBUFDS and IBUFGDS . 248
OBUFDS . 248
OBUFTDS . 249
IOBUFDS . 249
Virtex-4 FPGA SelectIO Attributes/Constraints . 249

Location Constraints . 249
IOStandard Attribute . 250
Output Slew Rate Attributes. 250
Output Drive Strength Attributes . 250
Lower Capacitance I/O Attributes . 250
PULLUP/PULLDOWN/KEEPER for IBUF, OBUFT, and IOBUF 251
Differential Termination Attribute . 251

Virtex-4 FPGA I/O Resource VHDL/Verilog Examples . 251
VHDL Template . 251
Verilog Template . 252

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards 253
LVTTL (Low Voltage Transistor-Transistor Logic) . 253
LVCMOS (Low Voltage Complementary Metal Oxide Semiconductor). 255

LVDCI (Low Voltage Digitally Controlled Impedance) . 257
LVDCI_DV2 . 258
HSLVDCI (High-Speed Low Voltage Digitally Controlled Impedance). 259

PCIX, PCI33, PCI66 (Peripheral Component Interface) . 260
GTL (Gunning Transceiver Logic) . 261

GTL_DCI Usage . 261
GTLP (Gunning Transceiver Logic Plus) . 262

GTLP_DCI Usage . 262
HSTL (High-Speed Transceiver Logic) . 263

HSTL_ I, HSTL_ III, HSTL_ I_18, HSTL_ III_18 Usage . 263
HSTL_ I_DCI, HSTL_ III_DCI, HSTL_ I_DCI_18, HSTL_ III_DCI_18 Usage 263
HSTL_ II, HSTL_ IV, HSTL_ II_18, HSTL_ IV_18 Usage. 264
HSTL_ II_DCI, HSTL_ IV_DCI, HSTL_ II_DCI_18, HSTL_ IV_DCI_18 Usage 264
DIFF_HSTL_ II, DIFF_HSTL_II_18 . 264
DIFF_HSTL_II_DCI, DIFF_HSTL_II_DCI_18 . 264

HSTL Class I . 265
HSTL Class II . 266
Complementary Single-Ended (CSE) Differential HSTL Class II 268
HSTL Class III . 270
HSTL Class IV. 271
HSTL Class I (1.8V) . 273
HSTL Class II (1.8V). 274
Complementary Single-Ended (CSE) Differential HSTL Class II (1.8V) 276
HSTL Class III (1.8V) . 278
HSTL Class IV (1.8V) . 279
SSTL (Stub-Series Terminated Logic) . 281

SSTL2_I, SSTL18_I Usage . 281
SSTL2_I_DCI, SSTL18_I_DCI Usage . 281

16 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

R

SSTL2_II, SSTL18_II Usage . 281
SSTL2_II_DCI, SSTL18_II_DCI Usage. 281
DIFF_SSTL2_II, DIFF_SSTL18_II Usage . 282
DIFF_SSTL2_II_DCI, DIFF_SSTL18_II_DCI Usage . 282

SSTL2 Class I (2.5V) . 282
SSTL2 Class II (2.5V) . 283
Complementary Single-Ended (CSE) Differential SSTL2 Class II (2.5V) 285
SSTL18 Class I (1.8V) . 288
SSTL18 Class II (1.8V) . 289
Complementary Single-Ended (CSE) Differential SSTL Class II (1.8V) 291
Differential Termination: DIFF_TERM Attribute . 294
LVDS and Extended LVDS (Low Voltage Differential Signaling) 294

Transmitter Termination. 295
Receiver Termination . 295

HyperTransport Protocol (LDT) . 296
BLVDS (Bus LVDS) . 297
CSE Differential LVPECL (Low-Voltage Positive Emitter-Coupled Logic) 297

LVPECL Transceiver Termination . 297
I/O Standards Compatibility . 299
I/O Standards Special Design Rules . 302

Rules for Combining I/O Standards in the Same Bank . 302
3.3V I/O Design Guidelines . 303

I/O Standard Design Rules. 303
Mixing Techniques . 306
Summary . 306

Simultaneous Switching Output Limits . 306
Sparse-Chevron Packages . 306
Nominal PCB Specifications . 307

PCB Construction . 307
Signal Return Current Management . 307
Load Traces. 307
Power Distribution System Design . 307

Nominal SSO Limit Table: Sparse Chevron . 308
Equivalent VCCO/GND Pairs: Sparse Chevron . 309

Nominal SSO Limit Tables: Non-Sparse Chevron . 310
Equivalent VCCO/GND Pairs: Non-Sparse Chevron . 314

Actual SSO Limits versus Nominal SSO Limits . 314
Electrical Basis of SSO Noise . 314
Parasitic Factors Derating Method (PFDM) . 315
Weighted Average Calculation of SSO . 316
Calculation of Full Device SSO . 317

Full Device SSO Example . 317
Full Device SSO Calculator . 319
Other SSO Assumptions . 319

LVDCI and HSLVDCI Drivers . 319
Bank 0 . 320

Chapter 7: SelectIO Logic Resources
Introduction . 321
ILOGIC Resources . 321

Combinatorial Input Path . 323
Input DDR Overview (IDDR) . 323

Virtex-4 FPGA User Guide www.xilinx.com 17
UG070 (v2.6) December 1, 2008

R

OPPOSITE_EDGE Mode. 323
SAME_EDGE Mode . 325
SAME_EDGE_PIPELINED Mode. 326

Input DDR Primitive (IDDR) . 327
IDDR VHDL and Verilog Templates . 328

IDDR VHDL Template . 328
IDDR Verilog Template . 328

ILOGIC Timing Models . 329
ILOGIC Timing Characteristics . 329
ILOGIC Timing Characteristics, DDR. 330

Input Delay Element (IDELAY) . 331
IDELAY Primitive. 332
IDELAY Ports . 333
IDELAY Attributes . 334
IDELAY Timing . 334
Note on Instability after an Increment/Decrement Operation 335
IDELAY VHDL and Verilog Instantiation Template . 336

IDELAYCTRL Overview . 341
IDELAYCTRL Primitive . 341
IDELAYCTRL Ports . 341
IDELAYCTRL Timing. 342
IDELAYCTRL Locations. 343
IDELAYCTRL Usage and Design Guidelines . 343

OLOGIC Resources . 351
Combinatorial Output Data and 3-State Control Path . 354

Output DDR Overview (ODDR) . 354
OPPOSITE_EDGE Mode. 354
SAME_EDGE Mode . 356
Clock Forwarding . 356

Output DDR Primitive (ODDR). 357
ODDR VHDL and Verilog Templates . 358

ODDR VHDL Template . 358
ODDR Verilog Template. 358

OLOGIC Timing Models. 359
Timing Characteristics . 360

Chapter 8: Advanced SelectIO Logic Resources
Introduction . 365
Input Serial-to-Parallel Logic Resources (ISERDES). 365

ISERDES Primitive . 367
ISERDES Ports . 368

Combinatorial Output – O . 368
Registered Outputs – Q1 to Q6 . 368
Bitslip Operation – BITSLIP . 368
Clock Enable Inputs – CE1 and CE2 . 369
High-Speed Clock Input – CLK . 369
Divided Clock Input – CLKDIV . 370
Serial Input Data from IOB – D. 370
High-Speed Clock for Strobe-Based Memory Interfaces – OCLK 370
Reset Input – SR . 370

ISERDES Attributes . 372
BITSLIP_ENABLE Attribute . 372

18 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

R

DATA_RATE Attribute. 372
DATA_WIDTH Attribute . 372
INTERFACE_TYPE Attribute . 373
IOBDELAY Attribute . 374
NUM_CE Attribute. 374
SERDES_MODE Attribute . 374

ISERDES Clocking Methods . 374
ISERDES Width Expansion . 375

Guidelines for Expanding the Serial-to-Parallel Converter Bit Width 376
Verilog Instantiation Template to use Width Expansion Feature 376

ISERDES Latencies . 379
ISERDES Timing Model and Parameters . 379

Timing Characteristics . 380
ISERDES VHDL and Verilog Instantiation Template. 380

ISERDES VHDL Instantiation. 380
ISERDES Verilog Instantiation . 382

BITSLIP Submodule . 383
Bitslip Operation. 383
Bitslip Timing Model and Parameters . 384

Output Parallel-to-Serial Logic Resources (OSERDES) . 386
Data Parallel-to-Serial Converter . 386
3-State Parallel-to-Serial Conversion. 387

OSERDES Primitive . 388
OSERDES Ports . 388

Data Path Output – OQ. 389
3-state Control Output – TQ . 389
High-Speed Clock Input – CLK . 389
Divided Clock Input – CLKDIV . 389
Parallel Data Inputs – D1 to D6. 389
Output Data Clock Enable – OCE. 389
Parallel 3-State Inputs – T1 to T4. 389
3-State Signal Clock Enable – TCE . 390
Reset Input – SR . 390

OSERDES Attributes . 391
DATA_RATE_OQ Attribute . 391
DATA_RATE_TQ Attribute . 392
DATA_WIDTH Attribute . 392
SERDES_MODE Attribute . 392
TRISTATE_WIDTH Attribute. 392

OSERDES Width Expansion . 392
Guidelines for Expanding the Parallel-to-Serial Converter Bit Width 393

OSERDES Latencies . 394
OSERDES Timing Model and Parameters . 394

Timing Characteristics of 2:1 SDR Serialization . 395
Timing Characteristics of 8:1 DDR Serialization . 395
Timing Characteristics of 4:1 DDR 3-State Controller Serialization 396

OSERDES VHDL and Verilog Instantiation Templates . 398
OSERDES VHDL Template. 398
OSERDES Verilog Template . 399

Chapter 9: Temperature Sensing Diode
Temperature-Sensing Diode (TDP/TDN) . 401

Temperature Sensor Examples. 401

Virtex-4 FPGA User Guide www.xilinx.com 19
UG070 (v2.6) December 1, 2008

R

Maxim Remote/Local Temperature Sensors . 401
Texas Instruments Remote/Local Temperature Sensor . 402
National Semiconductor (LM83 or LM86) . 402

20 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

R

Virtex-4 FPGA User Guide www.xilinx.com 21
UG070 (v2.6) December 1, 2008

R

Preface

About This Guide

This document describes the Virtex®-4 FPGA architecture. Complete and up-to-date
documentation of the Virtex-4 family of FPGAs is available on the Xilinx® website at
http://www.xilinx.com/virtex4.

Guide Contents
• Chapter 1, “Clock Resources”

• Chapter 2, “Digital Clock Managers (DCMs)”

• Chapter 3, “Phase-Matched Clock Dividers (PMCDs)”

• Chapter 4, “Block RAM”

• Chapter 5, “Configurable Logic Blocks (CLBs)”

• Chapter 6, “SelectIO Resources”

• Chapter 7, “SelectIO Logic Resources”

• Chapter 8, “Advanced SelectIO Logic Resources”

• Chapter 9, “Temperature Sensing Diode”

Additional Documentation
The following documents are also available for download at
http://www.xilinx.com/virtex4.

• DS112, Virtex-4 Family Overview

The features and product selection of the Virtex-4 family are outlined in this overview.

• DS302, Virtex-4 Data Sheet: DC and Switching Characteristics

This data sheet contains the DC and Switching Characteristic specifications for the
Virtex-4 family.

• UG073, XtremeDSP for Virtex-4 FPGAs User Guide

This guide describes the XtremeDSP™ slice and includes reference designs for using
DSP48 math functions and various FIR filters.

• UG071, Virtex-4 Configuration Guide

This all-encompassing configuration guide includes chapters on configuration
interfaces (serial and SelectMAP), bitstream encryption, Boundary-Scan and JTAG
configuration, reconfiguration techniques, and readback through the SelectMAP and
JTAG interfaces.

22 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Preface: About This Guide
R

• UG072, Virtex-4 PCB Designer’s Guide

This guide describes PCB guidelines for the Virtex-4 family. It covers SelectIO™
signaling, RocketIO™ signaling, power distribution systems, PCB breakout, and parts
placement.

• UG075, Virtex-4 Packaging and Pinout Specification

This specification includes the tables for device/package combinations and maximum
I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and
thermal specifications.

• UG076, Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide

This guide describes the RocketIO Multi-Gigabit Transceivers available in the
Virtex-4 FX family.

• UG074, Virtex-4 FPGA Embedded Tri-Mode Ethernet MAC User Guide

This guide describes the Tri-mode Ethernet Media Access Controller available in the
Virtex-4 FX family.

• UG018, PowerPC 405 Processor Block Reference Guide

This guide describes the IBM PowerPC® 405 processor block available in the
Virtex-4 FX family.

Additional Support Resources
To search the database of silicon and software questions and answers, or to create a
technical support case in WebCase, see the Xilinx website at:
http://www.xilinx.com/support.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from
a menu

File → Open

Keyboard shortcuts Ctrl+C

Virtex-4 FPGA User Guide www.xilinx.com 23
UG070 (v2.6) December 1, 2008

Conventions
R

Online Document
The following conventions are used in this document:

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { }
A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |
Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name loc1
loc2 ... locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text Cross-reference link to a location
in the current document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text
Cross-reference link to a location
in another document

See Figure 5 in the Virtex-II
Platform FPGA User Guide.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com
for the latest speed files.

24 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Preface: About This Guide
R

Virtex-4 FPGA User Guide www.xilinx.com 25
UG070 (v2.6) December 1, 2008

R

Chapter 1

Clock Resources

Global and Regional Clocks
For clocking purposes, each Virtex®-4 device is divided into regions. The number of
regions varies with device size, eight regions in the smallest device to 24 regions in the
largest one.

Global Clocks
Each Virtex-4 device has 32 matched-skew global clock lines that can clock all sequential
resources on the whole device (CLB, block RAM, DCMs, and I/O), and also drive logic
signals. Any eight of these 32 global clock lines can be used in any region. Global clock
lines are only driven by a global clock buffer, and can also be used as a clock enable circuit
or a glitch-free multiplexer. It can select between two clock sources, and can also switch
away from a failed clock source, a new feature in the Virtex-4 architecture.

A global clock buffer is often driven by a Digital Clock Manager (DCM) to eliminate the
clock distribution delay, or to adjust its delay relative to another clock. There are more
global clocks than DCMs, but a DCM often drives more than one global clock.

Regional Clocks and I/O Clocks
Each region has two “clock capable” regional clock inputs. Each input can differentially or
single-endedly drive regional clocks and I/O clocks in the same region, and also in the
region above or below (i.e., in up to three adjacent regions).

The regional clock buffer can be programmed to divide the incoming clock rate by any
integer number from 1 to 8. This feature, in conjunction with the programmable
serializer/deserializer in the IOB (see Chapter 8, “Advanced SelectIO Logic Resources”)
allows source-synchronous systems to cross clock domains without using additional logic
resources.

A third type of clocking resource, I/O clocks, are very fast and serve localized I/O
serializer/deserializer circuits (see Chapter 8, “Advanced SelectIO Logic Resources”).

For more detail on how to identify clock regions and the associated components, please use
the PACE tool.

Global Clocking Resources
Global clocks are a dedicated network of interconnect specifically designed to reach all
clock inputs to the various resources in an FPGA. These networks are designed to have low
skew and low duty cycle distortion, low power, and increased jitter tolerance. They are
also designed to support very high frequency signals.

26 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

Understanding the signal path for a global clock expands the understanding of the various
global clock resources. The global clocking resources and network consist of the following
paths and components:

• Global Clock Inputs

• Global Clock Buffers

• Clock Tree and Nets - GCLK

• Clock Regions

Global Clock Inputs
Virtex-4 FPGAs contain specialized global clock input locations for use as regular user
I/Os if not used as clock inputs. The number of clock inputs varies with the device size.
Smaller devices contain 16 clock inputs, while larger devices have 32 clock inputs.
Table 1-1 summarizes the number of clock inputs available for different Virtex-4 devices.

Clock inputs can be configured for any I/O standard, including differential I/O standards.
Each clock input can be either single-ended or differential. All 16 or 32 clock inputs can be
differential if desired. When used as outputs, global clock input pins can be configured for
any output standard except LVDS and HT output differential standards. Each global clock
input pin supports any single-ended output standard or any CSE output differential
standard.

Global Clock Input Buffer Primitives

The primitives in Table 1-2 are different configurations of the input clock I/O input buffer.

These two primitives work in conjunction with the Virtex-4 FPGA I/O resource by setting
the IOSTANDARD attribute to the desired standard. Refer to Chapter 6, “I/O
Compatibility” Table 6-38 for a complete list of possible I/O standards.

Table 1-1: Number of Clock I/O Inputs by Device

Device Number of Clock I/O Inputs

XC4VLX15, XC4VLX25
XC4VSX25, XC4VSX35
XC4VFX12, XC4VFX20, XC4VFX40, XC4VFX60

16

XC4VLX40(1), XC4VLX60(1), XC4VLX80, XC4VLX100,
XC4VLX160, XC4VLX200
XC4VSX55
XC4VFX100(2), XC4VFX140

32

Notes:
1. The XC4VLX40 and XC4VLX60 in the FF668 package only have 16 clock input pins.
2. The XC4VFX100 in the FF1152 package only has 16 clock input pins.

Table 1-2: Clock Buffer Primitives

Primitive Input Output Description

IBUFG I O Input clock buffer for single-ended I/O

IBUFGDS I, IB O Input clock buffer for differential I/O

Virtex-4 FPGA User Guide www.xilinx.com 27
UG070 (v2.6) December 1, 2008

Global Clocking Resources
R

Power Savings by Disabling Global Clock Buffer
The Virtex-4 FPGA clock architecture provides a straightforward means of implementing
clock gating for the purposes of powering down portions of a design.

Most designs contain several unused BUFGMUX resources. A clock can drive multiple
BUFGMUX inputs, and the BUFGMUX outputs, which will be synchronous with each
other, can be used to drive distinct regions of logic. For example, if all the logic required to
be always operating can be constrained to a few clocking regions, then one of the
BUFGMUX outputs can be used to drive those regions. Toggling the enable of the other
BUFGMUX then provides a simple means of stopping all dynamic power consumption in
those regions of logic available for power savings.

The XPower tool can be used to estimate the power savings from such an approach. The
difference can be calculated either by toggling the BUFGMUX enable or by setting the
frequency on the corresponding clock net to 0 MHz.

Global Clock Buffers
There are 32 global clock buffers in every Virtex-4 device. Each half of the die (top/bottom)
contains 16 global clock buffers. A global clock input can directly connect from the P-side
of the differential input pin pair to any global clock buffer input in the same half, either top
or bottom, of the device. Each differential global clock pin pair can connect to either a
differential or single-ended clock on the PCB. If using a single-ended clock, then the P-side
of the pin pair must be used because a direct connection only exists on this pin. For pin
naming conventions, refer to the Virtex-4 Packaging and Pinout Specification. A single-ended
clock connected to the N-side of the differential pair results in a local route and creates
additional delay. If a single-ended clock is connected to a differential pin pair then the
other side (N-side typically) can not be used as another single-ended clock pin. However,
it can be used as a user I/O. A device with 16 global clock pins can be connected to 16
differential or 16 single-ended board clocks. A device with 32 global clock pins can be
connected to 32 clocks under these same conditions.

Global clock buffers allow various clock/signal sources to access the global clock trees and
nets. The possible sources for input to the global clock buffers include:

• Global clock inputs

• Digital Clock Manager (DCM) outputs

• Phase-Matched Clock Divider (PMCD) outputs

• Rocket IO Multi-Gigabit Transceivers

• Other global clock buffer outputs

• General interconnect

The global clock buffers can only be driven by sources in the same half of the die
(top/bottom).

All global clock buffers can drive all clock regions in Virtex-4 devices. The
primary/secondary rules from Virtex-II and Virtex-II Pro FPGAs do not apply. However,
only eight different clocks can be driven in a single clock region. A clock region (16 CLBs)
is a branch of the clock tree consisting of eight CLB rows up and eight CLB rows down. A
clock region only spans halfway across the device.

The clock buffers are designed to be configured as a synchronous or asynchronous “glitch
free” 2:1 multiplexer with two clock inputs. Virtex-4 devices have more control pins to
provide a wider range of functionality and more robust input switching. The following

28 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

subsections detail the various configurations, primitives, and use models of the Virtex-4
FPGA clock buffers.

Global Clock Buffer Primitives

The primitives in Table 1-3 are different configurations of the global clock buffers.

BUFGCTRL

The BUFGCTRL primitive shown in Figure 1-1, can switch between two asynchronous
clocks. All other global clock buffer primitives are derived from certain configurations of
BUFGCTRL. The ISE® software tools manage the configuration of all these primitives.

BUFGCTRL has four select lines, S0, S1, CE0, and CE1. It also has two additional control
lines, IGNORE0 and IGNORE1. These six control lines are used to control the input I0 and
I1.

BUFGCTRL is designed to switch between two clock inputs without the possibility of a
glitch. When the presently selected clock transitions from High to Low after S0 and S1

Table 1-3: Global Clock Buffer Primitives

Primitive Input Output Control

BUFGCTRL I0, I1 O CE0, CE1, IGNORE0, IGNORE1, S0, S1

BUFG I O –

BUFGCE I O CE

BUFGCE_1 I O CE

BUFGMUX I0, I1 O S

BUFGMUX_1 I0, I1 O S

BUFGMUX_VIRTEX4 I0, I1 O S

Notes:
1. All primitives are derived from a software preset of BUFGCTRL.

Figure 1-1: BUFGCTRL Primitive

IGNORE1

IGNORE0

CE1

CE0

S1

S0

I1

I0

O

BUFGCTRL

UG070_1_01_031208

Virtex-4 FPGA User Guide www.xilinx.com 29
UG070 (v2.6) December 1, 2008

Global Clocking Resources
R

change, the output is kept Low until the other (“to-be-selected”) clock has transitioned
from High to Low. Then the new clock starts driving the output.The default configuration
for BUFGCTRL is falling edge sensitive and held at Low prior to the input switching.
BUFGCTRL can also be rising edge sensitive and held at High prior to the input switching.

In some applications the conditions previously described are not desirable. Asserting the
IGNORE pins bypasses the BUFGCTRL from detecting the conditions for switching
between two clock inputs. In other words, asserting IGNORE causes the mux to switch the
inputs at the instant the select pin changes. IGNORE0 causes the output to switch away
from the I0 input immediately when the select pin changes, while IGNORE1 causes the
output to switch away from the I1 input immediately when the select pin changes.

Selection of an input clock requires a “select” pair (S0 and CE0, or S1 and CE1) to be
asserted High. If either S or CE is not asserted High, the desired input is not selected. In
normal operation, both S and CE pairs (all four select lines) are not expected to be asserted
High simultaneously. Typically only one pin of a “select” pair is used as a select line, while
the other pin is tied High. The truth table is shown in Table 1-4.

Although both S and CE are used to select a desired output, each one of these pins behaves
slightly different. When using CE to switch clocks, the change in clock selection can be
faster than when using S. Violation in setup/hold times of the CE pins causes a glitch at the
clock output. On the other hand, using the S pins allows the user to switch between the two
clock inputs without regard to setup/hold times. It does not result in a glitch. See the
discussion of “BUFGMUX_VIRTEX4”. The CE pin is designed to allow backward
compatibility from Virtex-II and Virtex-II Pro FPGAs.

Table 1-4: Truth Table for Clock Resources

CE0 S0 CE1 S1 O

1 1 0 X I0

1 1 X 0 I0

0 X 1 1 I1

X 0 1 1 I1

1 1 1 1 Old Input (1)

Notes:
1. Old input refers to the valid input clock before this state is achieved.
2. For all other states, the output becomes the value of INIT_OUT and does not toggle.

30 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

The timing diagram in Figure 1-2 illustrates various clock switching conditions using the
BUFGCTRL primitives. Exact timing numbers are best found using the speed specification.

• Before time event 1, output O uses input I0.

• At time TBCCCK_CE, before the rising edge at time event 1, both CE0 and S0 are
deasserted Low. At about the same time, both CE1 and S1 are asserted High.

• At time TBCCKO_O, after time event 3, output O uses input I1. This occurs after a High
to Low transition of I0 (event 2) followed by a High to Low transition of I1.

• At time event 4, IGNORE1 is asserted.

• At time event 5, CE0 and S0 are asserted High while CE1 and S1 are deasserted Low.
At TBCCKO_O, after time event 6, output O has switched from I1 to I0 without
requiring a High to Low transition of I1.

Other capabilities of BUFGCTRL are:

• Pre-selection of the I0 and I1 inputs are made after configuration but before device
operation.

• The initial output after configuration can be selected as either High or Low.

• Clock selection using CE0 and CE1 only (S0 and S1 tied High) can change the clock
selection without waiting for a High to Low transition on the previously selected
clock.

Figure 1-2: BUFGCTRL Timing Diagram

I0

I1

S0

S1

IGNORE0

IGNORE1

O

CE0

CE1

1 2 3 4 5 6

TBCCCK_CE

UG070_1_02_072907

TBCCKO_O TBCCKO_O TBCCKO_O

at I0 Begin I1 Begin I0

Virtex-4 FPGA User Guide www.xilinx.com 31
UG070 (v2.6) December 1, 2008

Global Clocking Resources
R

Table 1-5 summarizes the attributes for the BUFGCTRL primitive.

BUFG

BUFG is simply a clock buffer with one clock input and one clock output. This primitive is
based on BUFGCTRL with some pins connected to logic High or Low. Figure 1-3 illustrates
the relationship of BUFG and BUFGCTRL. A LOC constraint is available for BUFG.

The output follows the input as shown in the timing diagram in Figure 1-4.

BUFGCE and BUFGCE_1

Unlike BUFG, BUFGCE is a clock buffer with one clock input, one clock output and a clock
enable line. This primitive is based on BUFGCTRL with some pins connected to logic High

Table 1-5: BUFGCTRL Attributes

Attribute Name Description Possible Values

INIT_OUT Initializes the BUFGCTRL output to the specified
value after configuration. Sets the positive or
negative edge behavior. Sets the output level when
changing clock selection.

0 (default), 1

PRESELECT_I0 If TRUE, the BUFGCTRL output uses the I0 input
after configuration(1).

FALSE (default),
TRUE

PRESELECT_I1 If TRUE, the BUFGCTRL output uses the I1 input
after configuration(1).

FALSE (default),
TRUE

Notes:
1. Both PRESELECT attributes cannot be TRUE at the same time.
2. The LOC constraint is available.

Figure 1-3: BUFG as BUFGCTRL

Figure 1-4: BUFG Timing Diagram

IGNORE1

IGNORE0

CE1

CE0

S1

S0

I1

I0

O

BUFG

UG070_1_03_031208

VDD
GND

VDD

VDD

VDD

I

O
I

GND

GND

BUFG(I)

BUFG(O)

TBCCKO_O
UG070_1_04_071204

32 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

or Low. Figure 1-5 illustrates the relationship of BUFGCE and BUFGCTRL. A LOC
constraint is available for BUFGCE and BUFGCE_1.

The switching condition for BUFGCE is similar to BUFGCTRL. If the CE input is Low prior
to the incoming rising clock edge, the following clock pulse does not pass through the
clock buffer, and the output stays Low. Any level change of CE during the incoming clock
High pulse has no effect until the clock transitions Low. The output stays Low when the
clock is disabled. However, when the clock is being disabled it completes the clock High
pulse.

Since the clock enable line uses the CE pin of the BUFGCTRL, the select signal must meet
the setup time requirement. Violating this setup time may result in a glitch. Figure 1-6
illustrates the timing diagram for BUFGCE.

BUFGCE_1 is similar to BUFGCE, with the exception of its switching condition. If the CE
input is Low prior to the incoming falling clock edge, the following clock pulse does not
pass through the clock buffer, and the output stays High. Any level change of CE during
the incoming clock Low pulse has no effect until the clock transitions High. The output
stays High when the clock is disabled. However, when the clock is being disabled it
completes the clock Low pulse.

Figure 1-5: BUFGCE as BUFGCTRL

Figure 1-6: BUFGCE Timing Diagram

IGNORE1

IGNORE0

CE1

CE0

S1

S0

I1

I0

O

BUFGCE

BUFGCE as BUFGCTRL

ug070_1_05_081904

VDD
GND

VDD

CE

VDD
O

I
I

CE
GND

GND

BUFGCE(I)

BUFGCE(CE)

BUFGCE(O)

ug070_1_06_082504
TBCCKO_O

TBCCCK_CE

Virtex-4 FPGA User Guide www.xilinx.com 33
UG070 (v2.6) December 1, 2008

Global Clocking Resources
R

Figure 1-7 illustrates the timing diagram for BUFGCE_1.

BUFGMUX and BUFGMUX_1

BUFGMUX is a clock buffer with two clock inputs, one clock output, and a select line. This
primitive is based on BUFGCTRL with some pins connected to logic High or Low.
Figure 1-8 illustrates the relationship of BUFGMUX and BUFGCTRL. A LOC constraint is
available for BUFGMUX and BUFGCTRL.

Since the BUFGMUX uses the CE pins as select pins, when using the select, the setup time
requirement must be met. Violating this setup time may result in a glitch.

Switching conditions for BUFGMUX are the same as the CE pins on BUFGCTRL.
Figure 1-9 illustrates the timing diagram for BUFGMUX.

Figure 1-7: BUFGCE_1 Timing Diagram

Figure 1-8: BUFGMUX as BUFGCTRL

Figure 1-9: BUFGMUX Timing Diagram

BUFGCE_1(I)

BUFGCE_1(CE)

BUFGCE_1(O)

ug070_1_07_081904
TBCCKO_O

TBCCCK_CE

IGNORE1

IGNORE0

CE1S

CE0

S1

S0

I1

I0

O

BUFGMUX

ug070_1_08_071304

VDD

VDD

O
I1

I0

S

GND

GND

S

I0

I1

O
TBCCKO_O TBCCKO_O

TBCCCK_CE

begin
i hi i I1

34 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

In Figure 1-9:

• The current clock is I0.

• S is activated High.

• If I0 is currently High, the multiplexer waits for I0 to deassert Low.

• Once I0 is Low, the multiplexer output stays Low until I1 transitions High to Low.

• When I1 transitions from High to Low, the output switches to I1.

• If the setup/hold times are met, no glitches or short pulses can appear on the output.

BUFGMUX_1 is rising edge sensitive and held at High prior to input switch. Figure 1-10
illustrates the timing diagram for BUFGMUX_1. A LOC constraint is available for
BUFGMUX and BUFGMUX_1.

In Figure 1-10:

• The current clock is I0.

• S is activated High.

• If I0 is currently Low, the multiplexer waits for I0 to be asserted High.

• Once I0 is High, the multiplexer output stays High until I1 transitions Low to High.

• When I1 transitions from Low to High, the output switches to I1.

• If the setup/hold times are met, no glitches or short pulses can appear on the output.

Figure 1-10: BUFGMUX_1 Timing Diagram

S

I0

I1

O

UG070_1_10_082504

TBCCCK_CE

TBCCKO_O

Virtex-4 FPGA User Guide www.xilinx.com 35
UG070 (v2.6) December 1, 2008

Global Clocking Resources
R

BUFGMUX_VIRTEX4

BUFGMUX_VIRTEX4 is a clock buffer with two clock inputs, one clock output, and a select
line. This primitive is based on BUFGCTRL with some pins connected to logic High or
Low. Figure 1-11 illustrates the relationship of BUFGMUX_VIRTEX4 and BUFGCTRL.

BUFGMUX_VIRTEX4 uses the S pins as select pins. S can switch anytime without causing
a glitch. The setup/hold times on S determine whether the output will pass an extra pulse
of the previously selected clock before switching to the new clock. If S changes as shown in
Figure 1-12, prior to the setup time TBCCCK_S and before I0 transitions from High to Low,
then the output will not pass an extra pulse of I0. If S changes following the hold time for
S, then the output will pass an extra pulse. If S violates the setup/hold requirements, the
output might pass the extra pulse, but it will not glitch. In any case, the output changes to
the new clock within three clock cycles of the slower clock.

The setup/hold requirements for S0 and S1 are with respect to the falling clock edge
(assuming INIT_OUT = 0), not the rising edge as for CE0 and CE1.

Switching conditions for BUFGMUX_VIRTEX4 are the same as the S pin of BUFGCTRL.
Figure 1-12 illustrates the timing diagram for BUFGMUX_VIRTEX4.

Other capabilities of the BUFGMUX_VIRTEX4 primitive are:

• Pre-selection of I0 and I1 input after configuration.

• Initial output can be selected as High or Low after configuration.

Figure 1-11: BUFGMUX_VIRTEX4 as BUFGCTRL

Figure 1-12: BUFGMUX_VIRTEX4 Timing Diagram

IGNORE1

IGNORE0

CE1

S

CE0

S1

S0

I1

I0

O

BUFGMUX_VIRTEX4

ug070_1_11_071304

VDD

VDD

O
I1

I0

S

GND

GND

S

I0

I1

O

ug070_1_12_080204

TBCCKO_O TBCCKO_O

36 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

Additional Use Models

Asynchronous Mux Using BUFGCTRL

In some cases an application requires immediate switching between clock inputs or
bypassing the edge sensitivity of BUFGCTRL. An example is when one of the clock inputs
is no longer switching. If this happens, the clock output would not have the proper
switching conditions because the BUFGCTRL never detected a clock edge. This case uses
the asynchronous mux. Figure 1-13 illustrates an asynchronous mux with BUFGCTRL
design example. Figure 1-14 shows the asynchronous mux timing diagram.

In Figure 1-14:

• The current clock is from I0.

• S is activated High.

• The Clock output immediately switches to I1.

• When Ignore signals are asserted High, glitch protection is disabled.

Figure 1-13: Asynchronous Mux with BUFGCTRL Design Example

Figure 1-14: Asynchronous Mux Timing Diagram

IGNORE1

IGNORE0

CE1

S

CE0

S1

S0

I1

I0

S

I1

I0

O

Asynchronous MUX
Design Example

ug070_1_13_082704

VDD
VDD

VDD

VDD

O

UG070_1_14_033005

TBCCKO_O TBCCKO_O

I0

I1

S

O

at I0 Begin I1

Virtex-4 FPGA User Guide www.xilinx.com 37
UG070 (v2.6) December 1, 2008

Global Clocking Resources
R

BUFGMUX_VIRTEX4 with a Clock Enable

A BUFGMUX_VIRTEX4 with a clock enable BUFGCTRL configuration allows the user to
choose between the incoming clock inputs. If needed, the clock enable is used to disable
the output. Figure 1-15 illustrates the BUFGCTRL usage design example and Figure 1-16
shows the timing diagram.

In Figure 1-16:

• At time event 1, output O uses input I0.

• Before time event 2, S is asserted High.

• At time TBCCKO_O, after time event 2, output O uses input I1. This occurs after a High
to Low transition of I0 followed by a High to Low transition of I1 is completed.

• At time TBCCCK_CE, before time event 3, CE is asserted Low. The clock output is
switched Low and kept at Low after a High to Low transition of I1 is completed.

Figure 1-15: BUFGMUX_VIRTEX4 with a CE and BUFGCTRL

IGNORE1

IGNORE0

CE1

S

CE

CE
CE0

S1

S0

I1

I0

O

BUFGMUX_VIRTEX4+CE
Design Example

ug070_1_15_071304

O
I1

I0

S

GND

GND

Figure 1-16: BUFGMUX_VIRTEX4 with a CE Timing Diagram

UG070_1_16_082504

TBCCKO_O

TBCCCK_CE

TBCCKO_O

at I0 Clock Off

I0

I1

S

CE

O

Begin I1

1 2 3

38 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

Clock Tree and Nets - GCLK
Virtex-4 FPGA clock trees are designed for low-skew and low-power operation. Any
unused branch is disconnected. The clock trees also manage the load/fanout when all the
logic resources are used.

All global clock lines and buffers are implemented differentially. This facilitates much
better duty cycles and common-mode noise rejection.

In the Virtex-4 architecture, the pin access of the global clock lines are not limited to the
logic resources clock pins. The global clock lines can access other pins in the CLBs without
using local interconnects. Applications requiring a very fast signal connection and large
load/fanout benefit from this architecture.

Clock Regions
Virtex-4 devices improve the clocking distribution by the use of clock regions. Each clock
region can have up to eight global clock domains. These eight global clocks can be driven
by any combination of the 32 global clock buffers. The restrictions and rules needed in
previous FPGA architectures are no longer applicable. Specifically, a clock region is not
limited to four quadrants regardless of die/device size. Instead, the dimensions of a clock
region are fixed to 16 CLBs tall (32 IOBs) and spanning half of the die (Figure 1-17). By
fixing the dimensions of the clock region, larger Virtex-4 devices can have more clock
regions. As a result, Virtex-4 devices can support many more multiple clock domains than
previous FPGA architectures. Table 1-6 shows the number of clock regions in each Virtex-4
device. The logic resources in the center column (DCMs, IOBs, etc.) are located in the left
clock regions.

The DCMs, if used, utilize the global clocks in the left regions as feedback lines. Up to four
DCMs can be in a specific region. If used in the same region, IDELAYCTRL uses another
global clock in that region. The DCM companion module PMCD, if directly connected to a
global clock, will also utilize the global clocks in the same region.

Figure 1-17: Clock Regions

UG070_1_17_071304

All clock regions
span half the die

All clock regions are 16 CLBs tall
(8 CLBs up and 8 CLBs down)

XC4VLX15 has 8 Clock Regions XC4VLX100 has 24 Clock Regions

Center Column
Logic Resources

8 CLBs

8 CLBs

8 CLBs

8 CLBs

Virtex-4 FPGA User Guide www.xilinx.com 39
UG070 (v2.6) December 1, 2008

Regional Clocking Resources
R

Regional Clocking Resources
Regional clock networks are a set of clock networks independent of the global clock
network. Unlike global clocks, the span of a regional clock signal is limited to three clock
regions. These networks are especially useful for source-synchronous interface designs.

To understand how regional clocking works, it is important to understand the signal path
of a regional clock signal. The Virtex-4 FPGA regional clocking resources and network
consist of the following paths and components:

• Clock Capable I/O

• I/O Clock Buffer - BUFIO

• Regional Clock Buffer - BUFR

• Regional Clock Nets

Table 1-6: Virtex-4 FPGA Clock Regions

Device Number of Clock Regions

LX Family

XC4VLX15 8

XC4VLX25 12

XC4VLX40 16

XC4VLX60 16

XC4VLX80 20

XC4VLX100 24

XC4VLX160 24

XC4VLX200 24

SX Family

XC4VSX25 8

XC4VSX35 12

XC4VSX55 16

FX Family

XC4VFX12 8

XC4VFX20 8

XC4VFX40 12

XC4VFX60 16

XC4VFX100 20

XC4VFX140 24

40 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

Clock Capable I/O
In a typical clock region there are two clock capable I/O pin pairs (there are exceptions in
the center column). Clock capable I/O pairs are regular I/O pairs where the LVDS output
drivers have been removed to reduce the input capacitance. All global clock inputs are
clock capable I/Os (i.e., they do not have LVDS output drivers). There are four dedicated
clock capable I/O sites in every bank. When used as clock inputs, clock-capable pins can
drive BUFIO and BUFR. They can not directly connect to the global clock buffers. When
used as single-ended clock pins, then as described in “Global Clock Buffers”, the P-side of
the pin pair must be used because a direct connection only exists on this pin.

I/O Clock Buffer - BUFIO
The I/O clock buffer (BUFIO) is a new clock buffer available in Virtex-4 devices. The
BUFIO drives a dedicated clock net within the I/O column, independent of the global
clock resources. Thus, BUFIOs are ideally suited for source-synchronous data capture
(forwarded/receiver clock distribution). BUFIOs can only be driven by clock capable I/Os
located in the same clock region. BUFIOs can drive the two adjacent I/O clock nets (for a
total of up to three clock regions) as well as the regional clock buffers (BUFR) in the same
region. BUFIOs cannot drive logic resources (CLB, block RAM, etc.) because the I/O clock
network only reaches the I/O column.

BUFIO Primitive

BUFIO is simply a clock in, clock out buffer. There is a phase delay between input and
output. Figure 1-18 shows the BUFIO. Table 1-7 lists the BUFIO ports. A location constraint
is available for BUFIO.

Figure 1-18: BUFIO Primitive

Table 1-7: BUFIO Port List and Definitions

Port Name Type Width Definition

O Output 1 Clock output port

I Input 1 Clock input port

BUFIO

ug070_1_18_071304

O
I

Virtex-4 FPGA User Guide www.xilinx.com 41
UG070 (v2.6) December 1, 2008

Regional Clocking Resources
R

BUFIO Use Models

In Figure 1-19, a BUFIO is used to drive the I/O logic using the clock capable I/O. This
implementation is ideal in source-synchronous applications where a forwarded clock is
used to capture incoming data.

Regional Clock Buffer - BUFR
The regional clock buffer (BUFR) is another new clock buffer available in Virtex-4 devices.
BUFRs drive clock signals to a dedicated clock net within a clock region, independent from
the global clock tree. Each BUFR can drive the two regional clock nets in the region it is
located, and the two clock nets in the adjacent clock regions (up to three clock regions).

Figure 1-19: BUFIO Driving I/O Logic In a Single Clock Region

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

BUFIO BUFR

ug070_1_19_072204

To Fabric

To Adjacent
Region

To Adjacent
Region

Clock Capable I/O

Clock Capable I/O

42 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

Unlike BUFIOs, BUFRs can drive the I/O logic and logic resources (CLB, block RAM, etc.)
in the existing and adjacent clock regions. BUFRs can be driven by either the output from
BUFIOs or local interconnect. In addition, BUFR is capable of generating divided clock
outputs with respect to the clock input. The divide values are an integer between one and
eight. BUFRs are ideal for source-synchronous applications requiring clock domain
crossing or serial-to-parallel conversion. There are two BUFRs in a typical clock region
(two regional clock networks). The center column does not have BUFRs.

BUFR Primitive

BUFR is a clock-in/clock-out buffer with the capability to divide the input clock frequency.

Additional Notes on the CE Pin

When CE is asserted/deasserted, the output clock signal turns on/off four input clock
cycles later. When global set/reset (GSR) signal is High, BUFR does not toggle, even if CE
is held High. The BUFR output toggles four clock cycles after the GSR signal is deasserted.

BUFR Attributes and Modes

Clock division in the BUFR is controlled in software through the BUFR_DIVIDE attribute.
Table 1-9 lists the possible values when using the BUFR_DIVIDE attribute.

Figure 1-20: BUFR Primitive

Table 1-8: BUFR Port List and Definitions

Port Name Type Width Definition

O Output 1 Clock output port

CE Input 1 Clock enable port. Cannot be used in
BYPASS mode.

CLR Input 1 Asynchronous clear for the divide
logic, and sets the output Low. Cannot
be used in BYPASS mode.

I Input 1 Clock input port

CLR
CE

I O

ug070_1_20_071204

Table 1-9: BUFR_DIVIDE Attribute

Attribute Name Description Possible Values

BUFR_DIVIDE Defines whether the output clock is a divided
version of the input clock.

1, 2, 3, 4, 5, 6, 7, 8
BYPASS (default)

Notes:
1. Location constraint is available for BUFR.

Virtex-4 FPGA User Guide www.xilinx.com 43
UG070 (v2.6) December 1, 2008

Regional Clocking Resources
R

The propagation delay through BUFR is different for BUFR_DIVIDE = 1 and
BUFR_DIVIDE = BYPASS. When set to 1, the delay is slightly more than BYPASS. All other
divisors have the same delay BUFR_DIVIDE = 1. The phase relationship between the input
clock and the output clock is the same for all possible divisions except BYPASS.

The timing relationship between the inputs and output of BUFR when using the
BUFR_DIVIDE attribute is illustrated in Figure 1-21. In this example, the BUFR_DIVIDE
attribute is set to three. Sometime before this diagram CLR was asserted.

In Figure 1-21:

• At time TBRDCK_CE before clock event 1, CE is asserted High.

• Four clock cycles and TBRCKO_O after CE is asserted, the output O begins toggling at
the divide by three rate of the input I. TBRCKO_O and other timing numbers are best
found in the speed specification.

Note: The duty cycle is not 50/50 for odd division. The Low pulse is one cycle of I
longer.

• At time event 2, CLR is asserted. After TBRDO_CLRO from time event 2, O stops
toggling.

• At time event 3, CLR is deasserted.

• At time TBRCKO_O after clock event 4, O begins toggling again at the divided by three
rate of I.

BUFR Use Models

BUFRs are ideal for source-synchronous applications requiring clock domain crossing or
serial-to-parallel conversion. Unlike BUFIOs, BUFRs are capable of clocking logic
resources in the FPGAs other than the IOBs. Figure 1-22 is a BUFR design example.

Figure 1-21: BUFR Timing Diagrams with BUFR_DIVIDE Values

UG070_1_21_030806

TBRCKO_O TBRCKO_OTBRDO_CLRO

TBRDCK_CE

I

CE

CLR

O

1 2 3 4

44 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

Figure 1-22: BUFR Driving Various Logic Resources

UG070_1_22_030708

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

CLBs

Block
RAM

Block
RAM

Block
RAM

Block
RAM

DSP
Tile

DSP
Tile

BUFR

To Adjacent
Region

To Center
of Die

To Adjacent
Region

DSP
Tile

DSP
Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

I/O Tile

BUFIO

Clock
Capable I/O

Clock
Capable I/O

Virtex-4 FPGA User Guide www.xilinx.com 45
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates
R

Regional Clock Nets
In addition to global clock trees and nets, Virtex-4 devices contain regional clock nets.
These clock trees are also designed for low-skew and low-power operation. Unused
branches are disconnected. The clock trees also manage the load/fanout when all the logic
resources are used.

Regional clock nets do not propagate throughout the whole Virtex-4 device. Instead, they
are limited to only one clock region. One clock region contains two independent regional
clock nets.

To access regional clock nets, BUFRs must be instantiated. A BUFR can drive regional
clocks in up to two adjacent clock regions (Figure 1-23). BUFRs in the top or bottom region
can only access one adjacent region; below or above respectively.

VHDL and Verilog Templates
The VHDL and Verilog code follows for all clocking resource primitives.

BUFGCTRL VHDL and Verilog Templates
The following examples illustrate the instantiation of the BUFGCTRL module in VHDL
and Verilog.

VHDL Template

--Example BUFGCTRL declaration

component BUFGCTRL
 generic(
 INIT_OUT : integer := 0;

Figure 1-23: BUFR Driving Multiple Regions

ug070_1_23_071404

BUFRs

46 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

 PRESELECT_I0 : boolean := false;
 PRESELECT_I1 : boolean := false;
);

port(
 O: out std_ulogic;
 CE0: in std_ulogic;
 CE1: in std_ulogic;
 I0: in std_ulogic;
 I1 : in std_ulogic;
 IGNORE0: in std_ulogic;
 IGNORE1: in std_ulogic;
 S0: in std_ulogic;
 S1: in std_ulogic
);
end component;

--Example BUFGCTRL instantiation
U_BUFGCTRL : BUFGCTRL
Port map (
 O => user_o,
 CE0 => user_ce0,
 CE1 => user_ce1,
 I0 => user_i0,
 I1 => user_i1,
 IGNORE0 => user_ignore0,
 IGNORE1 => user_ignore1,
 S0 => user_s0,
 S1 => user_s1
);

--Declaring constraints in VHDL file
attribute INIT_OUT : integer;
attribute PRESELECT_I0 : boolean;
attribute PRESELECT_I1 : boolean;
attribute LOC : string;
attribute INIT_OUT of U_BUFGCTRL: label is 0;
attribute PRESELECT_I0 of U_BUFGCTRL: label is FALSE;
attribute PRESELECT_I1 of U_BUFGCTRL: label is FALSE;
attribute LOC of U_BUFGCTRL: label is "BUFGCTRL_X#Y#";

--where # is valid integer locations of BUFGCTRL

Verilog Template

//Example BUFGCTRL module declaration
module BUFGCTRL (O, CE0, CE1, I0, I1, IGNORE0, IGNORE1, S0, S1);
 output O;
 input CE0;
 input CE1;
 input I0;
 input I1;
 input IGNORE0;
 input IGNORE1;
 input S0;
 input S1;
 parameter INIT_OUT = 0;
 parameter PRESELECT_I0 = "FALSE";
 parameter PRESELECT_I1 = "FALSE";

Virtex-4 FPGA User Guide www.xilinx.com 47
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates
R

endmodule;
//Example BUFGCTRL instantiation
BUFGCTRL U_BUFGCTRL (
.O(user_o),
.CE0(user_ce0),
.CE1(user_ce1),
.I0(user_i0),
.I1(user_i1),
.IGNORE0(user_ignore0),
.IGNORE1(user_ignore1),
.S0(user_s0),
.S1(user_s1)
);

// Declaring constraints in Verilog
// synthesis attribute INIT_OUT of U_BUFGCTRL is 0;
// synthesis attribute PRESELECT_I0 of U_BUFGCTRL is FALSE;
// synthesis attribute PRESELECT_I1 of U_BUFGCTRL is FALSE;
// synthesis attribute LOC of U_BUFGCTRL is "BUFGCTRL_X#Y#";
// where # is valid integer locations of BUFGCTRL

Declaring Constraints in UCF File

INST "U_BUFGCTRL" INIT_OUT = 0;
INST "U_BUFGCTRL" PRESELECT_I0 = FALSE;
INST "U_BUFGCTRL" PRESELECT_I1 = FALSE;
INST "U_BUFGCTRL" LOC = BUFGCTRL_X#Y#;
where # is valid integer locations of BUFGCTRL

BUFG VHDL and Verilog Templates
The following examples illustrate the instantiation of the BUFG module in VHDL and
Verilog.

VHDL Template

--Example BUFG declaration
component BUFG
port(
 O: out std_ulogic;
 I: in std_ulogic
);
end component;

--Example BUFG instantiation
U_BUFG : BUFG
Port map (
 O => user_o,
 I0 => user_i
);

--Declaring constraints in VHDL file
attribute LOC : string;
attribute LOC of U_BUFG: label is "BUFGCTRL_X#Y#";

--where # is valid integer locations of BUFGCTRL

48 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

Verilog Template

//Example BUFG module declaration
module BUFG (O, I);
 output O;
 input I;
endmodule;
//Example BUFG instantiation
BUFG U_BUFG (
.O(user_o),
.I0(user_i)
);

// Declaring constraints in Verilog
// synthesis attribute LOC of U_BUFG is "BUFGCTRL_X#Y#";
// where # is valid integer locations of BUFGCTRL

Declaring Constraints in UCF File

INST "U_BUFG" LOC = BUFGCTRL_X#Y#;

where # is valid integer locations of BUFGCTRL

BUFGCE and BUFGCE_1 VHDL and Verilog Templates
The following examples illustrate the instantiation of the BUFGCE module in VHDL and
Verilog. The instantiation of BUFGCE_1 is exactly the same as BUFGCE with exception of
the primitive name.

VHDL Template

--Example BUFGCE declaration
component BUFGCE
port(
 O: out std_ulogic;
 CE: in std_ulogic;
 I: in std_ulogic
);
end component;

--Example BUFGCE instantiation

U_BUFGCE : BUFGCE
Port map (
 O => user_o,
 CE => user_ce,
 I => user_i
);

--Declaring constraints in VHDL file

attribute LOC : string;
attribute LOC of U_BUFGCE: label is "BUFGCTRL_X#Y#";

--where # is valid integer locations of BUFGCTRL

Virtex-4 FPGA User Guide www.xilinx.com 49
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates
R

Verilog Template

//Example BUFGCE module declaration
module BUFGCE (O, CE, I);
 output O;
 input CE;
 input I;

endmodule;

//Example BUFGCE instantiation
BUFGCE U_BUFGCE (
.O(user_o),
.CE0(user_ce),
.I0(user_i)
);

// Declaring constraints in Verilog
// synthesis attribute LOC of U_BUFGCE is "BUFGCTRL_X#Y#";
// where # is valid integer locations of BUFGCTRL

Declaring Constraints in UCF File

INST "U_BUFGCE" LOC = BUFGCTRL_X#Y#;

where # is valid integer locations of BUFGCTRL

BUFGMUX and BUFGMUX_1 VHDL and Verilog Templates
The following examples illustrate the instantiation of the BUFGMUX module in VHDL
and Verilog. The instantiation of BUFGMUX_1 is exactly the same as BUFGMUX with
exception of the primitive name.

VHDL Template

--Example BUFGMUX declaration
component BUFGMUX
port(
 O: out std_ulogic;
 I0: in std_ulogic;
 I1 : in std_ulogic;
 S: in std_ulogic
);
end component;

--Example BUFGMUX instantiation
U_BUFGMUX : BUFGMUX
Port map (
 O => user_o,
 I0 => user_i0,
 I1 => user_i1,
 S => user_s
);

--Declaring constraints in VHDL file
attribute LOC : string;
attribute LOC of U_BUFGMUX: label is "BUFGCTRL_X#Y#";
--where # is valid integer locations of BUFGCTRL

50 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

Verilog Template

//Example BUFGMUX module declaration

module BUFGMUX (O, I0, I1, S);

 output O;
 input I0;
 input I1;
 input S;

endmodule;

//Example BUFGMUX instantiation

BUFGMUX U_BUFGMUX (
.O(user_o),
.I0(user_i0),
.I1(user_i1),
.S0(user_s)
);

// Declaring constraints in Verilog
// synthesis attribute LOC of U_BUFGMUX is "BUFGCTRL_X#Y#";
// where # is valid integer locations of BUFGCTRL

Declaring Constraints in UCF File

INST "U_BUFGMUX" LOC = BUFGCTRL_X#Y#;

where # is valid integer locations of BUFGCTRL

BUFGMUX_VIRTEX4 VHDL and Verilog Templates
The following examples illustrate the instantiation of the BUFGMUX_VIRTEX4 module in
VHDL and Verilog.

VHDL Template

--Example BUFGMUX_VIRTEX4 declaration
component BUFGMUX_VIRTEX4
port(
 O : out std_ulogic;
 I0 : in std_ulogic;
 I1 : in std_ulogic;
 S : in std_ulogic
);
end component;

--Example BUFGMUX_VIRTEX4 instantiation

U_BUFGMUX_VIRTEX4 : BUFGMUX_VIRTEX4
Port map (
 O => user_o,
 I0 => user_i0,
 I1 => user_i1,
 S => user_s
);

Virtex-4 FPGA User Guide www.xilinx.com 51
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates
R

--Declaring constraints in VHDL file

attribute INIT_OUT : integer;
attribute PRESELECT_I0 : boolean;
attribute PRESELECT_I1 : boolean;
attribute LOC : string;

attribute INIT_OUT of U_BUFGMUX_VIRTEX4: label is 0;
attribute PRESELECT_I0 of U_BUFGMUX_VIRTEX4: label is FALSE;
attribute PRESELECT_I1 of U_BUFGMUX_VIRTEX4: label is FALSE;
attribute LOC of U_BUFGMUX_VIRTEX4: label is "BUFGCTRL_X#Y#";

--where # is valid integer locations of BUFGCTRL

Verilog Template

//Example BUFGMUX_VIRTEX4 module declaration

module BUFGMUX_VIRTEX4 (O, I0, I1, S);

 output O;
 input I0;
 input I1;
 input S;

 parameter INIT_OUT = 1'b0;
 parameter PRESELECT_I0 = "TRUE";
 parameter PRESELECT_I1 = "FALSE";

endmodule;

//Example BUFGCTRL instantiation

BUFGMUX_VIRTEX4 U_BUFGMUX_VIRTEX4 (
.O(user_o),
.I0(user_i0),
.I1(user_i1),
.S(user_s)

);

// Declaring constraints in Verilog
// synthesis attribute INIT_OUT of U_BUFGMUX_VIRTEX4 is 0;
// synthesis attribute PRESELECT_I0 of U_BUFGMUX_VIRTEX4 is FALSE;
// synthesis attribute PRESELECT_I1 of U_BUFGMUX_VIRTEX4 is FALSE;
// synthesis attribute LOC of U_BUFGMUX_VIRTEX4 is "BUFGCTRL_X#Y#";
// where # is valid integer locations of BUFGCTRL

Declaring Constraints in UCF File

INST "U_BUFGMUX_VIRTEX4" INIT_OUT = 0;
INST "U_BUFGMUX_VIRTEX4" PRESELECT_I0 = FALSE;
INST "U_BUFGMUX_VIRTEX4" PRESELECT_I1 = FALSE;
INST "U_BUFGMUX_VIRTEX4" LOC = BUFGCTRL_X#Y#;

where # is valid integer locations of BUFGCTRL

52 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

BUFIO VHDL and Verilog Templates
The following examples illustrate the instantiation of the BUFIO module in VHDL and
Verilog.

VHDL Template

--Example BUFIO declaration

component BUFIO
port(
 O: out std_ulogic;
 I: in std_ulogic
);
end component;

--Example BUFIO instantiation

U_BUFIO : BUFIO
Port map (
 O => user_o,
 I0 => user_i
);

--Declaring constraints in VHDL file

attribute LOC : string;
attribute LOC of U_BUFIO: label is "BUFIO_X#Y#";

--where # is valid integer locations of BUFIO

Verilog Template

//Example BUFIO module declaration

module BUFIO (O, I);

 output O;
 input I;

endmodule;

//Example BUFIO instantiation

BUFIO U_BUFIO (
.O(user_o),
.I(user_i)
);

// Declaring constraints in Verilog
// synthesis attribute LOC of U_BUFIO is "BUFIO_X#Y#";
// where # is valid integer locations of BUFIO

Declaring Constraints in UCF File

INST "U_BUFIO" LOC = BUFIO_X#Y#;
where # is valid integer locations of BUFIO

Virtex-4 FPGA User Guide www.xilinx.com 53
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates
R

BUFR VHDL and Verilog Templates
The following examples illustrate the instantiation of the BUFR module in VHDL and
Verilog.

VHDL Template

--Example BUFR declaration

component BUFR
generic(
 BUFR_DIVIDE : string := "BYPASS";
);

 port(
 O: out std_ulogic;
 CE: in std_ulogic;
 CLR: in std_ulogic;
 I: in std_ulogic
);
 end component;

--Example BUFR instantiation

U_BUFR : BUFR
Port map (
 O => user_o,
 CE => user_ce,
 CLR => user_clr,
 I => user_i
);

--Declaring constraints in VHDL file

attribute BUFR_DIVIDE : string;
attribute LOC : string;
attribute INIT_OUT of U_BUFR: label is BYPASS;
attribute LOC of U_BUFR: label is "BUFR_X#Y#";

--where # is valid integer locations of BUFR

Verilog Template

//Example BUFR module declaration

module BUFR (O, CE, CLR, I);
 output O;
 input CE;
 input CLR;
 input I;
 parameter BUFR_DIVIDE = "BYPASS";

endmodule;
//Example BUFR instantiation
BUFR U_BUFR (
.O(user_o),
.CE(user_ce),
.CLR(user_clr),

54 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 1: Clock Resources
R

.I(user_i)
);

// Declaring constraints in Verilog
// synthesis attribute BUFR_DIVIDE of U_BUFR is BYPASS;
// synthesis attribute LOC of U_BUFR is "BUFR_X#Y#";
// where # is valid integer locations of BUFR

Declaring Constraints in UCF File

INST "U_BUFR" BUFR_DIVIDE=BYPASS;
INST "U_BUFR" LOC = BUFR_X#Y#;
where # is valid integer locations of BUFR

Virtex-4 FPGA User Guide www.xilinx.com 55
UG070 (v2.6) December 1, 2008

R

Chapter 2

Digital Clock Managers (DCMs)

DCM Summary
The Virtex®-4 FPGA Digital Clock Managers (DCMs) provide a wide range of powerful
clock management features:

• Clock Deskew

The DCM contains a delay-locked loop (DLL) to completely eliminate clock
distribution delays, by deskewing the DCM's output clocks with respect to the input
clock. The DLL contains delay elements (individual small buffers) and control logic.
The incoming clock drives a chain of delay elements, thus the output of every delay
element represents a version of the incoming clock delayed at a different point.

The control logic contains a phase detector and a delay-line selector. The phase
detector compares the incoming clock signal (CLKIN) against a feedback input
(CLKFB) and steers the delay line selector, essentially adding delay to the output of
DCM until the CLKIN and CLKFB coincide.

• Frequency Synthesis

Separate outputs provide a doubled frequency (CLK2X and CLK2X180). Another
output, CLKDV, provides a frequency that is a specified fraction of the input
frequency.

Two other outputs, CLKFX and CLKFX180, provide an output frequency derived from
the input clock by simultaneous frequency division and multiplication. The user can
specify any integer multiplier (M) and divisor (D) within the range specified in the
DCM Timing Parameters section of the Virtex-4 Data Sheet. An internal calculator
determines the appropriate tap selection, to make the output edge coincide with the
input clock whenever mathematically possible. For example, M = 9 and D = 5,
multiply the frequency by 1.8, and the output rising edge is coincident with the input
rising edge after every fifth input period, or after every ninth output period.

• Phase Shifting

The DCM allows coarse and fine-grained phase shifting. The coarse phase shifting
uses the 90°, 180°, and 270° phases of CLK0 to make CLK90, CLK180, and CLK270
clock outputs. The 180° phase of CLK2X and CLKFX provide the respective CLK2X180
and CLKFX180 clock outputs.

There are also four modes of fine-grained phase-shifting; fixed, variable-positive,
variable-center, and direct modes. Fine-grained phase shifting allows all DCM output
clocks to be phase-shifted with respect to CLKIN while maintaining the relationship
between the coarse phase outputs. With fixed mode, a fixed fraction of phase shift can
be defined during configuration and in multiples of the clock period divided by 256.
Using the variable-positive and variable-center modes the phase can be dynamically
and repetitively moved forward and backwards by 1/256 of the clock period. With the

56 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

direct mode the phase can be dynamically and repetitively moved forward and
backwards by the value of one DCM_TAP. See the DCM Timing Parameters section in
the Virtex-4 Data Sheet.

• Dynamic Reconfiguration

There is a bus connection to the DCM to change DCM attributes without reconfiguring
the rest of the device. For more information, see the Dynamic Reconfiguration chapter
of the Virtex-4 Configuration Guide.

The DADDR[6:0], DI[15:0], DWE, DEN, DCLK inputs and DO[15:0], and DRDY
outputs are available to dynamically reconfigure select DCM functions. With dynamic
reconfiguration, DCM attributes can be changed to select a different phase shift,
multiply (M) or divide (D) from the currently configured settings.

Figure 2-1 shows a simplified view of the Virtex-4 FPGA center column resources
including all DCM locations. Table 2-1 summarizes the availability of DCMs in each
Virtex-4 device.

Figure 2-1: DCM Location

UG070_2_01_030708

DCMs
(Top Half)

DCMs
(Bottom Half)

PMCDs
(Top Half)

PMCDs
(Bottom Half)

I/Os

I/Os

Virtex-4 FPGA
Center Column

BUFGCTRLs
(Top Half)

BUFGCTRLs
(Bottom Half)

Virtex-4 FPGA User Guide www.xilinx.com 57
UG070 (v2.6) December 1, 2008

DCM Primitives
R

DCM Primitives
Three DCM primitives are available: DCM_BASE, DCM_PS, and DCM_ADV (see
Figure 2-2).

Table 2-1: Available DCM Resources

Device Available DCMs Site Names

XC4VLX15

XC4VSX25

XC4VFX12, XC4VFX20

4 Bottom Half:
DCM_ADV_X0Y0, DCM_ADV_X0Y1

Top Half:
DCM_ADV_X0Y2, DCM_ADV_X0Y3

XC4VLX25, XC4VLX40, XC4VLX60

XC4VSX35, XC4VSX55

XC4VFX40

8 Bottom Half:
DCM_ADV_X0Y0, DCM_ADV_X0Y1, DCM_ADV_X0Y2

Top Half:
DCM_ADV_X0Y3, DCM_ADV_X0Y4, DCM_ADV_X0Y5,
DCM_ADV_X0Y6, DCM_ADV_X0Y7

XC4VLX80, XC4VLX100, XC4VLX160,
XC4VLX200

XC4VFX60, XC4VFX100

12 Bottom Half:
DCM_ADV_X0Y0, DCM_ADV_X0Y1, DCM_ADV_X0Y2,
DCM_ADV_X0Y3, DCM_ADV_X0Y4, DCM_ADV_X0Y5

Top Half:
DCM_ADV_X0Y6, DCM_ADV_X0Y7, DCM_ADV_X0Y8,
DCM_ADV_X0Y9, DCM_ADV_X0Y10,
DCM_ADV_X0Y11

XC4VFX140 20 Bottom Half:
DCM_ADV_X0Y0, DCM_ADV_X0Y1, DCM_ADV_X0Y2,
DCM_ADV_X0Y3, DCM_ADV_X0Y4, DCM_ADV_X0Y5,
DCM_ADV_X0Y6, DCM_ADV_X0Y7, DCM_ADV_X0Y8,
DCM_ADV_X0Y9

Top Half:
DCM_ADV_X0Y10, DCM_ADV_X0Y11
DCM_ADV_X0Y12, DCM_ADV_X0Y13
DCM_ADV_X0Y14, DCM_ADV_X0Y15
DCM_ADV_X0Y16, DCM_ADV_X0Y17
DCM_ADV_X0Y18, DCM_ADV_X0Y19

Figure 2-2: DCM Primitives

CLKIN
CLKFB

RST

CLK0
CLK90

CLK180
CLK270

CLK2X
CLK2X180

CLKDV

CLKFX
CLKFX180

LOCKED

CLKIN
CLKFB

PSINCDEC
PSEN
PSCLK

RST

CLK0
CLK90

CLK180
CLK270

CLK2X
CLK2X180

CLKDV

CLKFX
CLKFX180

LOCKED

PSDONE
DO[15:0]

CLKIN
CLKFB

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

RST

CLK0
CLK90

CLK180
CLK270

CLK2X
CLK2X180

CLKDV

CLKFX
CLKFX180

LOCKED

PSDONE
DO[15:0]

DRDY

DCM_PS DCM_ADVDCM_BASE

UG070_2_02_080204

58 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

DCM_BASE Primitive
The DCM_BASE primitive accesses the basic frequently used DCM features and simplifies
the user-interface ports. The clock deskew, frequency synthesis, and fixed-phase shifting
features are available to use with DCM_BASE. Table 2-2 lists the available ports in the
DCM_BASE primitive.

DCM_PS Primitive
The DCM_PS primitive accesses all DCM features and ports available in DCM_BASE plus
additional ports used by the variable phase shifting feature. DCM_PS also has the
following available DCM features: clock deskew, frequency synthesis, and fixed or
variable phase-shifting. Table 2-3 lists the available ports in the DCM_PS primitive.

DCM_ADV Primitive
The DCM_ADV primitive has access to all DCM features and ports available in DCM_PS
plus additional ports for the dynamic reconfiguration feature. It is a superset of the other
two DCM primitives. DCM_ADV uses all the DCM features including clock deskew,
frequency synthesis, fixed or variable phase shifting, and dynamic reconfiguration.
Table 2-4 lists the available ports in the DCM_ADV primitive.

Table 2-2: DCM_BASE Primitive

Available Ports Port Names

Clock Input CLKIN, CLKFB

Control and Data Input RST

Clock Output CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV,
CLKFX, CLKFX180

Status and Data Output LOCKED

Table 2-3: DCM_PS Primitive

Available Ports Port Names

Clock Input CLKIN, CLKFB, PSCLK

Control and Data Input RST, PSINCDEC, PSEN

Clock Output CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV,
CLKFX, CLKFX180

Status and Data Output LOCKED, PSDONE, DO[15:0]

Table 2-4: DCM_ADV Primitive

Available Ports Port Names

Clock Input CLKIN, CLKFB, PSCLK, DCLK

Control and Data Input RST, PSINCDEC, PSEN, DADDR[6:0], DI[15:0], DWE, DEN

Clock Output CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV,
CLKFX, CLKFX180

Status and Data Output LOCKED, PSDONE, DO[15:0], DRDY

Virtex-4 FPGA User Guide www.xilinx.com 59
UG070 (v2.6) December 1, 2008

DCM Ports
R

DCM Ports
There are four types of DCM ports available in the Virtex-4 architecture:

• Clock Input Ports

• Control and Data Input Ports

• Clock Output Ports

• Status and Data Output Ports

Clock Input Ports

Source Clock Input — CLKIN

The source clock (CLKIN) input pin provides the source clock to the DCM. The CLKIN
frequency must fall in the ranges specified in the Virtex-4 Data Sheet. The clock input signal
comes from one of the following buffers:

1. IBUFG – Global Clock Input Buffer

The DCM compensates for the clock input path when an IBUFG on the same edge (top
or bottom) of the device as the DCM is used.

2. BUFGCTRL – Internal Global Clock Buffer

Any BUFGCTRL can drive any DCM in the Virtex-4 device using dedicated global
routing. A BUFGCTRL can drive the DCM CLKIN pin when used to connect two
DCMs in series.

3. IBUF – Input Buffer

When an IBUF drives the CLKIN input, the PAD to DCM input skew is not
compensated.

Feedback Clock Input — CLKFB

The feedback clock (CLKFB) input pin provides a reference or feedback signal to the DCM
to delay-compensate the clock outputs, and align them with the clock input. To provide the
necessary feedback to the DCM, connect only the CLK0 DCM output to the CLKFB pin.
When the CLKFB pin is connected, all clock outputs are deskewed to CLKIN. When the
CLKFB pin is not connected, DCM clock outputs are not deskewed to CLKIN. However,
the relative phase relationship between all output clocks is preserved.

During internal feedback configuration, the CLK0 output of a DCM connects to a global
buffer on the same top or bottom half of the device. The output of the global buffer
connects to the CLKFB input of the same DCM.

During the external feedback configuration, the following rules apply:

1. To forward the clock, the CLK0 of the DCM must directly drive an OBUF or a BUFG-
to-DDR configuration.

2. External to the FPGA, the forwarded clock signal must be connected to the IBUFG
(GCLK pin) or the IBUF driving the CLKFB of the DCM. Both CLK and CLKFB should
have identical I/O buffers.

Figure 2-9 and Figure 2-10, in “Application Examples,” page 82, illustrate clock
forwarding with external feedback configuration.

The feedback clock input signal can be driven by one of the following buffers:

60 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

1. IBUFG – Global Clock Input Buffer

This is the preferred source for an external feedback configuration. When an IBUFG
drives a CLKFB pin of a DCM in the same top or bottom half of the device, the pad to
DCM skew is compensated for deskew.

2. BUFGCTRL – Internal Global Clock Buffer

This is an internal feedback configuration.

3. IBUF – Input Buffer

This is an external feedback configuration. When IBUF is used, the PAD to DCM input
skew is not compensated.

Phase-Shift Clock Input — PSCLK

The phase-shift clock (PSCLK) input pin provides the source clock for the DCM phase
shift. The PSCLK can be asynchronous (in phase and frequency) to CLKIN. The phase-shift
clock signal can be driven by any clock source (external or internal), including:

1. IBUF – Input Buffer

2. IBUFG – Global Clock Input Buffer

To access the dedicated routing, only the IBUFGs on the same edge of the device (top
or bottom) as the DCM can be used to drive a PSCLK input of the DCM.

3. BUFGCTRL – An Internal Global Buffer

4. Internal Clock – Any internal clock using general purpose routing.

The frequency range of PSCLK is defined by PSCLK_FREQ_LF/HF (see the Virtex-4 Data
Sheet). This input must be tied to ground when the CLKOUT_PHASE_SHIFT attribute is
set to NONE or FIXED.

Dynamic Reconfiguration Clock Input — DCLK

The dynamic reconfiguration clock (DCLK) input pin provides the source clock for the
DCM's dynamic reconfiguration circuit. The frequency of DCLK can be asynchronous (in
phase and frequency) to CLKIN. The dynamic reconfiguration clock signal is driven by
any clock source (external or internal), including:

1. IBUF – Input Buffer

2. IBUFG – Global Clock Input Buffer

Only the IBUFGs on the same edge of the device (top or bottom) as the DCM can be
used to drive a CLKIN input of the DCM.

3. BUFGCTRL – An Internal Global Buffer

4. Internal Clock – Any internal clock using general purpose routing.

The frequency range of DCLK is described in the Virtex-4 Data Sheet. When dynamic
reconfiguration is not used, this input must be tied to ground. See the dynamic
reconfiguration chapter in the Virtex-4 Configuration Guide for more information.

Virtex-4 FPGA User Guide www.xilinx.com 61
UG070 (v2.6) December 1, 2008

DCM Ports
R

Control and Data Input Ports

Reset Input — RST

The reset (RST) input pin resets the DCM circuitry. The RST signal is an active High
asynchronous reset. Asserting the RST signal asynchronously forces all DCM outputs Low
(the LOCKED signal, all status signals, and all output clocks) after some propagation delay.
When the reset is asserted, the last cycle of the clocks can exhibit a short pulse and a
severely distorted duty-cycle, or no longer be deskewed with respect to one another while
deasserting Low. Deasserting the RST signal starts the locking process at the next CLKIN
cycle.

To ensure a proper DCM reset and locking process, the RST signal must be held until the
CLKIN and CLKFB signals are present and stable for at least 200 ms. (The 200 ms
requirement for CLKFB only applies when external feedback is used.)

The time it takes for the DCM to lock after a reset is specified in the Virtex-4 Data Sheet as
LOCK_DLL (for a DLL output) and LOCK_FX (for a DFS output). These are the CLK and
CLKFX outputs described in “Clock Output Ports”. The DCM locks faster at higher
frequencies. The worse-case numbers are specified in the Virtex-4 Data Sheet. In all designs,
the DCM must be held in reset until CLKIN is stable.

Phase-Shift Increment/Decrement Input — PSINCDEC

The phase-shift increment/decrement (PSINCDEC) input signal must be synchronous
with PSCLK. The PSINCDEC input signal is used to increment or decrement the phase-
shift factor when PSEN is activated. As a result, the output clocks are shifted. The
PSINCDEC signal is asserted High for increment or deasserted Low for decrement. This
input must be tied to ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE
or FIXED.

Phase-Shift Enable Input — PSEN

The phase-shift enable (PSEN) input signal must be synchronous with PSCLK. A variable
phase-shift operation is initiated by the PSEN input signal. It must be activated for one
period of PSCLK. After PSEN is initiated, the phase change is gradual with completion
indicated by a High pulse on PSDONE. There are no sporadic changes or glitches on any
output during the phase transition. From the time PSEN is enabled until PSDONE is
flagged, the DCM output clock moves bit-by-bit from its original phase shift to the target
phase shift. The phase shift is complete when PSDONE is flagged. PSEN must be tied to
ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE or FIXED. Figure 2-7
shows the timing for this input.

Dynamic Reconfiguration Data Input — DI[15:0]

The dynamic reconfiguration data (DI) input bus provides reconfiguration data for
dynamic reconfiguration. When not used, all bits must be assigned zeros. See the Dynamic
Reconfiguration chapter of the Virtex-4 Configuration Guide for more information.

Dynamic Reconfiguration Address Input — DADDR[6:0]

The dynamic reconfiguration address (DADDR) input bus provides a reconfiguration
address for the dynamic reconfiguration. When not used, all bits must be assigned zeros.
The DO output bus will reflect the DCM’s status. See the Dynamic Reconfiguration chapter
of the Virtex-4 Configuration Guide for more information.

62 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Dynamic Reconfiguration Write Enable Input — DWE

The dynamic reconfiguration write enable (DWE) input pin provides the write enable
control signal to write the DI data into the DADDR address. When not used, it must be tied
Low. See the Dynamic Reconfiguration chapter of the Virtex-4 Configuration Guide for more
information.

Dynamic Reconfiguration Enable Input — DEN

The dynamic reconfiguration enable (DEN) input pin provides the enable control signal to
access the dynamic reconfiguration feature. When the dynamic reconfiguration feature is
not used, DEN must be tied Low. When DEN is tied Low, DO reflects the DCM status
signals. See the Dynamic Reconfiguration chapter of the Virtex-4 Configuration Guide for
more information.

Clock Output Ports
A DCM provides nine clock outputs with specific frequency and phase relationships.
When CLKFB is connected, all DCM clock outputs have a fixed phase relationship to
CLKIN. When CLKFB is not connected, the DCM outputs are not phase aligned. However,
the phase relationship between all output clocks is preserved.

1x Output Clock — CLK0

The CLK0 output clock provides a clock with the same frequency as the DCM’s effective
CLKIN frequency. By default, the effective input clock frequency is equal to the CLKIN
frequency. The CLKIN_DIVIDE_BY_2 attribute is set to TRUE to make the effective CLKIN
frequency ½ the actual CLKIN frequency. The CLKIN_DIVIDE_BY_2 Attribute description
provides further information. When CLKFB is connected, CLK0 is phase aligned to
CLKIN.

1x Output Clock, 90° Phase Shift — CLK90

The CLK90 output clock provides a clock with the same frequency as the DCM’s CLK0
only phase-shifted by 90°.

1x Output Clock, 180° Phase Shift — CLK180

The CLK180 output clock provides a clock with the same frequency as the DCM’s CLK0
only phase-shifted by 180°.

1x Output Clock, 270° Phase Shift — CLK270

The CLK270 output clock provides a clock with the same frequency as the DCM’s CLK0
only phase-shifted by 270°.

2x Output Clock — CLK2X

The CLK2X output clock provides a clock that is phase aligned to CLK0, with twice the
CLK0 frequency, and with an automatic 50/50 duty-cycle correction. Until the DCM is
locked, the CLK2X output appears as a 1x version of the input clock with a 25/75 duty
cycle. This behavior allows the DCM to lock on the correct edge with respect to the source
clock.

Virtex-4 FPGA User Guide www.xilinx.com 63
UG070 (v2.6) December 1, 2008

DCM Ports
R

2x Output Clock, 180° Phase Shift — CLK2X180

The CLK2X180 output clock provides a clock with the same frequency as the DCM’s
CLK2X only phase-shifted by 180°.

Frequency Divide Output Clock — CLKDV

The CLKDV output clock provides a clock that is phase aligned to CLK0 with a frequency
that is a fraction of the effective CLKIN frequency. The fraction is determined by the
CLKDV_DIVIDE attribute. Refer to the CLKDV_DIVIDE Attribute for more information.

Frequency-Synthesis Output Clock — CLKFX

The CLKFX output clock provides a clock with the following frequency definition:

CLKFX frequency = (M/D) × effective CLKIN frequency

In this equation, M is the multiplier (numerator) with a value defined by the
CLKFX_MULTIPLY attribute. D is the divisor (denominator) with a value defined by the
CLKFX_DIVIDE attribute. Specifications for M and D, as well as input and output
frequency ranges for the frequency synthesizer, are provided in the Virtex-4 Data Sheet.

The rising edge of CLKFX output is phase aligned to the rising edges of CLK0, CLK2X, and
CLKDV. When M and D to have no common factor, the alignment occurs only once every
D cycles of CLK0.

Frequency-Synthesis Output Clock, 180° — CLKFX180

The CLKFX180 output clock provides a clock with the same frequency as the DCM’s
CLKFX only phase-shifted by 180°.

Status and Data Output Ports

Locked Output — LOCKED

The LOCKED output indicates whether the DCM clock outputs are valid, i.e., the outputs
exhibit the proper frequency and phase. After a reset, the DCM samples several thousand
clock cycles to achieve lock. After the DCM achieves lock, the LOCKED signal is asserted
High. The DCM timing parameters section of the Virtex-4 Data Sheet provides estimates for
locking times.

To guarantee an established system clock at the end of the start-up cycle, the DCM can
delay the completion of the device configuration process until after the DCM is locked. The
STARTUP_WAIT attribute activates this feature. The STARTUP_WAIT Attribute
description provides further information.

Until the LOCKED signal is asserted High, the DCM output clocks are not valid and can
exhibit glitches, spikes, or other spurious movement. In particular, the CLK2X output
appears as a 1x clock with a 25/75 duty cycle.

Phase-Shift Done Output — PSDONE

The phase-shift done (PSDONE) output signal is synchronous to PSCLK. At the
completion of the requested phase shift, PSDONE pulses High for one period of PSCLK.
This signal also indicates a new change to the phase shift can be initiated. The PSDONE
output signal is not valid if the phase-shift feature is not being used or is in fixed mode.

64 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Status or Dynamic Reconfiguration Data Output — DO[15:0]

The DO output bus provides DCM status or data output when using dynamic
reconfiguration (Table 2-5). Further information on using DO as the data output is
available in the Dynamic Reconfiguration chapter of the Virtex-4 Configuration Guide for
more information.

If the dynamic reconfiguration port is not used, using DCM_BASE or DCM_PS instead of
DCM_ADV is strongly recommended.

When LOCKED is Low (during reset or the locking process), all the status signals deassert
Low.

Dynamic Reconfiguration Ready Output — DRDY

The dynamic reconfiguration ready (DRDY) output pin provides the response to the DEN
signal for the DCM’s dynamic reconfiguration feature. Further information on the DRDY
pin is available in the dynamic reconfiguration section in the Virtex-4 Configuration Guide.

Table 2-5: DCM Status Mapping to DO Bus

DO Bit Status Description

DO[0] Phase-shift overflow Asserted when the DCM is phase-shifted beyond the
allowed phase-shift value or when the absolute delay
range of the phase-shift delay line is exceeded.

DO[1] CLKIN stopped Asserted when the input clock is stopped (CLKIN
remains High or Low for one or more clock cycles).
When CLKIN is stopped, the DO[1] CLKIN stopped
status is asserted within nine CLKIN cycles. When
CLKIN is restarted, CLK0 starts toggling and DO[1] is
deasserted within nine clock cycles.

DO[2] CLKFX stopped Asserted when CLKFX stops. The DO[2] CLKFX
stopped status is asserted within 257 to 260 CLKIN
cycles after CLKFX stopped. CLKFX will not resume,
and DO[2] is not deasserted until the DCM is reset.

DO[3] CLKFB stopped Asserted when the feedback clock is stopped (CLKFB
remains High or Low for one or more clock cycles). The
DO[3] CLKFB stopped status is asserted within six
CLKIN cycles after CLKFB is stopped. CLKFB stopped
is deasserted within six CLKIN cycles when CLKFB
resumes after being stopped momentarily. An
occasionally skipped CLKFB will not affect the DCM
operation. However, stopping CLKFB for a long time
can result in the DCM losing LOCKED. When LOCKED
is lost, the DCM needs to be reset to resume operation.

DO[15:4] Not assigned

Virtex-4 FPGA User Guide www.xilinx.com 65
UG070 (v2.6) December 1, 2008

DCM Attributes
R

DCM Attributes
A handful of DCM attributes govern the DCM functionality. Table 2-6 summarizes all the
applicable DCM attributes. This section provides a detailed description of each attribute.
For more information on applying these attributes in UCF, VHDL, or Verilog code, refer to
the Constraints Guide at:

http://www.support.xilinx.com/support/software_manuals.htm

Table 2-6: DCM Attributes

DCM Attribute Name Description Values Default Value

CLK_FEEDBACK Determines the type of feedback
applied to CLKFB.

String: “1X” or “NONE” 1X

CLKDV_DIVIDE Controls CLKDV such that the
source clock is divided by N.

This feature provides automatic
duty cycle correction such that the
CLKDV output pin has a 50/50
duty cycle always in low-frequency
mode, as well as for all integer
values of the division factor N in
high-frequency mode.

Real:

1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,
5.5, 6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11,
12, 13, 14, 15, 16

2.0

CLKFX_DIVIDE Sets the divisor (D) value of CLKFX.
The CLKFX frequency equals the
effective CLKIN frequency
multiplied by M/D.

Integer: 1 to 32 1

CLKFX_MULTIPLY Sets the multiply (M) of CLKFX.
The CLKFX frequency equals the
effective CLKIN frequency
multiplied by M/D.

Integer: 2 to 32 4

CLKIN_DIVIDE_BY_2 Allows for the input clock
frequency to be divided in half
when necessary to meet the DCM
input clock frequency requirements.

Boolean: FALSE or TRUE FALSE

CLKIN_PERIOD Specifies the source clock period to
help the DCM adjust for optimum
CLKFX/CLKFX180 outputs.

Real in ns 0.0

CLKOUT_PHASE_SHIFT Specifies the phase-shift mode. String: “NONE”, “FIXED”,
“VARIABLE_POSITIVE”,
“VARIABLE_CENTER”, or
“DIRECT”

NONE

66 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

CLK_FEEDBACK Attribute
The CLK_FEEDBACK attribute determines the type of feedback applied to the CLKFB.
The possible values are 1X or NONE. The default value is 1X. When this attribute is set to
1X, the CLKFB pin must be driven by CLK0. When this attribute is set to NONE, the
CLKFB pin must be unconnected.

DCM_AUTOCALIBRATION When this attribute is TRUE, the
DCM is protected from the effects
of negative bias temperature
instability (NBTI). This attribute
cannot be set to FALSE unless
CLKIN and CLKFB (if external
feedback is used) are guaranteed
to never stop. The macro can also
be disabled if the user can
guarantee to hold DCM in reset
during clock stoppage. If this
attribute is set to FALSE, the reset
requirement is three clock cycles.

Boolean: TRUE or FALSE TRUE

DCM_PERFORMANCE_MODE Allows selection between
maximum frequency/ minimum
jitter and low frequency/maximum
phase-shift range.

String: “MAX_SPEED” or
“MAX_RANGE”

MAX_SPEED

DESKEW_ADJUST Affects the amount of delay in the
feedback path, and should be used
for source-synchronous interfaces.

String:
“SYSTEM_SYNCHRONOUS”
or
“SOURCE_SYNCHRONOUS”

SYSTEM_
SYNCHRONOUS

DFS_FREQUENCY_MODE Specifies the frequency mode of the
frequency synthesizer.

String: “LOW” or “HIGH” LOW

DLL_FREQUENCY_MODE Specifies the frequency mode of the
DLL.

String: “LOW” or “HIGH” LOW

DUTY_CYCLE_CORRECTION Controls the DCM 1X outputs
(CLK0, CLK90, CLK180, and
CLK270), to exhibit a 50/50 duty
cycle. Leave this attribute set at the
default value.

Boolean: TRUE or FALSE TRUE

FACTORY_JF Controls the DCM tap update rate.
Value depends on
DLL_FREQUENCY_MODE setting.

BIT_VECTOR F0F0

PHASE_SHIFT Specifies the phase-shift numerator.
The value range depends on
CLKOUT_PHASE_SHIFT and
clock frequency.

Integer:
–255 to 255
or
0 to 1023

0

STARTUP_WAIT When this attribute is set to TRUE,
the configuration startup sequence
waits in the specified cycle until the
DCM locks.

Boolean: FALSE or TRUE FALSE

Table 2-6: DCM Attributes (Continued)

DCM Attribute Name Description Values Default Value

Virtex-4 FPGA User Guide www.xilinx.com 67
UG070 (v2.6) December 1, 2008

DCM Attributes
R

CLKDV_DIVIDE Attribute
The CLKDV_DIVIDE attribute controls the CLKDV frequency. The source clock frequency
is divided by the value of this attribute. The possible values for CLKDV_DIVIDE are: 1.5,
2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, or 16. The default value is 2.
In the low frequency mode, any CLKDV_DIVIDE value produces a CLKDV output with a
50/50 duty-cycle. In the high frequency mode, the CLKDV_DIVIDE value must be set to
an integer value to produce a CLKDV output with a 50/50 duty-cycle. For non-integer
CLKDV_DIVIDE values, the CLKDV output duty cycle is shown in Table 2-7.

CLKFX_MULTIPLY and CLKFX_DIVIDE Attributes
The CLKFX_MULTIPLY attribute sets the multiply value (M) of the CLKFX output. The
CLKFX_DIVIDE attribute sets the divisor (D) value of the CLKFX output. Both control the
CLKFX output making the CLKFX frequency equal the effective CLKIN (source clock)
frequency multiplied by M/D. The possible values for M are any integer from 2 to 32. The
possible values for D are any integer from 1 to 32. The default settings are M = 4 and D = 1.

CLKIN_DIVIDE_BY_2 Attribute
The CLKIN_DIVIDE_BY_2 attribute is used to enable a toggle flip-flop in the input clock
path to the DCM. When set to FALSE, the effective CLKIN frequency of the DCM equals
the source clock frequency driving the CLKIN input. When set to TRUE, the CLKIN
frequency is divided by two before it reaches the rest of the DCM. Thus, the DCM sees half
the frequency applied to the CLKIN input and operates based on this frequency. For
example, if a 100 MHz clock drives CLKIN, and CLKIN_DIVIDE_BY_2 is set to TRUE;
then the effective CLKIN frequency is 50 MHz. Thus, CLK0 output is 50 MHz and CLK2X
output is 100 MHz. The effective CLKIN frequency must be used to evaluate any operation
or specification derived from CLKIN frequency. The possible values for
CLKIN_DIVIDE_BY_2 are TRUE and FALSE. The default value is FALSE.

CLKIN_PERIOD Attribute
The CLKIN_PERIOD attribute specifies the source clock period (in nanoseconds). The
default value is 0.0 ns.

Table 2-7: Non-Integer CLKDV_DIVIDE

CLKDV_DIVIDE Value
CLKDV Duty Cycle in
High Frequency Mode

(High Pulse/Low Pulse Value)

1.5 1/3

2.5 2/5

3.5 3/7

4.5 4/9

5.5 5/11

6.5 6/13

7.5 7/15

68 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

CLKOUT_PHASE_SHIFT Attribute
The CLKOUT_PHASE_SHIFT attribute indicates the mode of the phase shift applied to the
DCM outputs. The possible values are NONE, FIXED, VARIABLE_POSITIVE,
VARIABLE_CENTER, or DIRECT. The default value is NONE.

When set to NONE, a phase shift cannot be performed and a phase-shift value has no effect
on the DCM outputs. When set to FIXED, the DCM outputs are phase-shifted by a fixed
phase from the CLKIN. The phase-shift value is determined by the PHASE_SHIFT
attribute. If the CLKOUT_PHASE_SHIFT attribute is set to FIXED or NONE, then the
PSEN, PSINCDEC, and the PSCLK inputs must be tied to ground.

When set to VARIABLE_POSITIVE, the DCM outputs can be phase-shifted in variable
mode in the positive range with respect to CLKIN. When set to VARIABLE_CENTER, the
DCM outputs can be phase-shifted in variable mode, in the positive and negative range
with respect to CLKIN. If set to VARIABLE_POSITIVE or VARIABLE_CENTER, each
phase-shift increment (or decrement) will increase (or decrease) the phase shift by a period
of 1/256 x CLKIN period.

When set to DIRECT, the DCM output can be phase-shifted in variable mode in the
positive range with respect to CLKIN. Each phase-shift increment/decrement will
increase/decrease the phase shift by one DCM_TAP (see the Virtex-4 Data Sheet).

The starting phase in the VARIABLE_POSITIVE and VARIABLE_CENTER modes is
determined by the phase-shift value. The starting phase in the DIRECT mode is always
zero, regardless of the value specified by the PHASE_SHIFT attribute. Thus, the
PHASE_SHIFT attribute should be set to zero when DIRECT mode is used. A non-zero
phase-shift value for DIRECT mode can be loaded to the DCM using Dynamic
Reconfiguration Ports in the Virtex-4 Configuration Guide.

DCM_AUTOCALIBRATION Attribute
The autocalibration block protects the DCM from the effects of negative bias temperature
instability (NBTI). This attribute cannot be set to FALSE unless the user guarantees that
CLKIN and CLKFB (if external feedback is used) never stop. The macro can also be
disabled if the user can guarantee that DCM is held in reset when the clocks are stopped. If
this attribute is set to FALSE, the reset requirement is three clock cycles.

DCM_PERFORMANCE_MODE Attribute
The DCM_PERFORMANCE_MODE attribute allows the choice of optimizing the DCM
either for high frequency and low jitter or for low frequency and a wide phase-shift range.
The attribute values are MAX_SPEED and MAX_RANGE. The default value is
MAX_SPEED. When set to MAX_SPEED, the DCM is optimized to produce high
frequency clocks with low jitter. However, the phase-shift range is smaller than when
MAX_RANGE is selected. When set to MAX_RANGE, the DCM is optimized to produce
low frequency clocks with a wider phase-shift range. The DCM_PERFORMANCE_MODE
affects the following specifications: DCM input and output frequency range, phase-shift
range, output jitter, DCM_TAP, CLKIN_CLKFB_PHASE, CLKOUT_PHASE, and duty-
cycle precision. The Virtex-4 Data Sheet specifies these values.

For most cases, the DCM_PERFORMANCE_MODE attribute should be set to
MAX_SPEED (default). Consider changing to MAX_RANGE only in these situations:

• The frequency needs to be below the low frequency limit of the MAX_SPEED setting.

• A greater absolute phase-shift range is required.

Virtex-4 FPGA User Guide www.xilinx.com 69
UG070 (v2.6) December 1, 2008

DCM Attributes
R

DESKEW_ADJUST Attribute
The DESKEW_ADJUST attribute affects the amount of delay in the feedback path. The
possible values are SYSTEM_SYNCHRONOUS, SOURCE_SYNCHRONOUS,
0, 1, 2, 3, ..., or 31. The default value is SYSTEM_SYNCHRONOUS.

For most designs, the default value is appropriate. In a source-synchronous design, set this
attribute to SOURCE_SYNCHRONOUS. The remaining values should only be used after
consulting with Xilinx. For more information consult the “Source-Synchronous
Setting”section.

DFS_FREQUENCY_MODE Attribute
The DFS_FREQUENCY_MODE attribute specifies the frequency mode of the digital
frequency synthesizer (DFS). The possible values are LOW and HIGH. The default value is
LOW. The frequency ranges for both frequency modes are specified in the Virtex-4 Data
Sheet. DFS_FREQUENCY_MODE determines the frequency range of CLKIN, CLKFX, and
CLKFX180.

DLL_FREQUENCY_MODE Attribute
The DLL_FREQUENCY_MODE attribute specifies either the HIGH or LOW frequency
mode of the delay-locked loop (DLL). The default value is LOW. The frequency ranges for
both frequency modes are specified in the Virtex-4 Data Sheet.

DUTY_CYCLE_CORRECTION Attribute
The DUTY_CYCLE_CORRECTION attribute controls the duty cycle correction of the 1x
clock outputs: CLK0, CLK90, CLK180, and CLK270. The possible values are TRUE and
FALSE. The default value is TRUE. When set to TRUE, the 1x clock outputs are duty cycle
corrected to be within specified limits (see the Virtex-4 Data Sheet for details). It is strongly
recommended to always set the DUTY_CYCLE_CORRECTION attribute to TRUE. Setting
this attribute to FALSE does not necessarily produce output clocks with the same duty
cycle as the source clock.

FACTORY_JF Attribute
The Factory_JF attribute affects the DCMs jitter filter characteristics. This attribute controls
the DCM tap update rate. Factory_JF must be set to a specific value depending on the
DLL_FREQUENCY_MODE setting. The default value is F0F0 corresponding to
DLL_FREQUENCY_MODE = LOW (default). Factory_JF must be manually set to F0F0
when DLL_FREQUENCY_MODE = HIGH. The ISE® software tool will issue a warning if
FACTORY_JF is not set as stated.

PHASE_SHIFT Attribute
The PHASE_SHIFT attribute determines the amount of phase shift applied to the DCM
outputs. This attribute can be used in both fixed or variable phase-shift mode. If used with
variable mode, the attribute sets the starting phase shift. When
CLKOUT_PHASE_SHIFT = VARIABLE_POSITIVE, the PHASE_SHIFT value range is 0 to
255. When CLKOUT_PHASE_SHIFT = VARIABLE_CENTER or FIXED, the
PHASE_SHIFT value range is –255 to 255. When CLKOUT_PHASE_SHIFT = DIRECT, the
PHASE_SHIFT value range is 0 to 1023. The default value is 0.

70 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Refer to “Phase Shifting,” page 76 for information on the phase-shifting operation and its
relationship with the CLKOUT_PHASE_SHIFT and PHASE_SHIFT attributes.

STARTUP_WAIT Attribute
The STARTUP_WAIT attribute determines whether the DCM waits in one of the startup
cycles for the DCM to lock. The possible values for this attribute are TRUE and FALSE. The
default value is FALSE. When STARTUP_WAIT is set to TRUE, and the LCK_cycle BitGen
option is used, then the configuration startup sequence waits in the startup cycle specified
by LCK_cycle until the DCM is locked.

DCM Design Guidelines
This section provides a detailed guidelines on using the Virtex-4 FPGA DCM.

Clock Deskew
The Virtex-4 FPGA DCM offers a fully digital, dedicated, on-chip clock deskew. The
deskew feature provides zero propagation delay between the source clock and output
clock, low clock skew among output clock signals distributed throughout the device, and
advanced clock domain control.

The deskew feature also functions as a clock mirror of a board-level clock serving multiple
devices. This is achieved by driving the CLK0 output off-chip to the board (and to other
devices on the board) and then bringing the clock back in as a feedback clock. See the
“Application Examples” section. Taking advantage of the deskew feature greatly
simplifies and improves system-level design involving high-fanout, high-performance
clocks.

Clock Deskew Operation

The deskew feature utilizes the DLL circuit in the DCM. In its simplest form, the DLL
consists of a single variable delay line (containing individual small delay elements or
buffers) and control logic. The incoming clock drives the delay line. The output of every
delay element represents a version of the incoming clock (CLKIN) delayed at a different
point. The clock distribution network routes the clock to all internal registers and to the
clock feedback CLKFB pin. The control logic contains a phase detector and a delay-line
selector. The phase detector compares the incoming clock signal (CLKIN) against a
feedback input (CLKFB) and steers the delay-line selector, essentially adding delay to the
DCM output until the CLKIN and CLKFB coincide, putting the two clocks 360° out-of-
phase, (thus, in phase). When the edges from the input clock line up with the edges from
the feedback clock, the DCM achieves a lock. The two clocks have no discernible
difference. Thus, the DCM output clock compensates for the delay in the clock distribution
network, effectively removing the delay between the source clock and its loads. The size of
each intrinsic delay element is a DCM_TAP (see the AC Characteristics table in the Virtex-4
Data Sheet). Figure 2-3 illustrates a simplified DLL circuit.

Virtex-4 FPGA User Guide www.xilinx.com 71
UG070 (v2.6) December 1, 2008

DCM Design Guidelines
R

To provide the correct clock deskew, the DCM depends on the dedicated routing and
resources used at the clock source and feedback input. An additional delay element (see
“Deskew Adjust”) is available to compensate for the clock source or feedback path. The ISE
tools analyze the routing around the DCM to determine if a delay must be inserted to
compensate for the clock source or feedback path. Thus, using dedicated routing is
required to achieve predictable deskew. All nine DCM output clocks are deskewed when
the CLKFB pin is used.

Input Clock Requirements

The clock input of the DCM can be driven either by an IBUFG/IBUFGDS, IBUF,
BUFGMUX, or a BUFGCNTL. Since there is no dedicated routing between an IBUF and a
DCM clock input, using an IBUF causes additional input delay that is not compensated by
the DCM.

The DCM output clock signal is essentially a delayed version of the input clock signal. It
reflects any instability on the input clock in the output waveform. The DCM input clock
requirements are specified in the Virtex-4 Data Sheet.

Once locked, the DCM can tolerate input clock period variations of up to the value
specified by CLKIN_PER_JITT_DLL_HF (at high frequencies) or
CLKIN_PER_JITT_DLL_LF (at low frequencies). Larger jitter (period changes) can cause
the DCM to lose lock, indicated by the LOCKED output deasserting. The user must then
reset the DCM. The cycle-to-cycle input jitter must be kept to less than
CLKIN_CYC_JITT_DLL_LF in the low frequencies and CLKIN_CYC_JITT_DLL_HF for
the high frequencies.

Input Clock Changes

Changing the period of the input clock beyond the maximum input period jitter
specification requires a manual reset of the DCM. Failure to reset the DCM produces an
unreliable LOCKED signal and output clock. It is possible to temporarily stop the input
clock and feedback clock with little impact to the deskew circuit, as long as CLKFX or
CLKFX180 is not used.

If the input clock is stopped and CLKFX or CLKFX180 is used, the CLKFX or CLKFX180
outputs might stop toggling, and DO[2] (CLKFX Stopped) is asserted. The DCM must be
reset to recover from this event.

The DO[2] CLKFX stopped status is asserted in 257 to 260 CLKIN cycles after CLKFX is
stopped. CLKFX does not resume and DO[2] will not deassert until the DCM is reset.

In any other case, the clock should not be stopped for more than 100 ms to minimize the
effect of device cooling; otherwise, the tap delays might change. The clock should be
stopped during a Low or a High phase, and must be restored with the same input clock
period/frequency. During this time, LOCKED stays High and remains High when the

Figure 2-3: Simplified DLL Circuit

Clock
Distribution

Network
Variable

Delay Line
CLKOUT

Control

CLKFB

CLKIN

UG070_2_03_060508

72 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

clock is restored. Thus, a High on LOCKED does not necessarily mean that a valid clock is
available.

When stopping the input clock (CLKIN remains High or Low for one or more clock cycles),
one to nine more output clock cycles are still generated as the delay line is flushed. When
the output clock stops, the CLKIN stopped (DO[1]) signal is asserted. When the clock is
restarted, the output clock cycles are not generated for one to eight clocks while the delay
line is filled. Similarly, the DO[1] signal is deasserted once the output clock is generated.
The most common case is two or three clocks. CLKIN can be restarted with any phase
relationship to the previous clock. If the frequency has changed, the DCM requires a reset.
The DO[1] is forced Low whenever LOCKED is Low. When the DCM is in the locking
process, DO[1] status is held Low until LOCKED is achieved.

Output Clocks

Any or all of the DCM’s nine clock outputs can be used to drive a global clock network.
The fully-buffered global clock distribution network minimizes clock skew caused by
loading differences. By monitoring a sample of the output clock (CLK0), the deskew circuit
compensates for the delay on the routing network, effectively eliminating the delay from
the external input port to the individual clock loads within the device.

All DCM outputs can drive general interconnect; however, these connections are not
suitable for critical clock signals. It is recommended that all clock signals should be within
the global or regional clock network. Refer to Chapter 1, “Clock Resources” for more
information on using clock networks.

Output pin connectivity carries some restrictions. The DCM clock outputs can each drive
an OBUF, a global clock buffer BUFGCTRL, or they can route directly to the clock input of
a synchronous element. To use dedicated routing, the DCM clock outputs must drive
BUFGCTRLs on the same top or bottom half of the device. If the DCM and BUFGCTRL are
not on the same top or bottom half, local routing is used and the DCM might not deskew
properly.

Do not use the DCM output clock signals until after activation of the LOCKED signal. Prior
to the activation of the LOCKED signal, the DCM output clocks are not valid.

DCM During Configuration and Startup

During the FPGA configuration, the DCM is in reset and starts to lock at the beginning of
the startup sequence. A DCM requires both CLKIN and CLKFB input clocks to be present
and stable when the DCM begins to lock. If the device enters the configuration startup
sequence without an input clock, or with an unstable input clock, then the DCM must be
reset after configuration with a stable clock.

The following startup cycle dependencies are of note:

1. The default value is -g LCK_cycle:NoWait. When this setting is used, the startup
sequence does not wait for the DCM to lock. WHen the LCK_cycle is set to other
values, the configuration startup remains in the specified startup cycle until the DCM
is locked.

2. Before setting the LCK_cycle option to a startup cycle in BitGen, the DCM’s
STARTUP_WAIT attribute must be set to TRUE.

3. If the startup sequence is altered (by using the BitGen option), do not place the
LCK_cycle (wait for the DCM to lock) before the GTS_cycle (deassert GTS). Incorrect
implementation will result in the DCM not locking and an incomplete configuration.

Virtex-4 FPGA User Guide www.xilinx.com 73
UG070 (v2.6) December 1, 2008

DCM Design Guidelines
R

Deskew Adjust

The DESKEW_ADJUST attribute sets the value for a configurable, variable-tap delay
element to control the amount of delay added to the DCM feedback path (see Figure 2-4).

This delay element allows adjustment of the effective clock delay between the clock source
and CLK0 to guarantee non-positive hold times of IOB input flip-flop in the device.
Adding more delay to the DCM feedback path decreases the effective delay of the actual
clock path from the FPGA clock input pin to the clock input of any flip-flop. Decreasing the
clock delay increases the setup time represented in the input flip-flop, and reduces any
positive hold times required. The clock path delay includes the delay through the IBUFG,
route, DCM, BUFG, and clock-tree to the destination flip-flop. If the feedback delay equals
the clock-path delay, the effective clock-path delay is zero.

System-Synchronous Setting (Default)

By default, the feedback delay is set to system-synchronous mode. The primary timing
requirements for a system-synchronous system are non-positive hold times (or minimally
positive hold times) and minimal clock-to-out and setup times. Faster clock-to-out and
setup times allow shorter system clock periods. Ideally, the purpose of a DLL is to zero-out
the clock delay to produce faster clock-to-out and non-positive hold times. The system-
synchronous setting (default) for DESKEW_ADJUST configures the feedback delay
element to guarantee non-positive hold times for all input IOB registers. The exact delay
number added to the feedback path is device size dependent. This is determined by
characterization. In the timing report, this is included as timing reduction to input clock
path represented by the TDCMINO parameter. As shown in Figure 2-4, the feedback path
includes tap delays in the default setting (red line). The pin-to-pin timing parameters (with
DCM) on the Virtex-4 Data Sheet reflects the setup/hold and clock-to-out times when the
DCM is in system-synchronous mode.

Figure 2-4: DCM and Feedback Tap-Delay Elements

DCM
IBUFG

CLK0CLKIN

CLKFB

CLK
Source

Feedback Tap Delays

FF

D Q

Data Input

Into the
FPGA

VCCO

DCM
Power

Regulator

VCCINT

…

UG070_2_04_060608

VCCAUX

System-Synchronous
Default Setting

Source-Synchronous
Setting (Delay set to zero)

74 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

In some situations, the DCM does not add this extra delay, and the DESKEW_ADJUST
parameter has no effect. BitGen selects the appropriate DCM tap settings. These situations
include:

• downstream DCMs when two or more DCMs are cascaded

• DCMs with external feedback

• DCMs with an external CLKIN that does not come from a dedicated clock input pin

Source-Synchronous Setting

When DESKEW_ADJUST is set to source-synchronous mode, the DCM feedback delay
element is set to zero. As shown in Figure 2-4, in source-synchronous mode, the DCM
clock feedback delay element is set to minimize the sampling window. This results in a
more positive hold time and a longer clock-to-out compared to system-synchronous mode.
The source-synchronous switching characteristics section in the Virtex-4 Data Sheet reflects
the various timing parameters for the source-synchronous design when the DCM is in
source-synchronous mode.

Characteristics of the Deskew Circuit

• Eliminate clock distribution delay by effectively adding one clock period delay.
Clocks are deskewed to within CLKOUT_PHASE, specified in the Virtex-4 Data Sheet.

• Eliminate on-chip as well as off-chip clock delay.

• No restrictions on the delay in the feedback clock path.

• Requires a continuously running input clock.

• Adapts to a wide range of frequencies. However, once locked to a frequency, large
input frequency variations are not tolerated.

• Does not eliminate jitter. The deskew circuit output jitter is the accumulation of input
jitter and any added jitter value due to the deskew circuit.

• The completion of configuration can be delayed until after DCM locks to guarantee
the system clock is established prior to initiating the device.

Cascading DCMs

Xilinx does not recommend cascading DCMs because jitter accumulates as a result—in
other words, the output clock jitter of the second-stage DCM is worse than the output clock
jitter of the first-stage DCM. If possible, use two DCMs in parallel instead of in series.

If it is absolutely necessary to cascade DCMs, the following rules must be observed:

• The output jitter specifications for DLL outputs are provided in the data sheet. Use the
Jitter Calculator to determine the jitter for CLKFX. If possible, avoid cascading CLKFX
to CLKFX in high-frequency mode. In general, jitter accumulates based on the
following equation:

• The input and output frequency and jitter specifications for each DCM must be met. If
the frequency of the DCM inputs allows it, use feedback for both DCMs.

• Use the LOCKED output from DCM1 to create a Reset for DCM2. The recommended
length of a Reset pulse is 200ms. The LOCKED signal from DCM1 should be inverted
and provide the Reset input to DCM2. Connect the output of DCM1 to CLKIN of
DCM2 through a BUFGCTRL. CLKIN and the DCM output clock (CLKDV in this
case) feed a BUFGCTRL acting as an asynchronous mux. When DCM1 is in reset and

Total Jitter Jitter1()2 Jitter2()2+=

Virtex-4 FPGA User Guide www.xilinx.com 75
UG070 (v2.6) December 1, 2008

DCM Design Guidelines
R

while acquiring LOCK the CLKIN clock feeds DCM2. After the DCM1 locks the
DCM1 output clock feeds DCM2. DCM2 is held in reset for 16 additional CLKIN
cycles. Figure 2-5 illustrates this approach.

• It is recommended that R1 > R2, where:

R1 = M/D ratio for DCM1
R2 = M/D ratio for DCM2

The ranges of M and D values are given in the data sheet.

Frequency Synthesis
The DCM provides several flexible methods for generating new clock frequencies. Each
method has a different operating frequency range and different AC characteristics. The
CLK2X and CLK2X180 outputs double the clock frequency. The CLKDV output provides a
divided output clock (lower frequency) with division options of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5,
5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16.

The DCM also offers fully digital, dedicated frequency-synthesizer outputs CLKFX and its
opposite phase CLKFX180. The output frequency can be any function of the input clock
frequency described by M ÷ D, where M is the multiplier (numerator) and D is the divisor
(denominator).

The frequency synthesized outputs can drive the global-clock routing networks within the
device. The well-buffered global-clock distribution network minimizes clock skew due to
differences in distance or loading.

Frequency Synthesis Operation

The DCM clock output CLKFX is any M ÷ D factor of the clock input to the DCM.
Specifications for M and D, as well as input and output frequency ranges for the frequency
synthesizer, are provided in the Virtex-4 Data Sheet.

Only when feedback is provided to the CLKFB input of the DCM is the frequency
synthesizer output phase aligned to the clock output, CLK0.

The internal operation of the frequency synthesizer is complex and beyond the scope of
this document. As long as the frequency synthesizer is within the range specified in the

1. This is an asynchronous clock mux as shown in Figure 1-13, page 36.

Figure 2-5: Cascading DCMs

DCM1

CLKIN

CLKFB

RST

CLK0

CLKDV

LOCKED

DCM2

CLKIN

CLKFB

RST

CLK0

CLKFX

LOCKED

BUFCTRL
Note (1)

I1

INV SRL16

BUFGBUFG

BUFG

S

D

CLK

Q

I0

CLKIN

Reset

CLKFX

LOCK

UG070_02_23_031308

76 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Virtex-4 Data Sheet, it multiplies the incoming frequencies by the pre-calculated quotient
M ÷ D and generates the correct output frequencies.

For example, assume an input frequency of 50 MHz, M = 25, and D = 8 (M and D values do
not have common factors and cannot be reduced). The output frequency is 156.25 MHz
although separate calculations, 25 x 50 MHz = 1.25 GHz and 50 MHz ÷ 8 = 6.25 MHz,
seem to produce separate values outside the range of the input frequency.

Frequency Synthesizer Characteristics

• The frequency synthesizer provides an output frequency equal to the input frequency
multiplied by M and divided by D.

• The outputs CLKFX and CLKFX180 always have a 50/50 duty-cycle.

• Smaller M and D values achieve faster lock times. Whenever possible, divide M and D
by the largest common factor to get the smallest values. (e.g., if the required
CLKFX = 9/6 x CLKIN, instead of using M = 9 and D = 6, use M = 3 and D = 2.)

• When CLKFB is connected, CLKFX is phase aligned with CLK0 every D cycles of
CLK0 and every M cycles of CLKFX if M/D is a reduced fraction.

• In the case where only the DFS outputs are used (CLKFB is not connected) and the
CLKIN of the DCM is outside the range of the DLL outputs, the
DCM_AUTOCALIBRATION attribute must be set to FALSE and the CONFIG
STEPPING constraint set to the proper production stepping level.

• In the case where only DFS outputs are used, and when CLKIN of the DCM is outside
of the range for DLL outputs, a macro must be used to properly monitor the LOCKED
signal. Verilog and VHDL versions of the macro can be downloaded from
https://secure.xilinx.com/webreg/clickthrough.do?cid=30163.

Note: This macro is not required for Step 1 and later XC4VLX and XC4VSX devices and SCD1
and later XC4VFX devices.

Phase Shifting
The DCM provides coarse and fine-grained phase shifting. For coarse-phase control, the
CLK0, CLK90, CLK180, and CLK270 outputs are each phase-shifted by ¼ of the input clock
period relative to each other. Similarly, CLK2X180 and CLKFX180 provide a 180° coarse
phase shift of CLK2X and CLKFX, respectively. The coarse phase-shifted clocks are
produced from the delay lines of the DLL circuit. The phase relationship of these clocks is
retained when CLKFB is not connected.

Fine-grained phase shifting uses the CLKOUT_PHASE_SHIFT and PHASE_SHIFT
attributes to phase-shift DCM output clocks relative to CLKIN. Since the CLKIN is used as
the reference clock, the feedback (CLKFB) connection is required for the phase-shifting
circuit to compare the incoming clock with the phase-shifted clock. The rest of this section
describes fine-grained phase shifting in the Virtex-4 FPGA DCM.

Phase-Shifting Operation

All nine DCM output clocks are adjusted when fine-grained phase shifting is activated.
The phase shift between the rising edges of CLKIN and CLKFB is a specified fraction of the
input clock period or a specific amount of DCM_TAP. All other DCM output clocks retain
their phase relation to CLK0.

Virtex-4 FPGA User Guide www.xilinx.com 77
UG070 (v2.6) December 1, 2008

DCM Design Guidelines
R

Phase-Shift Range

The allowed phase shift between CLKIN and CLKFB is limited by the phase-shift range.
There are two separate phase-shift range components:

• PHASE_SHIFT attribute range

• FINE_SHIFT_RANGE DCM timing parameter range

In the FIXED, VARIABLE_POSITIVE, and VARIABLE_CENTER phase-shift mode, the
PHASE_SHIFT attribute is in the numerator of the following equation:

Phase Shift (ns) = (PHASE_SHIFT/256) × PERIODCLKIN

where PERIODCLKIN denotes the effective CLKIN frequency.

In VARIABLE_CENTER and FIXED modes, the full range of the PHASE_SHIFT attribute is
always –255 to +255. In the VARIABLE_POSITIVE mode, the range of the PHASE_SHIFT
attribute is 0 to +255.

In the DIRECT phase-shift mode, the PHASE_SHIFT attribute is the multiplication factor
in the following equation:

 Phase Shift (ns) = PHASE_SHIFT × DCM_TAP

In DIRECT modes, the full range of the PHASE_SHIFT attribute is 0 to 1023.

The FINE_SHIFT_RANGE component represents the total delay achievable by the phase-
shift delay line. Total delay is a function of the number of delay taps used in the circuit. The
absolute range is specified in the DCM Timing Parameters section of the Virtex-4 Data Sheet
across process, voltage, and temperature. The different absolute ranges are outlined in this
section.

The fixed mode allows the DCM to insert a delay line in the CLKFB or the CLKIN path.
This gives access to the +FINE_SHIFT_RANGE when the PHASE_SHIFT attribute is set to
a positive value, and –FINE_SHIFT_RANGE when the PHASE_SHIFT attribute is set to a
negative value.

Absolute Range (Variable-Center Mode) = ± FINE_SHIFT_RANGE ÷ 2

The variable-center mode allows symmetric, dynamic sweeps from –255/256 to +255/256,
by having the DCM set the zero-phase-skew point in the middle of the delay line. This
divides the total delay-line range in half.

Absolute Range (Fixed) = ± FINE_SHIFT_RANGE

In the fixed mode, a phase shift is set during configuration in the range of –255/256 to
+255/256.

Absolute Range (Variable-Positive and Direct Modes) = + FINE_SHIFT_RANGE

In the variable-positive and direct modes, the phase-shift only operates in the positive
range. The DCM sets the zero-phase-skew point at the beginning of the delay line. This
produces a full delay line in one direction.

Both the PHASE_SHIFT attribute and the FINE_SHIFT_RANGE parameter need to be
considered to determine the limiting range of each application. The “Phase-Shift
Examples” section illustrates possible scenarios.

In variable and direct mode, the PHASE_SHIFT value can dynamically increment or
decrement as determined by PSINCDEC synchronously to PSCLK, when the PSEN input
is active.

78 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Phase-Shift Examples

The following usage examples take both the PHASE_SHIFT attribute and the
FINE_SHIFT_RANGE components into consideration:

• If PERIODCLKIN = 2 × FINE_SHIFT_RANGE, then the PHASE_SHIFT in fixed mode
is limited to ±128. In variable-positive mode, PHASE_SHIFT is limited to +128. In
variable-center mode the PHASE_SHIFT is limited to ±64.

• If PERIODCLKIN = FINE_SHIFT_RANGE, then the PHASE_SHIFT in variable-
positive mode is limited to +255. In fixed and variable-center mode the
PHASE_SHIFT is limited to ±255.

• If PERIODCLKIN ≤ FINE_SHIFT_RANGE, then the PHASE_SHIFT in variable-
positive mode is limited to +255. In fixed and variable-center mode the
PHASE_SHIFT is limited to ±255.

• For all previously described cases, the direct mode is always limited to +1023.

If the phase shift is limited by the FINE_SHIFT_RANGE, use the coarse-grained phase
shift to extend the phase-shift range or set DCM_PERFORAMANCE_MODE attribute to
MAX_RANGE to increase the FINE_SHIFT_RANGE. Figure 2-6 illustrates using CLK90,
CLK180, and CLK270 outputs assuming FINE_SHIFT_RANGE = 10 ns.

In variable mode, the phase-shift factor is changed by activating PSEN for one period of
PSCLK. At the PSCLK clock cycle where PSEN is activated, the level of PSINCDEC input
determines whether the phase-shift increases or decreases. A High on PSINCDEC
increases the phase shift, and a Low decreases the phase shift.

After the deskew circuit increments or decrements, the signal PSDONE is asserted High
for a single PSCLK cycle. This allows the next change to be performed.

The user interface and the physical implementation are different. The user interface
describes the phase shift as a fraction of the clock period (N/256). The physical
implementation adds the appropriate number of buffer stages (each DCM_TAP) to the
clock delay. The DCM_TAP granularity limits the phase resolution at higher clock
frequencies.

Figure 2-6: Fixed Phase-Shift Examples

For frequency ≥ 100 MHz (period ≤ 10 ns)
CLK0 PHASE_SHIFT = 0 - 255 covers the
whole range of period.

For frequency between 50 - 100 MHz
(period 10 - 20 ns). At 50 MHz, use
CLK0 PHASE_SHIFT= 0 - 127 for the
first 10 ns.

Use CLK180 with PHASE_SHIFT= 0 - 127
for the next 10 ns.

For frequency between 25 - 50 MHz
(period 20 - 40 ns). At 25 MHz, use
CLK0 PHASE_SHIFT= 0 - 63 for the
first 10 ns.

Use CLK90 with PHASE_SHIFT= 0 - 63
for the next 10 ns.

Use CLK180 with PHASE_SHIFT= 0 - 63
for the next 10 ns.

Use CLK270 with PHASE_SHIFT= 0 - 63
for the last 10 ns.

CLK0(100 MHz)

CLK0(50 MHz)

CLK180(50 MHz)

CLK0(25 MHz)

CLK90(25 MHz)

CLK180(25 MHz)

CLK270(25 MHz)

10 ns 10 ns 10 ns 10 ns

UG070_2_05_031208

Virtex-4 FPGA User Guide www.xilinx.com 79
UG070 (v2.6) December 1, 2008

DCM Design Guidelines
R

All phase-shift modes, with the exception of DIRECT mode, are temperature and voltage
adjusted. Hence, a VCC or temperature adjustment will not change the phase shift. The
DIRECT phase shift is not temperature or voltage adjusted since it directly controls
DCM_TAP. Changing the ratio of VCC/temperature results in a phase-shift change
proportional to the size of the DCM_TAP at the specific voltage and temperature.

Interaction of PSEN, PSINCDEC, PSCLK, and PSDONE

The variable and direct phase-shift modes are controlled by the PSEN, PSINCDEC,
PSCLK, and PSDONE ports. In addition, a phase-shift overflow (DO[0]) status indicates
when the phase-shift counter has reached the end of the phase-shift delay line or the
maximum value (±255 for variable mode, +1023 for direct mode).

After the DCM locks, the initial phase in the VARIABLE_POSITIVE and
VARIABLE_CENTER modes is determined by the PHASE_SHIFT value. The initial phase
in the DIRECT mode is always 0, regardless of the value specified by the PHASE_SHIFT
attribute The non-zero PHASE_SHIFT value for DIRECT mode can only be loaded to the
DCM when a specific “load phase shift value” command is given by Dynamic
Reconfiguration. Refer to the “Techniques” section in the Virtex-4 Configuration Guide for
more information. The phase of DCM output clock will be incremented/decremented
according to the interaction of PSEN, PSINCDEC, PSCLK, and PSDONE from the initial or
dynamically reconfigured phase.

PSEN, PSINCDEC, and PSDONE are synchronous to PSCLK. When PSEN is asserted for
one PSCLK clock period, a phase-shift increment/decrement is initiated. When
PSINCDEC is High, an increment is initiated and when PSINCDEC is Low, a decrement is
initiated. Each increment adds to the phase shift of DCM clock outputs by 1/256 of the
CLKIN period. Similarly, each decrement decreases the phase shift by 1/256 of the CLKIN
period. PSEN must be active for exactly one PSCLK period; otherwise, a single phase-shift
increment/decrement is not guaranteed. PSDONE is High for exactly one clock period
when the phase shift is complete. The time required to complete a phase-shift operation
varies. As a result, PSDONE must be monitored for phase-shift status. Between enabling
PSEN and PSDONE is flagged, the DCM output clocks will gradually change from their
original phase shift to the incremented/decremented phase shift. The completion of the
increment or decrement is signaled when PSDONE asserts High. After PSDONE has
pulsed High, another increment/decrement can be initiated.

Figure 2-7 illustrates the interaction of phase-shift ports.

When PSEN is activated after the phase-shift counter has reached the maximum value of
PHASE_SHIFT, the PSDONE will still be pulsed High for one PSCLK period some time
after the PSEN is activated (as illustrated in Figure 2-7). However, the phase-shift overflow
pin, STATUS(0), or DO(0) will be High to flag this condition, and no phase adjustment is
performed.

80 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Phase-Shift Overflow

The phase-shift overflow (DO[0]) status signal is asserted when either of the following
conditions are true.

The DCM is phase-shifted beyond the allowed phase-shift value. In this case, the phase-
shift overflow signal will be asserted High when the phase shift is decremented beyond –
255 and incremented beyond +255 for VARIABLE_CENTER mode, incremented beyond
+255 for VARIABLE_POSITIVE mode, or decremented beyond 0 and incremented beyond
1023 for DIRECT mode.

The DCM is phase-shifted beyond the absolute range of the phase-shift delay line. In this
case, the phase-shift overflow signal will be assert High when the phase-shift in time (ns)
exceeds the ±FINE_SHIFT_RANGE/2 in the VARIABLE_CENTER mode, the
+FINE_SHIFT_RANGE in the VARIABLE_POSITIVE mode, or exceeds 0 to
+FINE_SHIFT_RANGE in the DIRECT mode. The phase-shift overflow signal can toggle
once it is asserted. The condition determining if the delay line is exceeded is calibrated
dynamically. Therefore, at the boundary of exceeding the delay line, it is possible for the
phase-shift overflow signal to assert and de-assert without a change in phase shift. Once
asserted, it will remain asserted for at least 40 CLKIN cycles. If the DCM is operating near
the FINE_SHIFT_RANGE limit, do not use the phase-shift overflow signal as a flag to
reverse the phase shift direction. When the phase-shift overflow is asserted, de-asserted,
then asserted again in a short phase shift range, it can falsely reverse the phase shift
direction. Instead, use a simple counter to track the phase shift value and reverse the phase
shift direction (PSINCDEC) only when the counter reaches a previously determined
maximum/minimum phase shift value. For example, if the phase shift must be within 0 to
128, set the counter to toggle PSINCDEC when it reaches 0 or 128.

Phase-Shift Characteristics

• Offers fine-phase adjustment with a resolution of ±1/256 of the clock period (or ± one
DCM_TAP, whichever is greater). It can be dynamically changed under user control.

• The phase-shift settings affect all nine DCM outputs.

• VCC and temperature do not affect the phase shift except in direct phase-shift mode.

• In either fixed or variable mode, the phase-shift range can be extended by choosing
CLK90, CLK180, or CLK270, rather than CLK0, choosing CLK2X180 rather than
CLK2X, or choosing CLKFX180 rather than CLKFX. Even at 25 MHz (40 ns period),
the fixed mode coupled with the various CLK phases allows shifting throughout the
entire input clock period range.

• MAX_RANGE mode extends the phase-shift range.

Figure 2-7: Phase-Shift Timing Diagram

PSCLK

PSEN

PSDONE

PSINCDEC

UG070_2_06_031208

Virtex-4 FPGA User Guide www.xilinx.com 81
UG070 (v2.6) December 1, 2008

DCM Design Guidelines
R

• The phase-shifting (DPS) function in the DCM requires the CLKFB for delay
adjustment.

Because CLKFB must be from CLK0, the DLL output is used. The minimum CLKIN
frequency for the DPS function is determined by DLL frequency mode.

Dynamic Reconfiguration
The Dynamic Reconfiguration Ports (DRPs) can update the initial DCM settings without
reloading a new bitstream to the FPGA. The Virtex-4 Configuration Guide provides more
information on using DRPs. Specific to the DCM, DRPs can perform the following
functions:

• Allow dynamic adjustment of CLKFX_MULTIPLY(M) and CLKFX_DIVIDE(D) value
to produce a new CLKFX frequency.

• Allow dynamic adjustment of PHASE_SHIFT value to produce a new phase shift.
This feature can be used with the fixed, variable, or direct phase-shift modes to set a
specific phase-shift value.

The following steps are required when using DRPs to load new M and D values:

• Subtract the desired M and D values by one. For example, if the desired M/D = 9/4,
then load M/D = 8/3.

• Hold DCM in reset (assert RST signal) and release it after the new M and D values are
written. The CLKFX outputs can be used after LOCKED is asserted High again.

82 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Connecting DCMs to Other Clock Resources in Virtex-4 Devices
Most DCM functions require connection to dedicated clock resources, including dedicated
clock I/O (IBUFG), clock buffers (BUFGCTRLs), and PMCD. These clock resources are
located in the center column of the Virtex-4 devices. This section provides guidelines on
connecting the DCM to dedicated clock resources.

IBUFG to DCM
Virtex-4 devices contain either 16 or 32 clock inputs. These clock inputs are accessible by
instantiating the IBUFG component. Each top and bottom half of a Virtex-4 device contains
eight or 16 IBUFGs. Any of the IBUFG in top or bottom half of the Virtex-4 device can drive
the clock input pins (CLKIN, CLKFB, PSCLK, or DCLK) of a DCM located in the same
top/bottom half of the device.

DCM to BUFGCTRL
Any DCM clock output can drive any BUFGCTRL input in the same top/bottom half of
the device. There are no restrictions on how many DCM outputs can be used
simultaneously.

BUFGCTRL to DCM
Any BUFGCTRL can drive any DCM in the Virtex-4 devices. However, only up to eight
dedicated clock routing resources exist in a particular clock region. Since the clock routing
is accessed via the BUFGCTRL outputs, this indirectly limits the BUFGCTRL to DCM
connection. If eight BUFGCTRL outputs are already accessing a clock region, and a DCM is
in that region, then no additional BUFGCTRL can be used in that region, including a
connection to the FB pin of the DCM.

DCM to and from PMCD
Refer to the PMCD chapter: “Phase-Matched Clock Dividers (PMCDs)”.

Application Examples
The Virtex-4 FPGA DCM can be used in a variety of creative and useful applications. The
following examples show some of the more common applications.

Standard Usage
The circuit in Figure 2-8 shows DCM_BASE implemented with internal feedback and
access to RST and LOCKED pins. This example shows the simplest use case for a DCM.

Virtex-4 FPGA User Guide www.xilinx.com 83
UG070 (v2.6) December 1, 2008

Application Examples
R

Board-Level Clock Generation
The board-level clock generation example in Figure 2-9 illustrates how to use a DCM to
generate output clocks for other components on the board. This clock can then be used to
interface with other devices. In this example, a DDR register is used with its inputs
connected to GND and VCC. Because the output of the DCM is routed to BUFG, the clock
stays within global routing until it reaches the output register. The quality of the clock is
maintained.

If the design requires global buffers in other areas, use an OBUF instead of BUFG and
ODDR (Figure 2-10).

However, the clock quality will not be as well preserved as when connected using a global
buffer and a DDR register (Figure 2-11).

Figure 2-8: Standard Usage

CLKIN
CLK0

CLK90
CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED

CLKFB

RST

IBUFG
DCM_BASE

IBUF

BUFG

OBUF

UG070_2_07_071204

84 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Figure 2-9: Board-Level Clock Using DDR Register with External Feedback

Figure 2-10: Board-Level Clock Using OBUF with External Feedback

CLKIN
CLK0

D1

D2

GND

VCC

C

Q

CLK90
CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED
DO[15:0]

CLKFB

IBUFG
DCM_ADV

ODDR

IBUFG

BUFG

UG070_2_08_031308

RST

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

Outside FPGA

Inside FPGA

CLKIN
CLK0

CLK90
CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED
DO[15:0]

CLKFB

IBUFG
DCM_ADV

IBUFG

OBUF

UG070_2_09_031208

RST

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

Outside FPGA

Inside FPGA

Virtex-4 FPGA User Guide www.xilinx.com 85
UG070 (v2.6) December 1, 2008

Application Examples
R

Board Deskew with Internal Deskew
Some applications require board deskew with internal deskew to interface with other
devices. These applications can be implemented using two or more DCM. The circuit
shown in Figure 2-12 can be used to deskew a system clock between multiple
Virtex devices in the same system.

Figure 2-11: Board-Level Clock with Internal Feedback (Clock Forwarding)

CLKIN
CLK0

D1

D2

GND

VCC

C

Q

CLK90
CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED
DO[15:0]

CLKFB

IBUFG
DCM_ADV

ODDR

BUFG

UG070_2_10_031308

RST

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

86 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Figure 2-12: Board Deskew with Internal Deskew Interfacing to Other Virtex
Devices

CLKIN
CLK0

CLK90
CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED
DO[15:0]

CLKFB

RST

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

CLKIN
CLK0

CLK90
CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED
DO[15:0]

CLKFB

RST

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

IBUFG

DCM_ADV

DCM_ADV

IBUFG

IBUFG

BUFG

GND

BUFG

INV OBUF

BUFG

UG070_2_11_031208

D1

D2

C

Q

ODDR

Virtex-4 FPGA

CLKIN CLK0
CLK90

CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED
DO[15:0]

CLKFB

RST

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

DCM_ADV

Virtex-4 FPGA

This circuit can be duplicated to multiple Virtex devices. Use CLKDLL
for Virtex and Virtex-E devices, and DCM for Virtex-II and Virtex-II Pro devices.

VCC

to
RST

Virtex-4 FPGA User Guide www.xilinx.com 87
UG070 (v2.6) December 1, 2008

Application Examples
R

The example in Figure 2-13 shows an interface from Virtex-4 FPGAs to non-Virtex devices.

Figure 2-13: Board Deskew with Internal Deskew Interfacing to Non-Virtex Devices

UG070_2_12_031208

CLKIN CLK0
CLK90

CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED
DO[15:0]

CLKFB

RST

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

IBUFG

DCM_ADV

...non Virtex chips

IBUFG

BUFG

GND

BUFG

D1

D2

C

Q

ODDR

CLKIN CLK0
CLK90

CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED
DO[15:0]

CLKFB

RST

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

DCM_ADV

Virtex-4 FPGA VCC

88 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Clock Switching Between Two DCMs
Figure 2-14 illustrates switching between two clocks from two DCMs while keeping both
DCMs locked.

Figure 2-14: Clock Switching Between Two DCMs

CLKIN CLK0
CLK90

CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED
DO[15:0]

CLKFB

RST

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

CLKIN CLK0
CLK90

CLK180
CLK270
CLK2X

CLK2X180
CLKDV
CLKFX

CLKFX180

LOCKED
DO[15:0]

CLKFB

RST

PSINCDEC
PSEN
PSCLK

DADDR[6:0]
DI[15:0]
DWE
DEN
DCLK

IBUFG

IBUFG

CLKA

DCM_ADV

DCM_ADV

CLKB

I0

I0
S

BUFGMUX

BUFG

BUFG

UG070_2_13_031208

Virtex-4 FPGA User Guide www.xilinx.com 89
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates, and the Clocking Wizard
R

VHDL and Verilog Templates, and the Clocking Wizard
VHDL and Verilog instantiation templates are available in the Libraries Guide for all
primitives. In addition, VHDL and Verilog files are generated by the Xilinx® Clocking
Wizard in the ISE software tool. The Clocking Wizard sets appropriate DCM attributes,
input/output clocks, and buffers for general use cases.

The Clocking Wizard is accessed using the ISE software tool, in the Project Navigator. Refer
to the Xilinx Software Manuals for more information on ISE software.

1. From the Project Navigator menu, select Project → New Source. The New Source
window appears.

2. Enter a file name and select IP (CoreGen and Architecture Wizard).

3. Click Next. The Select Core Type window appears.

4. Select Clocking → Single DCM_ADV and click Next. The New Source Information
window appears.

5. Click Finish.

6. The Clocking Wizard starts.

Figure 2-15 to Figure 2-19 show the settings available in the Clocking Wizard.

♦ Figure 2-15 provides the general settings for the DCM.

♦ After choosing the Advanced button, the window shown in Figure 2-16 provides
the advanced setting choices.

♦ The windows in Figure 2-17 and Figure 2-18 show the settings for the global
buffers using the previously selected DCM clock outputs.

♦ When CLKFX or CLKFX180 is selected, the Clock Frequency Synthesizer
window shown in Figure 2-19 appears. This window provides the CLKFX jitter
calculation. To access further information on available settings, choose the More
Info button in each window.

90 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Figure 2-15: Xilinx Clocking Wizard — General Setup

Figure 2-16: Xilinx Clocking Wizard — Advanced

ug070_2_14_071404

ug070_2_15_071504

Virtex-4 FPGA User Guide www.xilinx.com 91
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates, and the Clocking Wizard
R

Figure 2-17: Xilinx Clocking Wizard — Clock Buffers

ug070_2_16_071504

92 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Figure 2-18: Xilinx Clocking Wizard — View/Edit Buffer
ug070_2_17_071504

Virtex-4 FPGA User Guide www.xilinx.com 93
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates, and the Clocking Wizard
R

7. When all the desired settings are selected, choose the Finish button.

8. The Clocking Wizard closes and the Project Navigator window returns.

♦ The Clocking Wizard writes the selected settings into an .XAW file.

♦ The .XAW file appears in the Sources in Project window list.

♦ Select the .XAW file. In the Processes for Source window, double-click on View
HDL Source or View HDL Instantiation Template. The HDL source or
instantiation template will be generated. These are read-only files for inclusion or
instantiation in a design.

♦ To return to the Clocking Wizard, double-click on the .XAW file. The Clocking
Wizard appears with the previously selected settings. These settings can be
changed and the .XAW file updated to accommodate design changes.

Figure 2-19: Xilinx Clocking Wizard — Frequency Synthesizer

ug_070_2_18_071504

94 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

DCM Timing Models
The following timing diagrams describe the behavior of the DCM clock outputs under four
different conditions.

1. Reset/Lock
2. Fixed-Phase Shifting
3. Variable-Phase Shifting
4. Status Flags

Reset/Lock
In Figure 2-20, the DCM is already locked. After the reset signal is applied, all output
clocks are stabilized to the desired values, and the LOCKED signal is asserted.

• Prior to Clock Event 1

Prior to clock event 1, the DCM is locked. All clock outputs are in phase with the
correct frequency and behavior.

• Clock Event 1

Some time after clock event 1 the reset signal is asserted at the (RST) pin. While reset is
asserted, all clock outputs become a logic zero. The reset signal is an asynchronous
reset. Note: the diagram is not shown to scale. For the DCM to operate properly, the
reset signal must be asserted for at least 200 ms.

• Clock Event 2

Clock event 2 occurs a few cycles after reset is asserted and deasserted. At clock event
2, the lock process begins. At time LOCK_DLL, after clock event 2, if no fixed phase
shift was selected then all clock outputs are stable and in phase. LOCKED is also
asserted to signal completion.

Figure 2-20: RESET/LOCK Example

CLKIN

RST

CLK0

CLK90

CLK180

CLKFX

CLKFX180

CLKDV

LOCKED

1 2

200 ms

LOCK
DLL

UG070_2_19_031208

Virtex-4 FPGA User Guide www.xilinx.com 95
UG070 (v2.6) December 1, 2008

DCM Timing Models
R

Fixed-Phase Shifting
In Figure 2-21, the DCM outputs the correct frequency. However, the clock outputs are not
in phase with the desired clock phase. The clock outputs are phase-shifted to appear
sometime later than the input clock, and the LOCKED signal is asserted.

• Clock Event 1

Clock event 1 appears after the desired phase shifts are applied to the DCM. In this
example, the shifts are positive shifts. CLK0 and CLK2X are no longer aligned to
CLKIN. However, CLK0, and CLK2X are aligned to each other, while CLK90 and
CLK180 remain as 90° and 180° versions of CLK0. The LOCK signal is also asserted
once the clock outputs are ready.

Variable-Phase Shifting
In Figure 2-22, the CLK0 output is phase-shifted using the dynamic phase-shift
adjustments in the synchronous user interface. The PSDONE signal is asserted for one
cycle when the DCM completes one phase adjustment. After PSDONE is deasserted, PSEN
can be asserted again, allowing an additional phase shift to occur.

As shown in Figure 2-22, all the variable-phase shift control and status signals are
synchronous to the rising edge of PSCLK.

Figure 2-21: Phase Shift Example: Fixed

CLKIN

CLK0

CLK90

CLK180

CLK2X

LOCKED

1

ug070_2_20_083105

Lock Time

Figure 2-22: Phase Shift Example: Variable

CLKIN

CLK0

PSCLK

PSEN

PSDONE

PSINCDEC

1

D.C. D.C.

2

TDMCCK_PSEN

TDMCKO_PSDONE

TDMCCK_PSINCDEC

ug070_2_21_071504

96 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

• Clock Event 1

At TDMCCK_PSEN, before clock event 1, PSEN is asserted. PSEN must be active for
exactly one clock period; otherwise, a single increment/decrement of phase shift is not
guaranteed. Also, the PSINCDEC value at TDMCCK_PSINCDEC, before clock event 1,
determines whether it is an increment (logic High) or a decrement (logic Low).

• Clock Event 2

At TDMCKO_PSDONE, after clock event 2, PSDONE is asserted to indicate one increment
or decrement of the DCM outputs. PSDONE is High for exactly one clock period when
the phase shift is complete. The time required for a complete phase shift will vary. As
a result, PSDONE must be monitored for phase-shift status.

Status Flags
The example in Figure 2-23 shows the behavior of the status flags in the event of a phase-
shift overflow and CLKIN/CLKFB/CLKFX failure.

• Clock Event 1

Prior to the beginning of this timing diagram, CLK0 (not shown) is already phase-
shifted at its maximum value. At clock event 1, PSDONE is asserted. However, since
the DCM has reached its maximum phase-shift capability no phase adjustment is
performed. Instead, the phase-shift overflow status pin DO[0] is asserted to indicate
this condition.

Figure 2-23: Status Flags Example

CLKIN

3

4

2

257 - 260 Cycles

CLKFB

PSEN

PSDONE

CLKFX

DO(0)

1

PSCLK

ug070_2_22_071504

DO(1)

DO(2)

DO(3)

Virtex-4 FPGA User Guide www.xilinx.com 97
UG070 (v2.6) December 1, 2008

Legacy Support
R

• Clock Event 2

The CLKFX output stops toggling. Within 257 to 260 clock cycles after this event, the
CLKFX stopped status DO[2] is asserted to indicate that the CLKFX output stops
toggling.

• Clock Event 3

The CLKFB input stops toggling. Within 257 to 260 clock cycles after this event, the
CLKFB stopped status DO[3] is asserted to indicate that the CLKFB output stops
toggling.

• Clock Event 4

The CLKIN input stops toggling. Within 9 clock cycles after this event, DO[1] is
asserted to indicate that the CLKIN output stops toggling.

Legacy Support
The Virtex-4 device supports the Virtex-II and Virtex-II Pro family DCM primitives. The
mapping of Virtex-II or Virtex-II Pro FPGA DCM components to Virtex-4 FPGA
DCM_ADV components are as follows:

• CLKIN, CLKFB, PSCLK, PSINDEC, PSEN, RST, CLK0, CLK90, CLK180, CLK270,
CLK2X, CLK2X180, CLKFX, CLKFX180, CLKDV, PSDONE, LOCKED of Virtex-4
FPGA primitives (DCM_BASE/DCM_PS/DCM_ADV) map to the same
corresponding pins of a Virtex-II or Virtex-II Pro FPGA DCM.

• Dynamic reconfiguration pins of Virtex-4 FPGA DCM_ADV are not accessible when a
Virtex-II or Virtex-II Pro FPGA DCM component is used, except for DO[15:0].

• DO[7:0] pins of Virtex-4 FPGA DCM_ADV/DCM_PS components map to Status[7:0]
of the Virtex-II or Virtex-II Pro FPGA DCMs. DO[15:8] of DCM_ADV/DCM_PS
components are not available when using Virtex-II or Virtex-II Pro FPGA DCM
components.

98 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 2: Digital Clock Managers (DCMs)
R

Virtex-4 FPGA User Guide www.xilinx.com 99
UG070 (v2.6) December 1, 2008

R

Chapter 3

Phase-Matched Clock Dividers
(PMCDs)

PMCD Summary
The Phase-Matched Clock Dividers (PMCDs) are one of the clock resources available in the
Virtex-4 architecture. PMCDs provide the following clock management features:

• Phase-Matched Divided Clocks

The PMCDs create up to four frequency-divided and phase-matched versions of an
input clock, CLKA. The output clocks are a function of the input clock frequency:
divided-by-1 (CLKA1), divided-by-2 (CLKA1D2), divided-by-4 (CLKA1D4), and
divided-by-8 (CLKA1D8). CLKA1, CLKA1D2, CLKA1D4, and CLKA1D8 output
clocks are rising-edge aligned to each other but not to the input (CLKA).

• Phase-Matched Delay Clocks

PMCDs preserve edge alignments, phase relations, or skews between the input clock
CLKA and other PMCD input clocks. Three additional inputs (CLKB, CLKC, and
CLKD) and three corresponding delayed outputs (CLKB1, CLKC1, and CLKD1) are
available. The same delay is inserted to CLKA, CLKB, CLKC, and CLKD; thus, the
delayed CLKA1, CLKB1, CLKC1, and CLKD1 outputs maintain edge alignments,
phase relations, and the skews of the respective inputs.

A PMCD can be used with other clock resources including global buffers and DCMs.
Together, these clock resources provide flexibility in managing complex clock
networks in designs.

In Virtex-4 devices, the PMCDs are located in the center column. Figure 3-1 shows a
simplified view of the Virtex-4 FPGA center column resources. The PMCDs are
grouped, with two PMCDs in one tile. The PMCDs in each tile have special
characteristics to support applications requiring multiple PMCDs. Table 3-1
summarizes the availability of PMCDs in each Virtex-4 device.

100 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 3: Phase-Matched Clock Dividers (PMCDs)
R

Figure 3-1: PMCD Location in the Virtex-4 Device
UG070_3_01_030708

DCMs
(Top Half)

DCMs
(Bottom Half)

PMCDs
(Top Half)

PMCDs
(Bottom Half)

I/Os

I/Os

Virtex-4 FPGA
Center Column

BUFGCTRLs
(Top Half)

BUFGCTRLs
(Bottom Half)

Table 3-1: Available PMCD Resources

Device Available PMCDs Site Names

XC4VLX15

XC4VSX25

XC4VFX12, XC4VFX20

0 No PMCDs in these devices

XC4VLX25, XC4VLX40, XC4VLX60

XC4VSX35, XC4VSX55

XC4VFX40

4 Bottom Half:
PMCD_X0Y0, PMCD_X0Y1 (one tile)

Top Half:
PMCD_X0Y2, PMCD_X0Y3 (one tile)

XC4VLX80, XC4VLX100, XC4VLX160,
XC4VLX200

XC4VFX60, XC4VFX100, XC4VFX140

8 Bottom Half:
PMCD_X0Y0, PMCD_X0Y1 (one tile)
PMCD_X0Y2, PMCD_X0Y3 (one tile)

Top Half:
PMCD_X0Y4, PMCD_X0Y5 (one tile)
PMCD_X0Y6, PMCD_X0Y7 (one tile)

Virtex-4 FPGA User Guide www.xilinx.com 101
UG070 (v2.6) December 1, 2008

PMCD Primitives, Ports, and Attributes
R

PMCD Primitives, Ports, and Attributes
Figure 3-2 illustrates the PMCD primitive. The VHDL and Verilog template section
includes an example of a PMCD instantiation template.

Table 3-2 lists the port names and description of the ports.

Figure 3-2: PMCD Primitive

CLKA

RST

REL

CLKC

CLKD

CLKB

CLKA1

CLKA1D2

CLKA1D4

CLKA1D8

CLKB1

CLKC1

CLKD1

UG070_3_02_031208

Table 3-2: PMCD Port Description

Port Name Direction Description

CLKA Input CLKA is a clock input to the PMCD. The CLKA frequency can be divided by 1, 2, 4, and 8.

CLKB
CLKC
CLKD

Input CLKB, CLKC, and CLKD are clock inputs to the PMCD. These clock are not divided by the
PMCD; however, they are delayed by the PMCD to maintain the phase alignment and phase
relationship at the input clocks.

RST Input RST is the reset input to the PMCD. Asserting the RST signal asynchronously forces all
outputs Low. Deasserting RST synchronously allows all outputs to toggle.

REL Input REL is the release input to the PMCD. Asserting the REL signal releases the divided output
synchronous to CLKA.

CLKA1 Output The CLKA1 output has the same frequency as the CLKA input. It is a delayed version of
CLKA.

CLKA1D2 Output The CLKA1D2 output has the frequency of CLKA divided by two. CLKA1D2 is rising-edge
aligned to CLKA1.

CLKA1D4 Output The CLKA1D4 output has the frequency of CLKA divided by four. CLKA1D4 is rising-edge
aligned to CLKA1.

CLKA1D8 Output The CLKA1D8 output has the frequency of CLKA divided by eight, CLKA1D8 is rising-edge
aligned to CLKA1.

CLKB1
CLKC1
CLKD1

Output The CLKB1 output has the same frequency as the CLKB input, a delayed version of CLKB.
The skew between CLKB1 and CLKA1 is the same as the skew between CLKB and CLKA
inputs. Similarly, CLKC1 is a delayed version of CLKC, and CLKD1 is a delayed version of
CLKD.

102 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 3: Phase-Matched Clock Dividers (PMCDs)
R

Table 3-3 lists the PMCD attributes.

PMCD Usage and Design Guidelines
This section provides guidelines for using the Virtex-4 FPGA PMCD.

Phase-Matched Divided Clocks
A PMCD produces binary-divided clocks that are rising-edge aligned to each other. From
a clock input CLKA, the PMCD derives four output clocks: a clock with the same
frequency as the original CLKA, ½, ¼, and 1/8 the frequency. Figure 3-3 illustrates the input
CLKA and the derived clocks (CLKA1, CLKA1D2, CLKA1D4, and CLKA1D8). CLKA1 is a
delayed CLKA; thus, CLKA and CLKA1 are not deskewed. CLKA1D2, CLKA1D4, and
CLKA1D8 are rising-edge aligned to CLKA1. CLKA1 reflects the duty cycle of CLKA.
However, the divided clocks (CLKA1D2, CLKA1D4, and CLKA1D8) will have a 50/50
duty cycle regardless of the CLKA duty cycle.

Matched Clock Phase
A PMCD allows three additional input clocks (CLKB, CLKC, CLKD) to pass through the
same delay as CLKA. Thus, the corresponding clock outputs CLKB1, CLKC1, and CLKD1
maintain the same phase relation to each other as well as the CLKA outputs (CLKA1,
CLKA1D2, CLKA1D4, CLKA1D6, and CLKA1D8) as their input. By matching the delay
inserted to all inputs, a PMCD preserves the phase relation of its divided clock to other
clocks in the design. Figure 3-4 illustrates CLKA, CLKB, CLKC, and CLKD with a 90°
phase difference and the resulting PMCD outputs. CLKA1, CLKB1, CLKC1, and CLKD1
reflect the duty cycle of their corresponding input.

Table 3-3: PMCD Attributes

PMCD Attribute Name Description Values Default Value

RST_DEASSERT_CLK This attribute allows the deassertion of the RST
signal to be synchronous to a selected PMCD
input clock.

String:
CLKA, CLKB, CLKC,
or CLKD

CLKA

EN_REL This attribute allows for CLKA1D2, CLKA1D4,
and CLKA1D8 outputs to be released at REL
signal assertion.
Note: REL is synchronous to CLKA input.

Boolean:
FALSE, TRUE

FALSE

Figure 3-3: PMCD Frequency Divider

CLKA

CLKA1

CLKA1D2

CLKA1D4

CLKA1D8

ug070_3_03_071404
TPMCCKO_CLKIN

Virtex-4 FPGA User Guide www.xilinx.com 103
UG070 (v2.6) December 1, 2008

PMCD Usage and Design Guidelines
R

Reset (RST) and Release (REL) Control Signals
RST and REL are the control signals for the PMCD. The interaction between RST, REL, and
the PMCD input clocks help manage the starting and stopping of PMCD outputs.

The reset (RST) signal affects the PMCD clock outputs in the following manner:

• Asserting RST asynchronously forces all outputs Low.

• Deasserting RST synchronously allows all outputs to toggle:

♦ The delayed outputs begin toggling one cycle after RST is deasserted and is
registered.

♦ If EN_REL = FALSE (default), the divided outputs will also begin toggling one
cycle after RST is deasserted and is registered.

♦ If EN_REL = TRUE, then a positive edge on REL starts the divided outputs
toggling on the next positive edge of CLKA.

• By setting the RST_DEASSERT_CLK attribute, deasserting RST can be synchronized
to any of the four input clocks. The default value of RST_DEASSERT_CLK is CLKA
(see Table 3-3).

Figure 3-4: Matched Clock Phase

CLKB

CLKA

CLKD

CLKC

CLKA1

CLKB1

CLKC1

TPMCCKO_CLKIN

CLKD1

CLKA1D2

CLKA1D4

CLKA1D8

ug070_3_04_071404

104 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 3: Phase-Matched Clock Dividers (PMCDs)
R

Figure 3-5 illustrates an RST waveform when EN_REL = FALSE.

The release (REL) signal affects PMCD outputs in the following manner:

• Asserting REL synchronously starts the divided outputs toggling. REL is synchronous
to CLKA. Asserting REL must meet the setup time to CLKA.

• REL assertion does not affect the delayed clock outputs.

• REL is necessary when multiple PMCDs are used together and all PMCDs divided
outputs should toggle in phase.

• REL is enabled with the EN_REL attribute. The default value of this attribute is
FALSE.

Set to TRUE only if multiple PMCDs are used together, or if other external
synchronization is needed.

• RST must be Low before REL can have any effect.

• The REL input is positive edge sensitive.

• Once REL is asserted, the input has no further effect until another reset.

Figure 3-5: RST Waveform Example

CLKA

All CLK
Outputs

RST

RST_DEASSERT_CLK = CLKA
EN_REL = FALSE

RST asynchronously asserts.
All output clocks forced Low.

After RST is registered,
all output clocks start toggling.

Deasserted RST is registered UG070_3_05_071404

Virtex-4 FPGA User Guide www.xilinx.com 105
UG070 (v2.6) December 1, 2008

PMCD Usage and Design Guidelines
R

Figure 3-6 illustrates the interaction between the RST and REL signals.

Connecting PMCD to other Clock Resources
In most applications, the PMCD is used with other clock resources including dedicated
clock I/O (IBUFG), clock buffers (BUFGCTRLs), DCMs, and an MGT clock. Additionally,
PMCD inputs and outputs can be connected to the general interconnects. This section
provides guidelines on connecting a PMCD to clock resources using dedicated routing.

IBUFG to PMCD

Virtex-4 devices contain 16 or 32 global clock I/Os. These clock I/Os are accessible by
instantiating the IBUFG component. Each top and bottom half of the center column
contains eight or 16 IBUFGs. Any of the IBUFGs in the top or bottom half can drive the
clock input pins (CLKA, CLKB, CLKC, or CLKD) of a PMCD located in the same
top/bottom half. The routing from multiple IBUFGs to PMCD inputs are not matched.

DCM to PMCD

Any DCM clock output can drive any PMCD input in the same top/bottom half of the
device. A DCM can drive parallel PMCDs in the same group of two. It is not advisable to
drive parallel PMCDs with DCMs in different groups of two (on the same top/bottom
half) because there can be significant skew between PMCD outputs. This skew is caused by
the skew between inputs of PMCDs in different groups.

BUFGCTRL to PMCD

Any BUFGCTRL can drive any Virtex-4 FPGA PMCD. However, only up to eight
dedicated global clock routing resources exist in a particular clock region. Therefore, access
to PMCD inputs via a BUFGCTRL is limited to eight unique signals. Other resources in the
clock region will compete for the eight global clock tracks.

Figure 3-6: REL Waveform Example

CLKA

REL

RST

RST_DEASSERT_CLK = CLKA
EN_REL = TRUE

CLKA1

CLKA1D(2, 4, 8)

Deasserted RST
is registered.

Delayed output clocks start toggling.

Release is synchronized.
Divided output clocks start toggling.

UG070_3_06_071404

106 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 3: Phase-Matched Clock Dividers (PMCDs)
R

PMCD to BUFGCTRL

A PMCD can drive any BUFGCTRL in the same top/bottom half of the chip.

PMCD to PMCD

A dedicated local connection exists from the CLKA1D8 output of each PMCD to the CLKA
input of any other PMCD within the same tile (group of two).

Application Examples
The Virtex-4 FPGA PMCD can be used in a variety of creative and useful applications. The
following examples show some of the common applications.

DCM and a Single PMCD
A PMCD can be connected to a DCM to further divide a DCM clock. Figure 3-7 illustrates
this example. Note the following guidelines:

• The DCM feedback (CLKFB) must be driven by the same frequency as CLKIN for 1X
feedback. Therefore, the PMCD output corresponding to CLK0 must be used to drive
the CLKFB pin.

• The RST_DEASSERT_CLK attribute must be set to the PMCD input driven by CLK0.

♦ When a DCM is connected to a PMCD, all output clocks, except CLK0 and
CLK2X, are held Low until LOCKED is High. Therefore, setting
RST_DEASSERT_CLK to the corresponding DCM feedback clock ensures a
completed feedback loop. Note: CLK2X feedback is not supported.

DCM and Parallel PMCDs
A DCM can be connected to parallel PMCDs. Figure 3-8 illustrates this example. Note the
following guidelines:

• The DCM feedback (CLKFB) must be driven by the same frequency as CLKIN for 1X
feedback. Therefore, the PMCD output corresponding to CLK0 must be used to drive
the CLKFB pin.

• The RST_DEASSERT_CLK attribute must be set to the PMCD input driven by CLK0.

♦ When a DCM is connected to a PMCD, all output clocks, except CLK0 and
CLK2X, are held Low until LOCKED is High. Thus, setting RST_DEASSERT_CLK

Figure 3-7: DCM and a Single PMCD

DCM

CLKIN

CLKFB

CLK0

RST LOCKED

PMCD

CLKA CLKA1
CLKA1D2

CLKA1D4RST
CLKB1REL

BUFGs

Reset

Reset

RST_DEASSERT_CLK = CLKA
EN_REL = FALSE

CLK2X CLKB

f/1

f/2
f/4

2f

UG070_3_07_071404

Virtex-4 FPGA User Guide www.xilinx.com 107
UG070 (v2.6) December 1, 2008

Application Examples
R

to the corresponding DCM feedback clock ensures all PMCD outputs will start
synchronously. Note: CLK2X feedback is not supported.

• The REL signals of the parallel PMCDs must be driven directly from the DCM
LOCKED output.

♦ Dedicated, timing-matched routes for both CLK signals and LOCKED signals
exist from the DCMs to the PMCDs on the same top/bottom half of the device.

• To match output skews between two PMCDs, a DCM must connect to two PMCDs in
the same tile (group of two).

IBUFG, BUFG, and PMCD
When deskewed clocks are not required, a PMCD can be used without a DCM. Figure 3-9
and Figure 3-10 illustrate these examples.

Figure 3-8: DCM and Parallel PMCDs

DCM

CLKIN

CLKFB

CLK0

CLK180

RST LOCKED

PMCD #1

CLKA CLKA1

CLKA1D2
CLKA1D4RST
CLKA1D8

REL

CLKA CLKA1

CLKA1D2

CLKA1D4RST
CLKA1D8

REL

PMCD #2

Reset

Reset

Reset

BUFGs

RST_DEASSERT_CLK = CLKB
EN_REL = TRUE

RST_DEASSERT_CLK = CLKA
EN_REL = TRUE

CLKB

UG070_3_08_071404

Figure 3-9: PMCD Driven by IBUFG (GCLK IOB)

GCLK
IOB

PMCD

CLKA CLKA1

CLKA1D2
CLKA1D4RST
CLKA1D8REL

BUFGs

Reset

RST_DEASSERT_CLK = CLKA
EN_REL = FALSE

UG070_3_09_071404

108 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 3: Phase-Matched Clock Dividers (PMCDs)
R

PMCD for Further Division of Clock Frequencies
PMCDs can be used to further divide clock frequencies. A dedicated local connection
exists from the CLKA1D8 output of each PMCD to the CLKA input of the other PMCD
within the same tile (group of two). Thus, only CLKA1D8 can directly connect two PMCDs
in series.

Figure 3-11 illustrates an example of dividing clock frequencies using a DCM and a PMCD.
Note the following guidelines:

• The CLKDV output is connected to CLKA of PMCD to allow further frequency
division.

• The CLK0 feedback clock is connected to CLKB, and the RST_DEASSERT_CLK
attribute is set to CLKB. These connections and settings ensure synchronous PMCD
outputs.

Figure 3-10: PMCD Driven by BUFG and Synchronous Logic

GCLK
IOB

BUFG

Synchronous
Logic

CLBs

PMCD

CLKA CLKA1
CLKA1D2
CLKA1D4RST
CLKA1D8REL

Logic to synchronize REL from
the PMCD output clock domain
to the PMCD input clock domain.

BUFGs

Reset

RST_DEASSERT_CLK = CLKA
EN_REL = TRUE

UG070_3_10_071404

Figure 3-11: DCM to PMCD for Clock Frequency Division

DCM

CLKIN

CLKFB

CLK0

RST LOCKED

PMCD

CLKA

CLKA1D8

RST
CLKB1

REL

BUFGs

Reset

Reset

RST_DEASSERT_CLK = CLKB
EN_REL = FALSE

CLKDV
CLKB f/128

CLKDV_DIVIDE = 16

f/16

UG070_3_11_071404

Virtex-4 FPGA User Guide www.xilinx.com 109
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates, and the Clocking Wizard
R

Figure 3-12 illustrates an example of dividing clock frequencies using two PMCDs in
series. Note the following guidelines:

• A dedicated local connection exists from the CLKA1D8 output of each PMCD to the
CLKA and CLKB inputs of the other PMCD within the same tile (group of two). Thus,
only CLKA1D8 can directly connect two PMCDs in series.

VHDL and Verilog Templates, and the Clocking Wizard
The “VHDL Template,” page 111 and “Verilog Template,” page 112 are also available in the
Libraries Guide for all primitives. In addition, VHDL and Verilog files are generated by the
Clocking Wizard in the ISE® software. The Clocking Wizard sets appropriate DCM and
single/parallel PMCD configurations.

The Clocking Wizard is accessed using the ISE software, in the Project Navigator. Refer to
the Xilinx® Software Manuals for more information on ISE software.

1. From the Project Navigator menu, select Project -> New Source. The New Source
window appears.

2. Enter a file name and select IP (CoreGen and Architecture Wizard).

3. Click Next. The Select Core Type window appears.

4. Select Clocking -> Single DCM_ADV, click next. The New Source Information window
appears.

5. Click Finish.

6. The Clocking Wizard starts.

Figure 3-13 and Figure 3-14 show the settings in the Clocking Wizard for using the DCM
with the PMCD. To access further information on available settings, choose the More Info
button in each window.

Figure 3-12: PMCD to PMCD for Clock Frequency Division

GCLK
IOB

PMCD

CLKA

RST

REL

BUFG

Reset

RST_DEASSERT_CLK = CLKA
EN_REL = FALSE

PMCD

CLKA CLKA1D8 CLKA1D8

RST

REL

Reset

f/64
f/8

RST_DEASSERT_CLK = CLKA
EN_REL = FALSE

UG070_3_12_071404

110 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 3: Phase-Matched Clock Dividers (PMCDs)
R

Figure 3-13: Xilinx Clocking Wizard - General Setup (PMCD)
ug070_3_13_071204

Virtex-4 FPGA User Guide www.xilinx.com 111
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates, and the Clocking Wizard
R

VHDL Template
-- Example PMCD Component Declaration

component PMCD
 generic(
 EN_REL : boolean := FALSE;
 RST_DEASSERT_CLK : string := "CLKA";
);
 port(
 CLKA1 : out std_ulogic;
 CLKA1D2 : out std_ulogic;
 CLKA1D4 : out std_ulogic;
 CLKA1D8 : out std_ulogic;
 CLKB1 : out std_ulogic;
 CLKC1 : out std_ulogic;
 CLKD1 : out std_ulogic;

Figure 3-14: Xilinx Clocking Wizard - Phase-Matched Clock Divider (PMCD)

ug070_3_14_071204

112 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 3: Phase-Matched Clock Dividers (PMCDs)
R

 CLKA : in std_ulogic;
 CLKB : in std_ulogic;
 CLKC : in std_ulogic;
 CLKD : in std_ulogic;
 REL : in std_ulogic;
 RST : in std_ulogic
);
 end component;

--Example PMCD instantiation
U_PMCD : PMCD
Port map (
CLKA1 => user_clka1,
 CLKA1D2 => user_clka1d2,
 CLKA1D4 => user_clka1d4,
 CLKA1D8 => user_clka1d8,
 CLKB1 => user_clkb1,
 CLKC1 => user_clkc1,
 CLKD1 => user_clkd1,
 CLKA => user_clka,
 CLKB => user_clkb,
 CLKC => user_clkc,
 CLKD => user_clkd,
 REL => user_rel,
 RST => user_rst
);

Verilog Template
// Example PMCD module declaration

module PMCD (CLKA1, CLKA1D2, CLKA1D4, CLKA1D8, CLKB1, CLKC1, CLKD1,
CLKA, CLKB, CLKC, CLKD, REL, RST);

 output CLKA1;
 output CLKA1D2;
 output CLKA1D4;
 output CLKA1D8;
 output CLKB1;
 output CLKC1;
 output CLKD1;

 input CLKA;
 input CLKB;
 input CLKC;
 input CLKD;
 input REL;
 input RST;

 parameter EN_REL = "FALSE";
 parameter RST_DEASSERT_CLK = "CLKA";

endmodule;

//Example PMCD instantiation
PMCD U_PMCD (
.CLKA1(user_clka1),
.CLKA1D2(user_clka1d2),

Virtex-4 FPGA User Guide www.xilinx.com 113
UG070 (v2.6) December 1, 2008

VHDL and Verilog Templates, and the Clocking Wizard
R

.CLKA1D4(user_clka1d4),

.CLKA1D8(user_clka1d8),

.CLKB1(user_clkb1),

.CLKC1(user_clkc1),

.CLKD1(user_clkd1),

.CLKA(user_clka),

.CLKB(user_clkb),

.CLKC(user_clkc),

.CLKD(user_clkd),

.REL(user_rel),

.RST(user_rst)
);

114 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 3: Phase-Matched Clock Dividers (PMCDs)
R

Virtex-4 FPGA User Guide www.xilinx.com 115
UG070 (v2.6) December 1, 2008

R

Chapter 4

Block RAM

Block RAM Summary
The Virtex®-4 FPGA block RAMs are similar to the Virtex-II and Spartan™-3 FPGA block
RAMs. Each block RAM stores 18 Kbits of data. Write and Read are synchronous
operations; the two ports are symmetrical and totally independent, sharing only the stored
data. Each port can be configured in any “aspect ratio” from 16Kx1, 8Kx2, to 512x36, and
the two ports are independent even in this regard. The memory content can be defined or
cleared by the configuration bitstream. During a write operation the data output can either
reflect the new data being written, or the previous data now being overwritten, or the
output can remain unchanged.

Virtex-4 FPGA enhancements of the basic block RAM include:

• The user can invoke a pipeline register at the data read output, still inside the block
RAM. This allows a higher clock rate, at the cost of one additional clock period
latency.

• Two adjacent block RAMs can be combined to one deeper 32Kx1 memory without any
external logic or speed loss.

• Ports 18 or 36 bits wide can have individual write enable per byte. This feature is used
for interfacing to an on-chip (PPC405) microprocessor.

• Each block RAM contains optional address sequencing and control circuitry to
operate as a built-in Multi-rate FIFO memory. The FIFO can be 4K deep and 4 bits
wide, or 2Kx9, 1Kx18, or 512x36. Write and read ports have identical width. The two
free-running clocks can have completely unrelated frequencies (asynchronous relative
to each other). Operation is controlled by the read and write enable inputs. FULL and
EMPTY outputs signal the extreme conditions, without a possibility of errors or
glitches. Programmable ALMOSTFULL and ALMOSTEMPTY outputs can be used
for warning to simplify the external control of the write and read operation, especially
the maximum clock rate.

Additional Virtex-4 FPGA block RAM features include:

• All output ports are latched. The state of the output port does not change until the
port executes another read or write operation.

• All inputs are registered with the port clock and have a setup-to-clock timing
specification.

• All outputs have a read function or a read-during-write function, depending on the
state of the WE pin. The outputs are available after the clock-to-out timing interval.
The read-during-write outputs have one of three operating modes: WRITE_FIRST,
READ_FIRST, and NO_CHANGE.

• A write operation requires one clock edge.

116 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

• A read operation requires one clock edge.

• DO has an optional internal pipeline register.

• Data input and output signals are always described as buses; that is, in a 1-bit width
configuration, the data input signal is DI[0] and the data output signal is DO[0].

Block RAM Introduction
In addition to distributed RAM, Virtex-4 devices feature a large number of 18 Kb block
RAM memories. True Dual-Port™ RAM offers fast blocks of memory in the device. Block
RAMs are placed in columns, and the total number of block RAM memory depends on the
size of the Virtex-4 device. The 18 Kb blocks are cascadable to enable a deeper and wider
memory implementation, with a minimal timing penalty.

Embedded dual- or single-port RAM modules, ROM modules, synchronous FIFOs, and
data width converters are easily implemented using the Xilinx® CORE Generator™
software memory modules. Asynchronous FIFOs can be generated using the CORE
Generator tool FIFO Generator module. The synchronous or asynchronous FIFO
implementation does not require additional CLB resources for the FIFO control logic since
it uses dedicated hardware resources.

Synchronous Dual-Port and Single-Port RAMs

Data Flow
The 18 Kb block RAM dual-port memory consists of an 18 Kb storage area and two
completely independent access ports, A and B. The structure is fully symmetrical, and both
ports are interchangeable. Figure 4-1 illustrates the dual-port data flow. Table 4-1 lists the
port names and descriptions.

Data can be written to either or both ports and can be read from either or both ports. Each
write operation is synchronous, each port has its own address, data in, data out, clock,
clock enable, and write enable. The read operation is synchronous and requires a clock
edge.

There is no dedicated monitor to arbitrate the effect of identical addresses on both ports. It
is up to the user to time the two clocks appropriately. However, conflicting simultaneous
writes to the same location never cause any physical damage.

When a block RAM port is enabled, all address transitions must meet the setup/hold time
of the ADDR inputs with respect to the port clock, as listed in the Virtex-4 Data Sheet. The
requirement must be met even when the read data output is of no interest and ignored by
the user.

Virtex-4 FPGA User Guide www.xilinx.com 117
UG070 (v2.6) December 1, 2008

Synchronous Dual-Port and Single-Port RAMs
R

Figure 4-1: Dual-Port Data Flows

Table 4-1: Dual-Port Names and Descriptions

Port Name Description

DI[A|B] Data Input Bus

DIP[A|B](1) Data Input Parity Bus

ADDR[A|B] Address Bus

WE[A|B] Write Enable

EN[A|B] When inactive no data is written to the block RAM and the
output bus remains in its previous state.

SSR[A|B] Set/Reset

CLK[A|B] Clock Input

DO[A|B] Data Output Bus

DOP[A|B](1) Data Output Parity Bus

REGCE[A|B] Output Register Enable

CASCADEIN[A|B] Cascade input pin for 32K x 1 mode

CASCADEOUT[A|B] Cascade output pin for 32K x 1 mode

Notes:
1. The “Data Parity Buses - DIP[A/B] and DOP[A/B]” section has more information on Data Parity pins.

DOPA

DIPA

ADDRA

WEA

ENA

CASCADEOUTB

CASCADEINB

SSRA

CLKA
REGCEA

REGCEB

DIPB

ADDRB

WEB

ENB
SSRB

CLKB

18-Kbit Block RAM

ug070_4_01_071204

DOPB
DOB

DOA

DIA

DIB

18 Kb
Memory

Array

Port A

Port B

CASCADEOUTA

CASCADEINA

118 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Read Operation
The read operation uses one clock edge. The read address is registered on the read port,
and the stored data is loaded into the output latches after the RAM access time.

Write Operation
A write operation is a single clock-edge operation. The write address is registered on the
write port, and the data input is stored in memory.

Operating Modes
There are three modes of a write operation. The “read during write” mode offers the
flexibility of using the data output bus during a write operation on the same port. Output
mode is set during device configuration. These choices increase the efficiency of block
RAM memory at each clock cycle.

Three different modes are used to determine data available on the output latches after a
write clock edge: WRITE_FIRST, READ_FIRST, and NO_CHANGE.

Mode selection is set by configuration. One of these three modes is set individually for
each port by an attribute. The default mode is WRITE_FIRST.

WRITE_FIRST or Transparent Mode (Default)

In WRITE_FIRST mode, the input data is simultaneously written into memory and stored
in the data output (transparent write), as shown in Figure 4-2.

Figure 4-2: WRITE_FIRST Mode Waveforms

CLK

WE

Data In

Address

Data Out

ENABLE

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) 1111 2222 MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

ug070_4_02_071204

Virtex-4 FPGA User Guide www.xilinx.com 119
UG070 (v2.6) December 1, 2008

Synchronous Dual-Port and Single-Port RAMs
R

READ_FIRST or READ-BEFORE-WRITE Mode

In READ_FIRST mode, data previously stored at the write address appears on the output
latches, while the input data is being stored in memory (read before write). See Figure 4-3.

NO_CHANGE Mode

In NO_CHANGE mode, the output latches remain unchanged during a write operation.
As shown in Figure 4-4, data output is still the last read data and is unaffected by a write
operation on the same port. NO_CHANGE mode is not supported in 32K x 1 RAM
configuration.

Conflict Avoidance
Virtex-4 FPGA block RAM is a true dual-port RAM, where both ports can access any
memory location at any time. When accessing the same memory location from both ports,
the user must, however, observe certain restrictions, specified by the clock-to-clock setup
time window. There are two fundamentally different situations: The two ports either have
a common clock (“synchronous clocking”), or the clock frequency or phase is different for
the two ports (“asynchronous clocking”).

Asynchronous Clocking

Asynchronous clocking is the more general case, where the active edges of both clocks do
not occur simultaneously:

Figure 4-3: READ_FIRST Mode Waveforms

CLK

WE

Data In

Address

Data Out

ENABLE
DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) old MEM(bb) old MEM(cc) MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

ug070__4_03_071204

Figure 4-4: NO_CHANGE Mode Waveforms

CLK

WE

Data In

Address

Data Out

ENABLE
DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222 ug070_4_04_071204

120 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

• There are no timing constraints when both ports perform a read operation.

• When one port performs a write operation, the other port must not read- or write-
access the same memory location by using a clock edge that falls within the specified
forbidden clock-to-clock setup time window. If this restriction is ignored, a read
operation could read unreliable data, perhaps a mixture of old and new data in this
location; a write operation could result in wrong data stored in this location. There is,
however, no risk of physical damage to the device. If a read and write operation is
performed, the write will store valid data at the write location.

The clock-to-clock setup timing parameter is specified together with other block RAM
switching characteristics in the Virtex-4 Data Sheet.

Synchronous Clocking

Synchronous clocking is the special case, where the active edges of both port clocks occur
simultaneously:

• There are no timing constraints when both ports perform a read operation.

• When one port performs a write operation, the other port must not write into the
same location, unless both ports write identical data.

• When one port performs a write operation, the write operation succeeds; the other
port can reliably read data from the same location if the write port is in READ_FIRST
mode. DATA_OUT will then reflect the previously stored data.

If the write port is in either WRITE_FIRST or in NO_CHANGE mode, then the DATA-
OUT on the read port would become invalid (unreliable). Obviously, the mode setting
of the read-port does not affect this operation.

Additional Block RAM Features in Virtex-4 Devices

Optional Output Registers
The optional output registers improve design performance by eliminating routing delay to
the CLB flip-flops for pipelined operation. These output registers have programmable
clock inversion as in CLB flip-flops. An independent clock enable input is provided for
these output registers. As a result the output data registers hold the value independent of
the input register operation. Figure 4-5 shows the optional output register.

Virtex-4 FPGA User Guide www.xilinx.com 121
UG070 (v2.6) December 1, 2008

Additional Block RAM Features in Virtex-4 Devices
R

Independent Read and Write Port Width Selection
All block RAM ports have control over data width and address depth (aspect ratio).
Virtex-4 devices extend this flexibility to each individual port where Read and Write can be
configured with different data widths. See “Block RAM Attributes,” page 127.

If the Read port width differs from the Write port width, and is configured in
WRITE_FIRST mode, then DO shows valid new data only if all the write bytes are enabled.

Independent Read and Write port width selection increases the efficiency of implementing
a content addressable memory (CAM) in block RAM. Excluding the built-in FIFO, this
option is available for all RAM port sizes and modes.

Cascadable Block RAM
Combining two 16K x 1 RAMs to form one 32K x 1 RAM is possible in the Virtex-4 block
RAM architecture without using local interconnect or additional CLB logic resources.
NO_CHANGE mode is not supported in 32K x 1 RAM configuration. Any two adjacent
block RAMs can be cascaded to generate a 32K x 1 block RAM. Increasing the depth of the
block RAM by cascading two block RAMs is available only in the 32K x 1 mode. Further
information on cascadable block RAM is described in the “Additional RAMB16 Primitive
Design Considerations” section. For other wider and/or deeper sizes, consult the Creating
Larger RAM Structures section. Figure 4-6 shows the block RAM with the appropriate
ports connected in the Cascadable mode. The “Additional Block RAM Features in Virtex-4
Devices” section includes further information on cascadable block RAMs.

Figure 4-5: Block RAM Logic Diagram (One Port Shown)

Register

Optional
Inverter

Latches Register

Address

DI

WE
EN

CLK

Write
Strobe

Read
Strobe

QD QD

DO

Control Engine

Configurable Options
UG070_4_05_030708

Memory
Array

(common to
both ports)

Latch
Enable

Optional
Inverter

122 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

FIFO Support

The block RAM can be configured as an asynchronous FIFO (different clock on read and
write ports) or a synchronous FIFO. In the FIFO mode, the block RAM Port A is the FIFO
read port, while the block RAM Port B is the FIFO write port. The supported
configurations are: 4K x 4, 2K x 9, 1K x 18, and 512 x 36. Figure 4-7 shows the block RAM
I/Os used for the FIFO implementation. The “Built-in FIFO Support” section contains
further details.

Figure 4-6: Cascadable Block RAM

D0
Not Used

DI DI

CASCADEIN
Connect to logic High or Low

CASCADEOUT
(No Connect)

A[13:0]

WE

D0

A14
A14

A[13:0]

D0Output FF

Optional
Output FF

DI DI

A[13:0]

WE

D0

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

A14
A14

A[13:0]

WE[3:0]

WE[3:0]

Interconnect Block RAM

RAM_EXTENSION =
UPPER(0)

RAM_EXTENSION =
LOWER(1)

0
1

0

1

0

1

0
1

UG070_4_06_033005

CASCADEIN of Top

CASCADEOUT of Bottom

Figure 4-7: Block RAM Implemented as a FIFO

ALMOST_EMPTY

ALMOST_FULL

DIB

AB[13:0]

WEB[3:0]

ENB

CLKB

DOB

DIA

AA[13:0]

WEA[3:0]

ENA

CLKA

DOA

DI

WR_EN

DO

SSRA

SSRB

Port A

Port BWR_CLK

RD_EN

SSR

I/Os not used
in FIFO Mode

RD_CLK

EMPTY

FULL

WRCOUNT
RDCOUNT

FIFO

Logic UG070_4_07_071204

Virtex-4 FPGA User Guide www.xilinx.com 123
UG070 (v2.6) December 1, 2008

Additional Block RAM Features in Virtex-4 Devices
R

Byte-Wide Write Enable
The byte-wide write enable feature of the block RAM gives the capability to write eight bit
(one byte) portions of incoming data. There are four independent byte-write enable inputs.
Each byte-write enable is associated with one byte of input data and one parity bit. All four
byte-write enable inputs must be driven in all data width configurations. This feature is
useful when using block RAM to interface with the PPC405. Byte-write enable is not
available in the Multi-rate FIFO. Byte-write enable is further described in the “Additional
RAMB16 Primitive Design Considerations” section. Figure 4-8 shows the byte-wide write-
enable logic.

When configured for a 36-bit or 18-bit wide data path, any port can restrict writing to
specified byte locations within the data word. If configured in READ_FIRST mode, the DO
bus shows the previous content of the whole addressed word. In WRITE_FIRST mode,
with identical Read and Write port widths, DO shows only the enabled newly written
byte(s). The other byte values must be ignored. In WRITE_FIRST mode with different
widths for Read and Write ports, all data on DO must be ignored.

Figure 4-8: Byte-Wide Write Enable In Block RAM

DI

D

A14

A[13:0]

WE[3:0]
4

D

4

UG070_4_08_033005

DI DO DO

A[13:0]

WE_Control

A14

WE[3:0]

D

“00”
D

D

0

1

RAM_EXTENSION =
NONE(0)

124 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Block RAM Library Primitives
RAMB16 is the block RAM library primitive. It is the basic building block for all block
RAM configurations. Other block RAM primitives and macros are based on this primitive.
Some block RAM attributes can only be configured using this primitive (e.g., pipeline
register, cascade). See “Block RAM Attributes,” page 127.

Figure 4-9 illustrates all the I/O ports of the block RAM primitive (RAMB16).

Block RAM Port Signals
Each block RAM port operates independently of the other while accessing the same set of
18 Kbit memory cells.

Clock - CLK[A|B]
Each port is fully synchronous with independent clock pins. All port input pins have setup
time referenced to the port CLK pin. The output data bus has a clock-to-out time
referenced to the CLK pin. Clock polarity is configurable (rising edge by default).

Enable - EN[A|B]
The enable pin affects the read, write, and set/reset functionality of the port. Ports with an
inactive enable pin keep the output pins in the previous state and do not write data to the
memory cells. Enable polarity is configurable (active High by default).

Figure 4-9: Block RAM Port Signals (RAMB16)

DOPA

DOPB

CASCADEINBCASCADEINA

DIA

DIPA
ADDRA

WEA

ENA

SSRA

CLKA

DOA

DOB

REGCEA

DIB
DIPB

ADDRB

WEB

ENB

SSRB
REGCEB

CLKB

ug070_4_09_071204

32

4

15

4

32

4

32

4

32

4

15

4

CASCADEOUTBCASCADEOUTA

Virtex-4 FPGA User Guide www.xilinx.com 125
UG070 (v2.6) December 1, 2008

Block RAM Port Signals
R

Write Enable - WE[A|B]
To write the content of the data input bus into the addressed memory location, both EN
and WE must be active within a setup time before the active clock edge. The output latches
are loaded or not loaded according to the write configuration (WRITE_FIRST,
READ_FIRST, NO_CHANGE). When inactive, a read operation occurs, and the contents of
the memory cells referenced by the address bus reflect on the data-out bus, regardless of
the write mode attribute. Write enable polarity is configurable (active High by default).

Register Enable - REGCE[A|B]
The register enable pin (REGCE) controls the optional output register. When the RAM is in
register mode, REGCE = 1 registers the output into a register at a clock edge. The polarity
of REGCE is configurable (active High by default).

Set/Reset - SSR[A|B]
The SSR pin forces the data output latches to contain the value “SRVAL” (see “Block RAM
Attributes,” page 127). The data output latches are synchronously asserted to 0 or 1,
including the parity bit. In a 36-bit width configuration, each port has an independent
SRVAL[A|B] attribute of 36 bits. This operation does not affect RAM cells and does not
disturb write operations on the other port. Similar to the read and write operation, the
set/reset function is active only when the enable pin of the port is active. Set/reset polarity
is configurable (active High by default). This pin is not available when optional output
registers are used.

Address Bus - ADDR[A|B]<14:#>
The address bus selects the memory cells for read or write. The width of the port
determines the required address bus width for a single RAMB16, as shown in Table 4-2.

For cascadable block RAM, the data width is one bit, however, the address bus is 15 bits
<14:0>. The address bit 15 is only used in cascadable block RAM.

Data and address pin mapping is further described in the “Additional RAMB16 Primitive
Design Considerations”section.

Data-In Buses - DI[A|B]<#:0> & DIP[A|B]<#:0>
Data-in buses provide the new data value to be written into RAM. The regular data-in bus
(DI), and the parity data-in bus (DIP) when available, have a total width equal to the port

Table 4-2: Port Aspect Ratio

Port Data Width Port Address Width Depth ADDR Bus DI Bus / DO Bus DIP Bus / DOP Bus

1 14 16,384 <13:0> <0> NA

2 13 8,192 <13:1> <1:0> NA

4 12 4,096 <13:2> <3:0> NA

9 11 2,048 <13:3> <7:0> <0>

18 10 1,024 <13:4> <15:0> <1:0>

36 9 512 <13:5> <31:0> <3:0>

126 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

width. For example the 36-bit port data width is represented by DI<31:0> and DIP<3:0>, as
shown in Table 4-2.

Data-Out Buses - DO[A|B]<#:0> and DOP[A|B]<#:0>
Data-out buses reflect the contents of memory cells referenced by the address bus at the
last active clock edge during a read operation. During a write operation (WRITE_FIRST or
READ_FIRST configuration), the data-out buses reflect either the data-in buses or the
stored value before write. During a write operation in NO_CHANGE mode, data-out
buses are not affected. The regular data-out bus (DO) and the parity data-out bus (DOP)
(when available) have a total width equal to the port width, as shown in Table 4-2.

Cascade - CASCADEIN[A|B]
The CASCADEIN pins are used to connect two block RAMs to form the 32K x 1 mode. This
pin is used when the block RAM is the UPPER block RAM, and is connected to the
CASCADEOUT pins of the LOWER block RAM. When cascade mode is not used, this pin
does not need to be connected. Refer to the “Cascadable Block RAM” for further
information.

Cascade - CASCADEOUT[A|B]
The CASCADEOUT pins are used to connect two block RAMs to form the 32K x 1 mode.
This pin is used when the block RAM is the LOWER block RAM, and is connected to the
CASCADEIN pins of the UPPER block RAM. When cascade mode is not used, this pin
does not need to be connected. Refer to the “Cascadable Block RAM” for further
information.

Inverting Control Pins
For each port, the five control pins (CLK, EN, WE, REGCE, and SSR) each have an
individual inversion option. Any control signal can be configured as active High or Low,
and the clock can be active on a rising or falling edge (active High on rising edge by
default) without requiring other logic resources.

GSR
The global set/reset (GSR) signal of a Virtex-4 device is an asynchronous global signal that
is active at the end of device configuration. The GSR can also restore the initial Virtex-4
FPGA state at any time. The GSR signal initializes the output latches to the INIT, or to the
INIT_A and INIT_B value (see “Block RAM Attributes”). A GSR signal has no impact on
internal memory contents. Because it is a global signal, the GSR has no input pin at the
functional level (block RAM primitive).

Unused Inputs
Unused Data and/or address inputs should be tied High.

Virtex-4 FPGA User Guide www.xilinx.com 127
UG070 (v2.6) December 1, 2008

Block RAM Address Mapping
R

Block RAM Address Mapping
Each port accesses the same set of 18,432 memory cells using an addressing scheme
dependent on the width of the port. The physical RAM locations addressed for a particular
width are determined using the following formula (of interest only when the two ports use
different aspect ratios):

END = ((ADDR + 1) * Width) - 1
START= ADDR * Width

Table 4-3 shows low-order address mapping for each port width.

Block RAM Attributes
All attribute code examples are shown in the “Block RAM VHDL and Verilog Templates”
section. Further information on using these attributes is available in the “Additional
RAMB16 Primitive Design Considerations” section.

Content Initialization - INIT_xx
INIT_xx attributes define the initial memory contents. By default block RAM memory is
initialized with all zeros during the device configuration sequence. The 64 initialization
attributes from INIT_00 through INIT_3F represent the regular memory contents. Each
INIT_xx is a 64-digit hex-encoded bit vector. The memory contents can be partially
initialized and are automatically completed with zeros.

The following formula is used for determining the bit positions for each INIT_xx attribute.

Given yy = conversion hex-encoded to decimal (xx), INIT_xx corresponds to the memory
cells as follows:

• from [(yy + 1) * 256] – 1

• to (yy) * 256

For example, for the attribute INIT_1F, the conversion is as follows:

• yy = conversion hex-encoded to decimal X”1F” = 31

• from [(31+1) * 256] – 1 = 8191

• to 31 * 256 = 7936

More examples are given in Table 4-4.

Table 4-3: Port Address Mapping

Port
Width

Parity
Locations

Data Locations

1 N.A. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4 7 6 5 4 3 2 1 0

8 + 1 3 2 1 0 3 2 1 0

16 + 2 1 0 1 0

32 + 4 0 0

128 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Content Initialization - INITP_xx
INITP_xx attributes define the initial contents of the memory cells corresponding to
DIP/DOP buses (parity bits). By default these memory cells are also initialized to all zeros.
The eight initialization attributes from INITP_00 through INITP_07 represent the memory
contents of parity bits. Each INITP_xx is a 64-digit hex-encoded bit vector with a regular
INIT_xx attribute behavior. The same formula can be used to calculate the bit positions
initialized by a particular INITP_xx attribute.

Output Latches Initialization - INIT (INIT_A & INIT_B)
The INIT (single-port) or INIT_A and INIT_B (dual-port) attributes define the output
latches values after configuration. The width of the INIT (INIT_A & INIT_B) attribute is
the port width, as shown in Table 4-5. These attributes are hex-encoded bit vectors, and the
default value is 0.

Output Latches Synchronous Set/Reset - SRVAL (SRVAL_A & SRVAL_B)
The SRVAL (single-port) or SRVAL_A and SRVAL_B (dual-port) attributes define output
latch values when the SSR input is asserted. The width of the SRVAL (SRVAL_A and
SRVAL_B) attribute is the port width, as shown in Table 4-5. These attributes are hex-
encoded bit vectors, and the default value is 0. This attribute is not available when the
optional output register attribute is set.

Table 4-4: Block RAM Initialization Attributes

Attribute
Memory Location

From To

INIT_00 255 0

INIT_01 511 256

INIT_02 767 512

… … …

INIT_0E 3839 3584

INIT_0F 4095 3840

INIT_10 4351 4096

… … …

INIT_1F 8191 7936

INIT_20 8447 8192

… … …

INIT_2F 12287 12032

INIT_30 12543 12288

.. … …

INIT_3F 16383 16128

Virtex-4 FPGA User Guide www.xilinx.com 129
UG070 (v2.6) December 1, 2008

Block RAM Attributes
R

Optional Output Register On/Off Switch - DO[A|B]_REG
This attribute sets the number of pipeline register at A/B output of RAMB16. The valid
values are 0 (default) or 1.

Clock Inversion at Output Register Switch - INVERT_CLK_DO[A|B]_REG
When set to TRUE, the clock input to the pipeline register at A/B output of RAMB16 is
inverted. The default value is FALSE.

Extended Mode Address Determinant - RAM_EXTENSION_[A|B]
This attribute determines whether the block RAM of interest has its A/B port as
UPPER/LOWER address when using the cascade mode. Refer to the “Cascadable Block
RAM” section. When the block RAM is not used in cascade mode, the default value is
NONE.

Read Width - READ_WIDTH_[A|B]
This attribute determines the A/B read port width of the block RAM. The valid values are:
0 (default), 1, 2, 4, 9, 18, and 36.

Write Width - WRITE_WIDTH_[A|B]
This attribute determines the A/B write port width of the block RAM. The valid values are:
0 (default), 1, 2, 4, 9, 18, and 36.

Write Mode - WRITE_MODE_[A|B]
This attribute determines the write mode of the A/B input ports. The possible values are
WRITE_FIRST (default), READ_FIRST, and NO_CHANGE. Additional information on the
write modes is in the “Operating Modes” section.

Block RAM Location Constraints
Block RAM instances can have LOC properties attached to them to constrain placement.
Block RAM placement locations differ from the convention used for naming CLB locations,
allowing LOC properties to transfer easily from array to array.

Table 4-5: Port Width Values

Port Data Width DOP Bus DO Bus INIT / SRVAL

1 NA <0> 1

2 NA <1:0> 2

4 NA <3:0> 4

9 <0> <7:0> (1 + 8) = 9

18 <1:0> <15:0> (2 + 16) = 18

36 <3:0> <31:0> (4 + 32) = 36

130 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

The LOC properties use the following form:

LOC = RAMB16_X#Y#

The RAMB16_X0Y0 is the bottom-left block RAM location on the device. If RAMB16 is
constrained to RAMB16_X#Y#, the FIFO cannot be constrained to FIFO16_X#Y# since they
share a location. An example location constraint is shown in the “Block RAM VHDL and
Verilog Templates” section.

Block RAM Initialization in VHDL or Verilog Code
Block RAM memory attributes and content can be initialized in VHDL or Verilog code for
both synthesis and simulation by using generic maps (VHDL) or defparams (Verilog)
within the instantiated component. Modifying the values of the generic map or defparam
affects both the simulation behavior and the implemented synthesis results.

Block RAM VHDL and Verilog Templates
The following template is a RAMB16 example in both VHDL and Verilog. This primitive is
the building block for all different sizes of block RAM.

RAMB16 VHDL Template
-- RAMB16 : To incorporate this function into the design,
-- VHDL : following instance declaration needs to be placed in
-- instance : the architecture body of the design code. The
-- declaration : (RAMB16_inst) and/or the port declarations
-- code : after the "=>" assignment can be changed to properly
-- : reference and connect this function to the design.
-- : All inputs and outputs must be connected.
-- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.v components library needs
-- for : to be added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-- <--Cut code below this line and paste into the architecture body-->

 -- RAMB16: Virtex-4 16k+2k Parity Paramatizable Block RAM
 -- Virtex-4 FPGA User Guide

 RAMB16_inst : RAMB16
 generic map (
 DOA_REG => 0, -- Optional output registers on the A port (0 or 1)
 DOB_REG => 0, -- Optional output registers on the B port (0 or 1)
 INIT_A => X"000000000", -- Initial values on A output port
 INIT_B => X"000000000", -- Initial values on B output port
 INVERT_CLK_DOA_REG => FALSE, -- Invert clock on A port output

registers (TRUE or FALSE)

Virtex-4 FPGA User Guide www.xilinx.com 131
UG070 (v2.6) December 1, 2008

Block RAM VHDL and Verilog Templates
R

 INVERT_CLK_DOB_REG => FALSE, -- Invert clock on B port output
registers (TRUE or FALSE)

 RAM_EXTENSION_A => "NONE", -- "UPPER", "LOWER" or "NONE" when
cascaded

 RAM_EXTENSION_B => "NONE", -- "UPPER", "LOWER" or "NONE" when
cascaded

 READ_WIDTH_A => 0, -- Valid values are 1,2,4,9,18 or 36
 READ_WIDTH_B => 0, -- Valid values are 1,2,4,9,18 or 36

SRVAL_A => X"000000000", -- Port A ouput value upon SSR assertion
 SRVAL_B => X"000000000", -- Port B ouput value upon SSR assertion
 WRITE_MODE_A => "WRITE_FIRST", -- "WRITE_FIRST", "READ_FIRST" or

"NO_CHANGE"
 WRITE_MODE_B => "WRITE_FIRST", -- "WRITE_FIRST", "READ_FIRST" or

"NO_CHANGE"
 WRITE_WIDTH_A => 2, -- Valid values are 1,2,4,9,18 or 36
 WRITE_WIDTH_B => 0, -- Valid values are 1,2,4,9,18 or 36
 INIT_00 =>
X"00",
 INIT_01 =>
X"00",
 INIT_02 =>
X"00",
 INIT_03 =>
X"00",
 INIT_04 =>
X"00",
 INIT_05 =>
X"00",
 INIT_06 =>
X"00",
 INIT_07 =>
X"00",
 INIT_08 =>
X"00",
 INIT_09 =>
X"00",
 INIT_0A =>
X"00",
 INIT_0B =>
X"00",
 INIT_0C =>
X"00",
 INIT_0D =>
X"00",
 INIT_0E =>
X"00",
 INIT_0F =>
X"00",
 INIT_10 =>
X"00",
 INIT_11 =>
X"00",
 INIT_12 =>
X"00",
 INIT_13 =>
X"00",
 INIT_14 =>
X"00",

132 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

 INIT_15 =>
X"00",
 INIT_16 =>
X"00",
 INIT_17 =>
X"00",
 INIT_18 =>
X"00",
 INIT_19 =>
X"00",
 INIT_1A =>
X"00",
 INIT_1B =>
X"00",
 INIT_1C =>
X"00",
 INIT_1D =>
X"00",
 INIT_1E =>
X"00",
 INIT_1F =>
X"00",
 INIT_20 =>
X"00",
 INIT_21 =>
X"00",
 INIT_22 =>
X"00",
 INIT_23 =>
X"00",
 INIT_24 =>
X"00",
 INIT_25 =>
X"00",
 INIT_26 =>
X"00",
 INIT_27 =>
X"00",
 INIT_28 =>
X"00",
 INIT_29 =>
X"00",
 INIT_2A =>
X"00",
 INIT_2B =>
X"00",
 INIT_2C =>
X"00",
 INIT_2D =>
X"00",
 INIT_2E =>
X"00",
 INIT_2F =>
X"00",
 INIT_30 =>
X"00",
 INIT_31 =>
X"00",

Virtex-4 FPGA User Guide www.xilinx.com 133
UG070 (v2.6) December 1, 2008

Block RAM VHDL and Verilog Templates
R

 INIT_32 =>
X"00",
 INIT_33 =>
X"00",
 INIT_34 =>
X"00",
 INIT_35 =>
X"00",
 INIT_36 =>
X"00",
 INIT_37 =>
X"00",
 INIT_38 =>
X"00",
 INIT_39 =>
X"00",
 INIT_3A =>
X"00",
 INIT_3B =>
X"00",
 INIT_3C =>
X"00",
 INIT_3D =>
X"00",
 INIT_3E =>
X"00",
 INIT_3F =>
X"00",
 INITP_00 =>
X"00",
 INITP_01 =>
X"00",
 INITP_02 =>
X"00",
 INITP_03 =>
X"00",
 INITP_04 =>
X"00",
 INITP_05 =>
X"00",
 INITP_06 =>
X"00",
 INITP_07 =>
X"00")
 port map (
 CASCADEOUTA => CASCADEOUTA, -- 1-bit cascade output
 CASCADEOUTB => CASCADEOUTB, -- 1-bit cascade output
 DOA => DOA, -- 32-bit A port Data Output
 DOB => DOB, -- 32-bit B port Data Output
 DOPA => DOPA, -- 4-bit A port Parity Output
 DOPB => DOPB, -- 4-bit B port Parity Output
 ADDRA => ADDRA, -- 15-bit A port Address Input
 ADDRB => ADDRB, -- 15-bit B port Address Input
 CASCADEINA => CASCADEINA, -- 1-bit cascade A input
 CASCADEINB => CASCADEINB, -- 1-bit cascade B input
 CLKA => CLKA, -- Port A Clock
 CLKB => CLKB, -- Port B Clock
 DIA => DIA, -- 32-bit A port Data Input
 DIB => DIB, -- 32-bit B port Data Input

134 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

 DIPA => DIPA, -- 4-bit A port parity Input
 DIPB => DIPB, -- 4-bit B port parity Input
 ENA => ENA, -- 1-bit A port Enable Input
 ENB => ENB, -- 1-bit B port Enable Input
 REGCEA => REGCEA, -- 1-bit A port register enable input
 REGCEB => REGCEB, -- 1-bit B port register enable input
 SSRA => SSRA, -- 1-bit A port Synchronous Set/Reset Input
 SSRB => SSRB, -- 1-bit B port Synchronous Set/Reset Input
 WEA => WEA, -- 4-bit A port Write Enable Input
 WEB => WEB -- 4-bit B port Write Enable Input
);

 -- End of RAMB16_inst instantiation

RAMB16 Verilog Template
// RAMB16 : To incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (RAMB_inst) and/or the port declarations within the
// code : parenthesis can be changed to properly reference and
// : connect this function to the design. All inputs
// : and outputs must be connected.

// <-----Cut code below this line---->

 // RAMB16: Virtex-4 16k+2k Parity Paramatizable Block RAM
 // Virtex-4 FPGA User Guide

 RAMB16 #(
.DOA_REG(0), // Optional output registers on A port (0 or 1)
.DOB_REG(0), // Optional output registers on B port (0 or 1)
.INIT_A(36'h000000000), // Initial values on A output port
.INIT_B(36'h000000000), // Initial values on B output port
.INVERT_CLK_DOA_REG("FALSE"),// Invert clock on A port output

registers
("TRUE" or "FALSE")

.INVERT_CLK_DOB_REG("FALSE"),// Invert clock on A port output
registers

("TRUE" or "FALSE")
.RAM_EXTENSION_A("NONE"), // "UPPER", "LOWER" or "NONE" when

cascaded
.RAM_EXTENSION_B("NONE"), // "UPPER", "LOWER" or "NONE" when

cascaded
.READ_WIDTH_A(0), // Valid values are 1, 2, 4, 9, 18, or 36
.READ_WIDTH_B(0), // Valid values are 1, 2, 4, 9, 18, or 36
.SRVAL_A(36'h000000000), // Set/Reset value for A port output
.SRVAL_B(36'h000000000), // Set/Reset value for B port output
.WRITE_MODE_A("WRITE_FIRST"), // "WRITE_FIRST", "READ_FIRST", or

"NO_CHANGE"
.WRITE_MODE_B("WRITE_FIRST"), // "WRITE_FIRST", "READ_FIRST", or

"NO_CHANGE"
.WRITE_WIDTH_A(0), // Valid values are 1, 2, 4, 9, 18, or 36
.WRITE_WIDTH_B(0), // Valid values are 1, 2, 4, 9, 18, or 36

 // The following INIT_xx declarations specify the initial contents
of the RAM

Virtex-4 FPGA User Guide www.xilinx.com 135
UG070 (v2.6) December 1, 2008

Block RAM VHDL and Verilog Templates
R

.INIT_00(256'h00
00000000),

.INIT_01(256'h00
00000000),

.INIT_02(256'h00
00000000),

.INIT_03(256'h00
00000000),

.INIT_04(256'h00
00000000),

.INIT_05(256'h00
00000000),

.INIT_06(256'h00
00000000),

.INIT_07(256'h00
00000000),

.INIT_08(256'h00
00000000),

.INIT_09(256'h00
00000000),

.INIT_0A(256'h00
00000000),

.INIT_0B(256'h00
00000000),

.INIT_0C(256'h00
00000000),

.INIT_0D(256'h00
00000000),

.INIT_0E(256'h00
00000000),

.INIT_0F(256'h00
00000000),

.INIT_10(256'h00
00000000),

.INIT_11(256'h00
00000000),

.INIT_12(256'h00
00000000),

136 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

.INIT_13(256'h00
00000000),

.INIT_14(256'h00
00000000),

.INIT_15(256'h00
00000000),

.INIT_16(256'h00
00000000),

.INIT_17(256'h00
00000000),

.INIT_18(256'h00
00000000),

.INIT_19(256'h00
00000000),

.INIT_1A(256'h00
00000000),

.INIT_1B(256'h00
00000000),

.INIT_1C(256'h00
00000000),

.INIT_1D(256'h00
00000000),

.INIT_1E(256'h00
00000000),

.INIT_1F(256'h00
00000000),

.INIT_20(256'h00
00000000),

.INIT_21(256'h00
00000000),

.INIT_22(256'h00
00000000),

.INIT_23(256'h00
00000000),

.INIT_24(256'h00
00000000),

.INIT_25(256'h00
00000000),

Virtex-4 FPGA User Guide www.xilinx.com 137
UG070 (v2.6) December 1, 2008

Block RAM VHDL and Verilog Templates
R

.INIT_26(256'h00
00000000),

.INIT_27(256'h00
00000000),

.INIT_28(256'h00
00000000),

.INIT_29(256'h00
00000000),

.INIT_2A(256'h00
00000000),

.INIT_2B(256'h00
00000000),

.INIT_2C(256'h00
00000000),

.INIT_2D(256'h00
00000000),

.INIT_2E(256'h00
00000000),

.INIT_2F(256'h00
00000000),

.INIT_30(256'h00
00000000),

.INIT_31(256'h00
00000000),

.INIT_32(256'h00
00000000),

.INIT_33(256'h00
00000000),

.INIT_34(256'h00
00000000),

.INIT_35(256'h00
00000000),

.INIT_36(256'h00
00000000),

.INIT_37(256'h00
00000000),

.INIT_38(256'h00
00000000),

138 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

.INIT_39(256'h00
00000000),

.INIT_3A(256'h00
00000000),

.INIT_3B(256'h00
00000000),

.INIT_3C(256'h00
00000000),

.INIT_3D(256'h00
00000000),

.INIT_3E(256'h00
00000000),

.INIT_3F(256'h00
00000000),

 // The next set of INITP_xx are for the parity bits

.INITP_00(256'h000
000000000),

.INITP_01(256'h000
000000000),

.INITP_02(256'h000
000000000),

.INITP_03(256'h000
000000000),

.INITP_04(256'h000
000000000),

.INITP_05(256'h000
000000000),

.INITP_06(256'h000
000000000),

.INITP_07(256'h000
000000000)
) RAMB16_inst (
 .CASCADEOUTA(CASCADEOUTA), // 1-bit cascade output
 .CASCADEOUTB(CASCADEOUTB), // 1-bit cascade output
 .DOA(DOA), // 32-bit A port data output
 .DOB(DOB), // 32-bit B port data output
 .DOPA(DOPA), // 4-bit A port parity data output
 .DOPB(DOPB), // 4-bit B port parity data output
 .ADDRA(ADDRA), // 15-bit A port address input
 .ADDRB(ADDRB), // 15-bit B port address input
 .CASCADEINA(CASCADEINA), // 1-bit cascade A input
 .CASCADEINB(CASCADEINB), // 1-bit cascade B input
 .CLKA(CLKA), // 1-bit A port clock input

Virtex-4 FPGA User Guide www.xilinx.com 139
UG070 (v2.6) December 1, 2008

Additional RAMB16 Primitive Design Considerations
R

 .CLKB(CLKB), // 1-bit B port clock input
 .DIA(DIA), // 32-bit A port data input
 .DIB(DIB), // 32-bit B port data input
 .DIPA(DIPA), // 4-bit A port parity data input
 .DIPB(DIPB), // 4-bit B port parity data input
 .ENA(ENA), // 1-bit A port enable input
 .ENB(ENB), // 1-bit B port enable input
 .REGCEA(REGCEA), // 1-bit A port register enable input
 .REGCEB(REGCEB), // 1-bit B port register enable input
 .SSRA(SSRA), // 1-bit A port set/reset input
 .SSRB(SSRB), // 1-bit B port set/reset input
 .WEA(WEA), // 4-bit A port write enable input
 .WEB(WEB) // 4-bit B port write enable input
);

 // End of RAMB16_inst instantiation

Additional RAMB16 Primitive Design Considerations
The RAMB16 primitive is part of the Virtex-4 FPGA block RAM solution.

Data Parity Buses - DIP[A/B] and DOP[A/B]
The data parity buses are additional pins used for data parity with incoming data into the
block RAM. The block RAM does not generate the parity bits for incoming data. These are
supplied by the user. If not supplying parity bits, the pins can be used for incoming data.

Optional Output Registers
Optional output registers can be used at either or both A/B output ports of RAMB16. The
choice is made using the DO[A/B]_REG attribute. There is also an option to invert the
clocks for either or both of the A/B output registers using the
INVERT_CLK_DO[A/B]_REG attribute. The two independent clock enable pins are
REGCE[A/B]. When using the optional output registers at port [A|B], the synchronous
set/reset (SSR) pin of ports [A|B] can not be used. Figure 4-5 shows a optional output
register.

Independent Read and Write Port Width
To specify the port widths, designers must use the READ_WIDTH_[A/B] and
WRITE_WIDTH_[A/B] attributes. The following rules should be considered:

• Designing a single port block RAM requires the port pair widths of one write and one
read to be set (e.g., READ_WIDTH_A and WRITE_WIDTH_A).

• Designing a dual-port block RAM requires all port widths to be set.

• When using these attributes, if both write ports or both read ports are set to 0, the
ISE® tools will not implement the design.

RAMB16 Port Mapping Design Rules
The Virtex-4 FPGA block RAM can be configurable to various port widths and sizes.
Depending on the configuration, some data pins and address pins are not used. Table 4-2,
page 125 shows the pins used in various configurations. In addition to the information in
Table 4-2, the following rules are useful to determine port connections:

140 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

1. If the DI[A|B] pins are less than 32 bits wide, concatenate (32 – DI_BIT_WIDTH) logic
zeros to the front of DI[A|B].

2. If the DIP[A|B] pins are less than 4 bits wide, concatenate (4 – DIP_BIT_WIDTH) logic
zeros to the front of DIP[A|B]. DIP[A|B] is unconnected when not in use.

3. DO[A|B] pins must be 32 bits wide. However, valid data are only found on pins 0 to
DO_BIT_WIDTH.

4. DOP[A|B] pins must be 4 bits wide. However, valid data are only found on pins 0 to
DO_BIT_WIDTH. DOP[A|B] is unconnected when not in use.

5. ADDR[A|B] pins must be 15 bits wide. However, valid addresses for non-cascadable
block RAM are only found on pins 13 to (14 – address width). The remaining pins,
including pin 14, should be tied High.

Cascadable Block RAM
To use the cascadable block RAM feature:

1. Two RAMB16 primitives must be instantiated.

2. Set the RAM_EXTENSION_A and RAM_EXTENSION_B attribute for one RAMB16 to
UPPER, and another to LOWER.

3. Connect the upper RAMB16’s CASCADEINA and CASCADEINB ports to the
CASCADEOUTA and CASCADEOUTB ports of the lower RAMB16. The
CASCADEOUT ports for the upper RAMB16 do not require a connection. Connect the
CASCADEIN ports for the lower RAMB16 to either logic High or Low.

4. The data output ports of the lower RAMB16 are not used. These pins are unconnected.

5. If placing location constraints on the two RAMB16s, they must be adjacent. If no
location constraint is specified, the ISE software will automatically manage the
RAMB16 locations.

6. The address pins ADDR[A|B] must be 15 bits wide. Both read and write ports must be
one bit wide.

Figure 4-6 shows the cascadable block RAM.

Byte-Write Enable
The following rules should be considered when the following when using the byte-write
enable feature:

• In x36 mode, WE[3:0] is connected to the four user WE inputs.

• In x18 mode, WE[0] and WE[2] are connected and driven by the user WE[0], while
WE[1], and WE[3] are driven by the user WE[1].

• In x9, x4, x2, x1, WE[3:0] are all connected to a single user WE.

Figure 4-8 shows a byte-write enabled block RAM.

Virtex-4 FPGA User Guide www.xilinx.com 141
UG070 (v2.6) December 1, 2008

Additional Block RAM Primitives
R

Additional Block RAM Primitives
In addition to RAMB16, some added block RAM primitives are available for Virtex-4
FPGA designers allowing the implementation of various block RAM sizes with preset
configurations.

The input and output data buses are represented by two buses for 9-bit width (8+1), 18-bit
width (16+2), and 36-bit width (32+4) configurations. The ninth bit associated with each
byte can store parity or error correction bits. No specific function is performed on this bit.

The separate bus for parity bits facilitates some designs. However, other designs safely use
a 9-bit, 18-bit, or 36-bit bus by merging the regular data bus with the parity bus.
Read/write and storage operations are identical for all bits, including the parity bits.

Some block RAM attributes can only be configured using the RAMB16 primitive (e.g.,
pipeline register, cascade, etc.). See the “Block RAM Attributes” section.

Figure 4-10 shows the generic dual-port block RAM primitive. DIA, DIPA, ADDRA, DOA,
DOPA, and the corresponding signals on port B are buses.

Table 4-6 lists the available dual-port primitives for synthesis and simulation.

Figure 4-10: Dual-Port Block RAM Primitive

DOPA[#:0]

DOPB[#:0]

DIA[X:0]

DIPA[X:0]
ADDRA[X:0]

WEA

ENA

SSRA

CLKA

DOA[#:0]

DOB[#:0]

DIB[Y:0]
DIPB[Y:0]

ADDRB[Y:0]

WEB

ENB

SSRB

CLKB

ug070_4_10_071204

RAMB16_SX_SY

142 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Figure 4-11 shows the generic single-port block RAM primitive. DI, DIP, ADDR, DO, and
DOP are buses.

Table 4-6: Dual-Port Block RAM Primitives

Primitive Port A Width Port B Width

RAMB16_S1_S1 1 1

RAMB16_S1_S2 2

RAMB16_S1_S4 4

RAMB16_S1_S9 (8+1)

RAMB16_S1_S18 (16+2)

RAMB16_S1_S36 (32+4)

RAMB16_S2_S2 2 2

RAMB16_S2_S4 4

RAMB16_S2_S9 (8+1)

RAMB16_S2_S18 (16+2)

RAMB16_S2_S36 (32+4)

RAMB16_S4_S4 4 4

RAMB16_S4_S9 (8+1)

RAMB16_S4_S18 (16+2)

RAMB16_S4_S36 (32+4)

RAMB16_S9_S9 (8+1) (8+1)

RAMB16_S9_S18 (16+2)

RAMB16_S9_S36 (32+4)

RAMB16_S18_S18 (16+2) (16+2)

RAMB16_S18_S36 (32+4)

RAMB16_S36_S36 (32+4) (32+4)

Figure 4-11: Single-Port Block RAM Primitive

DOP[#:0]

DI[#:0]

DIP[#:0]
ADDR[#:0]

WE
EN
SSR

CLK

DO[#:0]

RAMB16_SX

UG070_4_11_031308

Virtex-4 FPGA User Guide www.xilinx.com 143
UG070 (v2.6) December 1, 2008

Block RAM Applications
R

Table 4-7 lists all of the available single-port primitives for synthesis and simulation.

Instantiation of Additional Block RAM Primitives
The RAM_Ax templates (with x = 1, 2, 4, 9, 18, or 36) are single-port modules and
instantiate the corresponding RAMB16_Sx module.

RAM_Ax_By templates (with x = 1, 2, 4, 9, 18, or 36 and y = = 1, 2, 4, 9, 18, or 36) are dual-
port modules and instantiate the corresponding RAMB16_Sx_Sy module.

Block RAM Applications

Creating Larger RAM Structures
Block RAM columns have special routing to create wider/deeper blocks with minimal
routing delays. Wider or deeper RAM structures are achieved with a smaller timing
penalty than is encountered when using normal routing resources.

The CORE Generator software offers the designer an easy way to generate wider and
deeper memory structures using multiple block RAM instances. This program outputs
VHDL or Verilog instantiation templates and simulation models, along with an EDIF file
for inclusion in a design.

Block RAM Timing Model
This section describes the timing parameters associated with the block RAM in Virtex-4
devices (illustrated in Figure 4-12). The switching characteristics section in the Virtex-4
Data Sheet and the Timing Analyzer (TRCE) report from Xilinx software are also available
for reference.

Table 4-7: Single-Port Block RAM Primitives

Primitive Port Width

RAMB16_S1 1

RAMB16_S2 2

RAMB16_S4 4

RAMB16_S9 (8+1)

RAMB16_S18 (16+2)

RAMB16_S36 (32+4)

144 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Block RAM Timing Parameters
Table 4-8 shows the Virtex-4 FPGA block RAM timing parameters.

Table 4-8: Block RAM Timing Parameters

Parameter Function
Control
Signal

Description

Setup and Hold Relative to Clock (CLK)

TRxCK_x = Setup time (before clock edge) and TRCKx_x = Hold time (after clock edge)

TRCCK_ADDR

Address inputs ADDR

Time before the clock that address signals must be stable at the
ADDR inputs of the block RAM.(1)

TRCKC_ADDR Time after the clock that address signals must be stable at the ADDR
inputs of the block RAM.(1)

TRDCK_DI

Data inputs DI

Time before the clock that data must be stable at the DI inputs of the
block RAM.

TRCKD_DI Time after the clock that data must be stable at the DI inputs of the
block RAM.

TRCCK_EN

Enable EN

Time before the clock that the enable signal must be stable at the EN
input of the block RAM.

TRCKC_EN Time after the clock that the enable signal must be stable at the EN
input of the block RAM.

TRCCK_SSR

Synchronous
Set/Reset

SSR

Time before the clock that the synchronous set/reset signal must be
stable at the SSR input of the block RAM.

TRCKC_SSR Time after the clock that the synchronous set/reset signal must be
stable at the SSR input of the block RAM.

TRCCK_WEN

Write Enable WEN

Time before the clock that the write enable signal must be stable at
the WEN input of the block RAM.

TRCKC_WEN Time after the clock that the write enable signal must be stable at the
WEN input of the block RAM.

TRCCK_REGCE

Optional Output
Register Enable

REGCE

Time before the clock that the register enable signal must be stable at
the REGCE input of the block RAM.

TRCKC_REGCE Time after the clock that the register enable signal must be stable at
the REGCE input of the block RAM.

Sequential Delays

TRCKO_DO (Max) Clock to Output CLK to
DO

Time after the clock that the output data is stable at the DO outputs
of the block RAM (without output register).

TRCKO_DO (Min) Clock to Output CLK to
DO

Time after the clock that the output data is stable at the DO outputs
of the block RAM (with output register).

Notes:
1. While EN is active, ADDR inputs must be stable during the entire setup/hold time window, even if WEN is inactive. Violating this

requirement can result in block RAM data corruption. If ADDR timing could violate the specified requirements, EN must be
inactive (disabled).

Virtex-4 FPGA User Guide www.xilinx.com 145
UG070 (v2.6) December 1, 2008

Block RAM Timing Model
R

Block RAM Timing Characteristics
The timing diagram in Figure 4-12 describes a single-port block RAM in write-first mode
without the optional output register. The timing for read-first and no-change modes are
similar. For timing using the optional output register, an additional clock latency appears
at the DO pin.

At time 0, the block RAM is disabled; EN (enable) is Low.

Clock Event 1

Read Operation

During a read operation, the contents of the memory at the address on the ADDR inputs
are unchanged.

• TRCCK_ADDR before clock event 1, address 00 becomes valid at the ADDR inputs of
the block RAM.

• At time TRCCK_EN before clock event 1, enable is asserted High at the EN input of the
block RAM, enabling the memory for the READ operation that follows.

• At time TRCKO_DO after clock event 1, the contents of the memory at address 00
become stable at the DO pins of the block RAM.

Clock Event 2

Write Operation

During a write operation, the content of the memory at the location specified by the
address on the ADDR inputs is replaced by the value on the DI pins and is immediately
reflected on the output latches (in WRITE-FIRST mode); EN (enable) is High.

• At time TRCCK_ADDR before clock event 2, address 0F becomes valid at the ADDR
inputs of the block RAM.

• At time TRDCK_DI before clock event 2, data CCCC becomes valid at the DI inputs of
the block RAM.

Figure 4-12: Block RAM Timing Diagram

ADDR

DI

DO

EN

SSR

WEN

CLK

00

DDDD

TRCCK_ADDR

TRDCK_DI

TRCKO_DO

MEM (00)
TRCCK_EN

TRCCK_WEN

Disabled DisabledRead Write Read Reset

* Write Mode = "WRITE_FIRST"

** SRVAL = 0101

0F 7E 8F 20

CCCC BBBB AAAA 0000

CCCC* MEM (7E) 0101**

ug070_4_12_071204

1 2 3 54

TRCCK_SSR

146 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

• At time TRCCK_WEN before clock event 2, write enable becomes valid at the WEN
following the block RAM.

• At time TRCKO_DO after clock event 2, data CCCC becomes valid at the DO outputs of
the block RAM.

Clock Event 4

SSR (Synchronous Set/Reset) Operation

During an SSR operation, initialization parameter value SRVAL is loaded into the output
latches of the block RAM. The SSR operation does NOT change the contents of the memory
and is independent of the ADDR and DI inputs.

• At time TRCCK_SSR before clock event 4, the synchronous set/reset signal becomes
valid (High) at the SSR input of the block RAM.

• At time TRCKO_DO after clock event 4, the SRVAL 0101 becomes valid at the DO
outputs of the block RAM.

Clock Event 5

Disable Operation

Deasserting the enable signal EN disables any write, read, or SSR operation. The disable
operation does NOT change the contents of the memory or the values of the output latches.

• At time TRCCK_EN before clock event 5, the enable signal becomes valid (Low) at the
EN input of the block RAM.

• After clock event 5, the data on the DO outputs of the block RAM is unchanged.

Block RAM Timing Model
Figure 4-13 illustrates the delay paths associated with the implementation of block RAM.
This example takes the simplest paths on and off chip (these paths can vary greatly
depending on the design). This timing model demonstrates how and where the block
RAM timing parameters are used.

• NET = Varying interconnect delays

• TIOPI = Pad to I-output of IOB delay

• TIOOP = O-input of IOB to pad delay

• TBCCKO_O = BUFGCTRL delay

Virtex-4 FPGA User Guide www.xilinx.com 147
UG070 (v2.6) December 1, 2008

Built-in FIFO Support
R

Built-in FIFO Support
A large percentage of FPGA designs use block RAMs to implement FIFOs. In the Virtex-4
architecture, dedicated logic in the block RAM enables users to easily implement
synchronous or asynchronous FIFOs. This eliminates the need for additional CLB logic for
counter, comparator, or status flag generation, and uses just one block RAM resource per
FIFO. Both standard and first-word fall-through (FWFT) modes are supported.

The supported configurations are 4K x 4, 2K x 9, 1K x 18, and 512 x 36.

The block RAM can be configured as first-in/first-out (FIFO) memory with common or
independent read and write clocks. Port A of the block RAM is used as a FIFO read port,
and Port B is a FIFO write port. Data is read from the FIFO on the rising edge of read clock
and written to the FIFO on the rising edge of write clock. Independent read and write port
width selection is not supported in FIFO mode without the aid of external CLB logic.

The FIFO offers a very simple user interface. The design relies on free-running write and
read clocks, of identical or different frequencies up to the specified maximum frequency
limit. The design avoids any ambiguity, glitch, or metastable problems, even when the two
frequencies are completely unrelated.

The write operation is synchronous, writing the data word available at DI into the FIFO
whenever WREN is active a setup time before the rising WRCLK edge.

The read operation is also synchronous, presenting the next data word at DO whenever the
RDEN is active one setup time before the rising RDCLK edge.

Data flow control is automatic; the user need not be concerned about the block RAM
addressing sequence, although WRCOUNT and RDCOUNT are also brought out, if
needed for unusual applications.

The user must, however, observe the FULL and EMPTY flags, and stop writing when
FULL is High, and stop reading when EMPTY is High. If these rules are violated, an active
WREN while FULL is High will activate the WRERR flag, and an active RDEN while
EMPTY is High will activate the RDERR flag. In either violation, the FIFO content will,
however, be preserved, and the address counters will stay valid.

Figure 4-13: Block RAM Timing Model

Block RAM

ug070_4_13_080204

FPGA

[TIOPI + NET] + TRCCK_WENWrite Enable
[TIOPI + NET] + TRCCK_ENEnable

[TIOPI + NET] + TRCCK_ADDRAddress

[TIOPI + NET] + TRDCK_DIData

[TBCCKO_O + NET]

Clock
[TIOPI + NET]

BUFGCTRL

TRCKO_DO + [NET + TIOOP]
Data

[TIOPI + NET] + TRCCK_SSRSynchronous
Set/Reset DO

DI

ADDR

WEN

EN
SSR

CLK

148 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Programmable ALMOSTFULL and ALMOSTEMPTY flags are brought out to give the user
an early warning when the FIFO is approaching its limits. Both these flag values can be set
by configuration to (almost) anywhere in the FIFO address range.

Two operating modes affect the reading of the first word after the FIFO was empty:

• In Standard mode, the first word written into an empty FIFO will appear at DO after
the user has activated RDEN. The user must “pull” the data out of the FIFO.

• In FWFT mode, the first word written into an empty FIFO will automatically appear
at DO without the user activating RDEN. The FIFO “pushes” the data onto DO. The
next RDEN will then “pull” the subsequent data word onto DO.

EMPTY Latency

The rising edge of EMPTY is fast, and inherently synchronous with RDCLK. The empty
condition can only be terminated by WRCLK, asynchronous to RDCLK. The falling edge of
EMPTY must, therefore, artificially be moved onto the RDCLK time domain. Since the two
clocks have an unknown phase relationship, it takes several cascaded flip-flops to
guarantee that such a move does not cause glitches or metastable problems. The falling
edge of EMPTY is thus delayed by several RDCLK periods after the first write into the
previously empty FIFO. This delay guarantees proper operation under all circumstances,
and causes an insignificant loss of performance after the FIFO had gone empty.

Table 4-9 shows the FIFO capacity in the two modes.

Table 4-9: FIFO Capacity

Standard Mode FWFT Mode

4k+1 entries by 4 bits 4k+2 entries by 4 bits

2k+1 entries by 9 bits 2k+2 entries by 9 bits

1k+1 entries by 18 bits 1k+2 entries by 18 bits

512+1 entries by 36 bits 512+2 entries by 36 bits

Virtex-4 FPGA User Guide www.xilinx.com 149
UG070 (v2.6) December 1, 2008

Top-Level View of FIFO Architecture
R

Top-Level View of FIFO Architecture
Figure 4-14 shows a top-level view of the Virtex-4 FIFO architecture. The read pointer,
write pointer, and status flag logic are dedicated for FIFO use only.

FIFO Primitive
Figure 4-15 shows the FIFO16 primitive.

Figure 4-14: Top-Level View of FIFO in Block RAM

Block RAM
Core

wrcount rdcount

wrclk

wren

rdclk

DODIN

rden

reset

Status Flag
Logic

full
em

pty
afull
aem

pty
rderr
w

rerr

waddr raddr

oe

m
em

_ren

m
em

_w
en

Write
Pointer

Read
Pointer

UG070_4_14_030708

Figure 4-15: FIFO16 Primitive

DOP[3:0]

DI[31:0]

DIP[3:0]

RDEN

RST

RDCLK

WREN
WRCLK

DO[31:0]

RDCOUNT[11:0]
WRCOUNT[11:0]

EMPTY
FULL

ALMOSTEMPTY

ALMOSTFULL

WRERR

RDERR

FIFO16

ug070_4_15_071204

150 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

FIFO Port Descriptions
Table 4-10 lists the FIFO I/O port names and descriptions.

Table 4-10: FIFO I/O Port Names and Descriptions

Port Name Direction Description

DI Input Data input.

DIP Input Parity-bit input.

WREN Input Write enable. When WREN = 1, data will be written to
memory. When WREN = 0, write is disabled.

WRCLK Input Clock for write domain operation.

RDEN Input Read enable. When RDEN = 1, data will be read to output
register. When RDEN = 0, read is disabled.

RDCLK Input Clock for read domain operation.

RESET Input Asynchronous reset of all FIFO functions, flags, and
pointers.

DO Output Data output, synchronous to RDCLK.

DOP Output Parity-bit output, synchronous to RDCLK.

FULL Output All entries in FIFO memory are filled. No additional write
enable is performed. Synchronous to WRCLK.

ALMOSTFULL Output Almost all entries in FIFO memory have been filled.
Synchronous to WRCLK. The offset for this flag is user
configurable.

EMPTY Output FIFO is empty. No additional read can be performed.
Synchronous to RDCLK.

ALMOSTEMPTY Output Almost all valid entries in FIFO have been read.
Synchronous with RDCLK. The offset for this flag is user
configurable.

RDCOUNT Output The FIFO data read pointer. It is synchronous with RDCLK.
The value will wrap around if the maximum read pointer
value has been reached.

WRCOUNT Output The FIFO data write pointer. It is synchronous with
WRCLK. The value will wrap around if the maximum write
pointer value has been reached.

WRERR Output When the FIFO is full, any additional write operation
generates an error flag. Synchronous with WRCLK.

RDERR Output When the FIFO is empty, any additional read operation
generates an error flag. Synchronous with RDCLK.

Virtex-4 FPGA User Guide www.xilinx.com 151
UG070 (v2.6) December 1, 2008

FIFO Operations
R

FIFO Operations

Reset
Reset is an asynchronous signal to reset all read and write address counters, and must be
asserted to initialize flags after power up. Reset does not clear the memory, nor does it clear
the output register. When reset is asserted High, EMPTY and ALMOST_EMPTY will be set
to 1, FULL and ALMOST_FULL will be reset to 0. The reset signal must be High for at least
three read clock and write clock cycles to ensure all internal states are reset to the correct
values. During RESET, RDEN and WREN must be held Low.

Operating Mode
There are two operating modes in FIFO functions. They differ only in output behavior after
the first word is written to a previously empty FIFO.

Standard Mode

After the first word is written into an empty FIFO, the Empty flag deasserts synchronously
with RDCLK. After Empty is deasserted Low and RDEN is asserted, the first word will
appear at DO on the rising edge of RDCLK.

First Word Fall Through (FWFT) Mode

After the first word is written into an empty FIFO, it automatically appears at DO without
asserting RDEN. Subsequent Read operations require Empty to be Low and RDEN to be
High. Figure 4-16 illustrates the difference between standard mode and FWFT mode.

Status Flags

Empty Flag

The Empty flag is synchronous with RDCLK, and is asserted when the last entry in the
FIFO is read. When there are no more valid entries in the FIFO queue, the read pointer will
be frozen. The Empty flag is deasserted at three (in standard mode) or four (in FWFT
mode) read clocks after new data is written into the FIFO.

Figure 4-16: Read Cycle Timing (Standard and FWFT Modes)

RDCLK

RDEN

EMPTY

DO (Standard)

DO (FWFT)

Previous Data

W1 W2 W3

W1 W2 W3

ug070_4_16_071204

152 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

ALMOSTEMPTY Flag

The ALMOSTEMPTY flag is set when the FIFO contains the number of entries specified by
the ALMOST_EMPTY_OFFSET value (or fewer), warning the user to stop reading. The
ALMOSTEMPTY flag deasserts three clock cycles after the number of entries in the FIFO
becomes greater than the ALMOST_EMPTY_OFFSET value. It is synchronous to RDCLK.

Read Error Flag

Once the Empty flag has been asserted, any further read attempts will not increment the
read address pointer but will trigger the Read Error flag. The Read Error flag is deasserted
when Read Enable or Empty is deasserted Low. The Read Error flag is synchronous to
RDCLK.

Full Flag

The Full flag is synchronous with WRCLK, and is asserted one WRCLK after there are no
more available entries in the FIFO queue. Because of this latency, it is recommended to use
the ALMOST_FULL signal to stop further writing. When the FIFO is full, the write pointer
will be frozen. The Full flag is deasserted three write clock cycles after any read operation.

Write Error Flag

Once the Full flag has been asserted, any further write attempts will not increment the
write address pointer but will trigger the Write Error flag. The Write Error flag is
deasserted when Write Enable or Full is deasserted Low. This signal is synchronous to
WRCLK.

ALMOSTFULL Flag

The ALMOSTFULL flag is set when the FIFO has the number of available empty spaces
specified by the ALMOST_FULL_OFFSET value or fewer. The ALMOSTFULL flag warns
the user to stop writing. It deasserts when the number of empty spaces in the FIFO is
greater than the ALMOST_FULL_OFFSET value, and is synchronous to WRCLK.

Table 4-11 shows the number of clock cycles to assert or deassert each flag.

Table 4-11: Clock Cycle Latency for Flag Assertion and Deassertion

Clock Cycle Latency
Assertion Deassertion

Standard FWFT Standard FWFT

EMPTY 0 0 3 4

FULL 1 1 3 3

ALMOST EMPTY(1) 1 1 3 3

ALMOST FULL(1) 1 1 3 3

READ ERROR 0 0 0 0

WRITE ERROR 0 0 0 0

Notes:
1. Depending on the time between read and write clock edges, the ALMOSTEMPTY and ALMOSTFULL

flags can deassert one cycle later.

Virtex-4 FPGA User Guide www.xilinx.com 153
UG070 (v2.6) December 1, 2008

FIFO Attributes
R

FIFO Attributes
Table 4-12 lists the FIFO16 attributes. The size of the asynchronous FIFO can be configured
by setting the DATA_WIDTH attribute. The “FIFO VHDL and Verilog Templates” section
has examples for setting the attributes.

FIFO ALMOSTEMPTY / ALMOSTFULL Flag Offset Range
The offset ranges for ALMOSTEMPTY and ALMOSTFULL are listed in Table 4-13.

The ALMOSTFULL and ALMOSTEMPTY offsets are usually set to a small value of less
than 10 to provide a warning that the FIFO is about to reach its limits. Since the full
capacity of any FIFO is normally not critical, most applications use the ALMOST_FULL
flag not only as a warning but also as a signal to stop writing.

Similarly, the ALMOST_EMPTY flag can be used to stop reading. However, this would
make it impossible to read the very last entries remaining in the FIFO. The user can ignore
the ALMOSTEMPTY signal and continue to read until EMPTY is asserted.

Table 4-12: FIFO16 Attributes

Attribute Name Type Values Default Notes

ALMOST_FULL_OFFSET 12-bit
HEX

See Table 4-13 Setting determines ALMOST_FULL
condition. Must be set using
hexadecimal notation.

ALMOST_EMPTY_OFFSET 12-bit
HEX

See Table 4-13 Setting determine ALMOST_EMPTY
condition. Must be set using
hexadecimal notation.

FIRST_WORD_FALL_THROUGH Boolean FALSE,
TRUE

FALSE If TRUE, during a write of the 1st word
the word appears at the FIFO output
without RDEN asserted.

DATA_WIDTH Integer 4, 9, 18, 36 36

LOC String Valid FIFO16
location

Sets the location of the FIFO16.

Notes:
1. If FIFO16 is constrained to FIFO16_X#Y#, then RAMB16 can not be constrained to RAMB16_X#Y# since the same location would be

used.

Table 4-13: FIFO ALMOSTFULL / EMPTY Flag Offset Range

Configuration
ALMOST_EMPTY_OFFSET

ALMOST_FULL_OFFSET
Standard FWFT

4k x 4 5 to 4092 6 to 4093 4 to 4091

2k x 9 5 to 2044 6 to 2045 4 to 2043

1k x 18 5 to 1020 6 to 1021 4 to 1019

512 x 36 5 to 508 6 to 509 4 to 507

Notes:
1. ALMOST_EMPTY_OFFSET and ALMOST_FULL_OFFSET for any design must be less than the FIFO

depth.

154 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

The ALMOSTFULL and ALMOSTEMPTY offsets can also be used in unstoppable block
transfer applications to signal that a new block of data can be written or read.

When setting the offset ranges in the design tools, use hexadecimal notation.

FIFO VHDL and Verilog Templates
VHDL and Verilog templates are available in the Libraries Guide. Also see section “FIFO16
Error Condition and Work-Arounds,” page 165.

FIFO VHDL Template
-- FIFO16 : To incorporate this function into the design, the
-- VHDL : following instance declaration needs to be placed in
-- instance : the architecture body of the design code. The instance
-- declaration : name (FIFO16_inst) and/or the port declarations
-- code : after the "=>" assignment can be changed to properly
-- : connect this function to the design. All inputs and
-- : outputs must be connected.

-- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.v components library needs
-- for : to be added before the entity declaration. This
-- Xilinx : library contains the component declarations for all
-- primitives : Xilinx primitives and points to the models that will
-- : be used for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-- <--Cut code below this line and paste into the architecture body-->

 -- FIFO16: Virtex-4 Block RAM Asynchronous FIFO
 -- Virtex-4 FPGA User Guide

 FIFO16_inst : FIFO16
 generic map (
 ALMOST_FULL_OFFSET => X"000", -- Sets almost full threshold
 ALMOST_EMPTY_OFFSET => X"000", -- Sets the almost empty threshold
 DATA_WIDTH => 36, -- Sets data width to 4, 9, 18, or 36
 FIRST_WORD_FALL_THROUGH => FALSE) -- Sets the FIFO FWFT to TRUE or FALSE
 port map (
 ALMOSTEMPTY => ALMOSTEMPTY, -- 1-bit almost empty output flag
 ALMOSTFULL => ALMOSTFULL, -- 1-bit almost full output flag
 DO => DO, -- 32-bit data output
 DOP => DOP, -- 4-bit parity data output
 EMPTY => EMPTY, -- 1-bit empty output flag
 FULL => FULL, -- 1-bit full output flag
 RDCOUNT => RDCOUNT, -- 12-bit read count output
 RDERR => RDERR, -- 1-bit read error output
 WRCOUNT => WRCOUNT, -- 12-bit write count output
 WRERR => WRERR, -- 1-bit write error
 DI => DI, -- 32-bit data input
 DIP => DIP, -- 4-bit partity input

Virtex-4 FPGA User Guide www.xilinx.com 155
UG070 (v2.6) December 1, 2008

FIFO VHDL and Verilog Templates
R

 RDCLK => RDCLK, -- 1-bit read clock input
 RDEN => RDEN, -- 1-bit read enable input
 RST => RST, -- 1-bit reset input
 WRCLK => WRCLK, -- 1-bit write clock input
 WREN => WREN -- 1-bit write enable input
);

 -- End of FIFO16_inst instantiation

FIFO Verilog Template
// FIFO16 : To incorporate this function into the design, the
// Verilog : following instance declaration needs to be placed in
// instance : the body of the design code. The instance name
// declaration : (FIFO16_1kx18_inst) and/or the port declarations
// code : within the parenthesis can be changed to properly
// : reference and connect this function to the design.
// : All inputs and outputs must be connected.

// <-----Cut code below this line---->

// FIFO16: Virtex-4 Block RAM Asynchronous FIFO configured for 1k deep x
// 18 wide
// Virtex-4 FPGA User Guide

 FIFO16 #(
 .ALMOST_FULL_OFFSET(12'h000), // Sets almost full threshold
 .ALMOST_EMPTY_OFFSET(12'h000), // Sets the almost empty
threshold
 .DATA_WIDTH(36), // Sets data width to 4, 9, 18,
or 36
 .FIRST_WORD_FALL_THROUGH("FALSE") // Sets the FIFO FWFT to "TRUE"
or "FALSE"
) FIFO16_inst (
 .ALMOSTEMPTY(ALMOSTEMPTY), // 1-bit almost empty output flag
 .ALMOSTFULL(ALMOSTFULL), // 1-bit almost full output flag
 .DO(DO), // 32-bit data output
 .DOP(DOP), // 4-bit parity data output
 .EMPTY(EMPTY), // 1-bit empty output flag
 .FULL(FULL), // 1-bit full output flag
 .RDCOUNT(RDCOUNT), // 12-bit read count output
 .RDERR(RDERR), // 1-bit read error output
 .WRCOUNT(WRCOUNT), // 12-bit write count output
 .WRERR(WRERR), // 1-bit write error
 .DI(DI), // 32-bit data input
 .DIP(DIP), // 4-bit partity input
 .RDCLK(RDCLK), // 1-bit read clock input
 .RDEN(RDEN), // 1-bit read enable input
 .RST(RST), // 1-bit reset input
 .WRCLK(WRCLK), // 1-bit write clock input
 .WREN(WREN) // 1-bit write enable input
);

 // End of FIFO16_1kx18_inst instantiation

156 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

FIFO Timing Models and Parameters
Table 4-14 shows the FIFO parameters.

Table 4-14: FIFO Timing Parameters

Parameter Function
Control
Signal

Description

Setup and Hold Relative to Clock (CLK)

TFXCK = Setup time (before clock edge)
TFCKX = Hold time (after clock edge)

The following descriptions are for setup times only.

TFDCK_DI/
TFCKD_DI

(4)
Data inputs DI Time before WRCLK that data must be stable at the

DI inputs of the FIFO.

TFCCK_RDEN/
TFCKC_RDEN

(5)
Read enable RDEN Time before RDCLK that Read Enable must be stable

at the RDEN inputs of the FIFO.

TFCCK_WREN/
TFCKC_WREN

(5)
Write enable WREN Time before WRCLK that write enable must be

stable at the WREN inputs of the FIFO.

Sequential Delays

TFCKO_DO
(1) Clock to data output DO Time after RDCLK that the output data is stable at

the DO outputs of the FIFO.

TFCKO_AEMPTY
(2) Clock to ALMOSTEMPTY

output
AEMPTY Time after RDCLK that the ALMOSTEMPTY signal

is stable at the ALMOSTEMPTY outputs of the FIFO.

TFCKO_AFULL
(2) Clock to ALMOSTFULL

output
AFULL Time after WRCLK that the ALMOSTFULL signal is

stable at the ALMOSTFULL outputs of the FIFO.

TFCKO_EMPTY
(2) Clock to EMPTY output EMPTY Time after RDCLK that the Empty signal is stable at

the EMPTY outputs of the FIFO.

TFCKO_FULL
(2) Clock to FULL output FULL Time after WRCLK that the FULL signal is stable at

the FULL outputs of the FIFO.

TFCKO_RDERR
(2) Clock to read error output RDERR Time after RDCLK that the Read Error signal is

stable at the RDERR outputs of the FIFO.

TFCKO_WRERR
(2) Clock to write error

output
WRERR Time after WRCLK that the Write Error signal is

stable at the WRERR outputs of the FIFO.

TFCKO_RDCOUNT
(3) Clock to read pointer

output
RDCOUNT Time after RDCLK that the Read pointer signal is

stable at the RDCOUNT outputs of the FIFO.

TFCKO_WRCOUNT
(3) Clock to write pointer

output
WRCOUNT Time after WRCLK that the Write pointer signal is

stable at the WRCOUNT outputs of the FIFO.

Reset to Out

TFCO_AEMPTY Reset to ALMOSTEMPTY
output

AEMPTY Time after reset that the ALMOSTEMPTY signal is
stable at the ALMOSTEMPTY outputs of the FIFO.

TFCO_AFULL Reset to ALMOSTFULL
output

AFULL Time after reset that the ALMOSTFULL signal is
stable at the ALMOSTFULL outputs of the FIFO.

TFCO_EMPTY Reset to EMPTY output EMPTY Time after reset that the Empty signal is stable at the
EMPTY outputs of the FIFO.

Virtex-4 FPGA User Guide www.xilinx.com 157
UG070 (v2.6) December 1, 2008

FIFO Timing Models and Parameters
R

FIFO Timing Characteristics
The various timing parameters in the FIFO are described in this section. There is also
additional data on FIFO functionality. The timing diagrams describe the behavior in these
five cases.

• “Case 1: Writing to an Empty FIFO”

• “Case 2: Writing to a Full or Almost Full FIFO”

• “Case 3: Reading From a Full FIFO”

• “Case 4: Reading From an Empty or Almost Empty FIFO”

• “Case 5: Resetting All Flags”

TFCO_FULL Reset to FULL output FULL Time after reset that the FULL signal is stable at the
FULL outputs of the FIFO.

TFCO_RDERR Reset to read error output RDERR Time after reset that the Read error signal is stable at
the RDERR outputs of the FIFO.

TFCO_WRERR Reset to write error
output

WRERR Time after reset that the Write error signal is stable at
the WRERR outputs of the FIFO.

TFCO_RDCOUNT Reset to read pointer
output

RDCOUNT Time after reset that the Read pointer signal is stable
at the RDCOUNT outputs of the FIFO.

TFCO_WRCOUNT Reset to write pointer
output

WRCOUNT Time after reset that the Write pointer signal is stable
at the WRCOUNT outputs of the FIFO.

Notes:
1. TFCKO_DO includes parity output (TFCKO_DOP).
2. In the Virtex-4 Data Sheet, TFCKO_AEMPTY, TFCKO_AFULL, TFCKO_EMPTY, TFCKO_FULL, TFCKO_RDERR, TFCKO_WRERR are combined into

TFCKO_FLAGS.
3. In the Virtex-4 Data Sheet, TFCKO_RDCOUNT and TFCKO_WRCOUNT are combined into TFCKO_POINTERS.
4. TFCDCK_DI includes parity inputs (TFCDCK_DIP).
5. In the Virtex-4 Data Sheet, WRITE and READ enables are combined into TFCCK_EN.

Table 4-14: FIFO Timing Parameters (Continued)

Parameter Function
Control
Signal

Description

158 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Case 1: Writing to an Empty FIFO

Prior to the operations performed in Figure 4-17, the FIFO is completely empty.

Clock Event 1 and Clock Event 3: Write Operation and Deassertion of EMPTY
Signal

During a write operation to an empty FIFO, the content of the FIFO at the first address is
replaced by the data value on the DI pins. Three read-clock cycles later (four read-clock
cycles for FWFT mode), the EMPTY pin is deasserted when the FIFO is no longer empty.

For the example in Figure 4-17, the timing diagram is drawn to reflect FWFT mode. Clock
event 1 is with respect to the write-clock, while clock event 3 is with respect to the read-
clock. Clock event 3 appears four read-clock cycles after clock event 1.

• At time TFDCK_DI, before clock event 1 (WRCLK), data 00 becomes valid at the DI
inputs of the FIFO.

• At time TFCCK_WREN, before clock event 1 (WRCLK), write enable becomes valid at
the WREN input of the FIFO.

• At time TFCKO_DO, after clock event 3 (RDCLK), data 00 becomes valid at the DO
output pins of the FIFO. In the case of standard mode, data 00 does not appear at the
DO output pins of the FIFO.

• At time TFCKO_EMPTY, after clock event 3 (RDCLK), EMPTY is deasserted. In the case
of standard mode, EMPTY is deasserted one read-clock earlier than clock event 3.

If the rising WRCLK edge is close to the rising RDCLK edge, EMPTY could be deasserted
one RDCLK period later.

Clock Event 2 and Clock Event 4: Write Operation and Deassertion of
ALMOSTEMPTY Signal

Three read-clock cycles after the fourth data is written into the FIFO, the ALMOSTEMPTY
pin is deasserted to signify that the FIFO is not in the ALMOSTEMPTY state.

Figure 4-17: Writing to an Empty FIFO in FWFT Mode

ug070_4_17_071204

00

1 42 3

01 02 03 04

00

05 06

WRCLK

WREN

DI

RDCLK

RDEN

DO

EMPTY

AEMPTY

TFCCK_WREN

TFDCK_DI TFDCK_DI

TFCKO_DO

TFCKO_EMPTY

TFCKO_AEMPTY

Virtex-4 FPGA User Guide www.xilinx.com 159
UG070 (v2.6) December 1, 2008

FIFO Timing Models and Parameters
R

For the example in Figure 4-17, the timing diagram is drawn to reflect FWFT mode. Clock
event 2 is with respect to write-clock, while clock event 4 is with respect to read-clock.
Clock event 4 appears three read-clock cycles after clock event 2.

• At time TFDCK_DI, before clock event 2 (WRCLK), data 03 becomes valid at the DI
inputs of the FIFO.

• Write enable remains asserted at the WREN input of the FIFO.

• At clock event 4, DO output pins of the FIFO remains at 00 since no read has been
performed. In the case of standard mode, data 00 will never appear at the DO output
pins of the FIFO.

• At time TFCKO_AEMPTY, after clock event 4 (RDCLK), ALMOSTEMPTY is deasserted
at the AEMPTY pin. In the case of standard mode, AEMPTY deasserts in the same
way as in FWFT mode.

If the rising WRCLK edge is close to the rising RDCLK edge, AEMPTY could be deasserted
one RDCLK period later.

Case 2: Writing to a Full or Almost Full FIFO

Prior to the operations performed in Figure 4-18, the FIFO is almost completely full. In this
example, the timing diagram reflects of both standard and FWFT modes.

Clock Event 1: Write Operation and Assertion of ALMOSTFULL Signal

During a write operation to an almost full FIFO, the ALMOSTFULL signal is asserted.

• At time TFDCK_DI, before clock event 1 (WRCLK), data 00 becomes valid at the DI
inputs of the FIFO.

• At time TFCCK_WREN, before clock event 1 (WRCLK), write enable becomes valid at
the WREN input of the FIFO.

• At time TFCKO_AFULL, one clock cycle after clock event 1 (WRCLK), ALMOSTFULL is
asserted at the AFULL output pin of the FIFO.

Figure 4-18: Writing to a Full / Almost Full FIFO

ug070_4_18_071204

00 01 02 03 04 05 06

WRCLK

WREN

DI

RDCLK

RDEN

FULL

AFULL

WRERR

1 42 3

TFDCK_DI TFDCK_DITFDCK_DI

TFCKO_FULL

TFCKO_WERR

TFCKO_FULL

TFCCK_WREN

TFCKO_WERR

TFCCK_WREN

160 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Clock Event 2: Write Operation, and Assertion of FULL Signal

The FULL signal pin is asserted when the FIFO is full.

• At time TFDCK_DI, before clock event 2 (WRCLK), data 04 becomes valid at the DI
inputs of the FIFO.

• Write enable remains asserted at the WREN input of the FIFO.

• At time TFCKO_FULL, one clock cycle after clock event 2 (WRCLK), FULL is asserted at
the FULL output pin of the FIFO.

If the FIFO is full and a read followed by a write is performed, the FULL signal remains
asserted.

Clock Event 3: Write Operation and Assertion of Write Error Signal

The write error signal pin is asserted when data going into the FIFO is not written because
the FIFO is in a FULL state.

• At time TFDCK_DI, before clock event 3 (WRCLK), data 05 becomes valid at the DI
inputs of the FIFO.

• Write enable remains asserted at the WREN input of the FIFO.

• At time TFCKO_WRERR, after clock event 3 (WRCLK), a write error is asserted at the
WRERR output pin of the FIFO. Data 05 is not written into the FIFO.

Clock Event 4: Write Operation and Deassertion of Write Error Signal

WRERR) is deasserted when a user stops trying to write into a full FIFO.

• At time TFCCK_WREN, before clock event 4 (WRCLK), write enable is deasserted at the
WREN input of the FIFO.

• At time TFCKO_WRERR, after clock event 4 (WRCLK), write error is deasserted at the
WRERR output pin of the FIFO.

The write error signal is asserted/deasserted at every write-clock positive edge. As long as
both the write enable and FULL signals are true, write error will remain asserted.

Case 3: Reading From a Full FIFO

Prior to the operations performed in Figure 4-19, the FIFO is completely full.

Figure 4-19: Reading From a Full FIFO

ug070_4_19_071204

1 42

020100 03 04 05 06

3

WRCLK

WREN

RDCLK

RDEN

DO

FULL

AFULL

TFCCK_RDEN

TFCKO_DO TFCKO_DO

TFCKO_FULL TFCKO_AFULL

Virtex-4 FPGA User Guide www.xilinx.com 161
UG070 (v2.6) December 1, 2008

FIFO Timing Models and Parameters
R

Clock Event 1 and Clock Event 2: Read Operation and Deassertion of Full Signal

During a read operation on a full FIFO, the content of the FIFO at the first address is
asserted at the DO output pins of the FIFO. Three write-clock cycles later, the FULL pin is
deasserted when the FIFO is no longer full.

The example in Figure 4-19 reflects both standard and FWFT modes. Clock event 1 is with
respect to read-clock, while clock event 2 is with respect to write-clock. Clock event 2
appears three write-clock cycles after clock event 1.

• At time TFCCK_RDEN, before clock event 1 (RDCLK), read enable becomes valid at the
RDEN input of the FIFO.

• At time TFCKO_DO, after clock event 1 (RDCLK), data 00 becomes valid at the DO
inputs of the FIFO.

• At time TFCKO_FULL, after clock event 2 (WRCLK), FULL is deasserted.

If the rising RDCLK edge is close to the rising WRCLK edge, AFULL could be deasserted
one WRCLK period later.

Clock Event 3 and Clock Event 4: Read Operation and Deassertion of
ALMOSTFULL Signal

Three write-clock cycles after the fourth data is read from the FIFO, the ALMOSTFULL pin
is deasserted to signify that the FIFO is not in the ALMOSTFULL state.

The example in Figure 4-19 reflects both standard and FWFT modes. Clock event 3 is with
respect to read-clock, while clock event 4 is with respect to write-clock. Clock event 4
appears three write-clock cycles after clock event 3.

• Read enable remains asserted at the RDEN input of the FIFO.

• At time TFCKO_DO, after clock event 3 (RDCLK), data 03 becomes valid at the DO
outputs of the FIFO.

• At time TFCKO_AFULL, after clock event 4 (RDCLK), ALMOSTFULL is deasserted at
the AFULL pin.

There is minimum time between a rising read-clock and write-clock edge to guarantee that
AFULL will be deasserted. If this minimum is not met, the deassertion of AFULL can take
an additional write clock cycle.

162 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Case 4: Reading From an Empty or Almost Empty FIFO

Prior to the operations performed in Figure 4-20, the FIFO is almost completely empty. In
this example, the timing diagram reflects standard mode. For FWFT mode, data at DO
appears one read-clock cycle earlier.

Clock Event 1: Read Operation and Assertion of ALMOSTEMPTY Signal

During a read operation to an almost empty FIFO, the ALMOSTEMPTY signal is asserted.

• At time TFCCK_RDEN, before clock event 1 (RDCLK), read enable becomes valid at the
RDEN input of the FIFO.

• At time TFCKO_DO, after clock event 1 (RDCLK), data 00 becomes valid at the DO
outputs of the FIFO.

• At time TFCKO_AEMPTY, one clock cycle after clock event 1 (RDCLK), ALMOSTEMPTY
is asserted at the AEMPTY output pin of the FIFO.

Clock Event 2: Read Operation and Assertion of EMPTY Signal

The EMPTY signal pin is asserted when the FIFO is empty.

• Read enable remains asserted at the RDEN input of the FIFO.

• At time TFCKO_DO, after clock event 2 (RDCLK), data 04 (last data) becomes valid at
the DO outputs of the FIFO.

• At time TFCKO_EMPTY, after clock event 2 (RDCLK), Empty is asserted at the EMPTY
output pin of the FIFO.

In the event that the FIFO is empty and a write followed by a read is performed, the
EMPTY signal remains asserted.

Clock Event 3: Read Operation and Assertion of Read Error Signal

The read error signal pin is asserted when there is no data to be read because the FIFO is in
an EMPTY state.

• Read enable remains asserted at the RDEN input of the FIFO.

Figure 4-20: Reading From an Empty / Almost Empty FIFO (Standard Mode)

ug070_4_20_071204

1 42

020100 03 04

3

WRCLK

WREN

RDCLK

RDEN

DO

EMPTY

AEMPTY

RDERR

TFCCK_RDEN

TFCKO_AEMPTY

TFCKO_DO TFCKO_DO

TFCKO_EMPTY

TFCCK_RDEN

TFCKO_RDERR

TFCKO_RDERR

Virtex-4 FPGA User Guide www.xilinx.com 163
UG070 (v2.6) December 1, 2008

FIFO Timing Models and Parameters
R

• At time TFCKO_RDERR, after clock event 3 (RDCLK), read error is asserted at the
RDERR output pin of the FIFO.

• Data 04 remains unchanged at the DO outputs of the FIFO.

Clock Event 4: Read Operation and Deassertion of Read Error Signal

The read error signal pin is deasserted when a user stops trying to read from an empty
FIFO.

• At time TFCCK_RDEN, before clock event 4 (RDCLK), read enable is deasserted at the
RDEN input of the FIFO.

• At time TFCKO_RDERR, after clock event 4 (RDCLK), read error is deasserted at the
RDERR output pin of the FIFO.

The read error signal is asserted/deasserted at every read-clock positive edge. As long as
both RDEN and EMPTY are true, RDERR will remain asserted.

Case 5: Resetting All Flags

When the reset signal is asserted, all flags are reset.

• At time TFCO_EMPTY, after reset (RST), EMPTY is asserted at the EMPTY output pin of
the FIFO.

• At time TFCO_AEMPTY, after reset (RST), ALMOSTEMPTY is asserted at the AEMPTY
output pin of the FIFO.

• At time TFCO_FULL, after reset (RST), full is deasserted at the FULL output pin of the
FIFO.

• At time TFCO_AFULL, after reset (RST), ALMOSTFULL is deasserted at the AFULL
output pin of the FIFO.

Reset is an asynchronous signal used to reset all flags. Hold the reset signal High for three
read and write clock cycles to ensure that all internal states and flags are reset to the correct
value.

Figure 4-21: Resetting All Flags

ug070_4_21_071204

WRCLK

RST

RDCLK

EMPTY

AEMPTY

FULL

AFULL

TFCO_EMPTY

TFCO_AEMPTY

TFCO_FULL

TFCO_AFULL

164 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

FIFO Applications
There are various uses for the Virtex-4 FPGA block RAM FIFO:

• Cascading two asynchronous FIFOs to form a deeper FIFO

• Building wider asynchronous FIFO by connecting two FIFOs in parallel.

Cascading FIFOs to Increase Depth
Figure 4-22 shows a way of cascading FIFOs to increase depth. The application sets the first
FIFO in FWFT mode, and uses external resources to connect to the second FIFO. The
ALMOST_FULL_OFFSET of the second FIFO should be four or more. The data latency of
this application can be up to double that of a single FIFO, and the maximum frequency is
limited by the feedback path. The NOR gate is implemented using CLB logic.

Cascading FIFOs to Increase Width
As shown in Figure 4-23, the Virtex-4 FPGA FIFO can be cascaded to add width to the
design. CLB logic is used to implement the AND/OR gates. The maximum frequency can
be limited by the logic gate feedback path.

Figure 4-22: Cascading FIFO

UG070_4_23_030708

DOUT[3:0]

RDCLK
WRCLK

DIN[3:0] DOUT[3:0]

RDEN
WREN

DIN[3:0]

RDEN

WREN

WRCLK
RDCLK
WRCLK

DIN[3:0] DOUT[3:0]

AFULL
RDEN

WREN

RDCLK

8K x 4 FIFO

EMPTY

FIFO #1 FIFO #2

Figure 4-23: Cascading FIFO by Width

RDCLK

WRCLK

DIN[35:0]

RDEN

WREN

RDCLK

WRCLK

DIN[35:0] DOUT[35:0]

EMPTY
RDEN

WREN

AFULL

DOUT[35:0]

EMPTY

AFULL

DIN[35:0]

DIN[71:36]

DOUT[35:0]

DOUT[71:36]

RDEN

WREN

WRCLK

RDCLK

512 x 72 FIFO

FIFO #1

FIFO #2

AFULL

EMPTY

UG070_4_24_030708

Virtex-4 FPGA User Guide www.xilinx.com 165
UG070 (v2.6) December 1, 2008

FIFO16 Error Condition and Work-Arounds
R

FIFO16 Error Condition and Work-Arounds
The FIFO16 flags (ALMOSTFULL, FULL, ALMOSTEMPTY, EMPTY), after a very specific
sequence of events, transition into a state in which they operate incorrectly. Erroneous
settings of the FULL and EMPTY flags can jeopardize even basic FIFO functionality. This
section details the error condition and describes synchronous and asynchronous clock
work-arounds available to ensure robust operation under all operating conditions. Three
different solutions are described in this section. The solution summary section lists the
criteria to be used while choosing a particular solution.

FIFO16 Error Condition
The basic Virtex-4 FPGA FIFO16 ceases to correctly generate the ALMOSTEMPTY and
EMPTY flags, after the following sequence occurs:

1. A sequence of read and/or write operations makes the number of words in the FIFO
equal to the ALMOST_EMPTY_OFFSET threshold (either coming from a higher level
as a result of a read operation, or from a lower level as a result of a write operation).
This is then followed by either a write or a read operation.

2. If (and only if) the operation immediately following this particular read or write
operation is a simultaneous read/write operation, where the enabled read and write
active clock edges are coincident or very close (<500 ps) together, the ALMOSTEMPTY
flag is incorrect. Since ALMOSTEMPTY is a condition for decoding EMPTY, the
EMPTY flag is also wrong.

A similar sequence of operations around the ALMOST_FULL_OFFSET ceases to generate
correct ALMOSTFULL and FULL flags.

Solution 1: Synchronous/Asynchronous Clock Work-Arounds

Synchronous Clock Work-Around

In a synchronous design, simultaneous operation can be avoided by offsetting the read and
write clocks by about 1 ns. This is easily achieved by using opposite clock edges for the
read and write clocks. In most applications, this requires data resynchronization registers
to bring read and write back together in the same clock domain. Figure 4-24 illustrates the
concept.

This resynchronization must be done on the input side so that the critical EMPTY flag
avoids any latency. The FULL flag is eliminated, as it would not be useful with its 2-clock
latency; ALMOSTFULL should be used instead. The connections between the input
registers and the FIFO16 must be tightly constrained, as this part of the circuit effectively
runs at twice the clock rate.

Figure 4-24: Synchronous Clock Work-Around

DO/DOP

RDEN

CLK

ALMOSTEMPTY

UG070_c4_25_020307
FIFO16

wdat

wren

DI/DIP

WREN

ALMOSTFULL

WRERR

afull
full

wrerr

wrclk

rdat
rden

rdclk

aempty

RDERRrderr

EMPTYempty

CLK

CLKbar

CLK

166 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Asynchronous Clock Work-Around

In an asynchronous design, it is inevitable that the two clocks occasionally come very close
(<500 ps) to each other, which might cause the problem described above, and no clock
delay manipulation can then avoid this problem. For this case, Xilinx has developed a
solution that uses additional circuitry to ensure that the FIFO16 never gets into the erred
state. This solution operates in a similar manner to the basic FIFO16, and works under all
conditions and clock frequencies.

The composite FIFO adds a small LUTFIFO, acting as an asynchronous buffer, that allows
the FIFO16 to always operate in synchronous mode. It is necessary to connect the faster
clock to the FIFO16 port so that the smaller LUTFIFO never becomes a bottleneck. This
constraint leads to two separate designs, as shown in Figure 4-25 and Figure 4-26.

In a case where it is unknown which clock is faster, the “WRCLK faster than RDCLK”
design should be used. This design works for any clock frequency combination, including
WRCLK faster than RDCLK, WRCLK identical to and/or phase-shifted with respect to
RDCLK, and even if the WRCLK and RDCLK relationship is unknown. When this design
is used, and RDCLK is faster than WRCLK in the system, it is possible for the EMPTY flag
to assert before the ALMOSTEMPTY flag asserts (note that if the two clocks are nominally
the same, this does not occur). This is because the intra-FIFO control logic is running off of
WRCLK which is designated as the faster clock, but is really the slower clock in the system.
This does not cause data corruption or incorrect FIFO behavior in any other manner. If this
situation exists and this behavior is not acceptable, the CORE Generator tool FIFO
Generator Block RAM work-around described below is recommended.

Some additional logic controls the transfer of data between the two FIFOs for both designs.
Resynchronization of specific signals and handshaking between the two FIFOs results in a
small uncertainty of the composite FIFO depth and of the ALMOST_FULL_OFFSET and
ALMOST_EMPTY_OFFSET. Refer to Table 4-15 for details.

WRCLK Faster than RDCLK Design

In this case (shown in Figure 4-25), the FIFO WRCLK is connected to WRCLKFIFO16.
RDCLKFIFO16 and WRCLKLUTFIFO are driven from WRCLKbar, which is a 180-degree
phase-shifted version of WRCLK. The FIFO RDCLK is connected to RDCLKLUTFIFO.
FIFO16 forms the write interface of the composite FIFO; its read side is clocked by the
inverted write clock, which is also used to write into the small LUTFIFO.

Figure 4-25: WRCLK Faster than RDCLK Design

DI/DIP

WREN

WRCLK

FULL

WRERR

DO/DOP

RDEN

RDCLK

WRCLKbar
EMPTY

FIFO16

wdat

wren

wrclk

full

wrerr

rdat

rden

rdclk

ALMOSTEMPTY

UG070_c4_26_020307

empty

aempty

LUTFIFO

wdat

afull

wrclk

wren

rdat

rden

rdclk

empty

Optional FWFT

RDERR

RDCLK

rderr

ALMOSTFULL afull

Virtex-4 FPGA User Guide www.xilinx.com 167
UG070 (v2.6) December 1, 2008

FIFO16 Error Condition and Work-Arounds
R

RDCLK Faster than WRCLK Design

In this case (shown in Figure 4-26), the WRCLK of the FIFO is connected to
WRCLKLUTFIFO. The RDCLKLUTFIFO and WRCLKFIFO16 are driven from RDCLKbar,
which is a 180-degree phase-shifted version of RDCLK. The RDCLK of the FIFO is
connected to RDCLKFIFO16. The LUTFIFO forms the write interface of the composite
FIFO; its read side is clocked by the inverted read clock, which is also used to write into the
FIFO16. LUTFIFO flags are combined and synchronized to the write clock to generate the
ALMOSTFULL flag.

User-Programmable Flag Settings in the Composite FIFO

The offset ranges for user-programmable ALMOSTEMPTY and ALMOSTFULL flags
along with the FIFO capacity are listed in Table 4-15. Since the full capacity of any FIFO is
normally not critical, most applications use the ALMOSTFULL flag not only as a warning
but also as a signal to stop writing. The ALMOSTEMPTY flag can be used as a warning
that the FIFO is approaching EMPTY, but to ensure that the very last entries in the FIFO are
read out, reading should be continued until EMPTY is asserted.

When setting the offset ranges in the provided Perl script (refer to Design Files below), use
decimal notation.

All values can vary by up to 3 words, depending on the read/write clock rates and the
read/write patterns.

Figure 4-26: RDCLK Faster than WRCLK Design

DI/DIP

WREN

WRCLK

FULL

WRERR

DO/DOP

RDEN

RDCLK

ALMOST

EMPTY
RDCLKbar

EMPTY

LUTFIFO

wdat

wrclk

full

overflow

rdat

rden

rdclk

ALMOST

FULL

UG070_c4_27_031208

empty

FIFO16

wdat

afull

wrclk

wren

rdat

rden

rdclk

empty

Optional FWFT

aempty

RDERR

WRCLK

rderr

Table 4-15: FIFO Capacity and Effective ALMOSTFULL/ALMOSTEMPTY Flag Offsets

FIFO Type Standard/FWFT

FIFO Depth FIFO16(1) + 15

Clock Style WRCLK > RDCLK RDCLK > WRCLK

ALMOST_FULL_OFFSET AFFIFO16
(2) + 15 15

ALMOST_EMPTY_OFFSET AEFIFO16
(3) + 15 AEFIFO16

(3)

Notes:
1. FIFO16 = Capacity of FIFO16. Refer to Table 4-9, “FIFO Capacity.”
2. AFFIFO16 = Set by user in Perl script. Sets the FIFO16 ALMOST_FULL_OFFSET. Refer to Table 4-13.
3. AEFIFO16 = Set by user in Perl script. Sets the FIFO16 ALMOST_EMPTY_OFFSET. Refer to Table 4-13.

168 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Status Flags

Although the functionality of the status flags on the composite FIFO remain the same, the
assertion/deassertion latencies for some of the signals have increased. The assertion
values for key signals have remained the same as on the FIFO16 (EMPTY, FULL,
ALMOSTEMPTY, ALMOSTFULL, RDERR, and WRERR). Table 4-16 lists the latency
values for the status flags. Also note that the values have an uncertainty that is affected by
the frequency ratios of the read/write clock, as well as the read/write patterns.

Resource Utilization

The design was implemented using the ISE 8.1i software with default settings for MAP,
Place, and Route. The approximate LUT count for a x4 design varies from 55 to 70 LUTs.
For a x9 design, the LUT count varies from 65 to 80 LUTs, and for a x18 design the LUT
count varies from 85 to 100 LUTs. The LUT count for a x36 design varies from 125 to 130
LUTs.

Performance Expressed in Maximum Read and/or Write Clock Frequency

The maximum read and/or write clock rate is >500 MHz for all configurations and modes,
except for the 512 x 36 configuration with write clock > read clock, where the max
frequency for standard mode is 473 MHz, and for FWFT mode it is 488 MHz.

CORE Generator Tool Implementation

The CORE Generator tool should be used to implement this solution. FIFO Generator (v3.2
and above) automatically implements the work-arounds detailed above. The device
utilization is detailed in the core data sheet, which can be accessed from:

http://www.xilinx.com/bvdocs/ipcenter/data_sheet/fifo_generator_ds317.pdf

Both synchronous and asynchronous FIFOs can be implemented using FIFO Generator
block RAM FIFOs available from the CORE Generator tool instead of using the FIFO16
primitives. The block RAM-based implementations are slower than FIFO16-based
implementations because the FIFO control logic is implemented in the fabric of the device.

Table 4-16: Clock Cycle Latency for Status Flag Assertion and Deassertion

FIFO Type Standard/FWFT

Clock Style WRCLK > RDCLK RDCLK > WRCLK

Clock Cycle Latency Assertion Deassertion Assertion Deassertion

EMPTY 0 10 / 12(1) 0 10 / 11

FULL 1 9 0 9

ALMOSTEMPTY 10 4 1 10

ALMOSTFULL 1 9 11 5

RDERR 0 0 0 0

WRERR 0 0 0 0

Notes:
1. Latency values in bold vary with the ratio between the read/write clock frequencies and read/write

pattern. In certain conditions for WRCLK > RDCLK, the ALMOSTEMPTY flag deasserts before the
EMPTY flag. This behavior is reflected in simulations, and increasing the ALMOST_EMPTY_OFFSET
rectifies the behavior.

Virtex-4 FPGA User Guide www.xilinx.com 169
UG070 (v2.6) December 1, 2008

FIFO16 Error Condition and Work-Arounds
R

The FIFO16 built-in FIFO configurations from the FIFO Generator Core incurs the same
issues described above.

Note: When the script is used, RDCOUNT and WRCOUNT might not be an accurate representation
of the number of bits read from and written to the FIFO.

Please review the FIFO Generator Data Sheet for more information:

http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?sGlobalNa
vPick=PRODUCTS&sSecondaryNavPick=Intellectual+Property&key=FIFO_Generator

Software Updates

Starting with ISE 8.1i Service Pack 1 software, the tools automatically detect when a
synchronous FIFO16 (RDCLK and WRCLK are connected) has been inserted into a design
and issue the following warning:

WARNING:PhysDesignRules:1447 - FIFO16 XLXI_1 has been found to have
both RDCLK and WRCLK input pins connected to the same source
XLXN_5_BUFGP. Under certain circumstances, the flag behavior to the
FIFO may be undeterministic. Please consult the Xilinx website for
more details.

To remove this warning, use the CORE Generator software FIFO solution or the
Synchronous FIFO work-around described above.

Software IP Cores

For information on what software IP cores are affected by this issue, check the following
page:

http://www.xilinx.com/ipcenter/coregen/advisories/ip_cores_impacted_by_fifo16_ar2
2462_issue.htm

170 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Solution 2: Work-Around Using a Third Fast Clock
If the frequencies of WRCLK and RDCLK are low enough, it is possible to synchronize
FIFO reads and writes to a third asynchronous fast clock (FASTCLK). The ALMOSTFULL
and ALMOSTEMPTY flags are generated in this fast clock domain. These flags are then
resynchronized to their respective clocks.

The system described in this solution requires a minimum of 2 and a maximum of 3 fast
clock cycles to process a single read or write cycle. To handle back-to-back read or writes,
the fast process must complete within one RDCLK or WRCLK period. Thus, the fast clock
must be at least three times faster than the faster of WRCLK and RDCLK.

For example, if the fastest RDCLK or WRCLK is 125 MHz, then FASTCLK could be
400 MHz (400/125 = 3.2).

Design Description

The circuit shown in Figure 4-27 is used to generate the “words in FIFO” (WIF) signal. The
Up/Down counter must be large enough to hold the maximum number of words in the
FIFO; e.g., 10 bits wide if the FIFO depth is 512 words.

The WIF signal is used along with the ALMOST_EMPTY_OFFSET to generate the
ALMOST_FULL and ALMOST_EMPTY flags, as shown in Figure 4-28.

Figure 4-27: WIF Signal Generation

D Q

CE

RST

WREN

WRCLK

RDEN

RDCLK

FASTCLK
RST

D Q

CE

RST

D Q

RST

D Q

CE

RST

D Q

CE

RST

D Q

RST

D Q

RST

D Q

RST

INC

Read

Write

RMRd

WMWr

Words in FIFO

CE

CNTR[9:0] WIF[9:0]

UP/DOWN
CNTR

RST

UG070_c4_28_020607

Virtex-4 FPGA User Guide www.xilinx.com 171
UG070 (v2.6) December 1, 2008

FIFO16 Error Condition and Work-Arounds
R

For this design to work, the ALMOST_FULL_OFFSET and ALMOST_EMPTY_OFFSET for
the FIFO16 instantiations must be fixed values as shown below:

defparam fifo16.ALMOST_FULL_OFFSET = 12'h001; // do not change this line
defparam fifo16.ALMOST_EMPTY_OFFSET = 12'h1FE; // set this to FIFO16 depth - 2

The FIFO16 configurations supported are 4K x 4, 2K x 9, 1K x 18, and 512 x 36.

Two DCMs can be used to generate the FASTCLK as shown in Figure 4-29.

In some cases, only one DCM is needed to generate FASTCLK. The FASTCLK signal
should be connected to all instances of module fifo_third_clk_flags in the design.
The output RST signal is connected to all FIFOs and all instances of module
fifo_third_clk_flags. Clock feedback must be specified as NONE on both DCMs
(defparam dcm.CLK_FEEDBACK = “NONE”).

Figure 4-28: ALMOSTFULL and ALMOSTEMPTY Signal Generation

D Q

RST

ALMOSTFULL

WIF [9:0]

Depth - ALMOST_FULL_OFFSET

Depth is 3 less than
depth of the FIFO16;
e.g., 509 rather than
512.

WRCLK

RST

ALMOST_EMPTY_OFFSET

(Design Constant)

(Design Constant)

FASTCLK

RDCLK

ALMOSTEMPTY
D Q

SET

D Q

RST

D Q
SET

D Q

RST

D Q
SET

UG070_c4_29_020307

A

B

A < B

B

A

A > B

Figure 4-29: FASTCLK Generator

CLK0

CLK2XCLKINSlow Clock
Medium Clock

FASTCLK

(no connect) (no connect)

System Reset RST

CLKDV

CLKFX

CLKFB

RST LOCKED

CLK0

UG070_c4_30_020307

CLK2XCLKIN

DCM_BASE

BUFG

DCM_BASE

CLKDV

CLKFX

CLKFB

RST LOCKED

172 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Notes:

• The ALMOSTEMPTY flag is delayed from 1 to 2 RDCLK periods after the condition is
detected.

• The ALMOSTFULL flag is delayed from 1 to 2 WRCLK periods after the condition is
detected.

• The DCM generating the FASTCLK clock must be locked before the FIFOs can be
used. (The STARTUP_WAIT attribute can be used to make sure that the DCMs are
locked before the configuration is done.)

• The FASTCLK clock must be continuously available when any of the FIFOs in the
system are being used. (Monitor the LOCK signals from all the DCMs to make sure
that the FASTCLK clock is running. If LOCK goes Low, the DCMs should be reset.)

• For this design to work properly the maximum words in the FIFO16 must never
exceed the nominal maximum - 3; e.g., a 512 word FIFO must never contain more than
509 words.

• This work-around does not currently provide a FULL flag. However, the EMPTY flag
from the FIFO16 can be used.

Timing Diagram

The timing diagram for the worst-case write condition is shown in Figure 4-30. The
diagram depicts two back-to-back FIFO write cycles. This is a “worst-case” diagram,
because the rising edge of WRCLK slightly trails the rising edge of FASTCLK when write
enable (WREN) is TRUE. Please refer to Figure 4-27 for signals Wr and WM. Signal Wr is
asynchronous to FASTCLK and the leading edge of WM might be metastable. FASTCLK
and WRCLK depictions are drawn to scale, relative to each other.

The Read timing is similar to the Write timing shown in Figure 4-30.

Figure 4-30: Write Timing Diagram

FASTCLK (400 MHz)

WRCLK (125 MHz)

Wr

UG070_c4_31_020307

WM

Writ

WREN (From User)

Virtex-4 FPGA User Guide www.xilinx.com 173
UG070 (v2.6) December 1, 2008

FIFO16 Error Condition and Work-Arounds
R

Resource Utilization

The resources used in implementing the solution described above with a 400 MHz
FASTCLK are as follows.

The design was implemented using the ISE 8.1i software with default settings for MAP,
Place, and Route. The approximate resource count was 20 LUTs and 24 flip-flops per FIFO.
One DCM is required to generate a 400 MHz clock if a 200 MHz input clock is available.
Two DCMs are needed if only a 100 MHz input clock is available. One extra BUFG was
used per device.

Performance

The maximum FASTCLK frequency for each speed grade is Global Clock Tree FMAX, as
given in the Virtex-4 Data Sheet. If any back-to-back reads or writes occur, the maximum
RDCLK and WRCLK frequency is 1/3 the FASTCLK frequency. If the system design
guarantees that there is at least one clock cycle between all reads and all writes, then the
maximum RDCLK and WRCLK frequency is 2/3 the FASTCLK frequency. If the system
design guarantees that there are at least two clock cycles between all reads and all writes,
then the RDCLK and WRCLK frequency can be equal to the FASTCLK frequency.

Design Files

All the necessary files required for the above design are contained in a ZIP archive
downloadable from the Xilinx website at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=30163

Open the ZIP archive and extract FIFO16_solution2.zip.

174 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Solution 3: FIFO Flag Generator Using Gray Code
The incorrect operation of the FIFO16 after a specific sequence of events occurs only on the
flag signals. Once the flag signals are incorrect, the FIFO operation itself can be affected.

In Solution 3, the FIFO flags are generated outside the FIFO16. The externally generated
flags are used in conjunction with the FIFO16 to give the complete FIFO solution. This
solution can also be used if the customer design has the read or write clock stopped in
between during the FIFO operation.

In the solution described here, the FIFO memory address space is divided into 16 sectors.
The number of word in each sector depends on the FIFO depth and is given by FIFO
Depth/ 16. The granularity of this solution is equal to the number of words in each sector.

Design Description

Four bits are used to identify the 16 sectors within the memory. The four bits are the four
MSB bits of the WRCOUNT signal from the FIFO16.The ALMOSTFULL flag goes true if
the current read sector is equal to the current write sector + 1, 2, or 3. Three binary to gray
code converters uses the four WRCOUNT MSB bits to convert from binary to gray +1, gray
+2, and gray +3 values as shown in Figure 4-31.

Figure 4-31: Intermediate Signal Generation for ALMOSTFULL Flag

IN OUT
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000
0000

IN[3:0]

Binary → Gray + 1

Binary → Gray + 2

Binary → Gray + 3

WRCOUNT
[msb:msb-3]

RAgray[3:0]

OUT[3:0]

UG070_c4_32_020607

IN OUT
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000
0000
0001

IN[3:0]

WRCOUNT
[msb:msb-3]

OUT[3:0]

IN OUT
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000
0000
0001
0011

IN[3:0]

WRCOUNT
[msb:msb-3]

WRCLK
RST

OUT[3:0]

D
AF1

Q

RST

LUT
4 LUTs

4 LUTs

4 LUTs

[1:0] == LUT

D[3:0] Q[3:0]
[3:0] [3:0]

PRE

D Q

RST

LUT
[3:2] ==

D Q

RST

D
AF2

Q

RST

LUT
[1:0] == LUT

D[3:0] Q[3:0]
[3:0] [3:0]

PRE

D Q

RST

LUT
[3:2] ==

D Q

RST

D
AF3

Q

RST

LUT
[1:0] == LUT

D[3:0] Q[3:0]
[3:0] [3:0]

PRE

D Q

RST

LUT
[3:2]

[1:0]

[3:2]

[1:0]

[3:2]

[1:0]

[3:2]

==

D Q

RST

6 Synchronizers

Virtex-4 FPGA User Guide www.xilinx.com 175
UG070 (v2.6) December 1, 2008

FIFO16 Error Condition and Work-Arounds
R

Flag AF1, AF2, or AF3 goes High if the read sector (RAgray) is equal to write counter sector
one, two, or three respectively. A High on one of these flags sets the ALMOSTFULL flag
High as shown in Figure 4-32.

Because the circuit is operating in two clock domains (RDCLK and WRCLK), there is a
possibility that the OR of AF1, AF2, and AF3 could spike FALSE as one of these signals
transitions FALSE and another transitions TRUE. To prevent ALMOSTFULL from
erroneously going FALSE when this occurs, a flip-flop is added to the circuit. This flip-flop
adds the requirement that the OR output must be FALSE for two consecutive WRCLK
periods for ALMOSTFULL to go FALSE. The ALMOSTEMPTY circuit works in a similar
fashion.

The FULL flag goes true when the above ALMOSTFULL flag conditions are true AND the
next most significant bit of WRCOUNT is a one.

If WRCLK is halted, ALMOSTFULL and FULL are frozen in their current states. When
WRCLK restarts, these flags can switch, subject to the delays specified above. (Note that
this is the behavior of all asynchronous FIFOs, because the ALMOSTFULL and FULL flags
are always synchronous to the write clock.)

The ALMOSTEMPTY flag goes true if the current read sector is equal to the current write
sector, or if the current read sector is equal to the current write sector – 1. ALMOSTEMPTY
flag is generated similar to the ALMOSTFULL flag and is shown in Figure 4-33.

Setting of the ALMOSTEMPTY flag occurs between two and three RDCLK periods after an
equality comparison goes true.

Figure 4-32: ALMOSTFULL and FULL Flag Generation

IN OUT
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

IN[3:0]

Binary → Gray

RDCOUNT
[msb:msb-3]

AF1

RDCLK

RST

AF2
AF3

OUT[3:0]

UG070_c4_33_020607

D Q

RST

4 LUTs

LUT

LUT

D[3:0] Q[3:0]
[3:0] [3:0] RAgray[3:0]

RST
RDCLK

WRCOUNT[msb-4]

ALMOSTFULL

FULL

D Q

RST
D Q

RST

LUT

176 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Notes:

• The FULL flag does not mean that the FIFO is full; it means that half of the sector has
been written into after the ALMOSTFULL flag went true.

• Setting and clearing of ALMOSTFULL occurs between two and three WRCLK periods
after equality goes true or false, respectively in Figure 4-32.

• Setting and clearing of the FULL flag is delayed as with the ALMOSTFULL flag.

• Clearing of the ALMOSTEMPTY flag occurs between 3 and 4 RDCLK periods after an
equality goes false in Figure 4-33.

Resource Utilization

In this design, the combinatorial logic delay between flip-flops is never comprised of more
than one LUT. A total of 39 LUTs and 41 flip-flops are used.

Performance

The performance of this logic matches the performance of the FIFO16 module for each
speed grade as given in the Virtex-4 Data Sheet.

Figure 4-33: ALMOSTEMPTY Flag Generation

Binary → Gray + 2

Binary → Gray + 3

RAgray[3:0]

UG070_c4_34_020607

IN OUT
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0011
0110
0111
0101
0100
1100
1101
1111
1110
1011
1010
1011
1001
1000

IN[3:0]

WRCOUNT
[msb:msb-3]

OUT[3:0]

IN OUT
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1000
0000
0001
0011
0010

1001

0110
0111
0101
0100
1100
1101
1111
1110
1010
1011

IN[3:0]

WRCOUNT
[msb:msb-3]

WRCLK

RST

WRCLK

OUT[3:0]

D

ALMOST
EMPTY

Q
PRE

4 LUTs

4 LUTs

D Q
PRE

D Q
PRE

D Q
PRELUT

[1:0] == LUT

D[3:0] Q[3:0]
[3:0] [3:0]

RST D Q
PRELUT

[3:2] ==

D Q
PRE

D Q
LUT

[1:0] == LUT

D[3:0] Q[3:0]
[3:0] [3:0]

RST D Q
LUT

[3:2]

[1:0]

[3:2]

[1:0]

[3:2]

==

D Q
PRE

4 Synchronizers
LUT

PRE

PRE

Virtex-4 FPGA User Guide www.xilinx.com 177
UG070 (v2.6) December 1, 2008

FIFO16 Error Condition and Work-Arounds
R

Design Files

All the necessary files required for the above design are contained in a ZIP archive
downloadable from the Xilinx website at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=30163

Open the ZIP archive and extract FIFO16_solution3.zip.

Solution Summary
The following criteria can be used to choose a particular solution for the design.

• “Solution 1: Synchronous/Asynchronous Clock Work-Arounds” should be used if:

♦ Design is currently supported in the CORE Generator tool

♦ Design is required to run at the maximum FIFO16 clock rates

♦ Exact values are required for the ALMOSTEMPTY and ALMOSTFULL Flags

♦ Resource utilization is more than that for Solution 2 and Solution 3 (see Solution 1
for details)

♦ Continuous RDCLK and WRCLK are available after RST

• “Solution 2: Work-Around Using a Third Fast Clock” should be used if:

♦ Smallest resource utilization is required

♦ RDCLK and WRCLK needs to be intermittently stopped after RST

♦ Design is not required to run at the maximum FIFO16 clock rates (see Solution 2
for more details)

♦ The generation of a third continuous fast clock is feasible

♦ ALMOSTEMPTY and ALMOSTFULL flags can be delayed by from 1 to 2 RDCLK
or WRCLK periods, respectively

• “Solution 3: FIFO Flag Generator Using Gray Code” should be used if:

♦ Design is required to run at the maximum FIFO16 clock rates

♦ Resource utilization smaller than Solution 1 is required

♦ RDCLK and WRCLK needs to be intermittently stopped after RST

♦ ALMOSTEMPTY and ALMOSTFULL flags need not be exact and can be within a
range.

178 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Built-in Block RAM Error Correction Code
Two vertically adjacent block RAMs can be configured as a single 512 x 64 RAM with built
in Hamming error correction, using the extra eight bits in the 72-bit wide RAM. The
operation is transparent to the user. The eight protection bits are generated during each
write operation, and are used during each read operation to correct any single error, or to
detect (but not correct) any double error. Two status outputs indicate the three possible
read results: No error, single error corrected, double error detected. The read operation
does not correct the error in the memory array, it only presents corrected data on DO.

This error correction code (ECC) configuration option is available with almost all block
RAM pairs as long as the lower RAM is instantiated in an even numbered row. However,
the ECC configuration cannot use the one block RAM immediately above or below the
PowerPC® 405 blocks in Virtex-4 devices.

The functionality of the block RAM is changed when using the ECC mode.

• The two block RAM ports still have independent address, clocks, and enable inputs,
but one port is a dedicated write port, and the other is a dedicated read port.

• DO represents the read data after correction.

• DO stays valid until the next active read operation.

• Simultaneous reading and writing, even with asynchronous clocks, is allowed, but
requires careful clock timing if read and write addresses are identical.

• The READ_FIRST or WRITE_FIRST modes of the normal block RAM operation are
not applicable to the ECC configuration.

Top-Level View of the Block RAM ECC Architecture
Figure 4-34 shows the top-level view of a Virtex-4 FPGA block RAM in ECC mode.

Figure 4-34: Top-Level View of Block RAM ECC

wraddr 9

36

36

36

36

Data In

Data Out

rdaddr 9

Block RAM
512 x 36

Block RAM
512 x 36

wraddr 9

rdaddr 9

64-bit
ECC

Encode
64

64

DI[63:0]

DO[63:0]

2

1

0STATUS[1:0]

Decode
and

Correct

72

72

RDADDR[8:0]

WRADDR[8:0]

ug070_4_34_030708

Q D

Virtex-4 FPGA User Guide www.xilinx.com 179
UG070 (v2.6) December 1, 2008

Built-in Block RAM Error Correction Code
R

Block RAM ECC Primitive
Figure 4-35 shows RAMB32_S64_ECC, the block RAM ECC primitive.

Block RAM ECC Port Description
Table 4-17 lists and describes the block RAM ECC I/O port names.

Figure 4-35: RAMB32_S64_ECC: Block RAM ECC Primitive

STATUS<1:0>

DI<63:0>

WRADDR<8:0>

RDADDR<8:0>

S S R

WRCLK

DO<63:0>

WREN

RDEN

RDCLK

ug070_4_ECC_022204

RAMB32_S64_ECC

Table 4-17: Block RAM ECC Port Names and Descriptions

Port Name Direction Signal Description

DI<63:0> Input Data input bus

WRADDR<8:0> Input Write address bus

RDADDR<8:0> Input Read address bus

WREN Input Write enable. When WREN = 1, data will be written into
memory. When WREN = 0, write is disabled

RDEN Input Read enable. When RDEN = 1, data will be read from
memory. When RDEN = 0, read is disabled

SSR Input Not supported when using the block RAM ECC primitive.
Always connect to GND.

WRCLK Input Clock for write operations

RDCLK Input Clock for read operations

DO<63:0> Output Data output bus

STATUS<1:0>(1) Output Error status bus

Notes:
1. Hamming code implemented in the block RAM ECC logic detects one of three conditions: no

detectable error, single-bit error detected and corrected on DO (but not corrected in the memory), and
double-bit error detected without correction. The result of STATUS<1:0> indicates these three
conditions.

180 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Error Status Description
The block RAM ECC is able to detect single- and double-bit errors from the block RAM.
However, only the single-bit error can be corrected. The ECC logic does not correct the bit
in the actual block RAM storage location. If the block RAM location containing the bit error
is not overwritten, then further reads from that location causes the ECC logic to continue to
correct the error. Table 4-18 is the truth table for the STATUS bits.

Block RAM ECC Attribute
In addition to the built-in registers in the decode and correct logic, the RAMB32_S64_ECC
primitive allows the use of optional pipeline registers to produce higher performance with
one additional latency. Valid values for the DO_REG attribute are 0 or 1.

Block RAM ECC VHDL and Verilog Templates
VHDL and Verilog templates are available in the Libraries Guide.

Block RAM ECC VHDL Template

-- RAMB32_S64_ECC: To incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (RAMB32_S64_ECC_inst) and/or the port
-- code : declarations after the "=>" assignment can be changed
-- : to properly connect this function to the design.
-- : All inputs and outputs must be connected.
-- Library : In addition to adding the instance declaration, a
-- declaration : use declaration statement for the UNISIM.v
-- for : components library needs to be added before the
-- Xilinx : entity declaration. This library contains the
-- primitives : component declarations for all Xilinx primitives
-- : and points to the models that will be used for
-- : simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-- <---Cut code below this line and paste into the architecture body-->

 -- RAMB32_S64_ECC: Virtex-4 512 x 64 Error Correction Block RAM
 -- Virtex-4 FPGA User Guide

Table 4-18: STATUS Bit Truth Table

STATUS[1:0] Description

00 No bit error.

01 Single-bit error. The block RAM ECC macro detects and automatically
corrects a single-bit error.

10 Double-bit error. The block RAM ECC macro detects a double-bit error.

11 Undefined, not a valid status error.

Virtex-4 FPGA User Guide www.xilinx.com 181
UG070 (v2.6) December 1, 2008

Built-in Block RAM Error Correction Code
R

 RAMB32_S64_ECC_inst: RAMB32_S64_ECC_inst (
 generic map (
 DO_REG => 0, -- Optional output registers (0 or 1)

port map (
 DO => DO, -- 64-bit output data
 STATUS => STATUS, -- 2-bit status output
 DI => DI, -- 64-bit data input
 RDADDR => RDADDR, -- 9-bit data address input
 RDCLK => RDCLK, -- 1-bit read clock input
 RDEN => RDEN, -- 1-bit read enable input
 SSR => SSR, -- 1-bit synchronous reset
 WRADDR =>WRADDR, -- 9-bit write address input
 WRCLK => WRCLK, -- 1-bit write clock input
 WREN => WREN -- 1-bit write enable input
);

 -- End of RAMB32_S64_ECC_inst instantiation

Block RAM ECC Verilog Template

RAMB32_S64_ECC Verilog:

// RAMB32_S64_ECC: To incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (RAMB32_S64_ECC_inst) and/or the port declarations
// code : within the parenthesis can be changed to properly
// : reference and connect this function to the design.
// : All inputs and outputs must be connected.

// <-----Cut code below this line---->

 // RAMB32_S64_ECC: Virtex-4 512 x 64 Error Correction Block RAM
 // Virtex-4 FPGA User Guide

 RAMB32_S64_ECC #(
 .DO_REG(0), // Optional output registers (0 or 1)

) RAMB32_S64_ECC_inst (
 .DO(DO), // 64-bit output data
 .STATUS(STATUS), // 2-bit status output
 .DI(DI), // 64-bit data input
 .RDADDR(RDADDR), // 9-bit data address input
 .RDCLK(RDCLK), // 1-bit read clock input
 .RDEN(RDEN), // 1-bit read enable input
 .SSR(SSR), // 1-bit synchronous reset
 .WRADDR(WRADDR), // 9-bit write address input
 .WRCLK(WRCLK), // 1-bit write clock input
 .WREN(WREN) // 1-bit write enable input
);

 // End of RAMB32_S64_ECC_inst instantiation

182 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 4: Block RAM
R

Virtex-4 FPGA User Guide www.xilinx.com 183
UG070 (v2.6) December 1, 2008

R

Chapter 5

Configurable Logic Blocks (CLBs)

CLB Overview
The Configurable Logic Blocks (CLBs) are the main logic resource for implementing
sequential as well as combinatorial circuits. Each CLB element is connected to a switch
matrix to access to the general routing matrix (shown in Figure 5-1). A CLB element
contains four interconnected slices. These slices are grouped in pairs. Each pair is
organized as a column. SLICEM indicates the pair of slices in the left column, and SLICEL
designates the pair of slices in the right column. Each pair in a column has an independent
carry chain; however, only the slices in SLICEM have a common shift chain.

The Xilinx® tools designate slices with the following definitions. An “X” followed by a
number identifies a column of slices. The number counts up in sequence from the left to the
right. A “Y” followed by a number identifies the position of each slice in a pair as well as
the CLB row. The “Y” number counts slices starting from the bottom in sequence: 0, 1, 0, 1
(the first CLB row); 2, 3, 2, 3 (the second CLB row); etc. Figure 5-1 shows the CLB located in
the bottom-left corner of the die. Slices X0Y0 and X0Y1 constitute the SLICEM column-pair,
and slices X1Y0 and X1Y1 constitute the SLICEL column-pair. For each CLB, SLICEM
indicates the pair of slices labeled with an even number – SLICE(0) or SLICE(2), and
SLICEL designates the pair of slices with an odd number – SLICE(1) or SLICE(3).

Figure 5-1: Arrangement of Slices within the CLB

ug070_5_01_071504

Interconnect
to Neighbors

SLICEM
(Logic or Distributed RAM or Shift Register)

SLICEL
(Logic Only)

CIN

SLICE (2)
X0Y1

SLICE (0)
X0Y0

Switch
Matrix

COUT

CLB

COUT

CIN

SLICE (3)
X1Y1

SLICE (1)
X1Y0

SHIFTIN

SHIFTOUT

184 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Slice Description
The elements common to both slice pairs (SLICEM and SLICEL) are two logic-function
generators (or look-up tables), two storage elements, wide-function multiplexers, carry
logic, and arithmetic gates. These elements are used by both SLICEM and SLICEL to
provide logic, arithmetic, and ROM functions. SLICEM supports two additional functions:
storing data using distributed RAM and shifting data with 16-bit registers. SLICEM
(shown in Figure 5-2, page 185) represents a superset of elements and connections found in
all slices. SLICEL is shown in Figure 5-3, page 186.

CLB/Slice Configurations

Table 5-1 summarizes the logic resources in one CLB. All of the CLBs are identical and each
CLB or slice can be implemented in one of the configurations listed.Table 5-2 shows the
available resources in all CLBs.

Table 5-1: Logic Resources in One CLB

Slices LUTs Flip-Flops MULT_ANDs
Arithmetic &
Carry Chains

Distributed
RAM(1)

Shift
Registers(1)

4 8 8 8 2 64 bits 64 bits

Notes:
1. SLICEM only

Table 5-2: Virtex-4 FPGA Logic Resources Available in All CLBs

Device
CLB Array:

Row x Column
Number of

Slices
Number
of LUTs

Maximum
Distributed RAM or
Shift Registers (Kb)

Number
of Flip-Flops

XC4VLX15 64 x 24 6,144 12,288 96 12,288

XC4VLX25 96 x 28 10,752 21,504 168 21,504

XC4VLX40 128 x 36 18,432 36,864 288 36,864

XC4VLX60 128 x 52 26,624 53,248 416 53,248

XC4VLX80 160 x 56 35,840 71,680 560 71,680

XC4VLX100 192 x 64 49,152 98,304 768 98,304

XC4VLX160 192 x 88 67,584 135,168 1056 135,168

XC4VLX200 192 x 116 89,088 178,176 1392 178,176

XC4VSX25 64 x 40 10,240 20,480 160 20,480

XC4VSX35 96 x 40 15,360 30,720 240 30,720

XC4VSX55 128 x 48 24,576 49,152 384 49,152

XC4VFX12 64 x 24 5,472 10,944 86 10,944

XC4VFX20 64 x 36 8,544 17,088 134 17,088

XC4VFX40 96 x 52 18,624 37,248 291 37,248

XC4VFX60 128 x 52 25,280 50,560 395 50,560

XC4VFX100 160 x 68 42,176 84,352 659 84,352

XC4VFX140 192 x 84 63,168 126,336 987 126,336

Virtex-4 FPGA User Guide www.xilinx.com 185
UG070 (v2.6) December 1, 2008

CLB Overview
R

Figure 5-2: Diagram of SLICEM

S0
0 1

CYMUXF

FXINB

FXINA

G4
G3
G2
G1

ALTDIG
SHIFTIN
ALTDIG

BY
DIG_MUX

BY

BYINV
BYINV

SLICEWE0USED
SLICEWE1USED

BY

SLICEWE1

F4
F3
F2
F1

WF 4USED
WF 3USED
WF 2USED
WF 1USED

BX

CE

CLK

SR

BX

BX_B BXINV

CE

CE_B CEINV
CLK

CLK_B
CLKINV

SR

SR_B
SRINV SRFFMUX

SHIFTOUTUSED

SHIFTOUT

CIN

FAND

SHIFTIN

SHIFTIN

ALTDIF
BX

DIF MUX DI

D
A4 LUT

RAM
ROM

A3
A2
A1

WF4 MC15
WF3
WF2
WF1

DUAL_PORT
SHIFT_REG

F2
PROD

CY0F BXCIN

CYINIT
F1

1
0

RESET TYPE

SYNC
ASYNC

-SYNC_ATTR

D FF Q

LATCH

INIT1
INIT0
SRHIGH
SRLOW

CE
CK

XUSED

XMUXUSED

F5USED

BUSED

DIGUSED

REVUSED

XBMUX

F5

XB

DIG

YQ

YYUSED

YMUXUSED

FXUSED

BYINVOUTUSED

BYOUTUSED

YBUSED YB

YMUX

FX

BYINVOUT

BYOUT

XMUX

X

XQ

FFX

FFY

D FF

YB

YMUX
Y

BY

DYMUX

Q

LATCH

INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

1

0
S0

F5MUX

F5

FXOR

FXMUXXORF

DXMUX

XB
XMUX
X
BX

WSG

WE1
WE0
WE

CK WSE

WSGEN

GAND

CY0G

1
0

G1
PROD

G2
BY

DUAL_PORT
SHIFT_REG

A4
A3
A2
A1
WG4

MC15WG4
WG3
WG2
WG1WS DI

G

F

LUT
RAM
ROM

D

1

0

COUT

COUTUSED

CYMUXG YBMUX
S0
0 1

1

0

0

1
S0

FSMUX

FX

GXOR

GYMUX
XORG

UG070_5_02_071504

REVSR

0

BX

From
Fabric

To/From Slice on Top

To/From Slice on Bottom

To Fabric

WG4USED
WG3USED
WG2USED
WG1USED

186 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Figure 5-3: Diagram of SLICEL

A4
A3
A2
A1

-FAND

D

F

BX

F4

BY

F3
F2
F1

CE

CLK

SR

G4

FXINA

FXINB

YB

FX

YMUX

Y

YQ

XB

F5

-XBUSED

-F5USED

-XMUXUSED

-XUSED

-FFX_INIT_ATTR

-FFX_SR_ATTR

FFX

XMUX

X

XQ

G3
G2
G1

D
CE

FF Q

LATCH

INIT1
INIT0
SRHIGH
SRLOW

CK

SR REV

-FFY_INIT_ATTR

-FFY_SR_ATTR

FFY

-YUSED

-YBUSED

-YMUXUSED

-FXUSED

1

1

0

0

S0

S0

XB

X

BX

XMUX

-F5MUX

-XORF

-DXMUX

-FXMUX

F5

FXOR

-CYMUXF

A4
D

G

A3
A2
A1

S0

S0

0

0

FX

GXOR

1

1

-CYMUXG

-F5MUX

-XORG

-GYMUX

D Q
FF
LATCH

INIT1
INIT0
SRHIGH
SRLOW

CE
CK

SR REV

-REVUSED

-DYMUX

YB

Y

BY

YMUX

RESET TYPE

-SYNC_ATTR

SYNC
ASYNC

1

BY
G2

G3

1
0

PROD

0

-CY0G

-CY0F

1

BX
F2

F3

PROD

0

BY

BY_B

-BYINV

-GAND

BXCIN

-CYINIT

COUT

-COUTUSED

BX
BX_B

-BXINV

-CEINV

-CLKINV

-SRINV

CE

CLK

SR
SR_B

CLK_B

CE_B

CIN ug070_5_03_071504

Virtex-4 FPGA User Guide www.xilinx.com 187
UG070 (v2.6) December 1, 2008

CLB Overview
R

Look-Up Table (LUT)

Virtex-4 FPGA function generators are implemented as 4-input look-up tables (LUTs).
There are four independent inputs for each of the two function generators in a slice (F and
G). The function generators are capable of implementing any arbitrarily defined four-input
Boolean function. The propagation delay through a LUT is independent of the function
implemented. Signals from the function generators can exit the slice (through the X or Y
output), enter the XOR dedicated gate (see “Arithmetic Logic”), enter the select line of the
carry-logic multiplexer (see “Fast Lookahead Carry Logic”), feed the D input of the storage
element, or go to the MUXF5.

In addition to the basic LUTs, the Virtex-4 FPGA slices contain multiplexers (MUXF5 and
MUXFX). These multiplexers are used to combine up to eight function generators to
provide any function of five, six, seven, or eight inputs in a CLB. The MUXFX is either
MUXF6, MUXF7, or MUXF8 according to the position of the slice in the CLB. The MUXFX
can also be used to map any function of six, seven, or eight inputs and selected wide logic
functions. Functions with up to nine inputs (MUXF5 multiplexer) can be implemented in
one slice (see Figure 5-14, page 198). Wide function multiplexers can effectively combine
LUTs within the same CLB or across different CLBs making logic functions with even more
input variables.

Storage Elements

The storage elements in a Virtex-4 FPGA slice can be configured as either edge-triggered
D-type flip-flops or level-sensitive latches. The D input can be driven directly by a LUT
output via the DX or DY multiplexer, or by the slice inputs bypassing the function
generators via the BX or BY input.

The control signals clock (CLK), clock enable (CE) and set/reset (SR) are common to both
storage elements in one slice. All of the control signals have independent polarity. Any
inverter placed on a control input is automatically absorbed. The clock-enable signal (CE)
is active High by default. If left unconnected, the clock enable defaults to the active state.

In addition to clock (CLK) and clock enable (CE) signals, each slice has set and reset signals
(SR and BY slice inputs). SR forces the storage element into the state specified by the
attribute SRHIGH or SRLOW. SRHIGH forces a logic High when SR is asserted. SRLOW
forces a logic Low. When SR is used, an optional second input (BY) forces the storage
element into the opposite state via the REV pin. The reset condition is predominant over
the set condition. (See Figure 5-4.) The truth tables for SR are described in“ILOGIC
Resources” in Chapter 7.

The initial state after configuration or global initial state is defined by a separate INIT0 and
INIT1 attribute. By default, setting the SRLOW attribute sets INIT0, and setting the
SRHIGH attribute sets INIT1.

For each slice, set and reset can be synchronous or asynchronous. Virtex-4 devices can set
INIT0 and INIT1 independent of SRHIGH and SRLOW.

188 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

The configuration options for the set and reset functionality of a register or a latch are as
follows:

• No set or reset

• Synchronous set

• Synchronous reset

• Synchronous set and reset

• Asynchronous set (preset)

• Asynchronous reset (clear)

• Asynchronous set and reset (preset and clear)

Distributed RAM and Memory (Available in SLICEM only)

Multiple left-hand LUTs in SLICEMs can be combined in various ways to store larger
amounts of data.

The function generators (LUTs) in SLICEM can be implemented as a 16 x 1-bit synchronous
RAM resource called a distributed RAM element. RAM elements are configurable within a
CLB to implement the following:

• Single-Port 16 x 4-bit RAM

• Single-Port 32 x 2-bit RAM

• Single-Port 64 x 1-bit RAM

• Dual-Port 16 x 2-bit RAM

Distributed RAM modules are synchronous (write) resources. A synchronous read can be
implemented with a storage element in the same slice. The distributed RAM and the

Figure 5-4: Register/Latch Configuration in a Slice

FF

FFY

LATCH

SR REV

D Q

CE

CK

YQ

FF

FFX

LATCH

SR REV

D Q

CE

CK

XQ

CE

LUT F Output

LUT G Output

BY

CLK

BX

SR

Attribute

INIT1
INIT0
SRHIGH
SRLOW

Attribute

INIT1
INIT0
SRHIGH
SRLOW

Reset Type
SYNC
ASYNC

ug070_5_04_071504

Virtex-4 FPGA User Guide www.xilinx.com 189
UG070 (v2.6) December 1, 2008

CLB Overview
R

storage element share the same clock input. For a write operation, the Write Enable (WE)
input, driven by the SR pin, must be set High.

Table 5-3 shows the number of LUTs (two per slice) occupied by each distributed RAM
configuration.

For single-port configurations, distributed RAM has a common address port for
synchronous writes and asynchronous reads.

For dual-port configurations, distributed RAM has one port for synchronous writes and
asynchronous reads and another port for asynchronous reads. The function generator
(LUT) has separated read address inputs and write address inputs.

In single-port mode, read and write addresses share the same address bus. In dual-port
mode, one function generator (R/W port) is connected with shared read and write
addresses. The second function generator has the A inputs (Read) connected to the second
read-only port address and the W inputs (Write) shared with the first read/write port
address.

Figure 5-5, Figure 5-6, and Figure 5-7 illustrate various example distributed RAM
configurations occupying one slice.

Table 5-3: Distributed RAM Configuration

RAM Number of LUTs

16 x 1S 1

16 x 1D 2

32 x 1S 2

64 x 1S 4

Notes:
1. S = single-port configuration; D = dual-port configuration

Figure 5-5: Distributed RAM (RAM16x1S)

A[3:0]

D

D

DIWS

WSG

WE
WCLK

RAM 16x1S

D Q

RAM

WE
CK

A[4:1]

WG[4:1]

Output

Registered
Output

(optional)

(SR)

4

4

(BY)

ug070_5_05_071504

190 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Figure 5-6: Single-Port Distributed RAM (RAM32x1S)

Figure 5-7: Dual-Port Distributed RAM (RAM16x1D)

A[3:0]

D

WSG

F5MUX

WE
WCLK

RAM 32x1S

D Q

WE
WE0

CK
WSF

D

DIWS

RAM

G[4:1]

A[4]

WG[4:1]

D

DIWS
RAM

F[4:1]

WF[4:1]

Output

Registered
Output

(optional)

(SR)

4

(BY)

(BX)

4

ug070_5_06_071504

A[3:0]
DPRA[3:0]

D

WE
WCLK

RAM 16x1D

D

DI

RAM
F[4:1]

WF[4:1]

dual_port

RAM
dual_port

4

(BY)

DPO

A[3:0]

WSG

WS

WE
CK

D

DI

WSF

WS

WG[4:1]

G[4:1]

SPO
4

ug070_5_07_071504

(SR)

Virtex-4 FPGA User Guide www.xilinx.com 191
UG070 (v2.6) December 1, 2008

CLB Overview
R

If two dual-port 16 x 1-bit modules are built, the two RAM16X1D primitives can occupy
two slices in a CLB, as long as they share the same clock and write enable, as illustrated in
Figure 5-8.

The RAM64X1S primitive occupies two slices. The RAM64X1S read path is built on the
MUXF5 and MUXF6 multiplexers.

Read Only Memory (ROM)

Each function generator in SLICEM and SLICEL can implement a 16 x 1-bit ROM. Four
configurations are available: ROM16x1, ROM32x1, ROM64x1, and ROM128x1. The ROM
elements are cascadable to implement wider and/or deeper ROM. ROM contents are
loaded at device configuration. Table 5-4 shows the number of LUTs occupied by each
configuration.

Figure 5-8: Two RAM16X1D Placement

SPO[1]

DPO[1]

D[0]

Reg

Reg

SPO[0]

DPO[0]

Reg

Reg

RAM16X1D Bit 0

RAM16X1D Bit 1

Slice M

Slice M

ug070_5_08_071504

D[1]

Table 5-4: ROM Configuration

ROM Number of LUTs

16 x 1 1

32 x 1 2

64 x 1 4

128 x 1 8

256 x 1 16 (2 CLBs)

192 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Shift Registers (Available in SLICEM only)

A SLICEM function generator can also be configured as a 16-bit shift register without using
the flip-flops available in a slice. Used in this way, each LUT can delay serial data
anywhere from one to 16 clock cycles. The SHIFTIN and SHIFTOUT lines cascade LUTs to
form larger shift registers. The four left-hand LUTs (in SLICEM) of a single CLB are thus
cascaded to produce delays up to 64 clock cycles. It is also possible to combine shift
registers across more than one CLB. The resulting programmable delays can be used to
balance the timing of data pipelines.

Applications requiring delay or latency compensation use these shift registers to develop
efficient designs. Shift registers are also useful in synchronous FIFO and content-
addressable memory (CAM) designs. To quickly generate a Virtex-4 FPGA shift register
without using flip-flops (i.e., using the SRL16 element(s)), use the CORE Generator™ tool
RAM-based shift-register module.

The write operation is synchronous with a clock input (CLK) and an optional clock enable,
as shown in Figure 5-9. A dynamic read access is performed through the 4-bit address bus,
A[3:0]. The configurable 16-bit shift register cannot be set or reset. The read is
asynchronous; however, a storage element or flip-flop is available to implement a
synchronous read. By placing this flip-flop, the shift register performance is improved by
decreasing the delay into the clock-to-out value of the flip-flop. However, an additional
clock latency is added. Any of the 16 bits can be read out asynchronously by varying the
LUT address. This is useful in making smaller shift registers (less than 16 bits.) For
example, when building an 8-bit shift register, simply set the addresses to the 8th bit.

Figure 5-9: Shift Register Configurations

A[3:0]

SHIFTIN (D)

SHIFTOUT (Q15)

D(BY)

D

MC15

DI

WSG

CE (SR)
CLK

SRLC16

D Q

SHIFT-REG

WE
CK

A[4:1] Output (Q)

Registered
Output

(optional)

4

UG070_5_09_071504

WS

Virtex-4 FPGA User Guide www.xilinx.com 193
UG070 (v2.6) December 1, 2008

CLB Overview
R

Figure 5-10 is an equivalent representation of the shift register.

An additional dedicated connection between shift registers allows connecting the last bit of
one shift register to the first bit of the next, without using the LUT D-output (see
Figure 5-11). Longer shift registers can be built with dynamic access to any bit in the chain.
The shift register chaining and the MUXF5, and MUXF6 multiplexers allow up to a 64-bit
shift register with addressable access to be implemented in one CLB.

Figure 5-10: Representation of a Shift Register

UG070_5_10_030708

DIN

WE SHIFT_OUT
(D)

CLK

(BX or BY)

MUX

16-bit Shift Register

Address

194 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Figure 5-11: Cascadable Shift Register

SRLC16
MC15

MC15

D

SRLC16
DI

SHIFTIN

CASCADABLE OUT

SLICE S0

SLICE S2

SLICE S1

SLICE S3

1 Shift Chain
in CLB

CLB

ug070_5_11_071504

FF

FFD

SRLC16
MC15

MC15

D

SRLC16
DI

SHIFTIN

SHIFTOUT

FF

FFD

LUT

LUT

D

DI

FF

FFD

DI

DI

DI

OUT

SRLC16 is unavailable
in this slice

LUT

LUT

D

DI

FF

FFD

DI

SRLC16 is unavailable
in this slice

Virtex-4 FPGA User Guide www.xilinx.com 195
UG070 (v2.6) December 1, 2008

CLB Overview
R

The block diagrams of the shift register (SRL16E) and the cascadable shift register
(SRLC16E) are illustrated in Figure 5-12. The pin descriptions of SRL16E and SRLC16E are
located in the “SRL Primitives and Submodules” section.

Shift Register Data Flow

Shift Operation

The shift operation is a single clock-edge operation, with an active High clock enable
feature. When enable is High, the input (D) is loaded into the first bit of the shift register,
and each bit is shifted to the next highest bit position. In a cascadable shift register
configuration (such as SRLC16), the last bit is shifted out on the Q15 output.

The bit selected by the 4-bit address appears on the Q output.

Dynamic Read Operation

The Q output is determined by the 4-bit address. Each time a new address is applied to the
4-input address pins, the new bit position value is available on the Q output after the time
delay to access the LUT. This operation is asynchronous and independent of the clock and
clock enable signals.

Static Read Operation

If the 4-bit address is fixed, the Q output always uses the same bit position. This mode
implements any shift-register length from one to 16 bits in one LUT. Shift register length is
(N+1) where N is the input address.

The Q output changes synchronously with each shift operation. The previous bit is shifted
to the next position and appears on the Q output.

Figure 5-12: Simplified Shift Register and Cascadable Shift Register

D Q

Address

CE

CLK

SRL16E

UG070_5_12_071504

D Q

Address

CE

CLK

SRLC16E

D Q

Q15

Q15

Address

CE

CLK

SRLC16E

196 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Shift Register Summary

• A shift operation requires one clock edge.

• Dynamic-length read operations are asynchronous (Q output).

• Static-length read operations are synchronous (Q output).

• The data input has a setup-to-clock timing specification.

• In a cascadable configuration, the Q15 output always contains the last bit value.

• The Q15 output changes synchronously after each shift operation.

Multiplexers

Virtex-4 FPGA function generators and associated multiplexers can implement the
following:

• 4:1 multiplexer in one slice

• 8:1 multiplexer in two slices

• 16:1 multiplexer in one CLB element (4 slices)

• 32:1 multiplexer in two CLB elements (8 slices - 2 adjacent CLBs)

Wide input multiplexers are implemented in one level of logic (or LUT) and by dedicated
MUXFX. These multiplexers are fully combinatorial.

Each Virtex-4 FPGA slice has one MUXF5 multiplexer and one MUXFX multiplexer. The
MUXFX multiplexer implements the MUXF6, MUXF7, or MUXF8, according to the slice
position in the CLB, as shown in Figure 5-13. Each CLB element has two MUXF6
multiplexers, one MUXF7 multiplexer and one MUXF8 multiplexer. MUXFX are designed
to allow LUT combinations of up to 16 LUTs in two adjacent CLBs. Any LUT can
implement a 2:1 multiplexer. Examples of multiplexers are shown in the Designing Large
Multiplexers section.

Virtex-4 FPGA User Guide www.xilinx.com 197
UG070 (v2.6) December 1, 2008

CLB Overview
R

Figure 5-13: MUXF5 and MUXFX Multiplexers

SLICE S2

SLICE S0

SLICE S3

SLICE S1

CLB

ug070_5_13_071504

F
5

F
6

F
5

F
7

F
5

F
6

F
5

F
8

MUXF8 combines
the two MUXF7 outputs
(Two CLBs)

MUXF6 combines the two MUXF5
outputs from slices S1 and S3

MUXF7 combines the two MUXF6
outputs from slices S0 and S1

MUXF6 combines the two MUXF5
outputs from slices S0 and S2

G

F

G

F

G

F

G

F

198 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Designing Large Multiplexers

4:1 Multiplexer

Each Virtex-4 FPGA slice has a MUXF5 to combine the outputs of the two LUTs and an
extra MUXFX. Figure 5-14 illustrates a valid combinatorial function with up to nine inputs
(or a 4:1 MUX) in one slice.

Figure 5-14: LUTs and MUXF5 in a Slice

LUT

LUT

Reg

Reg

MUXFX

Any Slice

MUXF5

4

4

S_F5

OUT_F5

UG070_5_14_071504

Virtex-4 FPGA User Guide www.xilinx.com 199
UG070 (v2.6) December 1, 2008

CLB Overview
R

8:1 Multiplexer

Slice S0 and S1 have a MUXF6. MUXF6 is designed to combine the outputs of two MUXF5
resources. Figure 5-15 illustrates a combinatorial function up to 18 inputs (or an 8:1 MUX)
in the slices S0 and S2, or in the slices S1 and S3.

16:1 Multiplexer

Slice S2 has a MUXF7. MUXF7 is designed to combine the outputs of two MUXF6.
Figure 5-16 illustrates a combinatorial function up to 35 inputs (or a 16:1 MUX) in a
Virtex-4 FPGA CLB.

Figure 5-15: LUTs and (MUXF5 and MUXF6) in Two Slices

LUT

LUT

Reg

Reg

MUXF6

Slice S0 (or S1)

Slice S2 (or S3)

MUXF5

4

4

S_F5

S_F6

OUT_F6

LUT

LUT

Reg

Reg

MUXFX

MUXF5

4

4

UG070_5_15_071504

200 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Figure 5-16: LUTs and (MUXF5, MUXF6, and MUXF7) in One CLB

LUT

LUT

Reg

Reg

MUXF6

Slice S1

Slice S3

MUXF5

4

4

S_F5

S_F5

S_F6

LUT

LUT

Reg

Reg

MUXF8

MUXF5

4

4

UG070_5_16_071504

LUT

LUT

Reg

Reg

MUXF6

Slice S0

Slice S2

MUXF5

4

4

S_F5

S_F5

S_F6

LUT

LUT

Reg

Reg

MUXF7 OUT_F

MUXF5

4

4

S_F7

Virtex-4 FPGA User Guide www.xilinx.com 201
UG070 (v2.6) December 1, 2008

CLB Overview
R

32:1 Multiplexer

Slice S3 of each CLB has a MUXF8. Combinatorial functions of up to 68 inputs (or a 32:1
MUX) fit in two CLBs as shown in Figure 5-17. The outputs of two MUXF7 are combined
through dedicated routing resources between two adjacent CLBs in a column.

Figure 5-17: MUXF8 Combining Two Adjacent CLBs

MUXF8 OUT_F8

Slice S3

MUXF6

Slice S1

MUXF7

Slice S2

MUXF6

Slice S0
CLB

MUXF8

Slice S3

MUXF6

Slice S1

MUXF7

Slice S2

MUXF6

Slice S0
CLB

UG070_5_17_071504

202 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Wide-Input Multiplexer Summary

Each LUT can implement a 2:1 multiplexer. In each slice, the MUXF5 and two LUTs can
implement a 4:1 multiplexer. The MUXF6 and two slices can implement a 8:1 multiplexer.
The MUXF7 and the four slices of any CLB can implement a 16:1, and the MUXF8 and two
CLBs can implement a 32:1 multiplexer. Figure 5-18 summarizes the implementation of a
wide-input multiplexer. The section “Multiplexer Verilog/VHDL Examples” has code for
the wide-input multiplexers.

Fast Lookahead Carry Logic

Dedicated carry logic provides fast arithmetic addition and subtraction. The Virtex-4
FPGA CLB has two separate carry chains, as shown in the Figure 5-19.

Figure 5-18: 8:1 and 16:1 Multiplexers

LUT

DATA[0]

DATA[1]

DATA[7:0]

DATA[15:8]

16:1 output

SELECT[2:0]

SELECT[3]

LUT

DATA[2]

DATA[3]

LUT

8:1
(S1 & S3)

8:1
(S0 & S2)

DATA[4] 8:1 Output

DATA[5]

LUT

F5

F6

F7

DATA[6]

DATA[7]

SELECT[0]

SELECT[1]

SELECT[2]

F5

8:1 MUX 16:1 MUX

S0 CLB

S2

UG070_5_18_071504

Virtex-4 FPGA User Guide www.xilinx.com 203
UG070 (v2.6) December 1, 2008

CLB Overview
R

The height of the carry chains is two bits per slice. The carry chain in the Virtex-4 device is
running upward. The dedicated carry path and carry multiplexer (MUXCY) can also be
used to cascade function generators for implementing wide logic functions.

Figure 5-19: Fast Carry Logic Path

FFLUT

O I MUXCY

FFLUT

O I MUXCY

FFLUT

O I MUXCY

FFLUT

O I MUXCY

CIN

CIN CIN

COUT

FFLUT

O I MUXCY

FFLUT

O I MUXCY

FFLUT

O I MUXCY

FFLUT

O I MUXCY

CIN

COUT

COUT
to CIN of S1 of the next CLB

COUT
to S0 of the next CLB

(First Carry Chain)

(Second Carry Chain)

SLICE S2

SLICE S0

SLICE S3

SLICE S1

CLB

ug070_5_19_071504

204 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Arithmetic Logic

The arithmetic logic includes an XOR gate that allows a 2-bit full adder to be implemented
within a slice. In addition, a dedicated AND (FAND or GAND) gate (shown in Figure 5-2)
improves the efficiency of multiplier implementation.

CLB / Slice Timing Models
Due to the large size and complexity of Virtex-4 FPGAs, understanding the timing
associated with the various paths and functional elements has become a difficult and
important task. Although it is not necessary to understand the various timing parameters
to implement most designs using Xilinx software, a thorough timing model can assist
advanced users in analyzing critical paths or planning speed-sensitive designs.

Three timing model sections are described.

• Functional element diagram - basic architectural schematic illustrating pins and
connections.

• Timing parameters - definitions of Virtex-4 Data Sheet timing parameters.

• Timing Diagram - illustrates functional element timing parameters relative to each
other.

Use the models in this chapter in conjunction with both the Xilinx Timing Analyzer
software (TRCE) and the section on switching characteristics in the Virtex-4 Data Sheet. All
pin names, parameter names, and paths are consistent with the post-route timing and pre-
route static timing reports. Most of the timing parameters found in the section on
switching characteristics are described in this chapter.

All timing parameters reported in the Virtex-4 Data Sheet are associated with slices and
configurable logic blocks (CLBs). The following sections correspond to specific switching
characteristics sections in the Virtex-4 Data Sheet:

• “General Slice Timing Model and Parameters” (CLB Switching Characteristics)

• “Slice Distributed RAM Timing Model and Parameters (Available in SLICEM only)”
(CLB Distributed RAM Switching Characteristics)

• “Slice SRL Timing Model and Parameters (Available in SLICEM only)” (CLB SRL
Switching Characteristics)

• “Slice Carry-Chain Timing Model and Parameters” (CLB Application Switching
Characteristics)

Virtex-4 FPGA User Guide www.xilinx.com 205
UG070 (v2.6) December 1, 2008

CLB / Slice Timing Models
R

General Slice Timing Model and Parameters
A simplified Virtex-4 FPGA slice is shown in Figure 5-20. Some elements of the Virtex-4
FPGA slice are omitted for clarity. Only the elements relevant to the timing paths described
in this section are shown.

Timing Parameters

Table 5-5 shows the general slice timing parameters for a majority of the paths in
Figure 5-20.

Figure 5-20: Simplified Virtex-4 FPGA General SLICEL/SLICEM

LUT

FX

G
inputs

FXINA MUXFX

FXINB

D
FF/LAT

Q

REV

D

CE

CLK

SR

BY

BX

CE

CLK

SR

Y

YQ

F5
MUXF5

X
LUT

F
inputs

D

FF/LAT

Q

REV

D

CE

CLK

SR

XQ

UG070_5_20_071504

Table 5-5: General Slice Timing Parameters

Parameter Function Description

Combinatorial Delays

TILO F/G inputs to X/Y outputs Propagation delay from the F/G inputs of the slice, through the look-
up tables (LUTs), to the X/Y outputs of the slice.

TIF5 F/G inputs to F5 output Propagation delay from the F/G inputs of the slice, through the LUTs
and MUXF5 to the F5 output of the slice.

TIF5X F/G inputs to XMUX output Propagation delay from the F/G inputs of the slice, through the LUTs
and MUXF5 to the XMUX output of the slice.

206 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

TIF6Y FXINA/FXINB inputs to
YMUX output

Propagation delay from the FXINA/FXINB inputs, through F6MUX to
the YMUX output of the slice.

TINAFX/TINBFX FXINA/FXINB inputs to FX
output

Propagation delay from the FXINA/FXINB inputs, through F6MUX to
the FX output of the slice.

Sequential Delays

TCKO FF Clock (CLK) to XQ/YQ
outputs

Time after the clock that data is stable at the XQ/YQ outputs of the
slice sequential elements (configured as a flip-flop).

TCKLO Latch Clock (CLK) to
XQ/YQ outputs

Time after the clock that data is stable at the XQ/YQ outputs of the
slice sequential elements (configured as a latch).

Setup and Hold for Slice Sequential Elements

TxxCK = Setup time (before clock edge)
TCKxx = Hold time (after clock edge)

TDICK/TCKDI BX/BY Inputs Time before Clock (CLK) that data from the BX or BY inputs of the
slice must be stable at the D-input of the slice sequential elements
(configured as a flip-flop).

TFXCK/TCKFX FXINA/FXINB Input Time before Clock (CLK) that data from the FXINA or FXINB inputs of
the slice must be stable at the D-input of the slice sequential elements
(configured as a flip-flop).

TCECK/TCKCE CE input Time before Clock (CLK) that the CE (Clock Enable) input of the slice
must be stable at the CE-input of the slice sequential elements
(configured as a flip-flop).

TSRCK/TCKSR SR/BY inputs Time before Clock (CLK) that the SR (Set/Reset) and the BY (Rev)
inputs of the slice must be stable at the SR/Rev-inputs of the slice
sequential elements (configured as a flip-flop). Synchronous
set/reset only.

Set/Reset

TRPW Minimum Pulse Width for the SR (Set/Reset) and BY (Rev) pins.

TRQ Propagation delay for an asynchronous Set/Reset of the slice
sequential elements. From SR/BY inputs to XQ/YQ outputs.

FTOG Toggle Frequency - Maximum Frequency that a CLB flip-flop can be
clocked: 1/(TCH+TCL).

Table 5-5: General Slice Timing Parameters (Continued)

Parameter Function Description

Virtex-4 FPGA User Guide www.xilinx.com 207
UG070 (v2.6) December 1, 2008

CLB / Slice Timing Models
R

Timing Characteristics

Figure 5-21 illustrates the general timing characteristics of a Virtex-4 FPGA slice.

• At time TCECK before clock event (1), the clock-enable signal becomes valid-High at
the CE input of the slice register.

• At time TDICK or TFXCK before clock event (1), data from either BX, BY, FXINA or
FXINB inputs become valid-High at the D input of the slice register and is reflected on
either the XQ or YQ pin at time TCKO after clock event (1).

• At time TSRCK before clock event (3), the SR signal (configured as synchronous reset in
this case) becomes valid-High, resetting the slice register. This is reflected on the XQ
or YQ pin at time TCKO after clock event (3).

Figure 5-21: General Slice Timing Characteristics

CLK

1 2 3

CE

DI/FX
(DATA)

SR
(RESET)

YQ
(OUT)

TCECK

TDICK/TFXCK

TSRCK

TCKO TCKO

UG070_5_21_080204

208 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Slice Distributed RAM Timing Model and Parameters
(Available in SLICEM only)

Figure 5-22 illustrates the details of distributed RAM implemented in a Virtex-4 FPGA
slice. Some elements of the Virtex-4 FPGA slice are omitted for clarity. Only the elements
relevant to the timing paths described in this section are shown.

Figure 5-22: Simplified Virtex-4 FPGA SLICEM Distributed RAM

RAM
G4

FXINA

FXINB

ADDRESS

D

FX

Y

F5

X

WE

WSGEN

CK

G3
G2
G1

SLICEWE[1:0]

WS DI

WS DI

BY
DATA_IN or
Address

RAM
F4

CLK

SR

(Write Enable)

DF3
F2
F1

XMUX

BX
DATA_IN or
Address

ADDRESS

UG070_5_22_071504

MUXFX

COUT

MUXF5

YMUX

Virtex-4 FPGA User Guide www.xilinx.com 209
UG070 (v2.6) December 1, 2008

CLB / Slice Timing Models
R

Distributed RAM Timing Parameters

Table 5-6 shows the timing parameters for the distributed RAM in SLICEM for a majority
of the paths in Figure 5-22.

Distributed RAM Timing Characteristics

The timing characteristics of a 16-bit distributed RAM implemented in a Virtex-4 FPGA
slice (LUT configured as RAM) are shown in Figure 5-23.

Table 5-6: Distributed RAM Timing Parameters

Parameter Function Description

Sequential Delays for Slice LUT Configured as RAM (Distributed RAM)

TSHCKO CLK to X Time after the Clock (CLK) of a Write operation that the data written to the
distributed RAM is stable on the X output of the slice.

TSHCKOF5 CLK to F5 output (WE
active)

Time after the Clock (CLK) of a Write operation that the data written to the
distributed RAM is stable on the F5 output of the slice.

Setup and Hold for Slice LUT Configured as RAM (Distributed RAM)

TxS = Setup time (before clock edge)
TxH = Hold time (after clock edge)

The following descriptions are for setup times only.

TDS/TDH BX/BY configured as data
input (DI)

Time before the clock that data must be stable at the BX/BY input of the
slice.

TAS/TAH F/G Address inputs Time before the clock that address signals must be stable at the F/G inputs
of the slice LUT (configured as RAM).

TWS/TWH WE input (SR) Time before the clock that the write enable signal must be stable at the WE
input of the slice LUT (configured as RAM).

Clock CLK

TWC Minimum clock period to meet address write cycle time.

Figure 5-23: Slice Distributed RAM Timing Characteristics

1 2 3 4 5 6 7

TWPH

TWC

TAS

TWPL

TDS/TCYCK

TWS

TSHCKO

CLK

ADDR

WE

DI

DATA_OUT
X/XMUX

Output

2

1

1 MEM(F)

WRITE READ READWRITE WRITE WRITE

0 1 0 MEM(E)

F

X

3

0

4

1

5

0

E

X

UG070_5_23_080204

TILO TILO

210 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Clock Event 1: Write Operation

During a Write operation, the contents of the memory at the address on the ADDR inputs
are changed. The data written to this memory location is reflected on the X/Y outputs
synchronously.

• At time TWS before clock event 1, the write-enable signal (WE) becomes valid-High,
enabling the RAM for the following Write operation.

• At time TAS before clock event 1, the address (2) becomes valid at the F/G inputs of
the RAM.

• At time TDS or TCYCK before clock event 1, the DATA becomes valid (1) at the DI input
of the RAM and is reflected on the X/XMUX output at time TSHCKO after clock
event 1.

This is also applicable to the XMUX, YMUX, XB, YB, COUT, and F5 outputs at time TWOSCO,
TWOSX, TWOSXB, TWOSYB, and TSHCKOF5 after clock event 1.

Clock Event 2: Read Operation

All Read operations are asynchronous in distributed RAM. As long as WE is Low, the
address bus can be asserted at any time. The contents of the RAM on the address bus are
reflected on the X/Y outputs after a delay of length TILO (propagation delay through a
LUT). The address (F) is asserted after clock event 2, and the contents of the RAM at
address (F) are reflected on the output after a delay of length TILO.

Virtex-4 FPGA User Guide www.xilinx.com 211
UG070 (v2.6) December 1, 2008

CLB / Slice Timing Models
R

Slice SRL Timing Model and Parameters (Available in SLICEM only)
Figure 5-24 illustrates shift register implementation in a Virtex-4 FPGA slice. Some
elements of the Virtex-4 FPGA slice have been omitted for clarity. Only the elements
relevant to the timing paths described in this section are shown.

Figure 5-24: Simplified Virtex-4 FPGA Slice SRL

SRLG3

FXINA

FXINB

ADDRESS

D

MC15

SRL
D

MC15

FX

YB

F5

WE

WSGEN

CK

G2
G1
G0

WS DI

WS DI

YMUX

BY
(DATA_IN or
ADDRESS)

F3

CLK

SR

Shift_In

F2
F1
F0

BX
(DATA_IN or
ADDRESS)

Shift_Out

Shift_In

CIN

X

XB

ADDRESS

MUXF5

MUXFX

UG070_5_24_071504

Y

COUT

XMUX

212 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Slice SRL Timing Parameters

Table 5-7 shows the SLICEM SRL timing parameters for a majority of the paths in
Figure 5-24.

Slice SRL Timing Characteristics

Figure 5-25 illustrates the timing characteristics of a 16-bit shift register implemented in a
Virtex-4 FPGA slice (LUT configured as SRL).

Table 5-7: Slice SRL Timing Parameters

Parameter Function Description

Sequential Delays for Slice LUT Configured as SRL (Select Shift Register)

TREG CLK to X/Y outputs Time after the Clock (CLK) of a Write operation that the data written to
the SRL is stable on the X/Y outputs of the slice.

TCKSH CLK to Shift_out Time after the Clock (CLK) of a Write operation that the data written to
the SRL is stable on the Shift_out or XB/YB outputs of the slice.

TREGF5 CLK to F5 output Time after the Clock (CLK) of a Write operation that the data written to
the SRL is stable on the F5 output of the slice.

TREGXB/
TREGYB

CLK to XB/YB outputs Time after the Clock (CLK) of a Write operation that the data written to
the SRL is stable on the XB/YB outputs of the slice.

Setup/Hold Times for Slice LUT Configured as SRL (Select Shift Register)

TxxS = Setup time (before clock edge)
TxxH= Hold time (after clock edge)

The following descriptions are for setup times only.

TWS/
TWH

CE input (WE) Time before the clock that the write enable signal must be stable at the
WE input of the slice LUT (configured as SRL).

TDS/
TDH

BX/BY configured as data
input (DI)

Time before the clock that the data must be stable at the BX/BY input
of the slice.

Figure 5-25: Slice SRL Timing Characteristics

1 2 3 4 5 6

16

TWS

TDS

TREG

TREGXB

CLK

Shift_In (DI)

Write Enable
(SR)

Address

Data Out (D)

MSB (MC15)

0

0

X

X X X X X X X

0 1 1 0

0

1 1 0 1

2 1

1 1 0 1 0

UG070_5_25_080204

TILO TILO

Virtex-4 FPGA User Guide www.xilinx.com 213
UG070 (v2.6) December 1, 2008

CLB / Slice Timing Models
R

Clock Event 1: Shift_In

During a Write (Shift_In) operation, the single-bit content of the register at the address on
the ADDR inputs is changed, as data is shifted through the SRL. The data written to this
register is reflected on the X/Y outputs synchronously, if the address is unchanged during
the clock event. If the ADDR inputs are changed during a clock event, the value of the data
at the addressable output (D) is invalid.

• At time TWSS before clock event 1, the write-enable signal (SR) becomes valid-High,
enabling the SRL for the Write operation that follows.

• At time TDS before clock event 1 the data becomes valid (0) at the DI input of the SRL
and is reflected on the X/Y output after a delay of length TREG after clock event 1.
Since the address 0 is specified at clock event 1, the data on the DI input is reflected at
the D output, because it is written to register 0.

Clock Event 2: Shift_In

• At time TDS before clock event 2, the data becomes valid (1) at the DI input of the SRL
and is reflected on the X/Y output after a delay of length TREG after clock event 2.
Since the address 0 is still specified at clock event 2, the data on the DI input is
reflected at the D output, because it is written to register 0.

Clock Event 3: Shift_In/Addressable (Asynchronous) READ

All Read operations are asynchronous to the CLK signal. If the address is changed
(between clock events), the contents of the register at that address are reflected at the
addressable output (X/Y outputs) after a delay of length TILO (propagation delay through
a LUT).

• At time TDS before clock event 3 the data becomes valid (1) at the DI input of the SRL,
and is reflected on the X/Y output TREG time after clock event 3.

• The address is changed (from 0 to 2) some time after clock event 3. The value stored in
register 2 at this time is a 0 (in this example, this was the first data shifted in), and it is
reflected on the X/Y output after a delay of length TILO.

Clock Event 16: MSB (Most Significant Bit) Changes

At time TREGXB after clock event 16, the first bit shifted into the SRL becomes valid (logical
0 in this case) on the XB output of the slice via the MC15 output of the LUT (SRL). This is
also applicable for the XMUX, YMUX, XB, YB, COUT, and F5 outputs at time TWOSCO,
TWOSX, TWOSXB, and TWOSYB after clock event 16.

Slice Carry-Chain Timing Model and Parameters
Figure 5-26 illustrates a carry-chain in a Virtex-4 FPGA slice. Some elements of the Virtex-4
FPGA slice have been omitted for clarity. Only the elements relevant to the timing paths
described in this section are shown.

214 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Figure 5-26: Simplified Virtex-4 FPGA Slice Carry-Chain Diagram

LUT

GAND

FAND

FX

G
inputs

FXINA MUXFX

CYMUXG

CYMUXF

FXINB

D
FF/LAT

Q

REV

D

CE

CLK

SR

BY

BX

CE

CLK

SR

CIN

Y

YMUX

YQ

F5MUXF5

X

LUT

F
inputs

D

FF/LAT

Q

REV

D

CE

CLK

SR

XQ

COUT

XMUX

ug070_5_26_071504

Virtex-4 FPGA User Guide www.xilinx.com 215
UG070 (v2.6) December 1, 2008

CLB / Slice Timing Models
R

Slice Carry-Chain Timing Parameters

Table 5-8 shows the slice carry-chain timing parameters for a majority of the paths in
Figure 5-26.

Slice Carry-Chain Timing Characteristics

Figure 5-27 illustrates the timing characteristics of a slice carry chain implemented in a
Virtex-4 FPGA slice.

• At time TCINCK before clock event 1, data from CIN input becomes valid-High at the D
input of the slice register. This is reflected on either the XQ or YQ pin at time TCKO
after clock event 1.

Table 5-8: Slice Carry-Chain Timing Parameters

Parameter Function Description

Sequential Delays for Slice LUT Configured as Carry Chain

TBXCY/
TBYCY

BX/BY input to COUT
output

Propagation delay from the BX/BY inputs of the slice, to COUT output of the
slice.

TBYP CIN input to COUT output Propagation delay from the CIN input of the slice, to COUT output of the slice.

TFANDCY/
TGANDCY

F/G input to COUT output Propagation delay from the F/G inputs of the slice, to COUT output of the
slice using FAND (product).

TOPCYF/
TOPCYG

F/G input to COUT output Propagation delay from the F/G input of the slice to COUT output of the slice.

TOPX/
TOPY

F/G input to
XMUX/YMUX output

Propagation delay from the F/G inputs of the slice, to XMUX/YMUX output
of the slice using XOR (sum).

Setup/Hold Times for Slice LUT Configured as Carry Chain

TxxS = Setup time (before clock edge)
TxxH = Hold time (after clock edge)

The following descriptions are for setup times only.

TCINCK/
TCKCIN

CIN Data inputs (DI) Time before Clock (CLK) that data from the CIN input of the slice must be
stable at the D-input of the slice sequential elements (configured as a flip-
flop). Figure 5-27 shows the worst-case path.

Figure 5-27: Slice Carry-Chain Timing Characteristics

CLK

1 2 3

CIN
(DATA)

SR
(RESET)

YQ
(OUT)

TCINCK

TRCK

TCKO TCKO

ug070_5_27_080204

216 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

• At time TSRCK before clock event 3, the SR signal (configured as synchronous reset in
this case) becomes valid-High, resetting the slice register. This is reflected on either the
XQ or YQ pin at time TCKO after clock event 3.

CLB Primitives and Verilog/VHDL Examples

Distributed RAM Primitives
Four primitives are available; from 16 x 1-bit to 64 x 1-bit. Three primitives are single-port
RAM, and one primitive is a dual-port RAM, as shown in Table 5-9.

The input and output data are 1-bit wide. However, several distributed RAMs can be used
to implement wide memory blocks.

Figure 5-28 shows generic single-port and dual-port distributed RAM primitives. The A
and DPRA signals are address busses.

As shown in Table 5-10, wider primitives are available for 2-bit, 4-bit, and 8-bit RAM.

Table 5-9: Single-Port and Dual-Port Distributed RAM

Primitive RAM Size Type Address Inputs

RAM16X1S 16 bits single-port A3, A2, A1, A0

RAM32X1S 32 bits single-port A4, A3, A2, A1, A0

RAM64X1S 64 bits single-port A5, A4, A3, A2, A1, A0

RAM16X1D 16 bits dual-port A3, A2, A1, A0

Figure 5-28: Single-Port and Dual-Port Distributed RAM Primitive

Table 5-10: Wider Primitives

Primitive RAM Size Data Inputs Address Inputs Data Outputs

RAM16X2S 16 x 2-bit D1, D0 A3, A2, A1, A0 O1, O0

RAM32X2S 32 x 2-bit D1, D0 A4, A3, A2, A1, A0 O1, O0

RAM16X4S 16 x 4-bit D3, D2, D1, D0 A3, A2, A1, A0 O3, O2, O1, O0

DPRA[#:0]

A[#:0]

D

WE

WCLK

RAM16X1D

SPO

DPO

ug070_5_28_071504

R/W Port

Read Port

RAM#X1S

O

A[#:0]

D

WE

WCLK

Virtex-4 FPGA User Guide www.xilinx.com 217
UG070 (v2.6) December 1, 2008

CLB Primitives and Verilog/VHDL Examples
R

VHDL and Verilog Instantiations
VHDL and Verilog instantiation templates are available as examples (see VHDL and
Verilog Templates).

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of
the architecture section should include the design signal names.

The RAM_#S templates (with # = 16, 32, 64) are single-port modules and instantiate the
corresponding RAM#X1S primitive.

RAM_16D templates are dual-port modules and instantiate the corresponding
RAM16X1D primitive.

Port Signals
Each distributed RAM port operates independently of the other while reading the same set
of memory cells.

Clock - WCLK

The clock is used for the synchronous write. The data and the address input pins have
setup time referenced to the WCLK pin.

Enable - WE

The enable pin affects the write functionality of the port. An inactive Write Enable prevents
any writing to memory cells. An active Write Enable causes the clock edge to write the data
input signal to the memory location pointed to by the address inputs.

Address - A0, A1, A2, A3 (A4, A5)

The address inputs select the memory cells for read or write. The width of the port
determines the required address inputs. Note that the address inputs are not a bus in
VHDL or Verilog instantiations.

Data In - D

The data input provides the new data value to be written into the RAM.

Data Out - O, SPO, and DPO

The data out O (Single-Port or SPO) and DPO (Dual-Port) reflects the contents of the
memory cells referenced by the address inputs. Following an active write clock edge, the
data out (O or SPO) reflects the newly written data.

Inverting Control Pins

The two control pins (WCLK and WE) each have an individual inversion option. Any
control signal, including the clock, can be active at 0 (negative edge for the clock) or at 1
(positive edge for the clock) without requiring other logic resources.

Global Set/Reset - GSR

The global set/reset (GSR) signal does not affect distributed RAM modules. For more
information on the GSR, see the BUFGSR section in the Xilinx Software Manual.

218 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Attributes

Content Initialization - INIT

With the INIT attributes, users can define the initial memory contents after configuration.
By default distributed RAM is initialized with all zeros during the device configuration
sequence. The initialization attribute INIT represents the specified memory contents. Each
INIT is a hex-encoded bit vector. Table 5-11 shows the length of the INIT attribute for each
primitive.

Initialization in VHDL or Verilog Codes

Distributed RAM structures can be initialized in VHDL or Verilog code for both synthesis
and simulation. For synthesis, the attributes are attached to the distributed RAM
instantiation and are copied in the EDIF output file to be compiled by Xilinx Alliance Series
tools. The VHDL code simulation uses a generic parameter to pass the attributes. The
Verilog code simulation uses a defparam parameter to pass the attributes.

The distributed RAM instantiation templates (in VHDL and Verilog) illustrate these
techniques (“VHDL and Verilog Templates”).

Location Constraints

The CLB has four slices S0, S1, S2 and S3. As an example, in the bottom left CLB, the slices
have the coordinates shown in Figure 5-1.

Distributed RAM instances can have LOC properties attached to them to constrain
placement. The RAM16X1S primitive fits in any LUT of slices S0 or S2.

For example, the instance U_RAM16 is placed in slice X0Y0 with the following LOC
properties:

INST "U_RAM16" LOC = "SLICE_X0Y0";

Distributed RAM placement locations use the slice location naming convention, allowing
LOC properties to transfer easily from array to array.

Table 5-11: INIT Attributes Length

Primitive Template INIT Attribute Length

RAM16X1S RAM_16S 4 digits

RAM32X1S RAM_32S 8 digits

RAM64X1S RAM_64S 16 digits

RAM16X1D RAM_16S 4 digits

Virtex-4 FPGA User Guide www.xilinx.com 219
UG070 (v2.6) December 1, 2008

CLB Primitives and Verilog/VHDL Examples
R

Creating Larger RAM Structures

Wider and/or deeper memory structures can be created using multiple distributed RAM
instances. Table 5-12 shows the generic VHDL and Verilog distributed RAM examples
provided to implement n-bit-wide memories.

By using the read/write port for the write address and the second read port for the read
address, a FIFO that can read and write simultaneously is easily generated. Simultaneous
access doubles the effective throughput of the memory.

VHDL and Verilog Templates

VHDL and Verilog templates are available for all single-port and dual-port primitives. The
number in each template indicates the number of bits (for example, RAM_16S is the
template for the 16 x 1-bit RAM); S indicates single-port, and D indicates dual-port.

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of
the architecture section should include the design signal names.

The single-port templates are:

• RAM_16S

• RAM_32S

• RAM_64S

The dual-port templates are:

• RAM_16D

Templates for the RAM_16S module are provided in VHDL and Verilog code as examples.

VHDL Template

--
-- Module: RAM_16S
--
-- Description: VHDL instantiation template
-- Distributed RAM
-- Single Port 16 x 1
-- can be used also for RAM16X1S_1
--
-- Device: Virtex-4 Family
--

--
-- Components Declarations:
--

Table 5-12: VHDL and Verilog Submodules

Submodules Primitive Size Type

XC4V_RAM16XN_S RAM16X1S 16 words x n-bit single-port

XC4V_RAM32XN_S RAM32X1S 32 words x n-bit single-port

XC4V_RAM64XN_S RAM64X1S 64 words x n-bit single-port

XC4V_RAM16XN_D RAM16X1D 16 words x n-bit dual-port

220 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

component RAM16X1S
generic (

 INIT : bit_vector := X"0000"
);
 port (
 D : in std_logic;
 WE : in std_logic;
 WCLK : in std_logic;
 A0 : in std_logic;
 A1 : in std_logic;
 A2 : in std_logic;
 A3 : in std_logic;
 O : out std_logic
);
end component;
--

--
-- Architecture section:
--
-- Attributes for RAM initialization ("0" by default):
attribute INIT: string;
--
attribute INIT of U_RAM16X1S: label is "0000";
--
-- Distributed RAM Instantiation
U_RAM16X1S: RAM16X1S
 port map (

D => , -- insert input signal
WE => , -- insert Write Enable signal
WCLK => , -- insert Write Clock signal
A0 => , -- insert Address 0 signal
A1 => , -- insert Address 1 signal
A2 => , -- insert Address 2 signal
A3 => , -- insert Address 3 signal
O => -- insert output signal

);
--

 Verilog Template

//
// Module: RAM_16S
//
// Description: Verilog instantiation template
// Distributed RAM
// Single Port 16 x 1
// can be used also for RAM16X1S_1
//
// Device: Virtex-4 Family
//
//---
//Distributed RAM Instantiation
RAM16X1S U_RAM16X1S (.D(), // insert input signal
 .WE(), // insert Write Enable signal
 .WCLK(), // insert Write Clock signal
 .A0(), // insert Address 0 signal
 .A1(), // insert Address 1 signal

Virtex-4 FPGA User Guide www.xilinx.com 221
UG070 (v2.6) December 1, 2008

Shift Registers (SRLs) Primitives and Verilog/VHDL Example
R

 .A2(), // insert Address 2 signal
 .A3(), // insert Address 3 signal
 .O() // insert output signal
);

Shift Registers (SRLs) Primitives and Verilog/VHDL Example
This section provides generic VHDL and Verilog submodules and reference code examples
for implementing from 16-bit up to 64-bit shift registers. These submodules are built from
16-bit shift-register primitives and from dedicated MUXF5, MUXF6, MUXF7, and MUXF8
multiplexers.

SRL Primitives and Submodules
Eight primitives are available that offer optional clock enable (CE), inverted clock (CLK)
and cascadable output (Q15) combinations.

Table 5-13 lists all of the available primitives for synthesis and simulation.

In addition to the 16-bit primitives, 32-bit and 64-bit cascadable shift registers can be
implemented in VHDL and Verilog. Table 5-14 lists the available submodules.

The submodules are based on SRLC16E primitives and are associated with dedicated
multiplexers (MUXF5, MUXF6, and so forth). This implementation allows a fast static- and
dynamic-length mode, even for very large shift registers.

Figure 5-29 represents the cascadable shift registers (32-bit and 64-bit) implemented by the
submodules in Table 5-14.

Table 5-13: Shift Register Primitives

Primitive Length Control Address Inputs Output

SRL16 16 bits CLK A3,A2,A1,A0 Q

SRL16E 16 bits CLK, CE A3,A2,A1,A0 Q

SRL16_1 16 bits CLK A3,A2,A1,A0 Q

SRL16E_1 16 bits CLK, CE A3,A2,A1,A0 Q

SRLC16 16 bits CLK A3,A2,A1,A0 Q, Q15

SRLC16E 16 bits CLK, CE A3,A2,A1,A0 Q, Q15

SRLC16_1 16 bits CLK A3,A2,A1,A0 Q, Q15

SRLC16E_1 16 bits CLK, CE A3,A2,A1,A0 Q, Q15

Table 5-14: Shift Register Submodules

Submodule Length Control Address Inputs Output

SRLC32E_MACRO 32 bits CLK, CE A4,A3,A2,A1,A0 Q, Q31

SRLC64E_MACRO 64 bits CLK, CE A5, A4, A3,A2,A1,A0 Q, Q63

222 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

All clock enable (CE) and clock (CLK) inputs are connected to one global clock enable and
one clock signal per submodule. If a global static- or dynamic-length mode is not required,
the SRLC16E primitive can be cascaded without multiplexers.

Figure 5-29: Shift-Register Submodules (32-bit, 64-bit)

D D

4

5

A3, A2, A1, A0

A4

Add.

4

A[3:0]

CE

Q

Q

Q15

Q15

SRLC16E

UG070_5_29_071504

D

A[3:0]

CE

Q

SRLC16E

32-bit Shift Register

64-bit Shift Register

MUXF5

Q31

D

4

4

4

6

A3, A2, A1, A0

A5, A4 A5

A4

Add.

4

MUXF5

MUXF5

D

A[3:0]

CE

Q

Q15

Q15

SRLC16E

D

A[3:0]

CE

Q

SRLC16E

D

A[3:0]

CE

Q

Q15

Q15

SRLC16E

D

A[3:0]

CE

Q

SRLC16E

MUXF6

Q

Q63

Virtex-4 FPGA User Guide www.xilinx.com 223
UG070 (v2.6) December 1, 2008

Shift Registers (SRLs) Primitives and Verilog/VHDL Example
R

Initialization in VHDL or Verilog Code
A shift register can be initialized in VHDL or Verilog code for both synthesis and
simulation. For synthesis, the attribute is attached to the 16-bit shift register instantiation
and is copied in the EDIF output file to be compiled by Xilinx Alliance Series tools. The
VHDL code simulation uses a generic parameter to pass the attributes. The Verilog code
simulation uses a defparam parameter to pass the attributes.

The Virtex-4_SRL16E shift register instantiation code examples (in VHDL and Verilog)
illustrate these techniques (“VHDL and Verilog Templates”). Virtex-4_SRL16E.vhd
and Virtex-4_SRL16E.v files are not a part of the documentation.

Port Signals

Clock - CLK

Either the rising edge or the falling edge of the clock is used for the synchronous shift
operation. The data and clock enable input pins have setup times referenced to the chosen
edge of CLK.

Data In - D

The data input provides new data (one bit) to be shifted into the shift register.

Clock Enable - CE (optional)

The clock enable pin affects shift functionality. An inactive clock enable pin does not shift
data into the shift register and does not write new data. Activating the clock enable allows
the data in (D) to be written to the first location and all data to be shifted by one location.
When available, new data appears on output pins (Q) and the cascadable output pin (Q15).

Address - A0, A1, A2, A3

Address inputs select the bit (range 0 to 15) to be read. The nth bit is available on the output
pin (Q). Address inputs have no effect on the cascadable output pin (Q15); it is always the
last bit of the shift register (bit 15).

Data Out - Q

The data output Q provides the data value (1 bit) selected by the address inputs.

Data Out - Q15 (optional)

The data output Q15 provides the last bit value of the 16-bit shift register. New data
becomes available after each shift-in operation.

Inverting Control Pins

The two control pins (CLK, CE) have an individual inversion option. The default is the
rising clock edge and active High clock enable.

Global Set/Reset - GSR

The global set/reset (GSR) signal has no impact on shift registers.

224 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Attributes

Content Initialization - INIT

The INIT attribute defines the initial shift register contents. The INIT attribute is a hex-
encoded bit vector with four digits (0000).The left-most hexadecimal digit is the most
significant bit. By default the shift register is initialized with all zeros during the device
configuration sequence, but any other configuration value can be specified.

Location Constraints
Each CLB resource has four slices: S0, S1, S2, and S3. As an example, in the bottom left CLB
resource, each slice has the coordinates shown in Table 5-15.

To constrain placement, shift register instances can have LOC properties attached to them.
Each 16-bit shift register fits in one LUT.

A 32-bit shift register in static or dynamic address mode fits in one slice (two LUTs and one
MUXF5). This shift register can be placed in SLICEM only.

A 64-bit shift register in static or dynamic address mode fits in two slices. These slices are
S0 and S2. Figure 5-30 illustrates the position of the four LUTs in a CLB resource.

The dedicated CLB shift chain runs from the top slice to the bottom slice. The data input
pin must either be in slice S0 or in S2. The address selected as the output pin (Q) is the
MUXF6 output.

Table 5-15: Slice Coordinates in the Bottom-Left CLB Resource

Slice S3 Slice S2 Slice S1 Slice S0

X1Y1 X0Y1 X1Y0 X0Y0

Figure 5-30: Shift Register Placement

UG070_5_30_122205

a

LUT

Slice S2

F5

F5

Q63

LUT

LUT

Slice S0

F6

LUT

(output SRLC64E)

CLB

SRLC64E

D

Virtex-4 FPGA User Guide www.xilinx.com 225
UG070 (v2.6) December 1, 2008

Shift Registers (SRLs) Primitives and Verilog/VHDL Example
R

Fully Synchronous Shift Registers
All shift-register primitives and submodules do not use the register(s) available in the
same slice(s). To implement a fully synchronous read and write shift register, output pin Q
must be connected to a flip-flop. Both the shift register and the flip-flop share the same
clock, as shown in Figure 5-31.

This configuration provides a better timing solution and simplifies the design. Because the
flip-flop must be considered to be the last register in the shift-register chain, the static or
dynamic address should point to the desired length minus one. If needed, the cascadable
output can also be registered in a flip-flop.

Static-Length Shift Registers
The cascadable16-bit shift register implements any static length mode shift register
without the dedicated multiplexers (MUXF5, MUXF6,…). Figure 5-32 illustrates a 40-bit
shift register. Only the last SRLC16E primitive needs to have its address inputs tied to
0111. Alternatively, shift register length can be limited to 39 bits (address tied to 0110)
and a flip-flop can be used as the last register. (In an SRLC16E primitive, the shift register
length is the address input + 1.)

Figure 5-31: Fully Synchronous Shift Register

D Q

Q15

Address

CE (Write Enable)

CLK

SRLC16E
QD Synchronous

Output

UG070_5_31_031208

FF

Figure 5-32: 40-bit Static-Length Shift Register

DD

Q15
SRLC16

LUT

D

Q15
SRLC16

LUT

D Q OUT
(40-bit SRL)A[3:0]

Q15
SRLC16

LUT

0111 4

DD

Q15
SRLC16

LUT

D

Q15
SRLC16

LUT

D Q OUT
(40-bit SRL)A[3:0]

Q15
SRLC16

D Q

LUT

FF

0110

UG070_5_32_031208

226 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

VHDL and Verilog Instantiation
VHDL and Verilog instantiation templates are available for all primitives and submodules.

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of
the architecture section should include the design signal names.

The ShiftRegister_C_x (with x = 16, 32, or 64) templates are cascadable modules and
instantiate the corresponding SRLCxE primitive (16) or submodule (32 or 64).

The ShiftRegister_16 template can be used to instantiate an SRL16 primitive.

VHDL and Verilog Templates

In template nomenclature, the number indicates the number of bits (for example,
SHIFT_REGISTER_16 is the template for the 16-bit shift register). A “C” extension means
the template is cascadable.

The following are templates for primitives:

• SHIFT_REGISTER_16

• SHIFT_REGISTER_C_16

The following are templates for submodules:

• SHIFT_REGISTER_C_32 (submodule: SRLC32E_SUBM)

• SHIFT_REGISTER_C_64 (submodule: SRLC64E_SUBM)

The corresponding submodules have to be synthesized with the design.

Templates for the SHIFT_REGISTER_16_C module are provided in VHDL and Verilog
code as an example.

VHDL Template

-- Module: SHIFT_REGISTER_C_16
-- Description: VHDL instantiation template
-- CASCADABLE 16-bit shift register with enable (SRLC16E)
-- Device: Virtex-4 Family

-- Components Declarations:
--
component SRLC16E
 INIT : bit_vector := X"0000"
);

 port (
 D : in std_logic;
 CE : in std_logic;
 CLK : in std_logic;
 A0 : in std_logic;
 A1 : in std_logic;
 A2 : in std_logic;
 A3 : in std_logic;
 Q : out std_logic;
 Q15 : out std_logic
);

end component;
-- Architecture Section:
--
-- Attributes for Shift Register initialization ("0" by default):

Virtex-4 FPGA User Guide www.xilinx.com 227
UG070 (v2.6) December 1, 2008

Multiplexer Primitives and Verilog/VHDL Examples
R

attribute INIT: string;
--
attribute INIT of U_SRLC16E: label is "0000";
--
-- ShiftRegister Instantiation
U_SRLC16E: SRLC16E
 port map (
D => , -- insert input signal
CE => , -- insert Clock Enable signal (optional)
CLK => , -- insert Clock signal
A0 => , -- insert Address 0 signal
A1 => , -- insert Address 1 signal
A2 => , -- insert Address 2 signal
A3 => , -- insert Address 3 signal
Q => , -- insert output signal
Q15 => -- insert cascadable output signal
);

Verilog Template

// Module: SHIFT_REGISTER_16
// Description: Verilog instantiation template
// Cascadable 16-bit Shift Register with Clock Enable (SRLC16E)
// Device: Virtex-4 Family
//---
defparam
SRLC16E U_SRLC16E (.D(),

 .A0(),
 .A1(),
 .A2(),
 .A3(),
 .CLK(),
 .CE(),
 .Q(),
 .Q15()

);

Multiplexer Primitives and Verilog/VHDL Examples
This section provides generic VHDL and Verilog reference code implementing
multiplexers. These submodules are built from LUTs and the dedicated MUXF5, MUXF6,
MUXF7, and MUXF8 multiplexers. To automatically generate large multiplexers using
these dedicated elements, use the CORE Generator software Bit Multiplexer and Bus
Multiplexer modules.

For applications such as comparators, encoder-decoders or “case” statement in VHDL or
Verilog, these resources offer an optimal solution.

228 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Multiplexer Primitives and Submodules
Four primitives are available for access to the dedicated MUXFX in each slice. In the
example shown in Table 5-16, MUXF7 is available only in slice S2.

In addition to the primitives, five submodules to implement multiplexers from 2:1 to 32:1
are provided in VHDL and Verilog code. Synthesis tools can automatically infer these
primitives (MUXF5, MUXF6, MUXF7, and MUXF8); however, the submodules described
in this section use instantiation of the new MUXFX to guarantee an optimized result.
Table 5-17 lists available submodules.

Port Signals

Data In - DATA_I

The data input provides the data to be selected by the SELECT_I signal(s).

Control In - SELECT_I

The select input signal or bus determines the DATA_I signal to be connected to the output
DATA_O. For example, the MUX_4_1_SUBM multiplexer has a 2-bit SELECT_I bus and a
4-bit DATA_I bus. Table 5-18 shows the DATA_I selected for each SELECT_I value.

Table 5-16: MUXFX Resources

Primitive Slice Control Input Output

MUXF5 S0, S1, S2, S3 S I0, I1 O

MUXF6 S0, S1 S I0, I1 O

MUXF7 S2 S I0, I1 O

MUXF8 S3 S I0, I1 O

Table 5-17: Available Submodules

Submodule Multiplexer Control Input Output

MUX_2_1_SUBM 2:1 SELECT_I DATA_I[1:0] DATA_O

MUX_4_1_SUBM 4:1 SELECT_I[1:0] DATA_I[3:0] DATA_O

MUX_8_1_SUBM 8:1 SELECT_I[2:0] DATA_I[8:0] DATA_O

MUX_16_1_SUBM 16:1 SELECT_I[3:0] DATA_I[15:0] DATA_O

MUX_32_1_SUBM 32:1 SELECT_I[4:0] DATA_I[31:0] DATA_O

Table 5-18: Selected Inputs

SELECT_I[1:0] DATA_O

0 0 DATA_I[0]

0 1 DATA_I[1]

1 0 DATA_I[2]

1 1 DATA_I[3]

Virtex-4 FPGA User Guide www.xilinx.com 229
UG070 (v2.6) December 1, 2008

Multiplexer Primitives and Verilog/VHDL Examples
R

Data Out - DATA_O

The data output O provides the data value (1 bit) selected by the control inputs.

Multiplexer Verilog/VHDL Examples
Multiplexers are used in various applications. These are often inferred by synthesis tools
when a “case” statement is used (see the following example). Comparators, encoder-
decoders and wide-input combinatorial functions are optimized when they are based on
one level of LUTs and dedicated MUXFX resources of the Virtex-4 FPGA CLBs.

VHDL and Verilog Instantiation

The primitives (MUXF5, MUXF6, and so forth) can be instantiated in VHDL or Verilog
code, to design wide-input functions.

The submodules (MUX_2_1_SUBM, MUX_4_1_SUBM, and so forth) can be instantiated in
VHDL or Verilog code to implement multiplexers. However the corresponding submodule
must be added to the design directory as hierarchical submodule. For example, if a module
is using the MUX_16_1_SUBM, the MUX_16_1_SUBM.vhd file (VHDL code) or
MUX_16_1_SUBM.v file (Verilog code) must be compiled with the design source code. The
submodule code can also be copied into the designer source code.

VHDL and Verilog Submodules

VHDL and Verilog submodules are available to implement multiplexers up to 32:1. They
illustrate how to design with the MUXFX resources. When synthesis infers the
corresponding MUXFX resource(s), the VHDL or Verilog code is behavioral code (“case”
statement). Otherwise, the equivalent “case” statement is provided in comments and the
correct MUXFX are instantiated. However, most synthesis tools support the inference of all
of the MUXFX. The examples are guidelines for designing other wide-input functions. The
available submodules are:

• MUX_2_1_SUBM (behavioral code)

• MUX_4_1_SUBM

• MUX_8_1_SUBM

• MUX_16_1_SUBM

• MUX_32_1_SUBM

The corresponding submodules have to be synthesized with the design. The submodule
MUX_16_1_SUBM is provided as an example in VHDL and Verilog.

VHDL Template

-- Module: MUX_16_1_SUBM
-- Description: Multiplexer 16:1
-- Device: Virtex-4 Family

library IEEE;
use IEEE.std_logic_1164.all;
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
entity MUX_16_1_SUBM is
 port (
 DATA_I: in std_logic_vector (15 downto 0);
 SELECT_I: in std_logic_vector (3 downto 0);

230 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

 DATA_O: out std_logic
);

end MUX_16_1_SUBM;
architecture MUX_16_1_SUBM_arch of MUX_16_1_SUBM is
-- Component Declarations:
component MUXF7
 port (
 I0: in std_logic;
 I1: in std_logic;
 S: in std_logic;
 O: out std_logic
);
end component;
signal DATA_MSB : std_logic;
signal DATA_LSB : std_logic;
--
begin
SELECT_PROCESS_LSB: process (SELECT_I, DATA_I)
begin
case SELECT_I (2 downto 0) is
when "000" => DATA_LSB <= DATA_I (0);
when "001" => DATA_LSB <= DATA_I (1);
when "010" => DATA_LSB <= DATA_I (2);
when "011" => DATA_LSB <= DATA_I (3);
when "100" => DATA_LSB <= DATA_I (4);
when "101" => DATA_LSB <= DATA_I (5);
when "110" => DATA_LSB <= DATA_I (6);
when "111" => DATA_LSB <= DATA_I (7);
when others => DATA_LSB <= 'X';

end case;
end process SELECT_PROCESS_LSB;
--
SELECT_PROCESS_MSB: process (SELECT_I, DATA_I)
begin
case SELECT_I (2 downto 0) is
when "000" => DATA_MSB <= DATA_I (8);
when "001" => DATA_MSB <= DATA_I (9);
when "010" => DATA_MSB <= DATA_I (10);
when "011" => DATA_MSB <= DATA_I (11);
when "100" => DATA_MSB <= DATA_I (12);
when "101" => DATA_MSB <= DATA_I (13);
when "110" => DATA_MSB <= DATA_I (14);
when "111" => DATA_MSB <= DATA_I (15);
when others => DATA_MSB <= 'X';

end case;
end process SELECT_PROCESS_MSB;
--
-- MUXF7 instantiation
U_MUXF7: MUXF7
 port map (
 I0 => DATA_LSB,
 I1 => DATA_MSB,
 S => SELECT_I (3),
 O => DATA_O
);
--
end MUX_16_1_SUBM_arch;
--

Virtex-4 FPGA User Guide www.xilinx.com 231
UG070 (v2.6) December 1, 2008

Multiplexer Primitives and Verilog/VHDL Examples
R

Verilog Template

// Module: MUX_16_1_SUBM
//
// Description: Multiplexer 16:1
// Device: Virtex-4 Family
//---
//
module MUX_16_1_SUBM (DATA_I, SELECT_I, DATA_O);
input [15:0]DATA_I;
input [3:0]SELECT_I;

output DATA_O;

wire [2:0]SELECT;

reg DATA_LSB;
reg DATA_MSB;

assign SELECT[2:0] = SELECT_I[2:0];
always @ (SELECT or DATA_I)
 case (SELECT)
 3'b000 : DATA_LSB <= DATA_I[0];
3'b001 : DATA_LSB <= DATA_I[1];
3'b010 : DATA_LSB <= DATA_I[2];
3'b011 : DATA_LSB <= DATA_I[3];

 3'b100 : DATA_LSB <= DATA_I[4];
3'b101 : DATA_LSB <= DATA_I[5];
3'b110 : DATA_LSB <= DATA_I[6];
3'b111 : DATA_LSB <= DATA_I[7];
default : DATA_LSB <= 1'bx;

 endcase

always @ (SELECT or DATA_I)

 case (SELECT)
 3'b000 : DATA_MSB <= DATA_I[8];
3'b001 : DATA_MSB <= DATA_I[9];
3'b010 : DATA_MSB <= DATA_I[10];
3'b011 : DATA_MSB <= DATA_I[11];

 3'b100 : DATA_MSB <= DATA_I[12];
3'b101 : DATA_MSB <= DATA_I[13];
3'b110 : DATA_MSB <= DATA_I[14];
3'b111 : DATA_MSB <= DATA_I[15];
default : DATA_MSB <= 1'bx;

 endcase

// MUXF7 instantiation

MUXF7 U_MUXF7 (.I0(DATA_LSB),
.I1(DATA_MSB),
.S(SELECT_I[3]),

 .O(DATA_O)
);

endmodule
//
*/

232 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Virtex-4 FPGA User Guide www.xilinx.com 233
UG070 (v2.6) December 1, 2008

R

Chapter 6

SelectIO Resources

I/O Tile Overview
Input/output characteristics and logic resources are covered in three consecutive chapters.
Chapter 6, “SelectIO Resources,” describes the electrical behavior of the output drivers and
input receivers, and gives detailed examples of many standard interfaces. Chapter 7,
“SelectIO Logic Resources,” describes the input and output data registers and their
Double-Data-Rate (DDR) operation, and the programmable input delay (IDELAY).
Chapter 8, “Advanced SelectIO Logic Resources,” describes the data
serializer/deserializer (SERDES).

An I/O tile contains two IOBs, two ILOGICs, and two OLOGICs. Figure 6-1 shows a
Virtex-4 FPGA I/O tile.

Figure 6-1: Virtex-4 FPGA I/O Tile

ug070_6_01_071104

ILOGIC
(Chapter 7)

or
ISERDES

(Chapter 8)

OLOGIC
(Chapter 7)

or
OSERDES
(Chapter 8)

IOB
(Chapter 6) Pad

ILOGIC
(Chapter 7)

or
ISERDES

(Chapter 8)

OLOGIC
(Chapter 7)

or
OSERDES
(Chapter 8)

IOB
(Chapter 6) Pad

234 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

SelectIO Resources Introduction
All Virtex-4 FPGAs have configurable high-performance SelectIO™ technology drivers
and receivers, supporting a wide variety of standard interfaces. The robust feature set
includes programmable control of output strength and slew rate, and on-chip termination
using Digitally Controlled Impedance (DCI). All banks can support 3.3V I/O.

Each IOB contains both input, output, and 3-state SelectIO drivers. These drivers can be
configured to various I/O standards. Differential I/O uses the two IOBs grouped together
in one tile.

• Single-ended I/O standards (LVCMOS, LVTTL, HSTL, SSTL, GTL, PCI)

• Differential I/O standards (LVDS, LDT, LVPECL, BLVDS, CSE Differential HSTL and
SSTL)

Note: Differential and VREF-dependent inputs are powered by VCCAUX.

Each Virtex-4 FPGA I/O tile contains two IOBs, and also two ILOGIC blocks and two
OLOGIC blocks, as described in Chapter 7, “SelectIO Logic Resources”.

Figure 6-2 shows the basic IOB and its connections to the internal logic and the device pad.

Each IOB has a direct connection to an ILOGIC/OLOGIC pair containing the input and
output logic resources for data and 3-state control for the IOB. When using multiple clocks
in Virtex-4 FPGA I/O tiles, the input clocks to the two ILOGIC blocks and the two
OLOGIC blocks are not shared. Both ILOGIC and OLOGIC can be configured as ISERDES
and OSERDES, respectively, as described in Chapter 8, “Advanced SelectIO Logic
Resources.”

SelectIO Technology Resources General Guidelines
This section summarizes the general guidelines to be considered when designing with the
SelectIO technology resources of Virtex-4 FPGAs.

Figure 6-2: Basic IOB Diagram

ug070_6_02_071904

PADOUT

DIFFO_IN

DIFFO_OUT

I

T

O

DIFFI_IN

OUTBUF
INBUF

PAD

Virtex-4 FPGA User Guide www.xilinx.com 235
UG070 (v2.6) December 1, 2008

SelectIO Technology Resources General Guidelines
R

Virtex-4 FPGA I/O Bank Rules
The number of banks available in Virtex-4 devices is not limited to eight as in previous
Xilinx® architectures. In Virtex-4 devices, with some exceptions in the center column, an
I/O bank consists of 64 IOBs (32 CLBs and two clock regions). As a result, the number of
banks depends upon the device size. In the Virtex-4 Family Overview the total number of
I/O banks is listed by device type. The XC4VLX25 has 10 usable I/O banks and one
configuration bank. Figure 6-3 is an example of a columnar floorplan showing the
XC4VLX25 I/O banks.

3.3V I/O Support

The Virtex-4 architecture supports 3.3V single-ended I/O standards in all banks.

Reference Voltage (VREF) Pins

Low-voltage, single-ended I/O standards with a differential amplifier input buffer require
an input reference voltage (VREF). VREF is an external input into Virtex-4 devices. Within
each I/O bank, one of every 16 I/O pins is automatically configured as a VREF input, if
using a single-ended I/O standard requiring a differential amplifier input buffer.

Output Drive Source Voltage (VCCO) Pins

Many of the low-voltage I/O standards supported by Virtex-4 devices require a different
output drive voltage (VCCO). As a result, each device often supports multiple output drive
source voltages.

Output buffers within a given VCCO bank must share the same output drive source
voltage. The following input buffers use the VCCO voltage: LVTTL, LVCMOS, PCI, LVDCI
and other DCI standards.

Figure 6-3: XC4VLX25 I/O Banks

ug070_6_03_071404

BANK
64 I/O

BANK
64 I/O

BANK
64 I/O

BANK
64 I/O

BANK

BANK

BANK

BANK

BANK
64 I/O

BANK
64 I/O

236 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Virtex-4 FPGA Digitally Controlled Impedance (DCI)

Introduction

As FPGAs get bigger and system clock speeds get faster, PC board design and
manufacturing becomes more difficult. With ever faster edge rates, maintaining signal
integrity becomes a critical issue. PC board traces must be properly terminated to avoid
reflections or ringing.

To terminate a trace, resistors are traditionally added to make the output and/or input
match the impedance of the receiver or driver to the impedance of the trace. However, due
to increased device I/Os, adding resistors close to the device pins increases the board area
and component count, and can in some cases be physically impossible. To address these
issues and to achieve better signal integrity, Xilinx developed the Digitally Controlled
Impedance (DCI) technology.

DCI adjusts the output impedance or input termination to accurately match the
characteristic impedance of the transmission line. DCI actively adjusts the impedance of
the I/O to equal an external reference resistance. This compensates for changes in I/O
impedance due to process variation. It also continuously adjusts the impedance of the I/O
to compensate for variations of temperature and supply voltage fluctuations.

In the case of controlled impedance drivers, DCI controls the driver impedance to match
two reference resistors, or optionally, to match half the value of these reference resistors.
DCI eliminates the need for external series termination resistors.

DCI provides the parallel or series termination for transmitters or receivers. This
eliminates the need for termination resistors on the board, reduces board routing
difficulties and component count, and improves signal integrity by eliminating stub
reflection. Stub reflection occurs when termination resistors are located too far from the
end of the transmission line. With DCI, the termination resistors are as close as possible to
the output driver or the input buffer, thus, eliminating stub reflections.

Xilinx DCI

DCI uses two multi-purpose reference pins in each bank to control the impedance of the
driver or the parallel termination value for all of the I/Os of that bank. The N reference pin
(VRN) must be pulled up to VCCO by a reference resistor, and the P reference pin (VRP)
must be pulled down to ground by another reference resistor. The value of each reference
resistor should be equal to the characteristic impedance of the PC board traces, or should
be twice that value (see section “Driver with Termination to VCCO/2 (Split Termination),”
page 241).

When a DCI I/O standard is used on a particular bank, the two multi-purpose reference
pins cannot be used as regular I/Os. However, if DCI I/O standards are not used in the
bank, these pins are available as regular I/O pins. The Virtex-4 Packaging and Pinout
Specification gives detailed pin descriptions.

DCI adjusts the impedance of the I/O by selectively turning transistors in the I/Os on or
off. The impedance is adjusted to match the external reference resistors. The impedance
adjustment process has two phases. The first phase compensates for process variations by
controlling the larger transistors in the I/Os. It occurs during the device startup sequence.
The second phase maintains the impedance in response to temperature and supply voltage
changes by controlling the smaller transistors in the I/Os. It begins immediately after the
first phase and continues indefinitely, even while the device is operating. By default, the
DONE pin does not go High until the first phase of the impedance adjustment process is
complete.

Virtex-4 FPGA User Guide www.xilinx.com 237
UG070 (v2.6) December 1, 2008

SelectIO Technology Resources General Guidelines
R

The coarse impedance calibration during first phase of impedance adjustment can be
invoked after configuration by instantiating the DCIRESET primitive. By toggling the RST
input to the DCIRESET primitive while the device is operating, the DCI state machine is
reset and both phases of impedance adjustment proceed in succession. All I/Os using DCI
will be unavailable until the LOCKED output from the DCIRESET block is asserted.

This functionality is useful in applications where the temperature and/or supply voltage
changes significantly from device power-up to the nominal operating condition. Once at
the nominal operating temperature and voltage, performing the first phase of impedance
adjustment allows optimal headroom for the second phase of impedance adjustment.

For controlled impedance output drivers, the impedance can be adjusted either to match
the reference resistors or half the resistance of the reference resistors. For on-chip
termination, the termination is always adjusted to match the reference resistors.

DCI can configure output drivers to be the following types:

1. Controlled Impedance Driver (Source Termination)

2. Controlled Impedance Driver with Half Impedance (Source Termination)

It can also configure inputs to have the following types of on-chip terminations:

1. Input termination to VCCO (Single Termination)

2. Input termination to VCCO/2 (Split Termination, Thevenin equivalent)

For bidirectional operation, both ends of the line can be DCI-terminated permanently:

1. Driver with termination to VCCO (Single Termination)

2. Driver with termination to VCCO/2 (Split Termination, Thevenin equivalent)

Alternatively, bidirectional point-to-point lines can use controlled-impedance drivers
(with 3-state buffers) on both ends.

Controlled Impedance Driver (Source Termination)

Some I/O standards, such as LVCMOS, must have a drive impedance matching the
characteristic impedance of the driven line. DCI can provide controlled impedance output
drivers to eliminate reflections without an external source termination. The impedance is
set by the external reference resistors with resistance equal to the trace impedance.

The DCI I/O standards supporting the controlled impedance driver are: LVDCI_15,
LVDCI_18, LVDCI_25, LVDCI_33, HSLVDCI_15, HSLVDCI_18, HSLVDCI_25, and
HSLVDCI_33. Figure 6-4 illustrates a controlled impedance driver in a Virtex-4 device.

Controlled Impedance Driver with Half Impedance (Source Termination)

DCI also provides drivers with one half of the impedance of the reference resistors. This
doubling of the reference resistor value reduces the static power consumption through

Figure 6-4: Controlled Impedance Driver

UG070_6_04_030708

IOB
R

Virtex-4 FPGA DCI

Z0

238 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

these resistors by a factor of half. The DCI I/O standards supporting controlled impedance
drivers with half-impedance are LVDCI_DV2_15, LVDCI_DV2_18, and LVDCI_DV2_25.

Figure 6-5 illustrates a controlled driver with half impedance inside a Virtex-4 device. The
reference resistors R must be 2 × Z0 in order to match the impedance of Z0.

Input Termination to VCCO (Single Termination)

Some I/O standards require an input termination to VCCO (see Figure 6-6).

DCI can also provide input termination to VCCO using single termination. The termination
resistance is set by the reference resistors. Both GTL and HSTL standards are controlled by
50Ω reference resistors. The DCI I/O standards supporting single termination are:
GTL_DCI, GTLP_DCI, HSTL_III_DCI, HSTL_III_DCI_18, HSTL_IV_DCI, and
HSTL_IV_DCI_18.

Figure 6-7 illustrates DCI single termination inside a Virtex-4 device.

Figure 6-5: Controlled Impedance Driver with Half Impedance

UG070_6_05_030708

IOB
R/2

Virtex-4 FPGA DCI

Z0

Figure 6-6: Input Termination to VCCO without DCI

Figure 6-7: Input Termination Using DCI Single Termination

R

UG070_6_06_102808

VCCO

VREF

IOB

Z0

Virtex-4 FPGA

R

UG070_6_07_030708

VCCO

VREF

IOB

Z0

Virtex-4 FPGA DCI

Virtex-4 FPGA User Guide www.xilinx.com 239
UG070 (v2.6) December 1, 2008

SelectIO Technology Resources General Guidelines
R

Input Termination to VCCO/2 (Split Termination)

Some I/O standards (e.g., HSTL Class I and II) require an input termination voltage of
VCCO/2 (see Figure 6-8).

This is equivalent to having a split termination composed of two resistors. One terminates
to VCCO, the other to ground. The resistor values are 2R. DCI provides termination to
VCCO/2 using split termination. The termination resistance is set by the external reference
resistors, i.e., the resistors to VCCO and ground are each twice the reference resistor value.
Both HSTL and SSTL standards need 50Ω external reference resistors. The DCI I/O
standards supporting split termination are: HSTL_I_DCI, HSTL_I_DCI_18, HSTL_II_DCI,
HSTL_II_DCI_18, DIFF_HSTL_II_DCI, DIFF_HSTL_II_DCI_18, SSTL2_I_DCI,
SSTL2_II_DCI, SSTL18_I_DCI, SSTL18_II_DCI, DIFF_SSTL2_II_DCI, and
DIFF_SSTL18_II_DCI.

Figure 6-9 illustrates split termination inside a Virtex-4 device.

Figure 6-8: Input Termination to VCCO/2 without DCI

Figure 6-9: Input Termination to VCCO/2 Using DCI Split Termination

R

UG070_6_08_030708

VCCO/2

VREF

IOB

Z0

Virtex-4 FPGA

2R

2R

UG070_6_09_030708

VCCO

VREF

IOB

Z0

Virtex-4 FPGA DCI

240 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Driver with Termination to VCCO (Single Termination)

Some I/O standards (e.g., HSTL Class IV) require an output termination to VCCO.
Figure 6-10 illustrates an output termination to VCCO.

DCI can provide an output termination to VCCO using single termination. In this case, DCI
only controls the impedance of the termination, but not the driver. Both GTL and HSTL
standards need 50Ω external reference resistors. The DCI I/O standards supporting
drivers with single termination are: GTL_DCI, GTLP_DCI, HSTL_IV_DCI, and
HSTL_IV_DCI_18.

Figure 6-11 illustrates a driver with single termination inside a Virtex-4 device.

Figure 6-10: Driver with Termination to VCCO without DCI

Figure 6-11: Driver with Termination to VCCO Using DCI Single Termination

R

UG070_6_10_030708

VCCO

IOB

Z0

Virtex-4 FPGA

R

UG070_6_11_030708

VCCO
IOB

Z0

Virtex-4 FPGA DCI

Virtex-4 FPGA User Guide www.xilinx.com 241
UG070 (v2.6) December 1, 2008

SelectIO Technology Resources General Guidelines
R

Driver with Termination to VCCO/2 (Split Termination)

Some I/O standards, such as HSTL Class II, require an output termination to VCCO/2 (see
Figure 6-12).

DCI can provide output termination to VCCO/2 using split termination. DCI only controls
the impedance of the termination, but not the driver. Both HSTL and SSTL standards need
50Ω external reference resistors. The DCI I/O standards supporting drivers with split
termination are: HSTL_II_DCI, HSTL_II_DCI_18, SSTL2_II_DCI, SSTL18_II_DCI,
DIFF_HSTL_II_DCI, DIFF_HSTL_II_DCI_18, DIFF_SSTL2_II_DCI, and
DIFF_SSTL18_II_DCI.

Figure 6-13 illustrates a driver with split termination inside a Virtex-4 device.

DCI in Virtex-4 FPGA Hardware
DCI works with single-ended I/O standards and the 2.5V LVDS I/O standard. DCI
supports the following Virtex-4 FPGA standards:

LVDCI, HSLVDCI, LVDCI_DV2, GTL_DCI, GTLP_DCI, HSTL_I_DCI, HSTL_II_DCI,
HSTL_III_DCI, HSTL_IV_DCI, HSTL_I_DCI_18, HSTL_II_DCI_18, HSTL_III_DCI_18,
HSTL_IV_DCI_18, SSTL2_I_DCI, SSTL2_II_DCI, SSTL18_I_DCI, SSTL18_II_DCI,
DIFF_HSTL_II_DCI, DIFF_HSTL_II_DCI_18, DIFF_SSTL2_II_DCI, DIFF_SSTL18_II_DCI,
LVDS_25_DCI, and LVDSEXT_25_DCI.

To correctly use DCI in a Virtex-4 device, users must follow the following rules:

Figure 6-12: Driver with Termination to VCCO/2 without DCI

Figure 6-13: Driver with Termination to VCCO/2 Using DCI Split Termination

R

UG070_6_12_030708

VCCO/2

IOB

Z0

Virtex-4 FPGA

2R

2R

UG070_6_13_030708

VCCO
IOB

Z0

Virtex-4 FPGA DCI

242 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

1. VCCO pins must be connected to the appropriate VCCO voltage based on the
IOSTANDARDs in that bank.

2. Correct DCI I/O buffers must be used in the software either by using IOSTANDARD
attributes or instantiations in the HDL code.

3. Some DCI standards require that external reference resistors be connected to
multipurpose pins VRP and VRN in the bank. Where this is required, these two
multipurpose pins cannot be used as regular user I/Os. Refer to the Virtex-4 FPGA
pinouts for the specific pin locations. Pin VRN must be pulled up to VCCO by its
reference resistor. Pin VRP must be pulled down to ground by its reference resistor.

However, some DCI standards do not require external reference resistors on the
VRP/VRN pins. If these are the only DCI-based I/O standards in a bank, the VRP and
VRN pins in that bank can be used as general-purpose I/Os.

♦ The following DCI outputs do not require reference resistors on VRP/VRN:

HSTL_I_DCI
HSTL_III_DCI
HSTL_I_DCI_18
HSTL_III_DCI_18
SSTL2_I_DCI
SSTL18_I_DCI

♦ The following inputs do not require reference resistors on VRP/VRN:

LVDCI_15
LVDCI_18
LVDCI_25
LVDCI_33
LVDCI_DV2_15
LVDCI_DV2_18
LVDCI_DV2_25
LVDCI_DV2_33

4. The value of the external reference resistors should be selected to give the desired
output impedance. If using GTL_DCI, HSTL_DCI, or SSTL_DCI I/O standards, then
the external reference resistors should be 50Ω.

5. The values of the reference resistors must be within the supported range (20Ω – 100Ω).

6. Follow the DCI I/O banking rules:

a. VREF must be compatible for all of the inputs in the same bank.

b. VCCO must be compatible for all of the inputs and outputs in the same bank.

c. No more than one DCI I/O standard using single termination type is allowed per
bank.

d. No more than one DCI I/O standard using split termination type is allowed per
bank.

e. Single termination and split termination, controlled impedance driver, and
controlled impedance driver with half impedance can co-exist in the same bank.

7. The following packages to not support DCI in Banks 1 and 2: SF363, FF668, FF676,
FF672, and FF1152.

8. In addition, the following devices do not support DCI in Banks 1 and 2: XC4VLX15,
XC4VLX25, XC4VSX25, XC4VSX35, XC4VFX12, XC4VFX20, XC4VFX40, and
XC4VFX60.

Virtex-4 FPGA User Guide www.xilinx.com 243
UG070 (v2.6) December 1, 2008

SelectIO Technology Resources General Guidelines
R

The behavior of a DCI 3-state outputs is as follows:

If a LVDCI or LVDCI_DV2 driver is in 3-state, the driver is 3-stated. If a driver with single
or split termination is in 3-state, the driver is 3-stated but the termination resistor remains.

The following section lists actions that must be taken for each DCI I/O standard.

DCI Usage Examples

• Figure 6-14 provides examples illustrating the use of the HSTL_I_DCI, HSTL_II_DCI,
HSTL_III_DCI, and HSTL_IV_DCI I/O standards.

• Figure 6-15 provides examples illustrating the use of the SSTL2_I_DCI and
SSTL2_II_DCI I/O standards.

• Figure 6-16 provides examples illustrating the use of the LVDS_25_DCI and
LVDSEXT_25_DCI I/O standards.

244 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Figure 6-14: HSTL DCI Usage Examples

R R

R R

R R

R R

R R

2R

2R

R

2R

R 2R

2R

2R 2R

2R

UG070_6_14_031108

Conventional

DCI Transmit
Conventional
Receive

Conventional
Transmit
DCI Receive

DCI Transmit
DCI Receive

Bidirectional

Reference
Resistor

Recommended
Z0

VRN = VRP = R = Z0

50Ω

VRN = VRP = R = Z0

50Ω

VRN = VRP = R = Z0

50Ω

VRN = VRP = R = Z0

50Ω

HSTL_I HSTL_II HSTL_III HSTL_IV

N/A N/A

R

R

R

R

Z0

R

R

2R

2R

2R

2R

Z0

Z0

Z0

Z0
Z0

Z0
Z0

Z0

Z0
Z0Z0

Z0

Z0

Z0

Z0

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Z0

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCIVirtex-4 FPGA

DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

2R

2R

2R

2R
Z0

R R

VCCO/2

VCCO/2

VCCO/2

VCCO/2

VCCO/2 VCCO/2 VCCO VCCO VCCO

VCCOVCCO

VCCOVCCO

VCCO

VCCO

VCCOVCCOVCCOVCCO

VCCOVCCO

VCCOVCCOVCCO

VCCOVCCO
VCCO VCCO

Notes:
1. Z0 is the recommended PCB trace impedance.

Virtex-4 FPGA User Guide www.xilinx.com 245
UG070 (v2.6) December 1, 2008

SelectIO Technology Resources General Guidelines
R

Figure 6-15: SSTL DCI Usage Examples

UG070_6_15_031108

Conventional

DCI Transmit
Conventional
Receive

Conventional
Transmit
DCI Receive

DCI Transmit
DCI Receive

Bidirectional

Reference
Resistor

Recommended
Z0(2)

VRN = VRP = R = Z0

50 Ω

VRN = VRP = R = Z0

50 Ω

SSTL2_I or SSTL18_I SSTL2_II or SSTL18_II

N/A

Z0

R

VCCO/2

Z0
R/2

R R

VCCO/2 VCCO/2

Z0
R/2

R

VCCO/2

Z0
R/2

2R

2R

VCCO

Z0
R/2

2R

2R

VCCO

2R R

VCCO VCCO/2

2R

Z0

R

VCCO/2

Z0

2R

2R

VCCO

2R

2R

VCCO

Z0

2R

2R

VCCO

Z0

2R

2R

VCCO

2R

2R

VCCO

25Ω(1)

25Ω(1) 25Ω(1)

25Ω(1)

25Ω(1)

25Ω
Virtex-4 FPGA

DCI

Virtex-4 FPGA
DCI Virtex-4 FPGA

DCI
Virtex-4 FPGA

DCI
Virtex-4 FPGA

DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI

Virtex-4 FPGA
DCI Virtex-4 FPGA

DCI

Virtex-4 FPGA
DCI

Notes:
1. The SSTL-compatible 25Ω series resistor is accounted for in the DCI buffer,
 and it is not DCI controlled.
2. Z0 is the recommended PCB trace impedance.

246 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Virtex-4 FPGA SelectIO Primitives
The Xilinx software library includes an extensive list of primitives to support a variety of
I/O standards available in the Virtex-4 FPGA I/O primitives. The following are five
generic primitive names representing most of the available single-ended I/O standards.

• IBUF (input buffer)

• IBUFG (clock input buffer)

• OBUF (output buffer)

• OBUFT (3-state output buffer)

• IOBUF (input/output buffer)

Figure 6-16: LVDS DCI Usage Examples

UG070_6_16_031108

Conventional

Conventional
Transmit
DCI Receive

Reference
Resistor

Recommended
Z0

VRN = VRP = R = Z0

50 Ω

LVDS_25_DCI and LVDSEXT_25_DCI Receiver

Virtex-4 FPGA
LVDS DCI

Z0

2R

2R

VCCO

Z0

2R

2R

VCCO

Virtex-4 FPGA
LVDS

Z0

2R

Z0

Note: Only LVDS25_DCI is supported (VCCO = 2.5V only)

Virtex-4 FPGA User Guide www.xilinx.com 247
UG070 (v2.6) December 1, 2008

Virtex-4 FPGA SelectIO Primitives
R

These five generic primitive names represent most of the available differential I/O
standards:

• IBUFDS (input buffer)

• IBUFGDS (clock input buffer)

• OBUFDS (output buffer)

• OBUFTDS (3-state output buffer)

• IOBUFDS (input/output buffer)

IBUF and IBUFG
Signals used as inputs to Virtex-4 devices must use an input buffer (IBUF). The generic
Virtex-4 FPGA IBUF primitive is shown in Figure 6-17.

The IBUF and IBUFG primitives are the same. IBUFGs are used when an input buffer is
used as a clock input. In the Xilinx software tools, an IBUFG is automatically placed at
clock input sites.

OBUF
An output buffer (OBUF) must be used to drive signals from Virtex-4 devices to external
output pads. A generic Virtex-4 FPGA OBUF primitive is shown in Figure 6-18.

OBUFT
The generic 3-state output buffer OBUFT, shown in Figure 6-19, typically implements
3-state outputs or bidirectional I/O.

Figure 6-17: Input Buffer (IBUF/IBUFG) Primitives

UG070_6_17_031108

IBUF/IBUFG

O (Output)
into FPGA

I (Input)
From Device Pad

Figure 6-18: Output Buffer (OBUF) Primitive

UG070_6_18_031108

OBUF

O (Output)
to Device Pad

I (Input)
From FPGA

Figure 6-19: 3-State Output Buffer (OBUFT) Primitive

UG070_6_19_031108

OBUFT

O (Output)
to Device Pad

I (Input)
From FPGA

T
3-state input

248 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

IOBUF
The IOBUF primitive is needed when bidirectional signals require both an input buffer and
a 3-state output buffer with an active High 3-state pin. Figure 6-20 shows a generic Virtex-4
FPGA IOBUF.

IBUFDS and IBUFGDS
The usage and rules corresponding to the differential primitives are similar to the single-
ended SelectIO primitives. Differential SelectIO primitives have two pins to and from the
device pads to show the P and N channel pins in a differential pair. N channel pins have a
“B” suffix.

Figure 6-21 shows the differential input buffer primitive.

OBUFDS
Figure 6-22 shows the differential output buffer primitive.

Figure 6-20: Input/Output Buffer (IOBUF) Primitive

UG070_6_20_031108

IOBUF

I/O
to/from Device Pad

I (Input)
from FPGA

O (Output)
to FPGA

T
3-state input

Figure 6-21: Differential Input Buffer Primitive (IBUFDS/IBUFGDS)

UG070_6_21_031108

+

–

I

IB

O

IBUFDS/IBUFGDS

Inputs from
Device Pads

Output to
FPGA

Figure 6-22: Differential Output Buffer Primitive (OBUFDS)

UG070_6_22_031108

+

– OB

O
I

OBUFDS

Input from
FPGA

Output to
Device Pads

Virtex-4 FPGA User Guide www.xilinx.com 249
UG070 (v2.6) December 1, 2008

Virtex-4 FPGA SelectIO Primitives
R

OBUFTDS
Figure 6-23 shows the differential 3-state output buffer primitive.

IOBUFDS
Figure 6-24 shows the differential input/output buffer primitive.

Virtex-4 FPGA SelectIO Attributes/Constraints
Access to some Virtex-4 FPGA I/O resource features (e.g., location constraints, input delay,
output drive strength, and slew rate) is available through the attributes/constraints
associated with these features. For more information a Constraints Guide is available on
the Xilinx website with syntax examples and VHDL/Verilog reference code. This guide is
available inside the Software Manuals at:
http://www.support.xilinx.com/support/software_manuals.htm

Location Constraints

The location constraint (LOC) must be used to specify the I/O location of an instantiated
I/O primitive. The possible values for the location constraint are all the external port
identifiers (e.g., A8, M5, AM6, etc.). These values are device and package size dependent.

The LOC attribute uses the following syntax in the UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> LOC =
"<EXTERNAL_PORT_IDENTIFIER>";

Example:

INST MY_IO LOC=R7;

Figure 6-23: Differential 3-state Output Buffer Primitive (OBUFTDS)

UG070_6_23_031108

+

– OB

O
I

T

OBUFTDS

Input from
FPGA

3-state Input

Output to
Device Pads

Figure 6-24: Differential Input/Output Buffer Primitive (IOBUFDS)

UG070_6_24_031108

IOBUFDS

I/O
to/from
Device Pad

I (Input)
from FPGA

O (Output)
to FPGA

T
3-state Input

+

–

+

–

IO

IOB

250 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

IOStandard Attribute

The IOSTANDARD attribute is available to choose the values for an I/O standard for all
I/O buffers. The supported I/O standards are listed in Table 6-38. The IOSTANDARD
attribute uses the following syntax in the UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> IOSTANDARD=”<IOSTANDARD VALUE>”;

The IOSTANDARD default for single-ended I/O is LVCMOS25, for differential I/Os the
default is LVDS_25.

Output Slew Rate Attributes

A variety of attribute values provide the option of choosing the desired slew rate for
single-ended I/O output buffers. For LVTTL and LVCMOS output buffers (OBUF, OBUFT,
and IOBUF), the desired slew rate can be specified with the SLEW attribute.

The allowed values for the SLEW attribute are:

• SLEW = SLOW (Default)

• SLEW = FAST

The SLEW attribute uses the following syntax in the UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> SLEW = "<SLEW_VALUE>";

By the default, the slew rate for each output buffer is set to SLOW. This is the default used
to minimize the power bus transients when switching non-critical signals.

Output Drive Strength Attributes

For LVTTL and LVCMOS output buffers (OBUF, OBUFT, and IOBUF), the desired drive
strength (in mA) can be specified with the DRIVE attribute.

The allowed values for the DRIVE attribute are:

• DRIVE = 2

• DRIVE = 4

• DRIVE = 6

• DRIVE = 8

• DRIVE = 12 (Default)

• DRIVE = 16

• DRIVE = 24

The DRIVE attribute uses the following syntax in the UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> DRIVE = "<DRIVE_VALUE>";

Lower Capacitance I/O Attributes

To lower the effective input capacitance, some I/O resources do not have differential
driver circuits (LVDS_25, LVDSEXT_25, LVDS_25_DCI, LVDSEXT_25_DCI, ULVDS_25,
RSDS_25, and LDT_25). Using these I/Os improves the signal integrity of high-speed clock
inputs. Differential inputs and all output standards other than these are still supported by
low capacitance I/Os. Refer to “Clock Capable I/O” in Chapter 1 for further information.

The allowed values for the CAPACITANCE attribute are:

• DONT_CARE (Default)

Virtex-4 FPGA User Guide www.xilinx.com 251
UG070 (v2.6) December 1, 2008

Virtex-4 FPGA SelectIO Primitives
R

• NORMAL

• LOW

The CAPACITANCE attribute uses the following syntax in the UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> CAPACITANCE=
"<CAPACITANCE_VALUE>";

PULLUP/PULLDOWN/KEEPER for IBUF, OBUFT, and IOBUF

When using 3-state output (OBUFT) or bidirectional (IOBUF) buffers, the output can have
a weak pull-up, a weak pull-down, or a weak keeper circuit. For input (IBUF) buffers, the
input can have either a weak pull-up or a weak pull-down circuit. These features can be
invoked by adding one of the following possible constraint values to the buffer:

• PULLUP

• PULLDOWN

• KEEPER

Xilinx recommends that these internal termination circuits (weak pull-ups, weak pull-
downs and weak keepers) not be used to hold a logic level for a 3-stated signal. It is highly
likely that coupled noise from a PCB trace would swamp out the effect of these termination
circuits. The intended application of the internal termination circuits is to hold logic values
for unconnected pins to prevent spurious switching and consequent power loss. Internal
termination circuits are not intended to drive board-level traces to a defined logic level.

Differential Termination Attribute

The differential termination (DIFF_TERM) attribute is designed for the Virtex-4 FPGA
supported differential input I/O standards. It is used to turn the built-in 100Ω differential
termination on or off.

The allowed values for the DIFF_TERM attribute are:

• TRUE

• FALSE (Default)

To specify the DIFF_TERM attribute, set the appropriate value in the generic map (VHDL)
or inline parameter (Verilog) of the instantiated IBUFDS or IBUFGDS component. Please
refer to the ISE® software Language Templates or the Virtex-4 FPGA HDL Libraries Guide
for the proper syntax for instantiating this component and setting the DIFF_TERM
attribute.

Virtex-4 FPGA I/O Resource VHDL/Verilog Examples
The following examples are VHDL and Verilog syntaxes to declare a standard for Virtex-4
FPGA I/O resources. The example uses IOBUF.

VHDL Template

--Example IOBUF component declaration

component IOBUF
 generic(
 CAPACITANCE : string := "DONT_CARE";
 DRIVE : integer := 12;
 IOSTANDARD : string := "LVCMOS25";

252 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

 SLEW : string := "SLOW"
);

 port(
 O : out std_ulogic;
 IO : inout std_ulogic;
 I : in std_ulogic;
 T : in std_ulogic
);
 end component;

--Example IOBUF instantiation

U_IOBUF : IOBUF
Port map(
O => user_o,
IO => user_io,
I => user_i,
T => user_t
);

Verilog Template

//Example IOBUF module declaration

module IOBUF (O, IO, I, T);

 parameter CAPACITANCE = "DONT_CARE";
 parameter DRIVE = 12;
 parameter IOSTANDARD = "LVCMOS25";
 parameter SLEW = "SLOW";

 output O;
 inout IO;
 input I, T;

 tri0 GTS = glbl.GTS;

 or O1 (ts, GTS, T);
 bufif0 T1 (IO, I, ts);

 buf B1 (O, IO);

endmodule

//Example IOBUF instantiation

IOBUF U_IOBUF (
.O(user_o),
.IO(user_io),
.I(user_i),
.T(user_t));

Virtex-4 FPGA User Guide www.xilinx.com 253
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
The following sections provide an overview of the I/O standards supported by all Virtex-4
devices.

While most Virtex-4 FPGA I/O supported standards specify a range of allowed voltages,
this chapter records typical voltage values only. Detailed information on each specification
can be found on the Electronic Industry Alliance JEDEC website at http://www.jedec.org.

LVTTL (Low Voltage Transistor-Transistor Logic)
The low-voltage TTL (LVTTL) standard is a general purpose EIA/JESDSA standard for
3.3V applications using an LVTTL input buffer and a push-pull output buffer. This
standard requires a 3.3V input and output supply voltage (VCCO), but does not require the
use of a reference voltage (VREF) or a termination voltage (VTT).

Sample circuits illustrating both unidirectional and bidirectional LVTTL termination
techniques are shown in Figure 6-25 and Figure 6-26.

Figure 6-25: LVTTL Unidirectional Termination

Z0

IOB IOB

LVTTL LVTTL

Z0

IOB IOB

LVTTL LVTTL

Z0

IOB IOB

LVTTL LVTTL

ug070_6_25_071904

VTT

Note: VTT is any voltage from 0V to VCCO

RP = Z0

RS = Z0 – RD

254 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Table 6-1 lists the LVTTL DC voltage specifications.

Figure 6-26: LVTTL Bidirectional Termination

Table 6-1: LVTTL DC Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.45

VREF – – –

VTT – – –

VIH 2.0 – 3.45

VIL –0.2 – 0.8

VOH 2.4 – –

VOL – – 0.4

IOH at VOH (mA) Note (2) – –

IOLat VOL (mA) Note (2) - –

Notes:
1. VOL and VOH for lower drive currents are sample tested.
2. Supported DRIVE strengths are 2/4/6/8/12 /16/24 mA.

Z0

IOB IOB

LVTTL

Z0

IOB IOB

LVTTL LVTTL

VTT

Note: VTT is any voltage from 0V to VCCO

RP = Z0

VTT

RP = Z0

ug070_6_26_071904

LVTTL

Virtex-4 FPGA User Guide www.xilinx.com 255
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Table 6-2 details the allowed attributes that can be applied to the LVTTL I/O standard.

LVCMOS (Low Voltage Complementary Metal Oxide Semiconductor)
LVCMOS is a widely used switching standard implemented in CMOS transistors. This
standard is defined by JEDEC (JESD 8-5).

Sample circuits illustrating both unidirectional and bidirectional LVCMOS termination
techniques are shown in Figure 6-27 and Figure 6-28.

Table 6-2: Allowed Attributes for the LVTTL I/O Standard

Attributes
Primitives

IBUF/IBUFG OBUF/OBUFT IOBUF

IOSTANDARD LVTTL LVTTL LVTTL

CAPACITANCE LOW, NORMAL, DONT_CARE

DRIVE UNUSED 2, 4, 6, 8, 12, 16, 24 2, 4, 6, 8, 12, 16, 24

SLEW UNUSED {FAST, SLOW} {FAST, SLOW}

Figure 6-27: LVCMOS Unidirectional Termination

Z0

IOB IOB

LVCMOS LVCMOS

Z0

IOB IOB

LVCMOS LVCMOS

Z0

IOB IOB

LVCMOS LVCMOS

ug070_6_27_071904

VTT

Note: VTT is any voltage from 0V to VCCO

RP = Z0

RS = Z0 – RD

256 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Table 6-3 details the allowed attributes that can be applied to the LVCMOS33 and
LVCMOS25 I/O standards.

Figure 6-28: LVCMOS Bidirectional Termination

Table 6-3: Allowed Attributes for the LVCMOS33 and LVCMOS25 I/O Standards

Attributes
Primitives

IBUF/IBUFG OBUF/OBUFT IOBUF

IOSTANDARD LVCMOS33
LVCMOS25

LVCMOS33
LVCMOS25

LVCMOS33
LVCMOS25

CAPACITANCE LOW, NORMAL, DONT_CARE

DRIVE UNUSED 2, 4, 6, 8, 12, 16, 24 2, 4, 6, 8, 12, 16, 24

SLEW UNUSED {FAST, SLOW} {FAST, SLOW}

Z0

IOB IOB

LVCMOS

Z0

IOB IOB

LVCMOS LVCMOS

VTT

Note: VTT is any voltage from 0V to VCCO

RP = Z0

VTT

RP = Z0

ug070_6_28_071904

LVCMOS

Virtex-4 FPGA User Guide www.xilinx.com 257
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Table 6-4 details the allowed attributes that can be applied to the LVCMOS18 and
LVCMOS15 I/O standards.

LVDCI (Low Voltage Digitally Controlled Impedance)

Using these I/O buffers configures the outputs as controlled impedance drivers. The
receiver of LVDCI is identical to a LVCMOS receiver. Some I/O standards, such as LVTTL,
LVCMOS, etc., must have a drive impedance that matches the characteristic impedance of
the driven line. Virtex-4 devices provide a controlled impedance output driver to provide
series termination without external source termination resistors. The impedance is set by
the common external reference resistors, with resistance equal to the trace characteristic
impedance, Z0.

Sample circuits illustrating both unidirectional and bidirectional termination techniques
for a controlled impedance driver are shown in Figure 6-29 and Figure 6-30. The DCI I/O
standards supporting a controlled impedance driver are: LVDCI_15, LVDCI_18,
LVDCI_25, and LVDCI_33.

Table 6-4: Allowed Attributes for the LVCMOS18 and LVCMOS15 I/O Standard

Attributes
Primitives

IBUF/IBUFG OBUF/OBUFT IOBUF

IOSTANDARD LVCMOS18
LVCMOS15

LVCMOS18
LVCMOS15

LVCMOS18
LVCMOS15

CAPACITANCE LOW, NORMAL, DONT_CARE

DRIVE UNUSED 2, 4, 6, 8, 12, 16 2, 4, 6, 8, 12, 16

SLEW UNUSED {FAST, SLOW} {FAST, SLOW}

Figure 6-29: Controlled Impedance Driver with Unidirectional Termination

Figure 6-30: Controlled Impedance Driver with Bidirectional Termination

Z0

IOB IOB

LVDCI LVDCI

UG070_6_29_031308

R0 = RVRN = RVRP = Z0

Z0

IOB IOB

LVDCI LVDCI

UG070_6_30_031308

R0 = RVRN = RVRP = Z0

R0 = RVRN = RVRP = Z0

258 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

LVDCI_DV2

A controlled impedance driver with half impedance (source termination) can also provide
drivers with one half of the impedance of the reference resistors. The I/O standards
supporting a controlled impedance driver with half impedance are: LVDCI_DV2_15,
LVDCI_DV2_18, and LVDCI_DV2_25. Figure 6-31 and Figure 6-32 illustrate a controlled
driver with half impedance unidirectional and bidirectional termination.

To match the drive impedance to Z0 when using a driver with half impedance, the
reference resistor R must be twice Z0.

There are no drive strength settings for LVDCI drivers. When the driver impedance is one-
half of the VRN/VRP reference resistors, it is indicated by the addition of DV2 to the
attribute name.

Table 6-5 lists the LVCMOS, LVDCI, and LVDCI_DV2 voltage specifications.

Figure 6-31: Controlled Impedance Driver with Half Impedance
Unidirectional Termination

Figure 6-32: Controlled Impedance Driver with Half Impedance
Bidirectional Termination

Z0

IOB IOB
LVDCI_DV2 LVDCI_DV2

UG070_6_31_031308

R0 = ½RVRN = ½RVRP = Z0

Z0

IOB IOB
LVDCI_DV2 LVDCI_DV2

UG070_6_32_031308

R0 = ½RVRN = ½RVRP = Z0

R0 = ½RVRN = ½RVRP = Z0

Table 6-5: LVCMOS, LVDCI, and LVDCI_DV2 DC Voltage Specifications at Various Voltage References

Standard
+3.3V +2.5V +1.8V +1.5V

Min Typ Max Min Typ Max Min Typ Max Min Typ Max

VCCO [V] 3.0 3.3 3.6 2.3 2.5 2.7 1.7 1.8 1.9 1.43 1.5 1.57

VIH [V] 2.0 – 3.6 1.7 – 2.7 1.19 – 1.95 1.05 – 1.65

VIL [V] –0.5 – 0.8 –0.5 – 0.7 –0.5 – 0.4 –0.5 – 0.3

VOH [V] 2.6 – – 1.9 – – 1.3 – – – 1.05 –

VOL [V] – – 0.4 – – 0.4 – – 0.4 – – 0.4

IIN [μA] – ± 5 – – ± 5 – – ± 5 – – ± 5 –

Notes: VOL and VOH for lower drive currents are sample tested.

Virtex-4 FPGA User Guide www.xilinx.com 259
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

HSLVDCI (High-Speed Low Voltage Digitally Controlled Impedance)

The HSLVDCI standard is intended for bidirectional use. The driver is identical to LVDCI,
while the input is identical to HSTL and SSTL. By using a VREF-referenced input,
HSLVDCI allows greater input sensitivity at the receiver than when using a single-ended
LVCMOS-type receiver.

Sample circuits illustrating both unidirectional and bidirectional termination techniques
for an HSLVDCI controlled impedance driver are shown in Figure 6-29 and Figure 6-30.
The DCI I/O standards supporting a controlled impedance driver with a VREF referenced
input are: HSLVDCI_15, HSLVDCI_18, HSLVDCI_25, and HSLVDCI_33.

For output DC voltage specifications, refer to the LVDCI VOH and VOL entries in Table 6-5.
Table 6-6 lists the input DC voltage specifications when using HSLVDCI. Valid values of
VCCO are 1.5V, 1.8V, 2.5V, and 3.3V. Select VREF to provide the optimum noise margin in
specific use conditions.

Figure 6-33: HSLVDCI Controlled Impedance Driver with Unidirectional Termination

Figure 6-34: HSLVDCI Controlled Impedance Driver with Bidirectional Termination

Table 6-6: HSLVDCI Input DC Voltage Specifications

Standard Min Typ Max

VREF – VCCO/2 –

VIH VREF + 0.1 – –

VIL – – VREF – 0.1

Z0

IOB

HSLVDCI
HSLVDCI

UG070_6_80_031308

R0 = RVRN = RVRP = Z0

IOB

VREF = VCCO/2

+

–

Z0

IOB

HSLVDCI

UG070_6_81_031308

R0 = RVRN = RVRP = Z0

R0 = RVRN = RVRP = Z0

HSLVDCI

IOB

VREF = VCCO/2

+

–

260 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Table 6-7 details the allowed attributes that can be applied to the LVDCI, HSLVDCI, and
LVDCI_DV2 I/O standards.

PCIX, PCI33, PCI66 (Peripheral Component Interface)
The PCI standard specifies support for 33 MHz, 66 MHz, and 133 MHz PCI bus
applications. It uses an LVTTL input buffer and a push-pull output buffer. This standard
does not require the use of a reference voltage (VREF) or a board termination voltage (VTT).
However, it does require 3.3V input/output source voltage (VCCO).

A PCI undershoot/overshoot specification could require VCCO to be regulated at 3.0V as
discussed in “Regulating VCCO at 3.0V,” page 306. This is not necessary if overshoot and
undershoot are controlled by careful design.

Table 6-8 lists the DC voltage specifications.

Table 6-9 details the allowed attributes that can also be applied to the PCI33_3, PCI66_3,
and PCIX I/O standards.

Table 6-7: Allowed Attributes of the LVDCI, HSLVDCI, and LVDCI_DV2 I/O
Standards

Attributes
Primitives

IBUF/IBUFG OBUF/OBUFT IOBUF

IOSTANDARD LVDCI_15, LVDCI_18, LVDCI_25, LVDCI_33
LVDCI_DV2_15, LVDCI_DV2_18, LVDCI_DV2_25, HSLVDCI_15,

HSLVDCI_18, HSLVDCI_25, HSLVDCI_33

CAPACITANCE LOW, NORMAL, DONT_CARE

Table 6-8: PCI33_3, PCI66_3, and PCIX DC Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.5

VREF – – –

VTT – – –

VIH = 0.5 × VCCO 1.5 1.65 VCCO + 0.5

VIL = 0.3 × VCCO –0.5 0.99 1.08

VOH = 0.9 × VCCO 2.7 – –

VOL = 0.1 × VCCO – – 0.36

IOH at VOH (mA) (Note 1) – –

IOL at VOL (mA) (Note 1) – –

Notes:
1. Tested according to the relevant specification.

Table 6-9: Allowed Attributes of the PCI33_3, PCI66_3, and PCIX I/O Standards

Attributes
Primitives

IBUF/IBUFG OBUF/OBUFT IOBUF

IOSTANDARD PCI33_3, PCI66_3, and PCIX

CAPACITANCE LOW, NORMAL, DONT_CARE

Virtex-4 FPGA User Guide www.xilinx.com 261
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

GTL (Gunning Transceiver Logic)
The Gunning Transceiver Logic (GTL) standard is a high-speed bus standard (JESD8.3)
invented by Xerox. Xilinx has implemented the terminated variation for this standard. This
standard requires a differential amplifier input buffer and an open-drain output buffer.
The negative terminal of the differential input buffer is referenced to the VREF pin.

A sample circuit illustrating a valid termination technique for GTL with external parallel
termination and unconnected VCCO is shown in Figure 6-35.

GTL_DCI Usage

GTL does not require a VCCO voltage. However, for GTL_DCI, VCCO must be connected to
1.2V. GTL_DCI provides single termination to VCCO for inputs or outputs.

A sample circuit illustrating a valid termination technique for GTL_DCI with internal
parallel driver and receiver termination is shown in Figure 6-36.

Table 6-10 lists the GTL DC voltage specifications.

Figure 6-35: GTL with External Parallel Termination and Unconnected VCCO

VTT = 1.2V

RP = Z0 = 50Ω RP = Z0 = 50Ω
VCCO = Unconnected

VTT = 1.2V

Z0 = 50

IOB IOB

UG070_6_33_031308

VREF = 0.8V

+

–

Figure 6-36: GTL_DCI with Internal Parallel Driver and Receiver Termination

Table 6-10: GTL DC Voltage Specifications

Parameter Min Typ Max

VCCO – N/A -

VREF = N × VTT
 (1) 0.74 0.8 0.86

VTT 1.14 1.2 1.26

VIH = VREF + 0.05 0.79 0.85 –

VIL = VREF – 0.05 – 0.75 0.81

VOH – – –

VOL – 0.2 0.4

IOH at VOH (mA) – – –

IOL at VOL (mA) at 0.4V 32 – –

VCCO = 1.2V VCCO = 1.2V

Z0 = 50

IOB IOB

UG070_6_34_031308

VREF = 0.8V

+

–

RVRP = Z0 = 50ΩRVRP = Z0 = 50Ω

262 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Table 6-11 details the allowed attributes that can also be applied to the GTL I/O standards.

GTLP (Gunning Transceiver Logic Plus)
The Gunning Transceiver Logic Plus or GTL+ standard is a high-speed bus standard
(JESD8.3) first used by the Pentium Pro Processor. This standard requires a differential
amplifier input buffer and a open-drain output buffer. The negative terminal of the
differential input buffer is referenced to the VREF pin.

A sample circuit illustrating a valid termination technique for GTL+ with external parallel
termination and unconnected VCCO is shown in Figure 6-37.

GTLP_DCI Usage

GTL+ does not require a VCCO voltage. However, for GTLP_DCI, VCCO must be connected
to 1.5V. GTLP_DCI provides single termination to VCCO for inputs or outputs.

A sample circuit illustrating a valid termination technique for GTLP_DCI with internal
parallel driver and receiver termination is shown in Figure 6-38.

IOL at VOL (mA) at 0.2V - – 40

Notes:
1. N must be greater than or equal to 0.653 and less than or equal to 0.68.

Table 6-11: Allowed Attributes of the GTL I/O Standards

Attributes
Primitives

IBUF/IBUFG OBUF/OBUFT IOBUF

IOSTANDARD GTL and GTL_DCI

CAPACITANCE LOW, NORMAL, DONT_CARE

Table 6-10: GTL DC Voltage Specifications (Continued)

Parameter Min Typ Max

Figure 6-37: GTL+ with External Parallel Termination and Unconnected VCCO

VTT = 1.5V

RP = Z0 = 50Ω RP = Z0 = 50Ω
VCCO = Unconnected

VTT = 1.5V

Z0 = 50

IOB IOB

UG070_6_35_031308

VREF = 1.0V

+

–

Figure 6-38: GTLP_DCI Internal Parallel Driver and Receiver Termination

VCCO = 1.5V

RVRP = Z0 = 50Ω50Ω

VCCO = 1.5V

Z0 = 50

IOB IOB

UG070_6_36_031308

VREF = 1.0V

+

–

Virtex-4 FPGA User Guide www.xilinx.com 263
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Table 6-12 lists the GTLP DC voltage specifications.

Table 6-13 details the allowed attributes that can be applied to the GTLP I/O standards.

HSTL (High-Speed Transceiver Logic)
The High-Speed Transceiver Logic (HSTL) standard is a general-purpose high-speed, 1.5V
or 1.8V bus standard sponsored by IBM (EIA/JESD8-6). This standard has four variations
or classes. To support clocking high-speed memory interfaces, a CSE differential version of
this standard was added. Virtex-4 FPGA I/O supports all four classes and the differential
version. This standard requires a differential amplifier input buffer and a push-pull output
buffer.

HSTL_ I, HSTL_ III, HSTL_ I_18, HSTL_ III_18 Usage

HSTL_I uses VCCO/2 as a parallel termination voltage (VTT). HSTL_III uses VCCO as a
parallel termination voltage (VTT). HSTL_I and HSTL_III are intended to be used in
unidirectional links.

HSTL_ I_DCI, HSTL_ III_DCI, HSTL_ I_DCI_18, HSTL_ III_DCI_18 Usage

HSTL_I_DCI provides on-chip split thevenin termination powered from VCCO, creating an
equivalent parallel termination voltage (VTT) of VCCO/2. HSTL_I_DCI and HSTL_III_DCI
are intended to be used in unidirectional links.

Table 6-12: GTLP DC Voltage Specifications

Min Typ Max

VCCO – – –

VREF = N × VTT
 (1) 0.88 1.0 1.12

VTT 1.35 1.5 1.65

VIH = VREF + 0.1 0.98 1.1 –

VIL = VREF – 0.1 – 0.9 1.02

VOH – – –

VOL 0.3 0.45 0.6

IOH at VOH (mA) – – –

IOL at VOL (mA) at 0.6V 36 – –

IOL at VOL (mA) at 0.3V – – 48

Notes:
1. N must be greater than or equal to 0.653 and less than or equal to 0.68.

Table 6-13: Allowed Attributes of the GTLP I/O Standards

Attributes Input Output Bidirectional

IOSTANDARD GTLP and GTLP_DCI

CAPACITANCE LOW, NORMAL, DONT_CARE

264 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

HSTL_ II, HSTL_ IV, HSTL_ II_18, HSTL_ IV_18 Usage

HSTL_II uses VCCO/2 as a parallel termination voltage (VTT). HSTL_IV uses VCCO as a
parallel termination voltage (VTT). HSTL_II and HSTL_IV are intended to be used in
bidirectional links.

HSTL_ II_DCI, HSTL_ IV_DCI, HSTL_ II_DCI_18, HSTL_ IV_DCI_18 Usage

HSTL_II_DCI provides on-chip split thevenin termination powered from VCCO, creating
an equivalent termination voltage of VCCO/2. HSTL_IV_ DCI provides single termination
to VCCO (VTT). HSTL_II_DCI and HSTL_IV_ DCI are intended to be used in bidirectional
links.

DIFF_HSTL_ II, DIFF_HSTL_II_18

Differential HSTL class II pairs complimentary single-ended HSTL_II type drivers with a
differential receiver. Differential HSTL Class II is intended to be used in bidirectional links.
Differential HSTL can also be used for differential clock and DQS signals in memory
interface designs.

DIFF_HSTL_II_DCI, DIFF_HSTL_II_DCI_18

Differential HSTL class II pairs complimentary single-ended HSTL_II type drivers with a
differential receiver, including on-chip differential termination. Differential HSTL Class II
is intended to be used in bidirectional links. Differential HSTL can also be used for
differential clock and DQS signals in memory interface designs.

Virtex-4 FPGA User Guide www.xilinx.com 265
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

HSTL Class I
Figure 6-39 shows a sample circuit illustrating a valid termination technique for HSTL
Class I.

Table 6-14 lists the HSTL Class I DC voltage specifications.

Figure 6-39: HSTL Class I Termination

Table 6-14: HSTL Class I DC Voltage Specifications

Min Typ Max

VCCO 1.40 1.50 1.60

VREF
(2) 0.68 0.75 0.90

VTT – VCCO × 0.5 –

VIH VREF + 0.1 – –

VIL – – VREF – 0.1

VOH VCCO – 0.4 – –

VOL – – 0.4

IOH at VOH (mA)(1) –8 – –

IOL at VOL (mA)(1) 8 – –

Notes:
1. VOL and VOH for lower drive currents are sample tested.
2. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in

the use conditions specified by the user.”

Z0

IOB IOB

HSTL_IHSTL_I

ug070_6_37_071904

VTT = 0.75V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_I_DCI HSTL_I_DCI

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.75V

+

�

VREF = 0.75V

+

�

External Termination

DCI

266 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

HSTL Class II
Figure 6-40 shows a sample circuit illustrating a valid termination technique for HSTL
Class II (1.5V) with unidirectional termination.

Figure 6-40: HSTL (1.5V) Class II Unidirectional Termination

Z0

IOB IOB

HSTL_IIHSTL_II

ug070_6_38_071904

VTT = 0.75V

RP = Z0 = 50Ω

VTT = 0.75V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_II_DCI
HSTL_II_DCI

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.75V

+

�

VREF = 0.75V

+

�

External Termination

DCI

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

Virtex-4 FPGA User Guide www.xilinx.com 267
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Figure 6-41 shows a sample circuit illustrating a valid termination technique for HSTL
Class II (1.5V) with bidirectional termination.

Table 6-15 lists the HSTL (1.5V) Class II DC voltage specifications.

Figure 6-41: HSTL (1.5V) Class II Bidirectional Termination

Z0

IOB IOB

HSTL_IIHSTL_II

UG070_6_39_031208

VTT = 0.75V

RP = Z0 = 50Ω

VTT = 0.75V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_II_DCI
HSTL_II_DCI

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.75V

VREF = 0.75V

+

–

VREF = 0.75V

+

–

External Termination

DCI

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.75V

Table 6-15: HSTL (1.5V) Class II DC Voltage Specifications

Min Typ Max

VCCO 1.40 1.50 1.60

VREF
(2) 0.68 0.75 0.90

VTT – VCCO × 0.5 –

VIH VREF + 0.1 – –

VIL – – VREF – 0.1

VOH VCCO – 0.4 – –

VOL – – 0.4

IOH at VOH (mA)(1) –16 – –

IOL at VOL (mA)(1) 16 – –

Notes:
1. VOL and VOH for lower drive currents are sample tested.
2. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in

the use conditions specified by the user.”

268 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Complementary Single-Ended (CSE) Differential HSTL Class II
Figure 6-42 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.5V) with unidirectional termination.

Figure 6-43 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.5V) with unidirectional DCI termination.

Figure 6-42: Differential HSTL (1.5V) Class II Unidirectional Termination

ug070_6_40_071904

+

�

External Termination

Z0

IOB IOB

DIFF_HSTL_II

DIFF_HSTL_II

Z0

DIFF_HSTL_II

VTT = 0.75V

50Ω

VTT = 0.75V

50Ω

VTT = 0.75V

50Ω

VTT = 0.75V

50Ω

Figure 6-43: Differential HSTL (1.5V) Class II DCI Unidirectional Termination

ug070_6_41_071904

IOB

DIFF_HSTL_II_DCI

DIFF_HSTL_II_DCI

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

�

DCI

DIFF_HSTL_II_DCI

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

IOB

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VCCO = 1.5V

Z0

Z0

Virtex-4 FPGA User Guide www.xilinx.com 269
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Figure 6-44 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.5V) with bidirectional termination.

Figure 6-45 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.5V) with bidirectional DCI termination.

Figure 6-44: Differential HSTL (1.5V) Class II Bidirectional Termination

Z0

IOB IOB

DIFF_HSTL_II DIFF_HSTL_II

+

�

External Termination
VTT = 0.75V

50Ω

DIFF_HSTL_II

ug070_6_42_071904

Z0

DIFF_HSTL_II

DIFF_HSTL_II DIFF_HSTL_II

+

�

VTT = 0.75V

50Ω

VTT = 0.75V

50Ω

VTT = 0.75V

50Ω

Figure 6-45: Differential HSTL (1.5V) Class II DCI Bidirectional Termination

Z0

IOB IOB

DIFF_HSTL_II_DCI DIFF_HSTL_II_DCI

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

�

DCI

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

DIFF_HSTL_II_DCI

ug070_6_43_071904

Z0

DIFF_HSTL_II_DCI

DIFF_HSTL_II_DCI DIFF_HSTL_II_DCI
VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

�

VCCO = 1.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

270 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Table 6-16 lists the differential HSTL Class II DC voltage specifications.

HSTL Class III
Figure 6-46 shows a sample circuit illustrating a valid termination technique for HSTL
Class III.

Table 6-16: Differential HSTL Class II DC Voltage Specifications

Min Typ Max

VCCO 1.40 1.50 1.60

VTT – VCCO × 0.5 –

VIN (DC) –0.30 – VCCO + 0.30

VDIFF (DC) 0.20 – VCCO + 0.60

VCM (DC)(1) 0.68 – 0.90

VDIFF (AC) 0.40 – VCCO + 0.60

VX (Crossover)(2) 0.68 – 0.90

Notes:
1. Common mode voltage: VCM = VP – ((VP – VN)/2
2. Crossover point: VX where VP – VN = 0 (AC coupled)

Figure 6-46: HSTL Class III Termination

Z0

IOB IOB

HSTL_IIIHSTL_III

ug070_6_44_071904

VTT = 1.5V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_III_DCI HSTL_III_DCI

VCCO = 1.5V

RVRP = Z0= 50Ω

VREF = 0.9V

+

�

VREF = 0.9V

+

�

External Termination

DCI

Virtex-4 FPGA User Guide www.xilinx.com 271
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Table 6-17 lists the HSTL Class III DC voltage specifications.

HSTL Class IV
Figure 6-47 shows a sample circuit illustrating a valid unidirectional termination technique
for HSTL Class IV.

Table 6-17: HSTL Class III DC Voltage Specifications

Min Typ Max

VCCO 1.40 1.50 1.60

VREF
(2) – 0.90 –

VTT – VCCO –

VIH VREF + 0.1 – –

VIL – – VREF – 0.1

VOH VCCO – 0.4 – –

VOL – – 0.4

IOH at VOH (mA)(1) –8 – –

IOL at VOL (mA)(1) 24 – –

Notes:
1. VOL and VOH for lower drive currents are sample tested.
2. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in

the use conditions specified by the user.”

Figure 6-47: HSTL Class IV Unidirectional Termination

Z0

IOB IOB

HSTL_IVHSTL_IV

ug070_6_45_071904

VTT = 1.5V

RP = Z0 = 50Ω

VTT = 1.5V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_IV_DCI
HSTL_IV_DCI

VCCO = 1.5V

RVRP = Z0= 50Ω

VREF = 0.9V

+

�

VREF = 0.9V

+

�

External Termination

DCI

VCCO = 1.5V

RVRP = Z0= 50Ω

272 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Figure 6-48 shows a sample circuit illustrating a valid bidirectional termination technique
for HSTL Class IV.

Table 6-18 lists the HSTL Class IV DC voltage specifications.

Figure 6-48: HSTL Class IV Bidirectional Termination

Z0

IOB IOB

HSTL_IVHSTL_IV

UG070_6_46_031208

VTT = 1.5V

RP = Z0 = 50Ω

VTT = 1.5V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_IV_DCI
HSTL_IV_DCI

VCCO = 1.5V

RVRP = Z0= 50Ω

VREF = 0.9V

VREF = 0.9V

+

–

VREF = 0.9V

+

–

External Termination

DCI

VCCO = 1.5V

RVRP = Z0= 50Ω

VREF = 0.9V

Table 6-18: HSTL Class IV DC Voltage Specifications

Min Typ Max

VCCO 1.40 1.50 1.60

VREF
(2) – 0.90 –

VTT – VCCO –

VIH VREF + 0.1 – –

VIL – – VREF – 0.1

VOH VCCO – 0.4 – –

VOL – – 0.4

IOH at VOH (mA)(1) –8 – –

IOL at VOL (mA)(1) 48 – –

Notes:
1. VOL and VOH for lower drive currents are sample tested.
2. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in

the use conditions specified by the user.”

Virtex-4 FPGA User Guide www.xilinx.com 273
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

HSTL Class I (1.8V)
Figure 6-49 shows a sample circuit illustrating a valid termination technique for HSTL
Class I (1.8V).

Table 6-19 lists the HSTL Class I (1.8V) DC voltage specifications.

Figure 6-49: HSTL Class I (1.8V) Termination

Table 6-19: HSTL Class I (1.8V) DC Voltage Specifications

Min Typ Max

VCCO 1.7 1.8 1.9

VREF
(2) 0.8 0.9 1.1

VTT – VCCO × 0.5 –

VIH VREF + 0.1 – –

VIL – – VREF – 0.1

VOH VCCO – .0.4 – –

VOL – – 0.4

IOH at VOH (mA)(1) –8 – –

IOL at VOL (mA)(1) 8 – –

Notes:
1. VOL and VOH for lower drive currents are sample tested.
2. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in

the use conditions specified by the user.”

Z0

IOB IOB

HSTL_I_18HSTL_I_18

ug070_6_47_071904

VTT = 0.9V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_I_DCI_18 HSTL_I_DCI_18

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.9V

+

�

VREF = 0.9V

+

�

External Termination

DCI

274 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

HSTL Class II (1.8V)
Figure 6-50 shows a sample circuit illustrating a valid termination technique for HSTL
Class II (1.8V) with unidirectional termination.

Figure 6-50: HSTL Class II (1.8V) with Unidirectional Termination

Z0

IOB IOB

HSTL_II_18HSTL_II_18

ug070_6_48_071904

VTT = 0.9V

RP = Z0 = 50Ω

VTT = 0.9V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_II_DCI_18
HSTL_II_DCI_18

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.9V

+

�

VREF = 0.9V

+

�

External Termination

DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

Virtex-4 FPGA User Guide www.xilinx.com 275
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Figure 6-51 shows a sample circuit illustrating a valid termination technique for HSTL
Class II (1.8V) with bidirectional termination.

Table 6-20 lists the HSTL Class II (1.8V) DC voltage specifications.

Figure 6-51: HSTL Class II (1.8V) with Bidirectional Termination

Z0

IOB IOB

HSTL_II_18HSTL_II_18

UG070_6_49_031208

VTT = 0.9V

RP = Z0 = 50Ω

VTT = 0.9V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_II_DCI_18
HSTL_II_DCI_18

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.9V

VREF = 0.9V

+

–

VREF = 0.9V

+

–

External Termination

DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.9V

Table 6-20: HSTL Class II (1.8V) DC Voltage Specifications

Min Typ Max

VCCO 1.7 1.8 1.9

VREF
(2) – 0.9 –

VTT – VCCO × 0.5 –

VIH VREF + 0.1 – –

VIL – – VREF – 0.1

VOH VCCO – 0.4 – –

VOL – – 0.4

IOH at VOH (mA)(1) –16 – –

IOL at VOL (mA)(1) 16 – –

Notes:
1. VOL and VOH for lower drive currents are sample tested.
2. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in

the use conditions specified by the user.”

276 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Complementary Single-Ended (CSE) Differential HSTL Class II (1.8V)
Figure 6-52 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.8V) with unidirectional termination.

Figure 6-53 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.8V) with unidirectional DCI termination.

Figure 6-52: Differential HSTL (1.8V) Class II Unidirectional Termination

ug070_6_50_71904

+

�

External Termination

Z0

IOB IOB

DIFF_HSTL_II_18

DIFF_HSTL_II_18

Z0

DIFF_HSTL_II_18

VTT = 0.9V

50Ω

VTT = 0.9V

50Ω

VTT = 0.9V

50Ω

VTT = 0.9V

50Ω

Figure 6-53: Differential HSTL (1.8V) Class II DCI Unidirectional Termination

ug070_6_51_121206

IOB

DIFF_HSTL_II_DCI_18

DIFF_HSTL_II_DCI_18

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

–

DCI

DIFF_HSTL_II_DCI_18

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

IOB

VCCO = 1.8V

2RVRN = 2Z0= 100Ω

2RVRP = 2Z0= 100Ω

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VCCO = 1.8V

Z0

Z0

Virtex-4 FPGA User Guide www.xilinx.com 277
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Figure 6-54 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.8V) with bidirectional termination.

Figure 6-55 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.8V) with bidirectional DCI termination.

Figure 6-54: Differential HSTL (1.8V) Class II Bidirectional Termination

Z0

IOB IOB

DIFF_HSTL_II_18 DIFF_HSTL_II_18

+

�

External Termination

VTT = 0.9V

50Ω

DIFF_HSTL_II_18

ug070_6_52_071904

Z0

DIFF_HSTL_II_18

DIFF_HSTL_II_18 DIFF_HSTL_II_18

+

�

VTT = 0.9V

50Ω

VTT = 0.9V

50Ω

VTT = 0.9V

50Ω

Figure 6-55: Differential HSTL (1.8V) Class II DCI Bidirectional Termination

Z0

IOB IOB

DIFF_HSTL_II_DCI_18 DIFF_HSTL_II_DCI_18

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

�

DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

DIFF_HSTL_II_DCI_18

ug070_6_53_071904

Z0

DIFF_HSTL_II_DCI_18

DIFF_HSTL_II_DCI_18 DIFF_HSTL_II_DCI_18
VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

�

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

278 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Table 6-21 lists the differential HSTL Class II (1.8V) DC voltage specifications.

HSTL Class III (1.8V)
Figure 6-56 shows a sample circuit illustrating a valid termination technique for HSTL
Class III (1.8V).

Table 6-21: Differential HSTL Class II (1.8V) DC Voltage Specifications

Min Typ Max

VCCO 1.7 1.8 1.9

VTT – VCCO × 0.5 –

VIN (DC) –0.30 – VCCO + 0.30

VDIFF (DC) 0.20 – VCCO + 0.60

VCM (DC)(1) 0.78 – 1.12

VDIFF (AC) 0.40 – VCCO + 0.60

VX (Crossover)(2) 0.78 – 1.12

Notes:
1. Common mode voltage: VCM = VP – ((VP – VN)/2
2. Crossover point: VX where VP – VN = 0 (AC coupled)

Figure 6-56: HSTL Class III (1.8V) Termination

Z0

IOB IOB

HSTL_III_18HSTL_III_18

ug070_6_54_071904

VTT = 1.8V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_III_DCI_18 HSTL_III_DCI_18

VCCO = 1.8V

RVRP = Z0= 50Ω

VREF = 1.1V

+

�

VREF = 1.1V

+

�

External Termination

DCI

Virtex-4 FPGA User Guide www.xilinx.com 279
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Table 6-22 lists the HSTL Class III (1.8V) DC voltage specifications.

HSTL Class IV (1.8V)
Figure 6-57 shows a sample circuit illustrating a valid unidirectional termination technique
for HSTL Class IV (1.8V).

Table 6-22: HSTL Class III (1.8V) DC Voltage Specifications

Min Typ Max

VCCO 1.7 1.8 1.9

VREF
(2) – 1.1 –

VTT – VCCO –

VIH VREF + 0.1 – –

VIL – – VREF – 0.1

VOH VCCO – 0.4 – –

VOL – – 0.4

IOH at VOH (mA)(1) –8 – –

IOL at VOL (mA)(1) 24 – –

Notes:
1. VOL and VOH for lower drive currents are sample tested.
2. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in

the use conditions specified by the user.”

Figure 6-57: HSTL Class IV (1.8V) with Unidirectional Termination

Z0

IOB IOB

HSTL_IV_18HSTL_IV_18

ug070_6_55_071904

VTT = 1.8V

RP = Z0 = 50Ω

VTT = 1.8V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_IV_DCI_18
HSTL_IV_DCI_18

VCCO = 1.8V

RVRP = Z0= 50Ω

VREF = 1.1V

+

�

VREF = 1.1V

+

�

External Termination

DCI

VCCO = 1.8V

RVRP = Z0= 50Ω

280 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Figure 6-58 shows a sample circuit illustrating a valid bidirectional termination technique
for HSTL Class IV (1.8V).

Table 6-23 lists the HSTL Class IV (1.8V) DC voltage specifications.

Figure 6-58: HSTL Class IV (1.8V) with Bidirectional Termination

Z0

IOB IOB

HSTL_IV_18HSTL_IV_18

UG070_6_56_031208

VTT = 1.8V

RP = Z0 = 50Ω

VTT = 1.8V

RP = Z0 = 50Ω

Z0

IOB IOB

HSTL_IV_DCI_18
HSTL_IV_DCI_18

VCCO = 1.8V

RVRP = Z0= 50Ω

VREF = 1.1V

VREF = 1.1V

+

–

VREF = 1.1V

+

–

External Termination

DCI

VCCO = 1.8V

RVRP = Z0= 50Ω

VREF = 1.1V

Table 6-23: HSTL Class IV (1.8V) DC Voltage Specifications

Min Typ Max

VCCO 1.7 1.8 1.9

VREF
(2) – 1.1 –

VTT – VCCO –

VIH VREF + 0.1 – –

VIL – – VREF – 0.1

VOH VCCO – 0.4 – –

VOL – – 0.4

IOH at VOH (mA)(1) –8 – –

IOL at VOL (mA)(1) 48 – –

Notes:
1. VOL and VOH for lower drive currents are sample tested.
2. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in

the use conditions specified by the user.”

Virtex-4 FPGA User Guide www.xilinx.com 281
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Table 6-24 details the allowed attributes that can be applied to the HSTL I/O standards.

Table 6-25 details the allowed attributes that can be applied to the DIFF_HSTL I/O
standards.

SSTL (Stub-Series Terminated Logic)
The Stub-Series Terminated Logic (SSTL) for 2.5V (SSTL2) and 1.8V (SSTL18) is a standard
for a general purpose memory bus. These standards are sponsored by Hitachi, IBM, and
are defined in the JEDEC JESD8-15 documents. The standard has two classes; Class I is for
unidirectional and Class II is for bidirectional signaling. Virtex-4 FPGA I/O supports both
standards for single-ended signaling and Class II only for differential signaling. This
standard requires a differential amplifier input buffer and a push-pull output buffer.

SSTL2_I, SSTL18_I Usage

Class I signaling uses VTT (VCCO/2) as a parallel termination voltage to a 50Ω resistor at
the receiver. A series resistor (25Ω at 2.5V, 20Ω at 1.8V) must be connected to the
transmitter output.

SSTL2_I_DCI, SSTL18_I_DCI Usage

The DCI transmitter provides the internal series resistance (25Ω at 2.5V, 20Ω at 1.8V). The
DCI receiver has an internal split thevenin termination powered from VCCO creating an
equivalent VTT voltage and termination impedance.

SSTL2_II, SSTL18_II Usage

Class II signaling uses VTT (VCCO/2) as a parallel termination voltage to a 50Ω resistor at
the receiver and transmitter respectively. A series resistor (25Ω at 2.5V, 20Ω at 1.8V) must
be connected to the transmitter output for a unidirectional link. For a bidirectional link,
25Ω series resistors must connected the transmitters of the transceivers.

SSTL2_II_DCI, SSTL18_II_DCI Usage

The DCI circuits have a split thevenin termination powered from VCCO and an internal
series resistor (25Ω at 2.5V, 20Ω at 1.8V). For a unidirectional link the series resistance is
supplied only for the transmitter. A bidirectional link has the series resistor for both
transmitters.

Table 6-24: Allowed Attributes of the HSTL I/O Standards

Attributes
Primitives

IBUF/IBUFG OBUF/OBUFT IOBUF

IOSTANDARD All possible HSTL standards

CAPACITANCE LOW, NORMAL, DONT_CARE

Table 6-25: Allowed Attributes of the DIFF_HSTL I/O Standards

Attributes
Primitives

IBUFDS/IBUFGDS OBUFDS/OBUFTDS IOBUFDS

IOSTANDARD All possible DIFF_HSTL standards

CAPACITANCE LOW, NORMAL, DONT_CARE

282 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

DIFF_SSTL2_II, DIFF_SSTL18_II Usage

Differential SSTL 2.5V and 1.8V Class II pairs complementary single-ended SSTL_II type
drivers with a differential receiver. For a bidirectional link, a series resistor must be
connected to both transmitters.

DIFF_SSTL2_II_DCI, DIFF_SSTL18_II_DCI Usage

Differential SSTL 2.5V and 1.8V Class II pairs complementary single-ended SSTL_II type
drivers with a differential receiver, including on-chip termination. DCI can be used for
unidirectional and bidirectional links.

SSTL2 Class I (2.5V)
Figure 6-59 shows a sample circuit illustrating a valid termination technique for SSTL2
Class I.

Table 6-26 lists the SSTL2 DC voltage specifications for Class I.

Figure 6-59: SSTL2 Class I Termination

Table 6-26: SSTL2 DC Voltage Specifications Class I

Min Typ Max

VCCO 2.3 2.5 2.7

VREF = 0.5 × VCCO 1.13 1.25 1.38

VTT = VREF + N(1) 1.09 1.25 1.42

VIH ≥ VREF + 0.15 1.28 1.4 3.0(2)

Z0

IOB

SSTL2_I
RS = 25Ω

IOB

SSTL2_I_DCI

R0 = 25Ω

Z0

IOB

SSTL2_I

ug070_6_57_071904

VTT = 1.25V

RP = Z0 = 50Ω

Z0

IOB

SSTL2_I_DCI

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 1.25V

+

�

VREF = 1.25V

+

�

External Termination

DCI

Virtex-4 FPGA User Guide www.xilinx.com 283
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

SSTL2 Class II (2.5V)
Figure 6-60 shows a sample circuit illustrating a valid unidirectional termination technique
for SSTL2 Class II.

VIL ≤ VREF – 0.15 –0.3(3) 1.1 1.23

VOH ≥ VREF + 0.61 1.74 1.84 1.94

VOL ≤ VREF – 0.61(4) 0.56 0.66 0.76

IOH at VOH (mA) –8.1 – –

IOL at VOL (mA) 8.1 – –

Notes:
1. N must be greater than or equal to –0.04 and less than or equal to 0.04.
2. VIH maximum is VCCO +0.3.
3. VIL minimum does not conform to the formula.
4. Because SSTL2_I_DCI uses a controlled-impedance driver, VOH and VOL are different.

Table 6-26: SSTL2 DC Voltage Specifications Class I (Continued)

Min Typ Max

Figure 6-60: SSTL2 Class II with Unidirectional Termination

Z0

IOB IOB

SSTL2_IISSTL2_II

ug070_6_58_071904

VTT = 1.25V

RP = Z0 = 50Ω

VTT = 1.25V

RP = Z0 = 50Ω

Z0

IOB IOB

SSTL2_II_DCI
SSTL2_II_DCI

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 1.25V

+

�

VREF = 1.25V

+

�

External Termination

DCI

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω
R0 = 25Ω

25Ω

284 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Figure 6-61 shows a sample circuit illustrating a valid bidirectional termination technique
for SSTL2 Class II.

Table 6-27 lists the SSTL2 DC voltage specifications for Class II.

Figure 6-61: SSTL2 Class II with Bidirectional Termination

Z0

IOB

SSTL2_II

ug070_6_59_071904

VTT = 1.25V

RP = Z0 = 50Ω

VTT = 1.25V

RP = Z0 = 50Ω

Z0

IOB IOB

SSTL2_II_DCI
SSTL2_II_DCI

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 1.25V

+

�

VREF = 1.25V

+

�

External Termination

DCI

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

IOB

SSTL2_II
RS = 25Ω RS = 25Ω

R0 = 25Ω

VREF = 1.25V

VREF = 1.25V

R0 = 25Ω

Table 6-27: SSTL2 DC Voltage Specifications Class II

Min Typ Max

VCCO 2.3 2.5 2.7

VREF = 0.5 × VCCO 1.13 1.25 1.38

VTT = VREF + N(1) 1.09 1.25 1.42

VIH ≥ VREF + 0.15 1.28 1.40 3.0(2)

VIL ≤ VREF – 0.15 –0.3(3) 1.1 1.27

VOH ≥ VREF + 0.8 1.93 2.03 2.13

VOL ≤ VREF – 0.8(4) 0.36 0.46 0.55

IOH at VOH (mA) –16.2 – –

Virtex-4 FPGA User Guide www.xilinx.com 285
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Complementary Single-Ended (CSE) Differential SSTL2 Class II (2.5V)
Figure 6-62 shows a sample circuit illustrating a valid termination technique for CSE
differential SSTL2 Class II (2.5V) with unidirectional termination.

IOL at VOL (mA) 16.2 – –

Notes:
1. N must be greater than or equal to –0.04 and less than or equal to 0.04.
2. VIH maximum is VCCO +0.3.
3. VIL minimum does not conform to the formula.
4. Because SSTL2_I_DCI uses a controlled-impedance driver, VOH and VOL are different.

Table 6-27: SSTL2 DC Voltage Specifications Class II (Continued)

Min Typ Max

Figure 6-62: Differential SSTL2 Class II Unidirectional Termination

ug070_6_60_071904

+

�

External Termination

Z0

IOB IOB

DIFF_SSTL2_II

DIFF_SSTL2_II

Z0

DIFF_SSTL2_II

VTT = 1.25V

VTT = 1.25V

50Ω

50Ω

VTT = 1.25V

VTT = 1.25V

50Ω

50Ω
RS = 25Ω

RS = 25Ω

286 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Figure 6-63 shows a sample circuit illustrating a valid termination technique for CSE
differential SSTL2 Class II (2.5V) with unidirectional DCI termination.

Figure 6-64 shows a sample circuit illustrating a valid termination technique for CSE
differential SSTL2 Class II (2.5V) with bidirectional termination.

Figure 6-63: Differential SSTL2 (2.5V) Class II Unidirectional DCI Termination

ug070_6_61_071904

IOB

DIFF_SSTL2_II_DCI

DIFF_SSTL2_II_DCI

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

�

DCI

DIFF_SSTL2_II_DCI

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

IOB

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VCCO = 2.5V

Z0

Z0

R0 = 25Ω

R0 = 25Ω

Figure 6-64: Differential SSTL2 (2.5V) Class II with Bidirectional Termination

Z0

IOB IOB

DIFF_SSTL2_II

+

–

External Termination

VTT = 1.25V

ug070_6_62_121206

Z0

DIFF_SSTL2_II

DIFF_SSTL2_II DIFF_SSTL2_II

DIFF_SSTL2_II

DIFF_SSTL2_II

+

–

VTT = 1.25V

50Ω

50Ω

VTT = 1.25V

VTT = 1.25V

50Ω
25Ω

25Ω 25Ω

25Ω

50Ω

Virtex-4 FPGA User Guide www.xilinx.com 287
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Figure 6-65 shows a sample circuit illustrating a valid termination technique for CSE
differential SSTL2 Class II (2.5V) with bidirectional DCI termination.

Table 6-28 lists the differential SSTL2 Class II DC voltage specifications.

Figure 6-65: Differential SSTL2 (2.5V) Class II with DCI Bidirectional Termination

Z0

IOB IOB

DIFF_SSTL2_II_DCI DIFF_SSTL2_II_DCI

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

�

DCI

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

DIFF_SSTL2_II_DCI

ug070_6_63_071904

Z0

DIFF_SSTL2_II_DCI

DIFF_SSTL2_II_DCI DIFF_SSTL2_II_DCI
VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

�

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

Table 6-28: Differential SSTL2 Class II DC Voltage Specifications

Min Typ Max

VCCO 2.3 2.5 2.7

Input Parameters

VTT – VCCO × 0.5 –

VIN (DC)(1) –0.30 – VCCO + 0.30

VID (DC)(2) 0.3 – VCCO + 0.60

VID (AC) 0.62 – VCCO + 0.60

VIX (AC)(3) 0.95 – 1.55

Output Parameters

VOX (AC)(4) 1.0 – 1.5

Notes:
1. VIN (DC) specifies the allowable DC excursion of each differential input.
2. VID (DC) specifies the input differential voltage required for switching.
3. VIX (AC) indicates the voltage where the differential input signals must cross.
4. VOX (AC) indicates the voltage where the differential output signals must cross.

288 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

SSTL18 Class I (1.8V)
Figure 6-66 shows a sample circuit illustrating a valid termination technique for SSTL
Class I (1.8V).

Figure 6-66: SSTL18 (1.8V) Class I Termination

Z0

IOB

SSTL18_I

RS = 20Ω

IOB

SSTL18_I_DCI

R0 = 20Ω

Z0

IOB

SSTL18_I

ug070_6_64_071904

VTT = 0.9V

50Ω

Z0

IOB

SSTL18_I_DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.9V

+

�

VREF = 0.9V

+

�

External Termination

DCI

Virtex-4 FPGA User Guide www.xilinx.com 289
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

SSTL18 Class II (1.8V)
Figure 6-67 shows a sample circuit illustrating a valid unidirectional termination technique
for SSTL Class II (1.8V).

Figure 6-67: SSTL18 (1.8V) Class II Unidirectional Termination

Z0

IOB IOB

SSTL18_IISSTL18_II

ug070_6_65_071904

VTT = 0.9V

RP = Z0 = 50Ω

VTT = 0.9V

RP = Z0 = 50Ω

Z0

IOB IOB

SSTL18_II_DCI
SSTL18_II_DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.9V

+

�

VREF = 0.9V

+

�

External Termination

DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

RS = 20Ω

R0 = 20Ω

290 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Figure 6-68 shows a sample circuit illustrating a valid bidirectional termination technique
for SSTL (1.8V) Class II.

Table 6-29 lists the SSTL (1.8V) DC voltage specifications.

Figure 6-68: SSTL (1.8V) Class II Termination

Z0

IOB

SSTL18_II

ug070_6_66_071904

VTT = 0.9V

RP = Z0 = 50Ω

VTT = 0.9V

RP = Z0 = 50Ω

Z0

IOB IOB

SSTL18_II_DCI
SSTL18_II_DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VREF = 0.9V

+

�

VREF = 0.9V

+

�

External Termination

DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

IOB

SSTL18_II
RS = 20Ω RS = 20Ω

R0 = 20Ω

VREF = 0.9V

VREF = 0.9V

R0 = 20Ω

Table 6-29: SSTL (1.8V) DC Voltage Specifications

Class I Class II

Min Typ Max Min Typ Max

VCCO 1.7 1.8 1.9 1.7 1.8 1.9

VREF = 0.5 × VCCO 0.833 0.9 0.969 0.833 0.9 0.969

VTT = VREF + N(1) 0.793 0.9 1.009 0.793 0.9 1.009

VIH ≥ VREF + 0.125 0.958 – 2.2(2) 0.958 – 2.2(2)

VIL ≤ VREF – 0.125 –0.3(3) – 0.844 –0.3(3) – 0.844

VOH ≥ VTT + 0.603(4) 1.396 – – 1.396 – –

VOL ≤ VTT – 0.603(4) – – 0.406 – – 0.406

Virtex-4 FPGA User Guide www.xilinx.com 291
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Complementary Single-Ended (CSE) Differential SSTL Class II (1.8V)
Figure 6-69 shows a sample circuit illustrating a valid termination technique for
differential SSTL Class II (1.8V) with unidirectional termination.

IOH at VOH (mA) –6.7 – – –13.4 – –

IOL at VOL (mA) 6.7 – – 13.4 – –

Notes:
1. N must be greater than or equal to –0.04 and less than or equal to 0.04.
2. VIH maximum is VCCO +0.3.
3. VIL minimum does not conform to the formula.
4. Because SSTL_I_DCI uses a controlled-impedance driver, VOH and VOL are different.

Table 6-29: SSTL (1.8V) DC Voltage Specifications (Continued)

Class I Class II

Min Typ Max Min Typ Max

Figure 6-69: Differential SSTL (1.8V) Class II Unidirectional Termination

ug070_6_67_071904

+

�

External Termination

Z0

IOB IOB

DIFF_SSTL18_II

DIFF_SSTL18_II

Z0

DIFF_SSTL18_II

VTT = 0.9V

50Ω

50Ω

VTT = 0.9V

VTT = 0.9V

50Ω

50Ω

VTT = 0.9V

RS = 20Ω

RS = 20Ω

292 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Figure 6-70 shows a sample circuit illustrating a valid termination technique for CSE
differential SSTL Class II (1.8V) with unidirectional DCI termination.

Figure 6-71 shows a sample circuit illustrating a valid termination technique for CSE
differential SSTL Class II (1.8V) with bidirectional termination.

Figure 6-70: Differential SSTL (1.8V) Class II Unidirectional DCI Termination

ug070_6_68_071904

IOB

DIFF_SSTL18_II_DCI

DIFF_SSTL18_II_DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

�

DCI

DIFF_SSTL18_II_DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

IOB

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

VCCO = 1.8V

Z0

Z0

R0 = 20Ω

R0 = 20Ω

Figure 6-71: Differential SSTL (1.8V) Class II with Bidirectional Termination

Z0

IOB IOB

DIFF_SSTL18_II DIFF_SSTL18_II

+

�

External Termination

VCCO = 0.9V

50Ω

DIFF_SSTL18_II

ug070_6_69_071904

Z0

DIFF_SSTL18_II

DIFF_SSTL18_II DIFF_SSTL18_II

+

�

VCCO = 0.9V

50Ω

VCCO = 0.9V

50Ω

VCCO = 0.9V

50Ω
20Ω

20Ω

20Ω

20Ω

Virtex-4 FPGA User Guide www.xilinx.com 293
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Figure 6-72 shows a sample circuit illustrating a valid termination technique for CSE
differential SSTL Class II (1.8V) with bidirectional DCI termination.

Table 6-30 lists the differential SSTL (1.8V) Class II DC voltage specifications.

Figure 6-72: Differential SSTL (1.8V) Class II with DCI Bidirectional Termination

Z0

IOB IOB

DIFF_SSTL18_II_DCI DIFF_SSTL18_II_DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

–

DCI

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

DIFF_SSTL18_II_DCI

ug070_6_70_022406

Z0

DIFF_SSTL18_II_DCI

DIFF_SSTL18_II_DCI DIFF_SSTL18_II_DCI
VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

–

VCCO = 1.8V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

R0 = 20Ω

R0 = 20Ω

R0 = 20Ω

R0 = 20Ω

Table 6-30: Differential SSTL (1.8V) Class II DC Voltage Specifications

Min Typ Max

VCCO 1.7 1.8 1.9

Input Parameters

VTT – VCCO × 0.5 –

VIN (DC)(1) –0.30 – VCCO + 0.30

VID (DC)(3) 0.25 – VCCO + 0.60

VID (AC) 0.50 – VCCO + 0.60

VIX (AC)(4) 0.675 – 1.125

Output Parameters

VOX (AC)(5) 0.725 – 1.075

Notes:
1. VIN (DC) specifies the allowable DC excursion of each differential input.
2. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in

the use conditions specified by the user.”
3. VID (DC) specifies the input differential voltage required for switching.
4. VIX (AC) indicates the voltage where the differential input signals must cross.
5. VOX (AC) indicates the voltage where the differential output signals must cross.

294 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Table 6-31 details the allowed attributes that can be applied to the SSTL I/O standards.

Differential Termination: DIFF_TERM Attribute
Virtex-4 FPGA IOBs provide a 100Ω differential termination across the input differential
receiver terminals. This attribute is used in conjunction with LVDS_25, LVDSEXT_25,
LDT_25, and ULVDS_25. It replaces the Virtex-II Pro FPGA LVDS_25_DT,
LVDSEXT_25_DT, LDT_25_DT, and ULVDS_25_DT.

The on-chip input differential termination in Virtex-4 devices provides major advantages
over the external resistor by removing the stub at the receiver completely and therefore
greatly improving signal integrity:

• Consumes less power than DCI termination

• Does not use VRP/VRN pins (DCI)

• Supports LDT and ULVDS (not supported by DCI termination)

The VCCO of the I/O bank must be connected to 2.5V ±5% to provide 100Ω of effective
differential termination. DIFF_TERM is only available for inputs and can only be used with
a bank voltage of VCCO = 2.5V. The “Differential Termination Attribute” (DIFF_TERM)
section outlines using this feature.

LVDS and Extended LVDS (Low Voltage Differential Signaling)
Low Voltage Differential Signaling (LVDS) is a very popular and powerful high-speed
interface in many system applications. Virtex-4 FPGA I/Os are designed to comply with
the EIA/TIA electrical specifications for LVDS to make system and board design easier.
With the use of an LVDS current-mode driver in the IOBs, the need for external source
termination in point-to-point applications is eliminated, and with the choice of an
extended mode, Virtex-4 devices provide the most flexible solution for doing an LVDS
design in an FPGA.

Extended LVDS provides a higher drive capability and voltage swing (350 - 750 mV),
making it ideal for long-distance or cable LVDS links. The output AC characteristics of the
LVDS extended mode driver are not within the EIA/TIA specifications. The LVDS
extended mode driver is intended for situations requiring higher drive capabilities to
produce an LVDS signal within the EIA/TIA specification at the receiver.

Table 6-31: Allowed Attributes for the SSTL I/O Standards

Attributes
Primitives

IBUFDS/IBUFGDS OBUFDS/OBUFTDS IOBUFDS

IOSTANDARD All possible SSTL standards

CAPACITANCE LOW, NORMAL, DONT_CARE

Table 6-32: Allowed Attributes for the DIFF_SSTL I/O Standards

Attributes
Primitives

IBUFDS/IBUFGDS OBUFDS/OBUFTDS IOBUFDS

IOSTANDARD All possible DIFF_SSTL standards

CAPACITANCE LOW, NORMAL, DONT_CARE

Virtex-4 FPGA User Guide www.xilinx.com 295
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

Transmitter Termination

The Virtex-4 FPGA LVDS transmitter does not require any external termination. Table 6-33
lists the allowed attributes corresponding to the Virtex-4 FPGA LVDS current-mode
drivers. Virtex-4 FPGA LVDS current-mode drivers are a true current source and produce
the proper (EIA/TIA compliant) LVDS signal.

Receiver Termination

LVDS_25_DCI, LVDSEXT_25_DCI Usage

LVDS_25_DCI and LVDSEXT_25_DCI provide split termination for the P and N inputs
only. VRP and VRN should connect to 50Ω resistors.

Equivalently, it provides 100Ω differential impedance between the LVDS inputs.

Figure 6-73 and Figure 6-74 are examples of differential termination for an LVDS receiver
on a board with 50Ω transmission lines.

Figure 6-73: LVDS_25 Receiver Termination

Figure 6-74: LVDS_25_DCI Receiver Termination

ug070_6_71_071904

+

�

External Termination

Z0

IOB IOB

LVDS_25 LVDS_25

Z0

RDIFF = 2Z0= 100Ω

ug070_6_72_071904

Z0

IOB

IOB

LVDS_25
LVDS_25_DCI

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

+

�

DCI

Z0

VCCO = 2.5V

2RVRP = 2Z0= 100Ω

2RVRN = 2Z0= 100Ω

296 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Figure 6-75 is an example of a differential termination for an LVDS receiver on a board with
50Ω transmission lines.

Table 6-33 lists the available Virtex-4 FPGA LVDS I/O standards and attributes supported.

Table 6-34 lists the available Virtex-4 FPGA LVDS DCI I/O standards and attributes
supported.

HyperTransport Protocol (LDT)
The HyperTransport™ protocol or formally known as Lightning Data Transport (LDT) is a
low-voltage standard for high-speed interfaces. Its differential signaling based interface is
very similar to LVDS. Virtex-4 FPGA IOBs are equipped with LDT buffers. Table 6-35
summarizes all the possible LDT I/O standards and attributes supported.

Figure 6-75: LVDS_25 With DIFF_TERM Receiver Termination

Table 6-33: Allowed Attributes of the LVDS I/O Standard

Attributes
Primitives

IBUFDS/IBUFGDS OBUFDS/OBUFTDS

IOSTANDARD LVDS_25, LVDSEXT_25, ULVDS_25

CAPACITANCE LOW, NORMAL,
DONT CARE

NORMAL

DIFF_TERM TRUE, FALSE Unused

Table 6-34: Allowed Attributes of the LVDS DCI I/O Standard

Attributes
Primitives

IBUFDS/IBUFGDS OBUFDS/OBUFTDS

IOSTANDARD
LVDS_25_DCI

LVDSEXT_25_DCI
Unused

CAPACITANCE
LOW, NORMAL,

DONT CARE
Unused

ug070_6_73_071904

Data in

Z0 = 50Ω

Z0 = 50Ω

RDIFF= 100Ω

LVDS_25LVDS_25

+

–

0

0

IOB IOB

Virtex-4 FPGA User Guide www.xilinx.com 297
UG070 (v2.6) December 1, 2008

Specific Guidelines for Virtex-4 FPGA I/O Supported Standards
R

BLVDS (Bus LVDS)
Since LVDS is intended for point-to-point applications, BLVDS is not an EIA/TIA standard
implementation and requires careful adaptation of I/O and PCB layout design rules. The
primitive supplied in the software library for bidirectional LVDS does not use the Virtex-4
FPGA LVDS current-mode driver. Therefore, source termination is required. Figure 6-76
shows the BLVDS transmitter termination.

Table 6-36 summarizes all the possible BLVDS I/O standards and attributes supported.

CSE Differential LVPECL (Low-Voltage Positive Emitter-Coupled Logic)
LVPECL is a very popular and powerful high-speed interface in many system applications.
Virtex-4 FPGA I/Os are designed to comply with the EIA/TIA electrical specifications for
2.5V LVPECL to make system and board design easier.

LVPECL Transceiver Termination

The Virtex-4 FPGA LVPECL transmitter and receiver requires the termination shown in
Figure 6-77, illustrating a Virtex-4 FPGA LVPECL transmitter and receiver on a board with
50Ω transmission lines. The LVPECL driver is composed of two LVCMOS drivers that

Table 6-35: Allowed Attributes of the LDT I/O Standard

Attributes
Primitives

IBUFDS/IBUFGDS OBUFDS/OBUFTDS

IOSTANDARD LDT_25

CAPACITANCE
LOW, NORMAL,

DONT CARE NORMAL

DIFF_TERM TRUE, FALSE Unused

Figure 6-76: BLVDS Transmitter Termination

Table 6-36: Available BLVDS Primitives

Attributes
Primitives

IBUFDS/IBUFGDS OBUFDS/OBUFTDS IOBUFDS

IOSTANDARD BLVDS_25

CAPACITANCE
LOW, NORMAL,

DONT_CARE
NORMAL

LOW, NORMAL,
DONT_CARE

ug070_6_74_071904

Z0 = 50Ω

Z0 = 50Ω

RDIV
140Ω

RDIFF = 100Ω

RS

165Ω

RS

165Ω

IN

INX

Data in

-

+

BLVDS_25

IOBBLVDS_25

BLVDS_25

IOB

298 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

when combined with the three resistor output termination circuit form a compliant
LVPECL output.

Table 6-37 summarizes all the possible LVPECL I/O standards and attributes supported.

Figure 6-77: LVPECL Transmitter Termination

Table 6-37: Available LVPECL Primitives

Attributes
Primitives

IBUFDS/IBUFGDS OBUFDS/OBUFTDS IOBUFDS

IOSTANDARD LVPECL

CAPACITANCE
LOW, NORMAL,

DONT_CARE
NORMAL

LOW, NORMAL,
DONT_CARE

ug070_6_75_071904

Z0 = 50Ω

Z0 = 50Ω

RDIV
187Ω

RDIFF = 100Ω

RS

70Ω

RS

70Ω

IN

INX

Data in

-

+

LVPECL_25

IOBLVPECL_25

LVPECL_25

IOB

Virtex-4 FPGA User Guide www.xilinx.com 299
UG070 (v2.6) December 1, 2008

I/O Standards Compatibility
R

I/O Standards Compatibility
Table 6-38 summarizes the Virtex-4 FPGA supported I/O standards.

Table 6-38: I/O Compatibility

I/O Standard
VCCO VREF Termination Type Lower Capacitance IOB

Output Input Input Output Input Output Input

LVTTL(1) 3.3 3.3 N/R N/R N/R Yes Yes

LVCMOS33(1) N/R N/R N/R Yes Yes

LVDCI_33(1) N/R Series N/R Yes Yes

HSLVDCI_33(1) VCCO/2 Series N/R Yes Yes

PCIX(1) N/R N/R N/R Yes Yes

PCI33_3(1) N/R N/R N/R Yes Yes

PCI66_3(1) N/R N/R N/R Yes Yes

LVDS_25 2.5 Note (2) N/R N/R N/R No Yes

LVDSEXT_25 N/R N/R N/R No Yes

LDT_25 N/R N/R N/R No Yes

ULVDS_25 N/R N/R N/R No Yes

RSDS_25(4) N/R N/R N/R No Yes

BLVDS_25 N/R N/R N/R Yes Yes

LVPECL_25 N/R N/R N/R Yes Yes

SSTL2_I 1.25 N/R N/R Yes Yes

SSTL2_II 1.25 N/R N/R Yes Yes

DIFF_SSTL2_II N/R N/R N/R Yes Yes

LVCMOS25 2.5 N/R N/R N/R Yes Yes

LVDCI_25 N/R Series N/R Yes Yes

HSLVDCI_25 VCCO/2 Series N/R Yes Yes

LVDCI_DV2_25 N/R Series N/R Yes Yes

LVDS_25_DCI N/R N/R Split No Yes

LVDSEXT_25_DCI N/R N/R Split No Yes

SSTL2_I_DCI 1.25 N/R Split Yes Yes

SSTL2_II_DCI 1.25 Split Split Yes Yes

DIFF_SSTL2_II_DCI N/R Split Split Yes Yes

300 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

HSTL_III_18 1.8 Note (2) 1.1 N/R N/R Yes Yes

HSTL_IV_18 1.1 N/R N/R Yes Yes

HSTL_I_18 0.9 N/R N/R Yes Yes

HSTL_II_18 0.9 N/R N/R Yes Yes

DIFF_HSTL_II_18 N/R N/R N/R Yes Yes

SSTL18_I 0.9 N/R N/R Yes Yes

SSTL18_II 0.9 N/R N/R Yes Yes

DIFF_SSTL18_II N/R N/R N/R Yes Yes

LVCMOS18 1.8 N/R N/R N/R Yes Yes

LVDCI_18 N/R Series N/R Yes Yes

HSLVDCI_18 VCCO/2 Series N/R Yes Yes

LVDCI_DV2_18 N/R Series N/R Yes Yes

HSTL_III_18_DCI 1.1 N/R Single Yes Yes

HSTL_IV_18_DCI 1.1 Single Single Yes Yes

HSTL_I_18_DCI 0.9 N/R Split Yes Yes

HSTL_II_18_DCI 0.9 Split Split Yes Yes

DIFF_HSTL_II_18_DCI N/R Split Split Yes Yes

SSTL18_I_DCI 0.9 N/R Split Yes Yes

SSTL18_II_DCI 0.9 Split Split Yes Yes

DIFF_SSTL18_II_DCI N/R Split Split Yes Yes

Table 6-38: I/O Compatibility (Continued)

I/O Standard
VCCO VREF Termination Type Lower Capacitance IOB

Output Input Input Output Input Output Input

Virtex-4 FPGA User Guide www.xilinx.com 301
UG070 (v2.6) December 1, 2008

I/O Standards Compatibility
R

HSTL_III 1.5 Note (2) 0.9 N/R N/R Yes Yes

HSTL_IV 0.9 N/R N/R Yes Yes

HSTL_I 0.75 N/R N/R Yes Yes

HSTL_II 0.75 N/R N/R Yes Yes

DIFF_HSTL_II N/R N/R N/R Yes Yes

LVCMOS15 1.5 N/R N/R N/R Yes Yes

LVDCI_15 N/R Series N/R Yes Yes

HSLVDCI_15 VCCO/2 Series N/R Yes Yes

LVDCI_DV2_15 N/R Series N/R Yes Yes

GTLP_DCI 1 Single Single Yes Yes

HSTL_III_DCI 0.9 N/R Single Yes Yes

HSTL_IV_DCI 0.9 Single Single Yes Yes

HSTL_I_DCI 0.75 N/R Split Yes Yes

HSTL_II_DCI 0.75 Split Split Yes Yes

DIFF_HSTL_II_DCI N/R Split Split Yes Yes

GTL_DCI 1.2 1.2 0.8 Single Single Yes Yes

GTLP N/R Note (2) 1 N/R N/R Yes Yes

GTL 0.8 N/R N/R Yes Yes

Notes:
1. See “3.3V I/O Design Guidelines” for more detailed information
2. Differential inputs and inputs using VREF are powered from VCCAUX. However, pin voltage must not exceed VCCO, due to the

presence of clamp diodes to VCCO.
3. N/R = no requirement.
4. RSDS_25 has the same DC specifications as LVDS_25. All information pertaining to LVDS_25 is applicable to RSDS_25.
5. I/O standard is selected using the IOSTANDARD attribute.

Table 6-38: I/O Compatibility (Continued)

I/O Standard
VCCO VREF Termination Type Lower Capacitance IOB

Output Input Input Output Input Output Input

302 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

I/O Standards Special Design Rules

Rules for Combining I/O Standards in the Same Bank
The following rules must be obeyed to combine different input, output, and bi-directional
standards in the same bank:

1. Combining output standards only. Output standards with the same output VCCO
requirement can be combined in the same bank.

Compatible example:

SSTL2_I and LVDCI_25 outputs

Incompatible example:

SSTL2_I (output VCCO = 2.5V) and
LVCMOS33 (output VCCO = 3.3V) outputs

2. Combining input standards only. Input standards with the same input VCCO and
input VREF requirements can be combined in the same bank.

Compatible example:

LVCMOS15 and HSTL_IV inputs

Incompatible example:

LVCMOS15 (input VCCO = 1.5V) and
LVCMOS18 (input VCCO = 1.8V) inputs

Incompatible example:

HSTL_I_DCI_18 (VREF = 0.9V) and
HSTL_IV_DCI_18 (VREF = 1.1V) inputs

3. Combining input standards and output standards. Input standards and output
standards with the same input VCCO and output VCCO requirement can be combined
in the same bank.

Compatible example:

LVDS_25 output and HSTL_I input

Incompatible example:

LVDS_25 output (output VCCO = 2.5V) and
HSTL_I_DCI_18 input (input VCCO = 1.8V)

4. Combining bi-directional standards with input or output standards. When
combining bi-directional I/O with other standards, make sure the bi-directional
standard can meet the first three rules.

5. Additional rules for combining DCI I/O standards.

a. No more than one Single Termination type (input or output) is allowed in the same
bank.

Incompatible example:

HSTL_IV_DCI input and HSTL_III_DCI input

b. No more than one Split Termination type (input or output) is allowed in the same
bank.

Incompatible example:

HSTL_I_DCI input and HSTL_II_DCI input

The implementation tools enforce the above design rules.

Virtex-4 FPGA User Guide www.xilinx.com 303
UG070 (v2.6) December 1, 2008

I/O Standards Special Design Rules
R

3.3V I/O Design Guidelines
To achieve maximum performance in Virtex-4 devices, several 3.3V I/O design guidelines
and techniques are highlighted in this section. This includes managing
overshoot/undershoot with termination techniques, regulating VCCO at 3.0V with a
voltage regulator, using external bus switches, reviewing configuration methods, and
other design considerations.

I/O Standard Design Rules

Overshoot/Undershoot

Undershoot and overshoot voltages on I/Os operating at 3.3V should not exceed the
absolute maximum ratings of –0.3V to 4.05V, respectively, when VCCO is 3.75V. These
absolute maximum limits are stated in the absolute maximum ratings table in Table 6-38 of
the Virtex-4 Data Sheet. However, the maximum undershoot value is directly affected by
the value of VCCO. Table 6-38 describes the worst-case undershoot and overshoot at
different VCCO levels.

The voltage across the gate oxide at any time must not exceed 4.05V. Consider the case in
which the I/O is either an input or a 3-stated buffer as shown in Figure 6-78. The gate of the
output PMOS transistor P0 and NMOS transistor N0 is connected essentially to VCCO and
ground, respectively.

The amount of undershoot allowed without overstressing the PMOS transistor P0 is the
gate voltage minus the gate oxide limit, or VCCO – 4.05V.

Similarly, the absolute maximum overshoot allowed without overstressing the NMOS
transistor N0 is the gate voltage plus the gate oxide limit, or Ground + 4.05V.

Figure 6-78: Virtex-4 FPGA I/O: 3-State Output Driver

ug070_6_76_072704

Output Driver

VCCO

Po

No

DG

DP

Ni

Pi
Power
Clamp
Diode

Ground
Clamp
Diode

GND GND

VCCO

External
Pin

Input Buffer

304 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

The clamp diodes offer protection against transient voltage beyond approximately
VCCO + 0.5V and Ground – 0.5V. The voltage across the diode increases proportionally to
the current going through it. Therefore the clamped level is not fixed and can vary
depending on the board design. The absolute maximum I/O limits might be exceeded
even if the clamp diode is active.

The IBIS models contain the voltage-current characteristics of the I/O drivers and clamp
diodes.

To verify overshoot and undershoot are within the I/O absolute maximum specifications,
Xilinx recommends proper I/O termination and performing IBIS simulation.

Source Termination and LVDCI_33

In general, the I/O drivers should match the board trace impedance to within ±10% to
minimize overshoot and undershoot. Source termination is often used for unidirectional
interfaces. The DCI feature has built-in source termination on all user output pins. It
compensates for impedance changes due to voltage and/or temperature fluctuations, and
can match the reference resistor values. Assuming the reference resistor values are the
same as the board trace impedance, the output impedance of the driver will closely match
with the board trace.

The LVDCI_33 standard is used to enable the DCI features for 3.3V I/O operations. As
shown in Figure 6-79, the OBUF_LVDCI_33 primitive is used to implement the source
termination function in Virtex-4 FPGA output drivers. The pull-up resistor connected to
VRN and the pull-down resistor connected to VRP determine the output impedance of all
the output drivers in the same bank. The “Virtex-4 FPGA Digitally Controlled Impedance
(DCI)” section has more details on using DCI.

Since the LVDCI_33 standard does not offer input termination, source termination must be
implemented on the driver side. Figure 6-79 shows the recommended external source
termination resistors to be incorporated on the external device side.

Table 6-39: Absolute Maximum Undershoot and Overshoot

VCCO (V) Maximum Undershoot (V) Maximum Overshoot (V)

3.75 –0.30 4.05

3.6 –0.45 4.05

3.45 –0.60 4.05

3.3 –0.75 4.05

3.0 –1.05 4.05

Virtex-4 FPGA User Guide www.xilinx.com 305
UG070 (v2.6) December 1, 2008

I/O Standards Special Design Rules
R

The total impedance of the LVTTL/LVCMOS driver added to the series termination
resistor R0 must match the board trace impedance ±10 percent to minimize overshoot and
undershoot. An IBIS simulation is advised for calculating the exact value needed for R0.

The connection scheme shown in Figure 6-80 is for a bidirectional bus scenario. The signal
performance may be degraded by R0. Therefore, it is also recommended to verify the R0
value and performance with an IBIS simulation.

When designing with the LVDCI_33 standard:

• The output drive strength and slew rates are not programmable. The output
impedance references the VRP and VRN resistors, and the output current is
determined by the output impedance.

• If only LVDCI_33 inputs are used, it is not necessary to connect VRP and VRN to
external reference resistors. The implementation pad report does not record VRP and
VRN being used. External reference resistors are required only if LVDCI_33 outputs
are present in a bank.

• LVDCI_33 is compatible with LVTTL and LVCMOS standards only.

In addition, changing the slew rate from fast to slow and/or reducing the current drive
could significantly reduce overshoot and undershoot.

The Virtex-4 PCB Designer’s Guide contains additional design information to assist PCB
designers and signal integrity engineers.

Figure 6-79: Connecting LVTTL or LVCMOS Using the LVDCI_33 Standard

Figure 6-80: 3.3V I/O Configuration

R0 + RDriver =
Z0 = 50Ω (typical) Virtex-4 FPGA

Z0

LVTTL/
LVCMOS
Driver

IBUF_LVDCI_33 Any 3.3V
I/O Device

R0

VCCO = 3.3V

UG070_6_77_031108

Z0

External Device

OBUF_LVDCI_33

RREF

VCCO

VRN

RREF

VRP

ug070_6_78_071404

Virtex-4
FPGA

OBUFT_LVDCI_33

IBUF_LVDCI

External Device

Z0

R0

306 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Regulating VCCO at 3.0V

The following section discusses alternatives for managing overshoot and undershoot for
LVTTL, LVCMOS33, and PCI applications.

When VCCO is lowered to 3.0V, the power clamp diode turns on at about 3.5V. Therefore it
limits any overshoot higher than 3.5V before reaching the absolute maximum level of
4.05V. In addition, instead of –0.3V when VCCO = 3.75V, the lower absolute maximum limit
corresponding to VCCO = 3.0V is –1.05V. In this case, the ground clamp diode clips
undershoot before reaching the lower absolute maximum limit.

As a result, lowering VCCO to 3.0V addresses the overshoot and undershoot specifications
for all supported 3.3 V standards, including LVCMOS_33, LVTTL, LVDCI_33, and PCI.

Mixing Techniques

Either using LVDCI_33 standard or lowering the VCCO to 3.0V is a good approach to
address overshoot and undershoot. It is also acceptable to combine both methods. When
VCCO is lowered to 3.0V, it is not necessary to adjust the reference resistors VRP and VRN.
The VRP and VRN values should always be the same as the board trace impedance.

Summary

Virtex-4 devices support 3.3V I/O standards (LVTTL, LVCMOS33, LVDCI33, PCI33/66,
and PCI-X) when the following guidelines are met:

• Keep signal overshoot and undershoot within the absolute maximum FPGA device
specifications.

♦ Source termination using LVDCI_33

♦ Slow slew rate and/or reduced drive current

♦ Voltage regulation at 3.0V

♦ External high-speed bus switches

• The absolute maximum junction temperature (TJ) is 125°C for 3.3V I/O operation.

Simultaneous Switching Output Limits
When multiple output drivers change state at the same time, power supply disturbance
occurs. These disturbances can cause undesired transient behavior in output drivers, input
receivers, or in internal logic. These disturbances are often referred to as Simultaneous-
Switching Output (SSO) noise. The SSO limits govern the number and type of I/O output
drivers that can be switched simultaneously while maintaining a safe level of SSO noise.

The Virtex-4 FPGA SSO limits are divided into two categories: Sparce Chevron (SC) and
Non-Sparse Chevron (NSC), corresponding to package pinout style. SSO limits for SC
packages are simpler and less restrictive than for NSC packages.

Sparse-Chevron Packages
Virtex-4 FPGA packaging falls into two categories according to pinout: sparse-chevron and
non-sparse-chevron. The sparse-chevron pinout style is an improvement over previous
designs, offering lower crosstalk and SSO noise. The pinout is designed to minimize PDS
inductance and keep I/O signal return current paths very closely coupled to their
associated I/O signal.

Virtex-4 FPGA User Guide www.xilinx.com 307
UG070 (v2.6) December 1, 2008

Simultaneous Switching Output Limits
R

The maximum ratio of I/O to VCCO/GND pin pairs in sparse-chevron packages is 8:1. For
this reason, most of the SSO limits (those higher than eight per VCCO/GND pair) are moot
for sparse-chevron packages. The SSO limits table, Table 6-40, reflects this. Only I/O
standards with limits less than eight (per VCCO/GND pair) appear in the table. All the
other I/O standards are designated “no limit” for the nominal PCB case.

For boards that do not meet the nominal PCB requirements listed in “Nominal PCB
Specifications”, the Virtex-4 FPGA SSO calculator is available, containing all SSO limit data
for all I/O standards. For designs in nominal PCBs mixing limited and “no limit” I/O
standards, the Virtex-4 FPGA SSO calculator must be used to ensure that I/O utilization
does not exceed the limit. Information on the calculator is available under the “Full Device
SSO Calculator” section.

Nominal PCB Specifications
The nominal SSO tables (Table 6-40 and Table 6-42) contain SSO limits for cases where the
PCB parameters meet the following requirements. In cases where PCB parameters do not
meet all requirements listed below, the Virtex-4 FPGA SSO calculator must be used to
determine the SSO limit, according to the physical factors of the unique PCB.

PCB Construction

• VCCO and GND vias should have a drill diameter no less than 11 mils (279 μ).

• Total board thickness must be no greater than 62 mils (1575 μ).

Signal Return Current Management

• Traces must be referenced to a plane on an adjacent PCB layer.

• The reference plane must be either GND or the VCCO associated with the output
driver.

• The reference layer must remain uninterrupted for its full length from device to
device.

Load Traces

• All IOB output buffers must drive controlled impedance traces with characteristic
impedance of 50Ω ±10%.

• Total capacitive loading at the far end of the trace (input capacitance of receiving
device) must be no more than 10 pF.

Power Distribution System Design

• Designed according to Chapter 4 of the Virtex-4 PCB Designer’s Guide.

♦ At least one decoupling capacitor per VCCO pin (see “Step 1: Determining Critical
Parameters of the FPGA”)

♦ No less than one of each capacitor value present (see “Step 2: Designing the
Generic Bypassing Network”)

♦ Capacitors mounted within a distance of λ/40 (see “Capacitor Placement”)

♦ Approved solder land patterns (see B, C, and D of Figure 4-6, “Example Capacitor
Land and Mounting Geometries”)

• VCCO and GND planes cannot be separated by more than 5.0 mils (152 μ)

308 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Nominal SSO Limit Table: Sparse Chevron
Table 6-40 provides the guidelines for the maximum number of simultaneously switching
outputs allowed per output power/ground pair to avoid the effects of ground bounce.
Table 6-40 omits all I/O standards that meet the no-limit criteria. Only I/O standards with
nominal SSO limits of eight or less are listed. SSO limits for all I/O standards are listed in
the Virtex-4 FPGA SSO calculator available on the Xilinx website at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=30163

Table 6-41 lists the number of equivalent output VCCO/GND pairs for each device,
package, and I/O bank.

Table 6-40: Sparse Chevron Simultaneously Switching Output Limits per Equivalent VCCO/GND Pair (1)

Voltage IOStandard
Sparse Chevron Limit

FF672, FF676, FF1148, FF1152, FF1513, FF1517, FF1760

1.2V HSTL_I_12 TBD

1.5V

HSTL_IV 5

HSTL_IV_DCI 5

LVCMOS15_16_fast 7

1.8V

HSTL_III_18 7

HSTL_III_DCI_18 7

HSTL_IV_18 4

HSTL_IV_DCI_18 4

LVDCI_DV2_18 6

2.5V
LVCMOS25_24_fast 6

LVDCI_DV2_25 25 Ω 7

3.3V

LVCMOS33_24_fast 6

LVTTL_24_slow 8

GTL 5

GTL_DCI 5

GTLP 5

GTLP_DCI 5

LVTTL24_fast 6

Notes:
1. There are no SSO limits for LVDS outputs.

Virtex-4 FPGA User Guide www.xilinx.com 309
UG070 (v2.6) December 1, 2008

Simultaneous Switching Output Limits
R

Equivalent VCCO/GND Pairs: Sparse Chevron

Since ground pins and VCCO pins are connected to common structures inside the package,
the number of effective VCCO/GND pin pairs in a bank can differ from the number of
physical VCCO/GND pin pairs. Table 6-41 shows the number of equivalent VCCO/GND
pin pairs in each bank of each sparse chevron package.

Table 6-41: Equivalent VCCO/GND Pairs per Bank: Sparse Chevron

Package
Bank Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Virtex®-4 FPGA (LX Family)

FF676 4 2 2 2 2 8 8 8 8 8 8 --- --- --- --- --- ---

FF1148 4 8 8 2 2 9 9 9 9 9 9 9 9 8 8 --- ---

FF1513 3 14 14 2 2 10 9 9 10 9 10 10 9 9 9 9 9

Virtex-4 FPGA (SX Family)

FF676 4 2 2 2 2 8 8 8 8 8 8 --- --- --- --- --- ---

FF1148 4 8 8 2 2 9 9 9 9 9 9 9 9 8 8 --- ---

Virtex-4 FPGA (FX Family)

FF672 2 2 2 2 2 8 8 8 8 2 2 --- --- --- --- --- ---

FF676 4 2 2 2 2 8 8 8 8 8 8 --- --- --- --- --- ---

FF1152 4 2 2 2 2 9 9 9 9 8 8 8 8 --- --- --- ---

FF1517 3 8 8 2 2 9 9 9 8 9 9 9 9 9 9 --- ---

Notes:
1. These numbers are based on the package files and device pinout. Most of the limitations are based on the availability of GND pins

in the vicinity of the bank. There are a few instances where the limitation is due to VCCO pins.
2. Bank 0 in all devices contains no user I/O. Therefore, SSO analysis is unnecessary for Bank 0.

310 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Nominal SSO Limit Tables: Non-Sparse Chevron
Table 6-42 provides the guidelines for the maximum number of simultaneously switching
outputs allowed per output power/ground pair to avoid the effects of ground bounce.
Refer to Table 6-43 for the number of equivalent output VCCO/GND pairs for each device,
package, and I/O bank.

Table 6-42: Non-Sparse Chevron Simultaneously Switching Output Limits per
Equivalent VCCO/GND Pair

Voltage IOStandard
Non-Sparse Chevron Limit
SF363 and FF668 Packages

1.5V LVCMOS15_2_slow 51

LVCMOS15_4_slow 31

LVCMOS15_6_slow 22

LVCMOS15_8_slow 17

LVCMOS15_12_slow 11

LVCMOS15_16_slow 8

LVCMOS15_2_fast 30

LVCMOS15_4_fast 18

LVCMOS15_6_fast 13

LVCMOS15_8_fast 10

LVCMOS15_12_fast 8

LVCMOS15_16_fast 6

LVDCI_15 50 Ω 10

LVDCI_DV2_15 25 Ω 5

HSLVDCI_15 50 Ω 10

HSTL_I 20

HSTL_I_DCI 20

HSTL_II 10

HSTL_II_DCI 10

HSTL_III 8

HSTL_III_DCI 8

HSTL_IV 4

HSTL_IV_DCI 4

DIFF_HSTL_II 10

DIFF_HSTL_II_DCI 10

Virtex-4 FPGA User Guide www.xilinx.com 311
UG070 (v2.6) December 1, 2008

Simultaneous Switching Output Limits
R

1.8V LVCMOS18_2_slow 58

LVCMOS18_4_slow 35

LVCMOS18_6_slow 25

LVCMOS18_8_slow 19

LVCMOS18_12_slow 13

LVCMOS18_16_slow 10

LVCMOS18_2_fast 34

LVCMOS18_4_fast 20

LVCMOS18_6_fast 15

LVCMOS18_8_fast 11

LVCMOS18_12_fast 9

LVCMOS18_16_fast 7

LVDCI_18 50 Ω 11

LVDCI_DV2_18 25 Ω 5

HSLVDCI_18 50 Ω 11

HSTL_I_18 16

HSTL_I_DCI_18 16

HSTL_II_18 8

HSTL_II_DCI_18 8

HSTL_III_18 6

HSTL_III_DCI_18 6

HSTL_IV_18 3

HSTL_IV_DCI_18 3

SSTL18_I 20

SSTL18_I_DCI 20

SSTL18_II 13

SSTL18_II_DCI 13

DIFF_HSTL_II_18 8

DIFF_HSTL_II_DCI_18 8

DIFF_SSTL18_II 12

DIFF_SSTL18_II_DCI 12

Table 6-42: Non-Sparse Chevron Simultaneously Switching Output Limits per
Equivalent VCCO/GND Pair (Continued)

Voltage IOStandard
Non-Sparse Chevron Limit
SF363 and FF668 Packages

312 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

2.5V LVCMOS25_2_slow 68

LVCMOS25_4_slow 41

LVCMOS25_6_slow 29

LVCMOS25_8_slow 22

LVCMOS25_12_slow 15

LVCMOS25_16_slow 11

LVCMOS25_24_slow 7

LVCMOS25_2_fast 40

LVCMOS25_4_fast 24

LVCMOS25_6_fast 17

LVCMOS25_8_fast 13

LVCMOS25_12_fast 10

LVCMOS25_16_fast 8

LVCMOS25_24_fast 5

LVDCI_25 50 Ω 13

LVDCI_DV2_25 25 Ω 6

HSLVDCI_25 50 Ω 13

SSTL2_I 15

SSTL2_I_DCI 15

SSTL2_II 10

SSTL2_II_DCI 10

DIFF_SSTL2_II 10

DIFF_SSTL2_II_DCI 10

LVPECL_25 8

BLVDS_25 8

Table 6-42: Non-Sparse Chevron Simultaneously Switching Output Limits per
Equivalent VCCO/GND Pair (Continued)

Voltage IOStandard
Non-Sparse Chevron Limit
SF363 and FF668 Packages

Virtex-4 FPGA User Guide www.xilinx.com 313
UG070 (v2.6) December 1, 2008

Simultaneous Switching Output Limits
R

3.3V LVCMOS33_2_slow 68

LVCMOS33_4_slow 41

LVCMOS33_6_slow 29

LVCMOS33_8_slow 22

LVCMOS33_12_slow 15

LVCMOS33_16_slow 11

LVCMOS33_24_slow 7

LVCMOS33_2_fast 40

LVCMOS33_4_fast 24

LVCMOS33_6_fast 17

LVCMOS33_8_fast 13

LVCMOS33_12_fast 10

LVCMOS33_16_fast 8

LVCMOS33_24_fast 5

LVDCI_33 50 Ω 13

HSLVDCI_33 50 Ω 13

LVTTL2_slow 68

LVTTL4_slow 41

LVTTL6_slow 29

LVTTL8_slow 22

LVTTL12_slow 15

LVTTL16_slow 11

LVTTL24_slow 7

LVTTL2_fast 40

LVTTL4_fast 24

LVTTL6_fast 17

LVTTL8_fast 13

LVTTL12_fast 10

LVTTL16_fast 8

LVTTL24_fast 5

PCI33_3/PCI66_3/PCIX 9

Table 6-42: Non-Sparse Chevron Simultaneously Switching Output Limits per
Equivalent VCCO/GND Pair (Continued)

Voltage IOStandard
Non-Sparse Chevron Limit
SF363 and FF668 Packages

314 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Equivalent VCCO/GND Pairs: Non-Sparse Chevron

Since ground pins and VCCO pins are connected to common structures inside the package,
the number of effective VCCO/GND pin pairs in a bank can differ from the number of
physical VCCO/GND pin pairs. Table 6-43 shows the number of equivalent VCCO/GND
pin pairs in each bank of each non-sparse chevron package. Some of the numbers are not
integers as these banks share GND pins with other resources.

Actual SSO Limits versus Nominal SSO Limits
The Virtex-4 FPGA SSO limits are defined in for a set of nominal system conditions in
Table 6-40 and Table 6-42. To compute the actual limits for a specific user's system, the
automated “Parasitic Factors Derating Method (PFDM)” must be used. The PFDM allows
the user to account for differences between actual and nominal PCB power systems,
receiver capacitive loading, and maximum allowable ground bounce or VCC bounce. A
spreadsheet calculator, “Full Device SSO Calculator”, automates this process.

Electrical Basis of SSO Noise
Power supply disturbance can take the form of ground bounce or VCC bounce, and is
usually a combination of the two. This bounce is a deviation of the die supply voltage (die
GND rail or die VCC rail) with respect to the voltage of the associated PCB supply (PCB
GND rail or PCB VCC rail). The deviation of die supplies from PCB supplies comes from

3.3V GTL 4

GTL_DCI 4

GTLP 4

GTLP_DCI 4

Table 6-42: Non-Sparse Chevron Simultaneously Switching Output Limits per
Equivalent VCCO/GND Pair (Continued)

Voltage IOStandard
Non-Sparse Chevron Limit
SF363 and FF668 Packages

Table 6-43: Equivalent VCCO/GND Pairs per Bank: Non-Sparse Chevron

Package
Bank Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Virtex-4 FPGA (LX/FX Families)

SF363 1 0.5 0.5 1 1 4.5 4.5 3 3 --- --- --- --- --- --- --- ---

FF668 2 2 2 2 2 4.5 5 5 4 3(3) 3(3) --- --- --- --- --- ---

Virtex-4 FPGA (SX Family)

FF668 2 2 2 2 2 4.5 5 5 4 3 3 --- --- --- --- --- ---

Notes:
1. These numbers are based on the package files and device pinout. Some of the numbers are not integers as these banks share their

GND pin with other banks. Most of the limitations are based on the availability of GND pins in the vicinity of the bank. There are a
few instances where the limitation is due to VCCO pins.

2. Bank 0 in all devices contains no user I/O. Therefore, SSO analysis is unnecessary for Bank 0.
3. Banks 9 and 10 are not available in the XC4VFX12 device.

Virtex-4 FPGA User Guide www.xilinx.com 315
UG070 (v2.6) December 1, 2008

Simultaneous Switching Output Limits
R

the voltage induced across power system parasitics by supply current transients. One
cause of current transients is output driver switching events. Numerous output switching
events occurring at the same time lead to bigger current transients, and therefore bigger
induced voltages (ground bounce, VCC bounce, or rail collapse). Relevant transient current
paths exist in the die, package, and PCB, therefore, parasitics from all three must be
considered. The larger the value of these parasitics, the larger the voltage induced by a
current transient (power-supply disturbance).

VCC bounce affects stable high outputs. Ground bounce affects stable low outputs. Ground
bounce also affects inputs configured as certain I/O standards because they interpret
incoming signals by comparing them to a threshold referenced to the die ground (as
opposed to I/O standards with input thresholds referenced to a VREF voltage). If the die
voltage disturbance exceeds the instantaneous noise margin for the interface, then a non-
changing input or output can be interpreted as changing.

Parasitic Factors Derating Method (PFDM)
This section describes a method to evaluate whether a design is within the SSO limits when
taking into account the specific electrical characteristics of the user's unique system.

The SSO limits in Table 6-40 and Table 6-42 assume nominal values for the parasitic factors
of the system. These factors fall into three groups of electrical characteristics:

• PCB PDS parasitics (nominal 1 nH per via)

• Maximum allowable power system disturbance voltage (nominal 600 mV)

• Capacitive loading (nominal 10 pF per load)

When the electrical characteristics of a design differ from the nominal values, the system
SSO limit changes. The degree of difference determines the new effective limit for the
design. A figure called “SSO Allowance” is used as a single derating factor, taking into
account the combined effect of all three groups of system electrical characteristics.

The SSO allowance is a number ranging from 0 to 100% and is a product of three scaling
factors:

The First Scaling Factor accounts for the PCB PDS parasitic inductance. It is determined by
dividing the nominal PCB PDS inductance by the user's PCB PDS inductance, LPDS_USR.
The PCB PDS inductance is determined based on a set of board geometries: board
thickness, via diameter, breakout trace width and length, and any other additional
structures including sockets.

The Second Scaling Factor accounts for the maximum allowable power system disturbance.
It is determined by dividing the user's maximum allowable power system disturbance,
(VDISTURBANCE_USER) by the nominal maximum power system disturbance.
VDISTURBANCE_USER is usually determined by taking the lesser of input undershoot
voltage and input logic low threshold.

The Third Scaling Factor accounts for the capacitive loading of outputs driven by the FPGA.
It is based on the transient current impact of every additional picofarad of load capacitance
above the assumed nominal. For every additional 1 pF of load capacitance over the
nominal, approximately 9 mV of additional power system disturbance will occur. The
additional power system disturbance is compared to the nominal power system
disturbance, and a scale factor is derived from the relationship. CLOAD_USER is the user's
average load capacitance.

Example calculations show how each scale factor is computed, as well as the SSO
allowance. The system parameters used in this example are:

316 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

LPDS_USER= 1.1 nH

VDISTURBANCE_USER= 550 mV

CLOAD_USER= 22 pF

First Scaling Factor (SF1)= LPDS_NOM/LPDS_USER
= 1.0 nH/1.1 nH
= 0.909

Second Scaling Factor (SF2)= VDISTURBANCE_USER/VDISTURBANCE_NOM

= 550 mV/600 mV

= 0.917

Third Scaling Factor (SF3)

= VDISTURBANCE_NOM/((CLOAD_USER – CLOAD_NOM) × 9 mV/pF) + VDISTURBANCE_NOM

= 600 mV/((22 pF – 15 pF) × 9 mV/pF) + 600 mV

= 600 mV/663 mV

= 0.905

SSO Allowance= SF1 × SF2 × SF3 × 100%

= 0.909 × 0.917 × 0.905 × 100%

= 75.4%

Weighted Average Calculation of SSO
This section describes the SSO calculation where the SSO contributions of all I/O in a bank
are combined into a single figure.

SSO of an individual bank is calculated by summing the SSO contributions of the
individual I/O standards in the bank. The SSO contribution is the percentage of full
utilization of any one I/O standard in any one bank. For drivers of each I/O standard, the
calculation follows:

Bank SSO limit (I/O group n)
= (I/O Standard SSO limit × Equivalent VCCO/GND pairs in bank)

SSO Contribution (I/ O group n) = (quantity of drivers)/(Bank SSO limit)

For a bank with drivers of multiple I/O standards, the SSO calculation is:

A sample SSO calculation follows. The system parameters used are:

Device:XC4VLX60 FF1148

Bank:1

I/O Standards, Quantities:
SSTL2_II, 22

LVCMOS25_16 Fast, 6

LVCMOS25_6 Fast, 19

Bank SSO SSO Contribution n()
1 to n()
∑=

Virtex-4 FPGA User Guide www.xilinx.com 317
UG070 (v2.6) December 1, 2008

Simultaneous Switching Output Limits
R

First, SSO limits for each I/O standard are obtained from Table 6-42:

From Table 6-41, the number of equivalent VCCO/GND pairs in Bank 1 for the FF1148
package is eight.

The Bank SSO limit is calculated for each I/O standard:

Bank SSO Limit =(# drivers per VCCO/GND pair × 8 VCCO/GND pairs

Bank SSO Limit (1)=10 drivers per VCCO/GND pair × 8 VCCO/GND pairs= 80 drivers

Bank SSO Limit (2)= 8 drivers per VCCO/GND pair × 8 VCCO/GND pairs= 64 drivers

Bank SSO Limit (3)=18 drivers per VCCO/GND pair × 8 VCCO/GND pairs= 136 drivers

The SSO contribution of each I/O standard is calculated as:

SSO Contribution = (quantity of drivers)/(Bank SSO limit)

SSO Contribution (1)=22/80= 27.5%

SSO Contribution (2)=6/64= 9.3%

SSO Contribution (3)=19/136= 14.0%

Finally, the bank SSO is calculated:

Bank 1 SSO = SSO contribution (1) + SSO contribution (2) + SSO Contribution (3)

= 27.5% + 9.3% + 14.0% = 50.9%

Calculation of Full Device SSO
Three separate criteria must be satisfied for a full device design to be within the SSO limit.
The first criterion ensures the number of simultaneously switching outputs does not
exceed the per-bank limit. The second criterion ensures even distribution of output drivers
across the package. A final criterion ensures overall power system disturbance in the chip
is not excessive. The SSO allowance is used in both of the latter two constraints, taking into
account design-specific parameters. The criteria are as follows:

• SSO for any single bank cannot exceed 100%.

• Average SSO of two adjacent banks cannot exceed 105% of SSO allowance.

• Package SSO cannot exceed SSO allowance.

SSO is computed first on a per I/O bank basis. Next, the average SSO of each adjacent bank
pair is computed. Finally the average SSO is computed for all banks to determine the
effective utilization for the entire package.

Full Device SSO Example

A sample calculation of full-device SSO is shown for a Virtex-4 FPGA XC4VLX60 FF1148
package. The subscript NOM denotes a nominal value while the subscript DES denotes a
value for the design under analysis.

I/O Group I/O Standard SSO Limit (Drivers per VCCO/GND Pair)

1 SSTL2_II 10

2 LVCMOS25_16 Fast 8

3 LVCMOS25_6 Fast 17

318 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Step 0: Calculate the SSO Allowance

SSO Allowance =
(LNOM/LDES) × (VNOISE_DES/VNOISE_NOM) ×
(VNOISE_NOM/(((CLOAD_DES – CLOAD_NOM) × VCOEFF) + VNOISE_NOM)

SSO Allowance =
(1.0 nH/1.1 nH) × (550 mV/600 mV) ×
(600 mV/(((22 × pF – 15 pF) × 9 mV/pF) + 600 mV))

SSO Allowance = 75.4%

Step 1: Calculate the SSO for Each Individual Bank for Bank 1

Ensure the SSO for each bank does not exceed 100%.

Bank1 SSO:50.9% < 100%

Bank2 SSO:50.9% < 100%

Bank3 SSO:0%< 100%

Bank4 SSO:60% < 100%

Bank5 SSO: 35% < 100%

Bank6 SSO:40% < 100%

Bank7 SSO:15% < 100%

Bank8 SSO:30% < 100%

Bank9 SSO:12% < 100%

Bank10 SSO:22% < 100%

Bank11 SSO:80% < 100%

Bank12 SSO:0% < 100%

Bank13 SSO:5% < 100%

Bank14 SSO:60% < 100%

OK!

If the SSO of any bank exceeds 100%, apply ground bounce reduction techniques to the
bank until the SSO of all individual banks is less than 100%.

Step 2: Calculate the Adjacent Bank SSO Average for All Adjacent Bank Pairs

Ensure the adjacent bank averages do not exceed 105% of the SSO allowance.

First, calculate the adjacent bank SSO average for Banks 7 and 11, and check against 105%
of SSO allowance.

Adjacent Bank SSO Average 7 - 11 =
(SSO of bank 7 + SSO of bank 11)/2 = (15% + 80%)/2 = 47.5%

SSO allowance × 105% > adjacent bank SSO average 7 - 11

= 79.2% > 47.5%

OK!

Then calculate adjacent bank SSO average for all adjacent bank pairs. If the average SSO of
two adjacent banks exceeds 105% of the SSO allowance, apply ground bounce reduction

Virtex-4 FPGA User Guide www.xilinx.com 319
UG070 (v2.6) December 1, 2008

Simultaneous Switching Output Limits
R

techniques to one or both of these two banks until the average SSO of all adjacent bank
pairs is less than or equal to 105% of the SSO allowance.

Step 3: Calculate the Package SSO

Ensure the package SSO does not exceed the SSO allowance.

All Bank SSO average
= (Sum of SSO from all banks)/(number of banks available in the package)

= (51 + 51 + 0 + 60 +35 + 40 +15 + 30 + 12 + 22 + 80 + 0 + 5 + 60)/14 = 32.2%

SSO allowance > All Bank SSO average

75.4% > 32.9

OK!

If the package SSO exceeds the SSO allowance, apply ground bounce reduction techniques
to one or more of all I/O banks until the all-bank SSO average is less than or equal to the
SSO allowance.

Full Device SSO Calculator
A Microsoft Excel-based spreadsheet, the Virtex-4 FPGA SSO calculator, automates all the
PFDM and WASSO calculations. The Virtex-4 FPGA SSO calculator uses PCB geometry,
(board thickness, via diameter, and breakout trace width and length) to determine power
system inductance. It determines the smallest undershoot and logic-Low threshold voltage
among all input devices, calculates the average output capacitance, and determines the
SSO allowance by taking into account all of the board-level design parameters mentioned
in this document. In addition, the Virtex-4 FPGA SSO calculator checks the adjacent bank
and package SSO ensuring the full device design does not exceed the SSO allowance. Since
bank-number assignment for Virtex-4 devices is different from package to package due to
its columnar architecture (versus the peripheral I/O architecture of previous devices),
there is a separate tab at the bottom of the SSO calculator display for each Virtex-4 FPGA
package. This customizing allows for the arrangement of physically adjacent banks (as
they appear clockwise on each unique package, even though they are not labeled in a
contiguous manner), and the hard-coding of the number of VCCO/GND pairs per bank.

The Virtex-4 FPGA SSO calculator can be downloaded from the Xilinx website at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=30163

Other SSO Assumptions

LVDCI and HSLVDCI Drivers

All limits for controlled impedance DCI I/O standards assume a 50Ω output impedance.
For higher reference resistor (RR) values, less drive strength is needed, and the SSO limit
increases linearly. To calculate the SSO limit for a controlled impedance driver with
different reference resistors, the following formula is used:

User SSO User RR
50Ω

------------------------Ω SSO Limit for Ω=

320 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 6: SelectIO Resources
R

Example

The designer uses LVDCI_18 driver with 65Ω reference resistors. The LVDCI_18 SSO limit
for 50Ω impedance is first taken from Table 6-42. The SSO limit for LVDCI_18 at 50Ω is
11 SSO per VCCO/GND pin pair. Therefore, the SSO limit for LVDCI_18 at 65Ω is:

SSO Limit LVDCI_18 at 65Ω = ((65Ω)/50Ω) × 11 = 14.3

Bank 0

Bank 0 in all devices contains only configuration and dedicated signals. Since there is no
user I/O in Bank 0, no SSO analysis is necessary for this bank.

Virtex-4 FPGA User Guide www.xilinx.com 321
UG070 (v2.6) December 1, 2008

R

Chapter 7

SelectIO Logic Resources

Introduction
This chapter describes the logic directly behind the I/O drivers and receivers covered in
Chapter 6, “SelectIO Resources”.

Virtex-4 FPGAs contain all of the basic I/O logic resources from Virtex®-II/Virtex-II Pro
FPGAs. These resources include the following:

• Combinatorial input/output

• 3-state output control

• Registered input/output

• Registered 3-state output control

• Double-Data-Rate (DDR) input/output

• DDR output 3-state control

In addition, the following architectural improvements have been implemented:

• IDELAY provides users control of an adjustable, fine-resolution input delay element.

• SAME_EDGE output DDR mode

• SAME_EDGE and SAME_EDGE_PIPELINED input DDR mode

ILOGIC Resources
ILOGIC blocks include four storage elements and a programmable absolute delay element,
shown in Figure 7-1.

To build an edge-triggered D-type flip-flop, the topmost register (IFF1) is used. Only this
register can optionally be configured as a level sensitive latch. The other three registers
(IFF2, IFF3, and IFF4) are used to build various input DDR registers. See “Input DDR
Overview (IDDR),” page 323 for further discussion on input DDR.

All ILOGIC block registers have a common clock enable signal (CE1) that is active High by
default. If left unconnected, the clock enable pin for any storage element defaults to the
active state.

All ILOGIC block registers have a common synchronous or asynchronous set and reset (SR
and REV signals). The set/reset input pin, SR forces the storage element into the state
specified by the SRVAL attributes. When using SR, a second input, REV forces the storage
element into the opposite state. The reset condition predominates over the set condition.
Table 7-1 and Table 7-2 describe the operation of SR in conjunction with REV.

322 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

Table 7-1: Truth Table when SRVAL = 0 (Default Condition)

SR REV Function

0 0 NOP

0 1 Set

1 0 Reset

1 1 Reset

Table 7-2: Truth Table when SRVAL = 1

SR REV Function

0 0 NOP

0 1 Reset

1 0 Set

1 1 Reset

Figure 7-1: ILOGIC Block Diagram

D

IFF1
IFF3

1
0

1
0

D

DLYINC

DLYRST

DLYCE

CLKDIV

CLKDIVINV

OUT
INC
RST
CE
CLK

D Q Q1

O

Q2

CE
CK

REVSR

IDELAY

IDELMUX1USED

IDELMUX

IFFDELMUX

IFF1

IFF2

D Q
CE

CE1 CK

REVSR

IFF3

IFF4

D Q
CE
CK

REVSR

D Q
CE
CK

REVSR

CE1INV

CLKINV

SRINV

REVINV

CLK

SR

REV

Q1MUX

IFF2
IFF4ug

Q2MUX

ug070_7_01_011507

Virtex-4 FPGA User Guide www.xilinx.com 323
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

The SRVAL attributes can be set individually for each storage element in the ILOGIC block,
but the choice of synchronous or asynchronous set/reset (SRTYPE) can not be set
individually for each storage element in the ILOGIC block.

The SR and REV pins are shared between adjacent ILOGIC/ISERDES and
OLOGIC/OSERDES.

Most of the control signals have an optional inverter. Any inverter placed on a control
signal is automatically absorbed into the ILOGIC block (i.e., no CLBs are used).

The following sections discuss the various resources within the ILOGIC blocks. All
connections between the ILOGIC resources are managed in Xilinx® software.

Combinatorial Input Path
The combinatorial input path is used to create a direct connection from the input driver to
the FPGA logic. This path is used by software automatically when:

1. There is a direct (unregistered) connection from input data to logic resources in the
FPGA logic.

2. The “pack I/O register/latches into IOBs” is set to OFF.

Input DDR Overview (IDDR)
Virtex-4 devices have dedicated registers in the ILOGIC to implement input double-data-
rate (DDR) registers. This feature is used by instantiating the IDDR primitive.

There is only one clock input to the IDDR primitive. Falling edge data is clocked by a
locally inverted version of the input clock. All clocks feeding into the I/O tile are fully
multiplexed, i.e., there is no clock sharing between ILOGIC or OLOGIC blocks. The IDDR
primitive supports the following modes of operation:

• OPPOSITE_EDGE mode

• SAME_EDGE mode

• SAME_EDGE_PIPELINED mode

The SAME_EDGE and SAME_EDGE_PIPELINED modes are new for the Virtex-4
architecture. These new modes allow designers to transfer falling edge data to the rising
edge domain within the ILOGIC block, saving CLB and clock resources, and increasing
performance. These modes are implemented using the DDR_CLK_EDGE attribute. The
following sections describe each of the modes in detail.

OPPOSITE_EDGE Mode

A traditional input DDR solution, or OPPOSITE_EDGE mode, is accomplished via a single
input signal driving two registers (IFF1 and IFF2) in the ILOGIC. Both registers are rising
edge triggered. The second register (IFF2) receives an inverted version of the clock. The
result is that rising edge data is presented to the fabric via the first register output (Q1) and
falling edge data via the second register output (Q2). This structure is similar to the
Virtex-II and Virtex-II Pro FPGA implementation. Figure 7-2 shows a simplified input

324 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

DDR register and the signals/ports associated with OPPOSITE_EDGE mode. Figure 7-3
shows the timing diagram of the input DDR using the OPPOSITE_EDGE mode.

Figure 7-2: Input DDR in OPPOSITE_EDGE Mode

ug070_7_02_072904

CLK

R

S

S

CE

D Q Q1

CLK

R

CE

D Q Q2

D

R

CE

C

S

Figure 7-3: Input DDR Timing in OPPOSITE_EDGE Mode

ug070_7_03_072904

C

CE

D

Q1

Q2

D0A D1A D2A

D0A D2A D4A D6A D8A D10A D12A

D1A D3A D5A D7A D9A D11A

D3A D4A D5A D6A D7A D8A D9A D10A D11A D12A D13A

Virtex-4 FPGA User Guide www.xilinx.com 325
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

SAME_EDGE Mode

In the SAME_EDGE mode a third register (IFF4), clocked by the rising edge clock, is placed
on the output of the falling edge register. Figure 7-4 shows input DDR registers and the
signals associated with the SAME_EDGE mode.

By adding the third register, data is presented into the FPGA fabric on the same clock edge.
However, the additional register causes the data pair to be separated by one clock cycle.
Figure 7-5 shows the timing diagram of the input DDR using the SAME_EDGE mode. In
the timing diagram, the output pairs are no longer (0) and (1). Instead, the first pair
presented is pair (0) and (don't care), followed by pair (1) and (2) on the next clock cycle.

Figure 7-4: Input DDR in SAME_EDGE Mode

ug070_7_04_071404

CLK

R

CE

S

S S

D Q Q1

CLK

R

CE

D Q Q2

CLK

R

CE

D Q

D

R

CE

C

S

Figure 7-5: Input DDR Timing in SAME_EDGE Mode

ug070_7_05_072904

C

CE

D

Q1

Q2

D1A

D0A D2A D4A D6A D8A D10A

D1A D3A D5A D7A D9A D11A

D3A D5A D7A D9A D11AD0A D2A D4A D6A D8A D10A

Don't care

326 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

SAME_EDGE_PIPELINED Mode

In the SAME_EDGE_PIPELINED mode a fourth register (IFF3), clocked by the rising-edge
clock, is placed on the output of the two registers. Figure 7-6 shows the input DDR
registers and the signals involved using the SAME_EDGE_PIPELINED mode.

By adding the additional register, data is presented into the FPGA fabric on the same clock
edge. Unlike the SAME_EDGE mode, the additional registers do not cause the data pair to
be separated. However, an additional clock latency is required to remove the separated
effect of the SAME_EDGE mode. Figure 7-7 shows the timing diagram of the input DDR
using the SAME_EDGE_PIPELINED mode. The output pairs, Q1 and Q2 are presented to
the FPGA fabric at the same time.

Figure 7-6: Input DDR in SAME_EDGE_PIPELINED Mode

ug070_7_06_072904

CLK

R

CE

S S

S S

D Q Q1

CLK

R

CE

D Q Q2

CLK

R

CE

D Q

D

R

CE

CLK

S

CLK

R

CE

D Q

Figure 7-7: Input DDR Timing in SAME_EDGE_PIPELINED Mode

ug070_7_07_072904

C

CE

D

Q1

Q2

D0A D1A D2A

D0A D2A D4A D6A D8A D10A

D1A D3A D5A D7A D9A D11A

D3A D4A D5A D6A D7A D8A D9A D10A D11A D12A D13A

Virtex-4 FPGA User Guide www.xilinx.com 327
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

Input DDR Primitive (IDDR)
Figure 7-8 shows the block diagram of the IDDR primitive. Table 7-3 lists the IDDR port
signals. Table 7-4 describes the various attributes available and default values for the IDDR
primitive.

Figure 7-8: IDDR Primitive Block Diagram

Table 7-3: IDDR Port Signals

Port
Name

Function Description

Q1 and Q2 Data outputs IDDR register outputs. Q1 is rising edge data, Q2 is
falling edge data.

C Clock input port The C pin represents the clock input pin.

CE Clock enable port The enable pin affects the loading of data into the DDR
flip-flop. When Low, clock transitions are ignored and
new data is not loaded into the DDR flip-flop. CE must
be High to load new data into the DDR flip-flop.

D Data input (DDR) IDDR register input from IOB.

R Reset Synchronous/Asynchronous reset pin. Reset is asserted
High.

S Set Synchronous/Asynchronous set pin. Set is asserted
High.

Table 7-4: IDDR Attributes

Attribute Name Description Possible Values

DDR_CLK_EDGE Sets the IDDR mode of operation
with respect to clock edge

OPPOSITE_EDGE (default),
SAME_EDGE,
SAME_EDGE_PIPELINED

INIT_Q1 Sets the initial value for Q1 port 0 (default), 1

INIT_Q2 Sets the initial value for Q2 port 0 (default), 1

SRTYPE Set/Reset type with respect to
clock (C)

ASYNC, SYNC (default)

ug070_7_08_071404

C

CE

D

S

R

Q1

Q2IDDR

328 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

IDDR VHDL and Verilog Templates
The following examples illustrate the instantiation of the IDDR primitive in VHDL and
Verilog.

IDDR VHDL Template

--Example IDDR component declaration

component IDDR
 generic(
 DDR_CLK_EDGE : string := "OPPOSITE_EDGE";
 INIT_Q1 : bit := '0';
 INIT_Q2 : bit := '0';
 SRTYPE : string := "SYNC";
);

 port(
 Q1 : out std_ulogic;
 Q2 : out std_ulogic;

 C : in std_ulogic;
 CE : in std_ulogic;
 D : in std_ulogic;
 R : in std_ulogic;
 S : in std_ulogic
);
 end component;

--Example IDDR instantiation

U_IDDR : IDDR
Port map(
 Q1 => user_q1,
 Q2 => user_q2,
 C => user_c,
 CE => user_ce,
 D => user_d,
 R => user_r,
 S => user_s
);

IDDR Verilog Template

//Example IDDR module declaration

module IDDR (Q1, Q2, C, CE, D, R, S);

 output Q1;
 output Q2;

 input C;
 input CE;
 input D;
 tri0 GSR = glbl.GSR;
 input R;
 input S;

Virtex-4 FPGA User Guide www.xilinx.com 329
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

 parameter DDR_CLK_EDGE = "OPPOSITE_EDGE";
 parameter INIT_Q1 = 1'b0;
 parameter INIT_Q2 = 1'b0;
 parameter SRTYPE = "SYNC";

endmodule;

//Example IDDR instantiation

IDDR U_IDDR (
.Q1(user_q1),
.Q2(user_q2),
.C(user_c),
.CE(user_ce),
.D(user_d),
.R(user_r),
.S(user_s)
);

ILOGIC Timing Models
This section describes the timing associated with the various resources within the ILOGIC
block.

ILOGIC Timing Characteristics

Figure 7-9 illustrates ILOGIC register timing. When IDELAY is used, TIDOCK is replaced by
TIDOCKD.

Clock Event 1

• At time TICE1CK before Clock Event 1, the input clock enable signal becomes valid-
High at the CE1 input of the input register, enabling the input register for incoming
data.

• At time TIDOCK before Clock Event 1, the input signal becomes valid-High at the D
input of the input register and is reflected on the Q1 output of the input register at
time TICKQ after Clock Event 1.

Figure 7-9: ILOGIC Input Register Timing Characteristics

1 2 3 4 5

CLK

D

CE1

SR

Q1

TICKQ TICKQ

TIDOCK

TICE1CK

TISRCK

ug070_7_09_072904

330 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

Clock Event 4

• At time TISRCK before Clock Event 4, the SR signal (configured as synchronous reset in
this case) becomes valid-High resetting the input register and reflected at the Q1
output of the IOB at time TICKQ after Clock Event 4.

ILOGIC Timing Characteristics, DDR

Figure 7-10 illustrates the ILOGIC in IDDR mode timing characteristics. When IDELAY is
used, TIDOCK is replaced by TIDOCKD. The example shown uses IDDR in
OPPOSITE_EDGE mode. For other modes, add the appropriate latencies as shown in
Figure 7-7, page 326.

Clock Event 1

• At time TICE1CK before Clock Event 1, the input clock enable signal becomes valid-
High at the CE1 input of both of the DDR input registers, enabling them for incoming
data. Since the CE1 and D signals are common to both DDR registers, care must be
taken to toggle these signals between the rising edges and falling edges of CLK as
well as meeting the register setup-time relative to both clocks.

• At time TIDOCK before Clock Event 1 (rising edge of CLK), the input signal becomes
valid-High at the D input of both registers and is reflected on the Q1 output of input-
register 1 at time TICKQ after Clock Event 1.

Clock Event 2

• At time TIDOCK before Clock Event 2 (falling edge of CLK), the input signal becomes
valid-Low at the D input of both registers and is reflected on the Q2 output of input-
register 2 at time TICKQ after Clock Event 2 (no change in this case).

Clock Event 9

• At time TISRCK before Clock Event 9, the SR signal (configured as synchronous reset in
this case) becomes valid-High resetting IFF1 (Q1) at time TICKQ after Clock Event 9,
and IFF2 (Q2) at time TICKQ after Clock Event 10.

Figure 7-10: ILOGIC in IDDR Mode Timing Characteristics
(OPPOSITE_EDGE Mode)

1 2 3 4 5 6 7 8 9 10 11

TIDOCK

TICE1CK

TISRCK

TICKQ

TICKQ

TICKQ

TIDOCK

CLK

D

CE1

SR
(Reset)

Q1

Q2

TICKQ

UG070_7_10_072904

Virtex-4 FPGA User Guide www.xilinx.com 331
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

Table 7-5 describes the function and control signals of the ILOGIC switching characteristics
in the Virtex-4 Data Sheet.

Input Delay Element (IDELAY)
Every ILOGIC block contains a programmable absolute delay element called IDELAY.
(Refer to Figure 7-1, “ILOGIC Block Diagram.”) IDELAY is a 64-tap wrap-around delay
element with a fixed, guaranteed tap resolution (see Virtex-4 Data Sheet). It can be applied
to the combinatorial input path, registered input path, or both. IDELAY allows incoming
signals to be delayed on an individual basis. The delay element is calibrated to provide an
absolute delay value (TIDELAYRESOLUTION) independent of process, voltage, and
temperature variation. Three modes of operation are available:

Table 7-5: ILOGIC Switching Characteristics

Symbol Description

Setup/Hold

TICE1CK/TICKCE1 CE1 pin setup/hold with respect to CLK

TICECK/TICKCE DLYCE pin setup/hold with respect to CLKDIV

TIRSTCK/TICKRST DLYRST pin setup/hold with respect to CLKDIV

TIINCCK/TICKINC DLYINC pin setup/hold with respect to CLKDIV

TISRCK/TICKSR SR/REV pin setup/hold with respect to CLK

TIDOCK/TIOCKD D pin setup/hold with respect to CLK without Delay

TIDOCKD/TIOCKDD D pin setup/hold with respect to CLK
(IOBDELAY_TYPE = DEFAULT)

D pin setup/hold with respect to CLK
(IOBDELAY_TYPE = FIXED, IOBDELAY_VALUE = 0)

Combinatorial

TIDI D pin to O pin propagation delay, no Delay

TIDID D pin to O pin propagation delay (IOBDELAY_TYPE = DEFAULT)

D pin to O pin propagation delay
(IOBDELAY_TYPE = FIXED, IOBDELAY_VALUE = 0)

Sequential Delays

TIDLO D pin to Q1 pin using flip-flop as a latch without Delay

TIDLOD D pin to Q1 pin using flip-flop as a latch
(IOBDELAY_TYPE = DEFAULT)

D pin to Q1 pin using flip-flop as a latch
(IOBDELAY_TYPE = FIXED, IOBDELAY_VALUE = 0)

TICKQ CLK to Q outputs

TICE1Q CE1 pin to Q1 using flip-flop as a latch, propagation delay

TRQ SR/REV pin to OQ/TQ out

332 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

• Zero-hold time delay mode (IOBDELAY_TYPE = DEFAULT)

This mode of operation allows backward compatibility for designs using the zero-hold
time delay feature in Virtex-II and Virtex-II Pro devices. When used in this mode, the
IDELAYCTRL primitive does not need to be instantiated (see IDELAYCTRL Usage and
Design Guidelines for more details).

• Fixed delay mode (IOBDELAY_TYPE = FIXED)

In the fixed delay mode, the delay value is preset at configuration to the tap number
determined by the attribute IOBDELAY_VALUE. Once configured, this value cannot
be changed. When used in this mode, the IDELAYCTRL primitive must be instantiated
(see IDELAYCTRL Usage and Design Guidelines for more details).

• Variable delay mode (IOBDELAY_TYPE = VARIABLE)

In the variable delay mode, the delay value can be changed after configuration by
manipulating the control signals CE and INC. When used in this mode, the
IDELAYCTRL primitive must be instantiated (see IDELAYCTRL Usage and Design
Guidelines for more details).

IDELAY Primitive

Figure 7-11 shows the IDELAY primitive.

Table 7-6 lists the available ports in the IDELAY primitive.

Figure 7-11: IDELAY Primitive

Table 7-6: IDELAY Primitive

Port
Name

Direction Function

I Input Serial input data from IOB

C Input Clock input when in Variable mode

INC Input Increment/decrement number of tap delays when in Variable mode

CE Input Enable increment/decrement function when in Variable mode

RST Input Reset delay element to pre-programmed value. If no value
programmed, reset to 0.

O Output Combinatorial output

I O

RST

INC

CE

C

IDELAY

ug070_7_11_080104

Virtex-4 FPGA User Guide www.xilinx.com 333
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

IDELAY Ports

Data Input and Output - I and O

The data input (I) is driven by its associated IOB (i.e., input from the pin). The IDELAY data
output (O) can drive directly to the fabric, to the registers in the ILOGIC block, or to both.

Clock Input - C

All control inputs to IDELAY (RST, CE and INC) are synchronous to the clock input (C). A
clock must be connected to this port when IDELAY is configured in variable mode.

Module Reset - RST

The IDELAY reset signal, RST, resets the delay element to a value set by the
IOBDELAY_VALUE attribute. If the IOBDELAY_VALUE attribute is not specified, a value
of 0 is assumed. The RST signal is an active-High reset and is synchronous to the input
clock signal (C).

Increment/Decrement Signals - CE, INC

The increment/decrement enable signal (CE) controls when an increment/decrement
function is to be performed. As long as CE remains High, IDELAY will increment or
decrement by TIDELAYRESOLUTION every clock (C) cycle. The state of INC determines
whether IDELAY will increment or decrement; INC = 1 increments, INC = 0 decrements,
synchronously to the clock (C). If CE is Low the delay through IDELAY will not change
regardless of the state of INC.

IDELAY is a wrap-around programmable delay element. When the end of the delay
element is reached (tap 63) a subsequent increment function will return to tap 0. The same
applies to the decrement function: decrementing below zero moves to tap 63. The
increment/decrement operation is summarized in Table 7-7.

Table 7-7: Increment/Decrement Operations

Operation RST CE INC

Reset to IOBDELAY_VALUE 1 x x

Increment tap count 0 1 1

Decrement tap count 0 1 0

No change 0 0 x

Notes:
1. RST takes precedence over CE and INC.

334 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

IDELAY Attributes

Table 7-8 summarizes the IDELAY attributes.

IOBDELAY_TYPE Attribute

The IOBDELAY_TYPE attribute sets the type of delay used. The attribute values are
DEFAULT, FIXED, and VARIABLE. When set to DEFAULT, the zero-hold time delay
element is selected. This delay element is used to guarantee non-positive hold times when
global clocks are used without DCMs to capture data (pin-to-pin parameters).

When set to FIXED, the tap-delay value is fixed at the number of taps determined by the
IOBDELAY_VALUE attribute setting. This value is preset and cannot be changed after
configuration.

When set to VARIABLE, the variable tap delay element is selected. The tap delay can be
incremented by setting CE = 1 and INC = 1, or decremented by CE = 1 and INC = 0. The
increment/decrement operation is synchronous to C, the input clock signal.

IOBDELAY_VALUE Attribute

The IOBDELAY_VALUE attribute specifies the initial number of tap delays. The possible
values are any integer from 0 to 63. The default value is zero. The value of the tap delay
reverts to IOBDELAY_VALUE when the tap delay is reset.

IDELAY Timing

Table 7-9 shows the IDELAY switching characteristics.

Table 7-8: IDELAY Attribute Summary

IDELAY Attribute Description Value Default Value

IOBDELAY_TYPE
Sets the type of tap
delay.

String: DEFAULT, FIXED,
or VARIABLE DEFAULT

IOBDELAY_VALUE
Specifies the initial tap
setting. Integer: 0 to 63 0

Table 7-9: Input Delay Switching Characteristics

Symbol Description

TIDELAYRESOLUTION IDELAY tap resolution

TICECK/TICKCE CE pin setup/hold with respect to C

TIINCCK/TICKINC INC pin setup/hold with respect to C

TIRSTCK/TICKRST RST pin setup/hold with respect to C

Virtex-4 FPGA User Guide www.xilinx.com 335
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

Figure 7-12 shows an IDELAY timing diagram. It is assumed that IOBDELAY_VALUE = 0.

Clock Event 1

On the rising edge of C, a reset is detected, causing the output O to select tap 0 as the
output from the 64-tap chain (assuming IOBDELAY_VALUE = 0).

Clock Event 2

A pulse on CE and INC is captured on the rising edge of C. This indicates an Increment
operation. For the remainder of the cycle associated with clock event 2, the output is
changing from tap 0 to tap 1. During this time, the output may be unstable and contain
erroneous data.

Clock Event 3

By this time, the output has stabilized at tap 1, thus completing the Increment operation.
The output remains at tap 1 indefinitely until there is further activity on the RST, CE, or
INC pins.

Note on Instability after an Increment/Decrement Operation

In Figure 7-12 there is a period of instability when the output is changing from one tap to
another. If the IDELAY output is sampled during that period of instability, the captured
data may be incorrect. In the case where the IDELAY output is sampled by the same clock
that is connected to the C input, there is no danger of capturing a bit during the unstable
period because the settling time is less than one period of clock C.

However, IDELAY is often used in conjunction with an ISERDES or an IDDR element.
These elements sample the output of IDELAY at a much higher rate than the clock
connected to the C input of IDELAY. The result is that data is sampled during the unstable
period (resulting in at most one bit error). This potentially corrupt sample must propagate
through the ISERDES or IDDR before becoming visible to the user. When the potential bit
error emerges, the user should treat it as corrupted. The user must examine the latency of
the ISERDES or IDDR being used (it differs depending on modes) to determine when the
data is valid again. If a small increase in latency is not a concern, the user can wait 4
CLKDIV cycles when using an ISERDES or 4 CLK cycles when using an IDDR. This is a

Figure 7-12: IDELAY Timing Diagram

UG070_c7_12_032507

RST

C

Clock
Event 1

Clock
Event 2

Clock
Event 3

CE

INC

O Tap 0 Tap 1

336 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

safe, conservative waiting period for all modes of those modules. A closer examination of
latency for a specific path in a specific mode can trim these waiting periods down further.

If IDELAY is used in the path of a clock channel, and the delay is dynamically adjusted
during operation, every circuit that runs on that clock should be held in reset while the
delay is changed. This is because the clock may experience a short glitch when the tap
setting is incremented or decremented, and this could result in erroneous behavior in state
machines and other circuits.

If an IDELAY is used in the path of a data signal that is passing constant user traffic in
which even a single bit error is unacceptable, and the user desires to change the tap setting
in real-time, a redundant path through a second IDELAY and ISERDES (or IDDR) must be
added to the design to allow the user to switch to the redundant path while changing the
tap setting of the primary path.

IDELAY VHDL and Verilog Instantiation Template

VHDL and Verilog instantiation templates are available in the Libraries Guide for all
primitives and submodules.

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of
the architecture section should include the design signals names.

VHDL for Zero-Hold Time Delay Mode

The following VHDL code shows how to instantiate the IDELAY module in a zero-hold
time delay mode.

-- Module: IDELAY
-- Description: VHDL instantiation template
-- Zero Hold Time Mode
--
-- Device: Virtex-4 Family

-- Components Declarations
-- Component Declaration for IDELAY should be placed
-- after architecture statement but before "begin" keyword

component IDELAY

generic (IOBDELAY_TYPE : string := "DEFAULT"; --(DEFAULT, FIXED,
VARIABLE)
IOBDELAY_VALUE : integer := 0 --(0 to 63)

);
port (
 O : out STD_LOGIC;
 I : in STD_LOGIC;
 C : in STD_LOGIC;
 CE : in STD_LOGIC;
 INC : in STD_LOGIC;
 RST : in STD_LOGIC
);
end component;

-- Component Attribute specification for IDELAY
-- should be placed after architecture declaration but
-- before the "begin" keyword
--

Virtex-4 FPGA User Guide www.xilinx.com 337
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

-- Architecture Section
--
attribute IOBDELAY_TYPE : string;
attribute IOBDELAY_VALUE: integer;

-- Component Instantiation for IDELAY should be placed
-- in architecture after the "begin" keyword
--
-- Instantiation Section
--
U1 : IDELAY

generic map (
 IOBDELAY_TYPE => "DEFAULT", -- Set to DEFAULT for
 -- Zero Hold Time Mode
 IOBDELAY_VALUE => 0 -- (0 to 63)
);

port map (
 O => data_output,
 I => data_input,
 C => ’0’,
 CE => ’0’,
 INC => ’0’,
 RST => ’0’
);

Verilog for Zero-Hold Time Delay Mode

// Module: IDELAY
// Description: Verilog instantiation template
// Zero Hold Time Mode
//
// Device: Virtex-4 Family
//---
// Instantiation Section
//
IDELAY U1
 (
 O(data_output)
 I(data_input),
 C(1’b0),
 CE(1’b0),
 INC(1’b0),
 RST(1’b0)
);

//Set IOBDELAY_TYPE attribute to DEFAULT for Zero Hold Time Mode
//synthesis attribute IOBDELAY_TYPE of U1 is "DEFAULT";
//synthesis attribute IOBDELAY_VALUE of U1 is 0;

Fixed Delay Mode

The following code shows how to instantiate the IDELAY module in fixed delay mode
with a tap setting of 31. IDELAYCTRL must also be instantiated when operating in this
mode (see “IDELAYCTRL Overview,” page 341).

338 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

VHDL for Fixed Delay Mode

-- The IDELAYCTRL primitive must be instantiated in conjunction with the
-- IDELAY primitive when used in Fixed Delay Mode.

-- Module: IDELAY
-- Description: VHDL instantiation template
-- Fixed Delay Mode
--
-- Device: Virtex-4 Family

-- Components Declarations
-- Component Declaration for IDELAY should be placed
-- after architecture statement but before "begin" keyword

component IDELAY

generic (
 IOBDELAY_TYPE : string := "DEFAULT"; --(DEFAULT, FIXED,
VARIABLE)
 IOBDELAY_VALUE : integer := 0 --(0 to 63)
);

port (
 O : out STD_LOGIC;
 I : in STD_LOGIC;
 C : in STD_LOGIC;
 CE : in STD_LOGIC;
 INC : in STD_LOGIC;
 RST : in STD_LOGIC
);
end component;

-- Component Attribute specification for IDELAY
-- should be placed after architecture declaration but
-- before the "begin" keyword
--
-- Architecture Section
--
attribute IOBDELAY_TYPE : string;
attribute IOBDELAY_VALUE: integer;

-- Component Instantiation for IDELAY should be placed
-- in architecture after the "begin" keyword
--
-- Instantiation Section
--
U1 : IDELAY

generic map (
 IOBDELAY_TYPE => "FIXED", -- Set to FIXED for
 -- Fixed delay mode
 IOBDELAY_VALUE => 31 -- Set the delay value equal
 -- to the center of the delay element
);

port map (
 O => data_output,
 I => data_input,

Virtex-4 FPGA User Guide www.xilinx.com 339
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

 C => ’0’,
 CE => ’0’,
 INC => ’0’,
 RST => ’0’
);

Verilog Code for Fixed Delay Mode

// The IDELAYCTRL primitive must be instantiated in conjunction with
// IDELAY
// primitive when used in Fixed Delay Mode.
// Module: IDELAY
// Description: Verilog instantiation template
// Fixed Delay Mode
//
// Device: Virtex-4 Family
//---
// Instantiation Section
//
IDELAY U1
 (
 O(data_output)
 I(data_input),
 C(1’b0),
 CE(1’b0),
 INC(1’b0),
 RST(1’b0)
);

//Set IOBDELAY_TYPE attribute to FIXED for Fixed Delay Mode
//synthesis attribute IOBDELAY_TYPE of U1 is "FIXED";
//Set IOBDELAY_VALUE attribute to 31 for center of delay element
//synthesis attribute IOBDELAY_VALUE of U1 is 31;

Variable Delay Mode

The following code shows how to instantiate the IDELAY module in variable delay mode.
IDELAYCTRL must also be instantiated when operating in this mode (see “IDELAYCTRL
Overview,” page 341).

VHDL Code for Variable Delay Mode

-- The IDELAYCTRL primitive must be instantiated in conjunction with the
IDELAY
-- primitive when used in Variable Delay Mode.

-- Module: IDELAY
-- Description: VHDL instantiation template
-- Variable Delay Mode
--
-- Device: Virtex-4 Family

-- Components Declarations
-- Component Declaration for IDELAY should be placed
-- after architecture statement but before "begin" keyword

component IDELAY

generic (

340 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

 IOBDELAY_TYPE : string := "DEFAULT"; --(DEFAULT, FIXED,
VARIABLE)
 IOBDELAY_VALUE : integer := 0 --(0 to 63)
);

port (
 O : out STD_LOGIC;
 I : in STD_LOGIC;
 C : in STD_LOGIC;
 CE : in STD_LOGIC;
 INC : in STD_LOGIC;
 RST : in STD_LOGIC
);
end component;

-- Component Attribute specification for IDELAY
-- should be placed after architecture declaration but
-- before the "begin" keyword
--
-- Architecture Section
--
attribute IOBDELAY_TYPE : string;
attribute IOBDELAY_VALUE: integer;

-- Component Instantiation for IDELAY should be placed
-- in architecture after the "begin" keyword
--
-- Instantiation Section
--
U1 : IDELAY

generic map (
 IOBDELAY_TYPE => "VARIABLE", -- Set to VARIABLE for
 -- Variable Delay Mode
 IOBDELAY_VALUE => 0
);

port map (
 O => data_output,
 I => data_input,
 C => clkdiv,
 CE => dlyce,
 INC => dlyinc,
 RST => dlyrst
);

Verilog Code for Variable Delay Mode

// The IDELAYCTRL primitive must be instantiated in conjunction with the
// IDELAY primitive when used in Variable Delay Mode.

// Module: IDELAY
// Description: Verilog instantiation template
// Variable Delay Mode
//
// Device: Virtex-4 Family
//---
// Instantiation Section
//

Virtex-4 FPGA User Guide www.xilinx.com 341
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

IDELAY U1
 (
 O(data_output)
 I(data_input),
 C(clkdiv),
 CE(dlyce),
 INC(dlyinc),
 RST(dlyrst)
);

//Set IOBDELAY_TYPE attribute to VARIABLE for Variable Delay Mode
//synthesis attribute IOBDELAY_TYPE of U1 is "VARIABLE";
//synthesis attribute IOBDELAY_VALUE of U1 is 0;

IDELAYCTRL Overview
If the IDELAY or ISERDES primitive is instantiated with the IOBDELAY_TYPE attribute
set to FIXED or VARIABLE, the IDELAYCTRL module must be instantiated. The
IDELAYCTRL module continuously calibrates the individual delay elements (IDELAY) in
its region (see Figure 7-15, page 343), to reduce the effects of process, voltage, and
temperature variations. The IDELAYCTRL module calibrates IDELAY using the user
supplied REFCLK.

IDELAYCTRL Primitive

Figure 7-13 shows the IDELAYCTRL primitive.

IDELAYCTRL Ports

RST - Reset

The reset input pin (RST) is an active-High asynchronous reset. IDELAYCTRL must be
reset after configuration (and the REFCLK signal has stabilized) to ensure proper IDELAY
operation. A reset pulse width TIDELAYCTRL_RPW is required. IDELAYCTRL must be reset
after configuration.

Figure 7-13: IDELAYCTRL Primitive

REFCLK RDY

RST

IDELAYCTRL

ug070_7_13_080104

342 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

REFCLK - Reference Clock

The reference clock (REFCLK) provides a time reference to IDELAYCTRL to calibrate all
IDELAY modules in the same region. This clock must be driven by a global clock buffer
(BUFGCTRL). REFCLK must be FIDELAYCTRL_REF ± the specified frequency variation in
MHz (IDELAYCTRL_REF_PRECISION) to guarantee a specified IDELAY resolution
(TIDELAYRESOLUTION). REFCLK can be supplied directly from a user-supplied source or
from the DCM, and must be routed on a global clock buffer. All valid M & D configurations
are supported. Use the DCM Wizard to determine the correct settings in order to create the
200 MHz reference clock.

RDY - Ready

The ready (RDY) signal indicates when the IDELAY modules in the specific region are
calibrated. The RDY signal is deasserted if REFCLK is held High or Low for one clock
period or more. If RDY is deasserted Low, the IDELAYCTRL module must be reset. The
implementation tools allow RDY to be unconnected/ignored. Figure 7-14 illustrates the
timing relationship between RDY and RST.

IDELAYCTRL Timing

Table 7-10 shows the IDELAYCTRL switching characteristics.

RST Event 1

• At RST Event 1, the RST pin is asserted.

RST Event 2

• At RST Event 2, the RST pin is deasserted.

• At TIDELAYCTRLCO_RDY, after RST Event 2, RDY is asserted High.

Table 7-10: IDELAYCTRL Switching Characteristics

Symbol Description

FIDELAYCTRL_REF REFCLK frequency

IDELAYCTRL_REF_PRECISION REFCLK precision

TIDELAYCTRL_RPW Reset pulse width

TIDELAYCTRLCO_RDY Reset/Startup to Ready for IDELAYCTRL

Figure 7-14: Timing Relationship Between RST and RDY

RST

REFCLK

RDY
UG070_7_14_032808

1 2

TIDELAYCTRLCO_RDY

TIDELAYCTRL_RPW

Virtex-4 FPGA User Guide www.xilinx.com 343
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

IDELAYCTRL Locations

IDELAYCTRL modules exist in every I/O column in every clock region. An IDELAYCTRL
module calibrates all the IDELAY modules within its clock region. See “Global and
Regional Clocks” in Chapter 1 for the definition of a clock region.

Figure 7-15 illustrates the relative locations of the IDELAYCTRL modules for an
XC4VLX15 device.

IDELAYCTRL Usage and Design Guidelines

This section describes using the Virtex-4 FPGA IDELAYCTRL modules, design guidelines,
and recommended usage.

Instantiating IDELAYCTRL without LOC Constraints

When instantiating IDELAYCTRL without LOC constraints, the user must instantiate only
one instance of IDELAYCTRL in the HDL design code. The implementation tools auto-
replicate IDELAYCTRL instances throughout the entire device, even in clock regions not
using the delay element. This results in higher power consumption due to higher resource
utilization, the use of one global clock resource in every clock region, and a greater use of
routing resources. The signals connected to the RST and REFCLK input ports of the
instantiated IDELAYCTRL instance are connected to the corresponding input ports of the
replicated IDELAYCTRL instances.

In ISE® software 9.1 Service Pack 1 and all later versions of the ISE tool, IDELAYCTRL
instances that are replicated to clock regions where they are not needed are trimmed out of
the design automatically by the ISE tool.

Figure 7-15: Relative Locations of IDELAYCTRL Modules for an XC4VLX15 Device

1 Clock Region
(16 I/O tiles)

DCM
PMCD

DCM
DCM

Configuration

Left I/O
Column

Center I/O
Column

Right I/O
Column

IDELAYCTRL

8 I/O tiles

ug070_7_15_080104

344 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

There are two special cases:

1. When the RDY port is ignored, the RDY signals of all the replacement IDELAYCTRL
instances are left unconnected.

The VHDL and Verilog use models for instantiating an IDELAYCTRL primitive
without LOC constraints leaving the RDY output port unconnected are provided.

VHDL Use Model

-- Only one instance of IDELAYCTRL primitive is instantiated.
-- The RDY port is left open

dlyctrl:IDELAYCTRL
 port map(
 RDY => open,
 REFCLK => refclk,
 RST => rst
);

Verilog Use Model

// Only one instance of IDELAYCTRL primitive is instantiated.
// The RDY port is left open

IDELAYCTRL dlyctrl (
 .RDY(),
 .REFCLK(refclk),
 .RST(rst)
);

The resulting circuitry after instantiating the IDELAYCTRL components is illustrated
in Figure 7-16.

2. When RDY port is connected, an AND gate of width equal to the number of clock
regions is instantiated and the RDY output ports from the instantiated and replicated
IDELAYCTRL instances are connected to the inputs of the AND gate. The tools assign
the signal name connected to the RDY port of the instantiated IDELAYCTRL instance
to the output of the AND gate.

Figure 7-16: Instantiate IDELAYCTRL without LOC Constraints - RDY Unconnected

.

.

.

REFCLK

.

.

.

Replicated for
all IDELAYCTRL

sites

RST

.

.

.

RDY signal ignored

Auto-generated by
mapper tool

Instantiated by user

REFCLK RDY

RST
IDELAYCTRL

IDELAYCTRL

IDELAYCTRL

REFCLK RDY

RST

REFCLK RDY

RST

UG070_7_16_032008

Virtex-4 FPGA User Guide www.xilinx.com 345
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

The VHDL and Verilog use models for instantiating an IDELAYCTRL primitive
without LOC constraints with the RDY port connected are provided.

VHDL Use Model

-- Only one instance of IDELAYCTRL primitive is instantiated.
-- The RDY port is connected
dlyctrl:IDELAYCTRL
 port map(
 RDY => rdy,
 REFCLK => refclk,
 RST => rst
);

Verilog Use Model

// Only one instance of IDELAYCTRL primitive is instantiated.
// The RDY port is connected
IDELAYCTRL dlyctrl (
 .RDY(rdy),
 .REFCLK(refclk),
 .RST(rst)
);

The resulting circuitry after instantiating the IDELAYCTRL components is illustrated
in Figure 7-17.

Instantiating IDELAYCTRL with Location (LOC) Constraints

The most efficient way to use the IDELAYCTRL module is to define and lock down the
placement of every IDELAYCTRL instance used in a design. This is done by instantiating
the IDELAYCTRL instances with location (LOC) constraints. The user must define and
lock placement of all ISERDES and IDELAY components using the delay element.
(IOBDELAY_TYPE attribute set to FIXED or VARIABLE). Once completed, IDELAYCTRL
sites can be chosen and LOC constraints assigned. Xilinx strongly recommends using
IDELAYCTRL with a LOC constraint.

Figure 7-17: Instantiate IDELAYCTRL Without LOC Constraints - RDY Connected

REFCLK

RST

RDY

Instantiated by user

REFCLK RDY

RST
IDELAYCTRL

IDELAYCTRL

IDELAYCTRL

REFCLK RDY

RST

REFCLK RDY

RST

ug070_7_17_080104

.

.

.

.

.

.

Replicated for
all IDELAYCTRL

sites

.

.

.

Auto-generated by
mapper tool

346 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

Location Constraints

Each IDELAYCTRL module has XY location coordinates (X:row, Y:column). To constrain
placement, IDELAYCTRL instances can have LOC properties attached to them. The
naming convention for IDELAYCTRL placement coordinates is different from the
convention used in naming CLB locations. This allows LOC properties to transfer easily
from array to array.

There are two methods of attaching LOC properties to IDELAYCTRL instances.

1. Insert LOC constraints in a UCF file

2. Embed LOC constraints directly into HDL design files

Inserting LOC Constraints in a UCF File

The following syntax is used for inserting LOC constraints in a UCF file.

INST "instance_name" LOC=IDELAYCTRL_X#Y#;

Embedding LOC Constraints Directly into HDL Design Files

The following syntax is used to embed LOC constraints into a Verilog design file.

// synthesis attribute loc of instance_name is "IDELAYCTRL_X#Y0#";

In VHDL code, the LOC constraint is described with VHDL attributes. Before it can be
used, the constraint must be declared with the following syntax:

attribute loc : string;

Once declared, the LOC constraint can be specified as:

attribute loc of instance_name:label is "IDELAYCTRL_X#Y0#";

This section describes the VHDL and Verilog use models for instantiating IDELAYCTRL
primitives with LOC constraints.

VHDL Use Model

-- Multiple instances of IDELAYCTRL primitives are instantiated.
-- Each instance has its own RST and RDY signal to allow for partial
-- reconfiguration.
-- The REFCLK signal is common to all instances
dlyctrl_1:IDELAYCTRL
 port map(
 RDY => rdy _1,
 REFCLK => refclk,
 RST => rst_1
);
dlyctrl_2:IDELAYCTRL
 port map(
 RDY => rdy _2,
 REFCLK => refclk,
 RST => rst_2
);
.
.
.
dlyctrl_n:IDELAYCTRL
 port map(
 RDY => rdy _n,
 REFCLK => refclk,

Virtex-4 FPGA User Guide www.xilinx.com 347
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

 RST => rst_n
);
-- The user either declares the LOC constraints in the
-- VHDL design file, or in the UCF file.

-- Declaring LOC constraints in the VHDL file.
attribute loc : string;
attribute loc of dlyctrl_1:label is "IDELAYCTRL_X0Y0";
attribute loc of dlyctrl_2:label is "IDELAYCTRL_X0Y1";
.
.
.
attribute loc of dlyctrl_n:label is "IDELAYCTRL_XnYn";

-- Declaring LOC constraints in the UCF file.
INST "dlyctrl_1" LOC=IDELAYCTRL_X0Y0;
INST "dlyctrl_2" LOC=IDELAYCTRL_X0Y1;
.
.
.
INST "dlyctrl_n" LOC=IDELAYCTRL_XnYn;

Verilog Use Model

// Multiple instances of IDELAYCTRL primitives are instantiated.
// Each instance has its own RST and RDY signal to allow for partial
// reconfiguration.
// The REFCLK signal is common to all instances
IDELAYCTRL dlyctrl_1 (
 .RDY(rdy _1),
 .REFCLK(refclk),
 .RST(rst_1)
);
IDELAYCTRL dlyctrl_2 (
 .RDY(rdy_2),
 .REFCLK(refclk),
 .RST(rst_2)
);
.
.
.
IDELAYCTRL dlyctrl_n (
 .RDY(rdy_n),
 .REFCLK(refclk),
 .RST(rst_n)
);
// The user either declares the LOC constraints in the
// Verilog design file or in the following UCF file.

// Declaring LOC constraints in the Verilog file.
// synthesis attribute loc of dlyctrl_1 is "IDELAYCTRL_X0Y0";
// synthesis attribute loc of dlyctrl_2 is "IDELAYCTRL_X0Y1";
.
.
.
// synthesis attribute loc of dlyctrl_N is "IDELAYCTRL_XnYn";

// Declaring LOC constraints in the UCF file:
INST "dlyctrl_1" LOC=IDELAYCTRL_X0Y0;

348 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

INST "dlyctrl_2" LOC=IDELAYCTRL_X0Y1;
.
.
.
INST "dlyctrl_n" LOC=IDELAYCTRL_XnYn;

The circuitry that results from instantiating the IDELAYCTRL components is shown in
Figure 7-18.

Instantiating IDELAYCTRL with and without LOC Constraints

There are cases where the user instantiates an IDELAYCTRL module with a LOC
constraint but also instantiates an IDELAYCTRL module without a LOC constraint. In the
case where an IP Core is instantiated with a non-location constrained IDELAYCTRL
module and also wants to instantiate an IDELAYCTRL module without a LOC constraint
for another part of the design, the implementation tools will perform the following:

• Instantiate the LOC IDELAYCTRL instances as described in the section Instantiating
IDELAYCTRL with Location (LOC) Constraints.

• Replicate the non-location constrained IDELAYCTRL instance to populate with an
IDELAYCTRL instance in every clock region without a location constrained
IDELAYCTRL instance in place.

• The signals connected to the RST and REFCLK input ports of the non-location
constrained IDELAYCTRL instance are connected to the corresponding input ports of
the replicated IDELAYCTRL instances.

• If the RDY port of the non-location constrained IDELAYCTRL instance is ignored,
then all the RDY signals of the replicated IDELAYCTRL instances are also ignored.

• If the RDY port of the non-location constrained IDELAYCTRL instance is connected,
then the RDY port of the non-location constrained instance plus the RDY ports of the
replicated instances are connected to an auto-generated AND gate. The
implementation tools assign the signal name connected to the RDY port of the non-
location constrained instance to the output of the AND gate.

• All the ports of the location constrained instances (RST, REFCLK, and RDY) are
independent from each other and from the replicated instances.

Figure 7-18: Instantiate IDELAYCTRL with LOC Constraint

REFCLK RDY

RST

rdy_1

rst_1

rst_2

rst_n

.

.

. .

REFCLK

.

.

.

.

..

IDELAYCTRL_1

REFCLK RDY

RST

rdy_2
IDELAYCTRL_2

REFCLK RDY

RST

rdy_n
IDELAYCTRL_n

ug070_7_18_080104

Virtex-4 FPGA User Guide www.xilinx.com 349
UG070 (v2.6) December 1, 2008

ILOGIC Resources
R

The VHDL and Verilog use models for instantiating a mixed usage model are provided. In
the example, a user is instantiating a non-location constrained IDELAYCTRL instance with
the RDY signal connected. This discussion is also valid when the RDY signal is ignored.

VHDL Use Model

-- Multiple instantiations of IDELAYCTRL primitives with LOC
-- constraints.
-- Each instance has its own RST and RDY signal to allow for partial
-- reconfiguration.
-- The REFCLK signal is common to all instances (LOC and replicated
-- instances)
dlyctrl_1:IDELAYCTRL
 port map(
 RDY => rdy _1,
 REFCLK => refclk,
 RST => rst_1
);
dlyctrl_2:IDELAYCTRL
 port map(
 RDY => rdy _2,
 REFCLK => refclk,
 RST => rst_2
);
.
.
.
dlyctrl_n:IDELAYCTRL
 port map(
 RDY => rdy _n,
 REFCLK => refclk,
 RST => rst_n
);
-- The user should either declare the LOC constraints in the
-- VHDL design file or in the UCF file.
-- Declaring LOC constraints in the VHDL file.
attribute loc : string;
attribute loc of dlyctrl_1:label is "IDELAYCTRL_X0Y0";
attribute loc of dlyctrl_2:label is "IDELAYCTRL_X0Y1";
.
.
.
attribute loc of dlyctrl_n:label is "IDELAYCTRL_XnYn";
-- Declaring LOC constraints in the UCF file:
INST "dlyctrl_1" LOC=IDELAYCTRL_X0Y0;
INST "dlyctrl_2" LOC=IDELAYCTRL_X0Y1;
.
.
.
INST "dlyctrl_n" LOC=IDELAYCTRL_XnYn;

-- One instantiation of an IDELAYCTRL primitive without LOC constraint
-- RST and RDY port signals are independent from LOC-ed instances
dlyctrl_noloc:IDELAYCTRL
 port map(
 RDY => rdy_noloc,
 REFCLK => refclk,
 RST => rst_noloc
);

350 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

Verilog Use Model

// Multiple instantiations of IDELAYCTRL primitives with LOC contraints
// Each instance has its own RST and RDY signal to allow for partial
// reconfiguration.
// The REFCLK signal is common to all instances (LOC and replicated
// instances)
IDELAYCTRL dlyctrl_1 (
 .RDY(rdy _1),
 .REFCLK(refclk),
 .RST(rst_1)
);
IDELAYCTRL dlyctrl_2 (
 .RDY(rdy_2),
 .REFCLK(refclk),
 .RST(rst_2)
);
.
.
.
IDELAYCTRL dlyctrl_n (
 .RDY(rdy_n),
 .REFCLK(refclk),
 .RST(rst_n)
);
// The user should either declare the LOC constraints in the
// Verilog design file or in the UCF file.
// Declaring LOC constraints in the Verilog file.
// synthesis attribute loc of dlyctrl_1 is "IDELAYCTRL_X0Y0";
// synthesis attribute loc of dlyctrl_2 is "IDELAYCTRL_X0Y1";
.
.
.
// synthesis attribute loc of dlyctrl_N is "IDELAYCTRL_XnYn";
// Declaring LOC constraints in the UCF file:
INST "dlyctrl_1" LOC=IDELAYCTRL_X0Y0;
INST "dlyctrl_2" LOC=IDELAYCTRL_X0Y1;
.
.
.
INST "dlyctrl_n" LOC=IDELAYCTRL_XnYn;

// One instantiation of an IDELAYCTRL primitive without LOC constraint
// RST and RDY port signals are independent from LOC-ed instances
IDELAYCTRL dlyctrl_noloc (
 .RDY(rdy_noloc),
 .REFCLK(refclk),
 .RST(rst_noloc)
);

Virtex-4 FPGA User Guide www.xilinx.com 351
UG070 (v2.6) December 1, 2008

OLOGIC Resources
R

The circuitry that results from instantiating the IDELAYCTRL components as shown is
illustrated in Figure 7-19.

Instantiating Multiple IDELAYCTRLs without LOC Constraints

Instantiating multiple IDELAYCTRL instances without LOC properties is prohibited. If
this occurs, an error is issued by the implementation tools.

OLOGIC Resources
OLOGIC blocks include six storage elements (shown in Figure 7-20.) The top three
registers (TFF1, TFF2, and TFF3) are used for 3-state control. The bottom three registers
(OFF1, OFF2, and OFF3) are used for data output. Both sets of registers are functionally the
same.

Figure 7-19: Mixed Instantiation of IDELAYCTRL Elements

REFCLK

RST_NOLOC

rst_n

RDY_NOLOC

rdy_n

Instantiated without
LOC Constraint

Instantiated with
LOC Constraint

REFCLK RDY

RST
IDELAYCTRL_noloc

IDELAYCTRL_noloc

IDELAYCTRL_noloc

REFCLK RDY

RST

REFCLK RDY

RST

ug070_7_19_080104

REFCLK RDY

RST
IDELAYCTRL_n

rst_2

rdy_2REFCLK RDY

RST
IDELAYCTRL_2

rst_1

rdy_1REFCLK RDY

RST
IDELAYCTRL_1

.

.

.

.

.

.

Replicated for
all IDELAYCTRL

sites

.

.

.

Auto-generated
by mapper tool

.

.

.

.

.

.

.

.

.

352 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

To build an edge-triggered D-type flip-flop, use the topmost register (OFF1/TFF1). This
register is also the only register that can be configured as a level sensitive latch. The other
two registers (OFF2/TFF2 and OFF3/TFF3) are used to build various output DDR
registers. See “Output DDR Overview (ODDR),” page 354 for further discussion on output
DDR.

The three data registers share a common clock enable (OCE). Similarly, the three 3-state
control registers share a different clock enable (TCE). The clock enable signals are default
active High. If left unconnected, the clock enable pin for the storage element defaults to the
active state.

All registers in OLOGIC have a common clock and synchronous or asynchronous set and
reset (SR and REV signals). Table 7-1 and Table 7-2 describe the operation of SR in
conjunction with REV.

For each storage element in the OLOGIC block, the SRVAL attributes are independent.
Synchronous or asynchronous set/reset (SRTYPE) can not be set individually for each
storage element in an OLOGIC block.

Most of the control signals have optional inverter. Any inverter placed on a control input is
automatically absorbed.

Virtex-4 FPGA User Guide www.xilinx.com 353
UG070 (v2.6) December 1, 2008

OLOGIC Resources
R

Figure 7-20 illustrates the various logic resources in the OLOGIC block.

This section of the documentation discusses the various features available using the
OLOGIC resources. All connections between the OLOGIC resources are managed in Xilinx
software.

Figure 7-20: OLOGIC Block Diagram

D

T1

T2

TCE

CLK

D1

D2

OCE

SR

REV

T1INV
Q TQ

CE
CK

T2INV

TCEINV

D1INV

D2INV

OCEINV

SRINV

REVINV

CLK1INV

CLK2INV

REVSR

D Q
CE
CK

REVSR

TFF1

TFF1

TFF1
T1

TFFDDR

TFFDDRA

TFFDDRA

TFF2

D Q
CE
CK

REVSR

OFF2

D Q
CE
CK

REVSR

OFF1

D Q
CE
CK

REVSR

TFF3

D Q
CE
CK

REVSR

OFF3

TFF2

TFF1 TFFDDR

TFFDDRB

TFFDDRB

TMUX

TFF2

OQOFF1
O1

OFFDDRA
OFFDDRB

OMUX

OFF1OFFDDR

OFFDDRA

OFF2

OFF1OFFDDR

OFFDDRB

OFF2

UG070_7_20_031308

354 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

Combinatorial Output Data and 3-State Control Path

The combinatorial output paths create a direct connection from the FPGA fabric to the
output driver or output driver control. These paths is used when:

1. There is direct (unregistered) connection from logic resources in the FPGA fabric to the
output data or 3-state control.

2. The “pack I/O register/latches into IOBs” is set to OFF.

Output DDR Overview (ODDR)
Virtex-4 devices have dedicated registers in the OLOGIC to implement output DDR
registers. This feature is accessed when instantiating the ODDR primitive. DDR
multiplexing is automatic when using OLOGIC. No manual control of the mux-select is
needed. This control is generated from the clock.

There is only one clock input to the ODDR primitive. Falling edge data is clocked by a
locally inverted version of the input clock. All clocks feeding into the I/O tile are fully
multiplexed, i.e., there is no clock sharing between ILOGIC or OLOGIC blocks. The ODDR
primitive supports the following modes of operation:

• OPPOSITE_EDGE mode

• SAME_EDGE mode

The SAME_EDGE mode is new for the Virtex-4 architecture. This new mode allows
designers to present both data inputs to the ODDR primitive on the rising-edge of the
ODDR clock, saving CLB and clock resources, and increasing performance. This mode is
implemented using the DDR_CLK_EDGE attribute. It is supported for 3-state control as
well. The following sections describe each of the modes in detail.

OPPOSITE_EDGE Mode

In OPPOSITE_EDGE mode, two output registers are used to clock data from the FPGA
fabric at twice the throughput of a single rising-edge clocking scheme.

Both registers are rising-edge triggered. A second register receives an inverted version of
the clock. Both register outputs are then multiplexed and presented to the data input or
3-state control input of the IOB. This structure is similar to the Virtex-II and Virtex-II Pro
FPGA implementation. The simplified output DDR registers and the signals associated
with the OPPOSITE_EDGE mode are shown in Figure 7-21.

Virtex-4 FPGA User Guide www.xilinx.com 355
UG070 (v2.6) December 1, 2008

OLOGIC Resources
R

The timing diagram of the output DDR using the OPPOSITE_EDGE mode is shown in
Figure 7-22.

Figure 7-21: Output DDR in OPPOSITE_EDGE Mode

Figure 7-22: Output DDR Timing in OPPOSITE_EDGE Mode

ug070_7_21_080104

CLK
S

S

R

CE

D Q

OQ

CLK

DDR MUX

R

CE

D Q

D1

D2

R

CE

C

S

ug070_7_22_080104

C

CE

OQ

D1

D2

D1A D2A D1B

D1A D1B D1C D1D

D2A D2B D2C D2D

D2B D1C D2C D1D

356 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

SAME_EDGE Mode

In SAME_EDGE mode, a third register (OFF3 or TFF3), clocked by a rising edge clock, is
placed on the input of the falling edge register. The output DDR registers and the signals
associated with the SAME_EDGE mode are shown in Figure 7-23.

Using this scheme, data can now be presented to the IOB on the same clock edge.
Presenting the data to the IOB on the same clock edge avoids setup time violations and
allows the user to perform higher DDR frequency with minimal register to register delay,
as opposed to using the CLB registers. The additional register is used to maintain an
alternating bits output of DATA_1 and DATA_2 on the DDR multiplexer. Figure 7-24
shows the timing diagram of the output DDR using the SAME_EDGE mode.

Clock Forwarding

Output DDR can forward a copy of the clock to the output. This is useful for propagating
a clock and DDR data with identical delays, and for multiple clock generation, where every
clock load has a unique clock driver. This is accomplished by tying the D1 input of the
ODDR primitive Low, and the D2 input High. Xilinx recommends using this scheme to
forward clocks from the FPGA fabric to the output pins.

Figure 7-23: Output DDR in SAME_EDGE Mode

Figure 7-24: Output DDR Timing in SAME_EDGE Mode

UG070_7_23_031208

CLK

R

CE

D Q

CLK

R

CE

D Q

CLK
SS

S

R

CE

D Q

D1

D2

R

CE

C

S

OQ

DDR MUX

UG070_7_24_031208

C

CE

OQ

D1

D2

D1A D2A D1B

D1A D1B D1C D1D

D2A D2B D2C D2D

D2B D1C D2C D1D

Virtex-4 FPGA User Guide www.xilinx.com 357
UG070 (v2.6) December 1, 2008

OLOGIC Resources
R

Output DDR Primitive (ODDR)
Figure 7-25 shows the ODDR primitive block diagram. Table 7-11 lists the ODDR port
signals. Table 7-12 describes the various attributes available and default values for the
ODDR primitive.

Figure 7-25: ODDR Primitive Block Diagram

Table 7-11: ODDR Port Signals

Port
Name

Function Description

Q Data output (DDR) ODDR register output.

C Clock input port The C pin represents the clock input pin.

CE Clock enable port CE represents the clock enable pin. When asserted Low,
this port disables the output clock driving port Q.

D1 and D2 Data inputs ODDR register inputs.

R Reset Synchronous/Asynchronous reset pin. Reset is asserted
High.

S Set Synchronous/Asynchronous set pin. Set is asserted
High.

Table 7-12: ODDR Attributes

Attribute Name Description Possible Values

DDR_CLK_EDGE Sets the ODDR mode of operation with
respect to clock edge

OPPOSITE_EDGE
(default), SAME_EDGE

INIT Sets the initial value for Q port 0 (default), 1

SRTYPE Set/Reset type with respect to clock (C) ASYNC, SYNC (default)

ug070_7_25_080104

C

CE

D1

S

R

Q

D2 ODDR

358 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

ODDR VHDL and Verilog Templates
The following examples illustrate the instantiation of the OSERDES module in VHDL and
Verilog.

ODDR VHDL Template

--Example ODDR component declaration

component ODDR
 generic(
 DDR_CLK_EDGE : string := "OPPOSITE_EDGE";
 INIT : bit := '0';
 SRTYPE : string := "SYNC";
);

 port(
 Q : out std_ulogic;

 C : in std_ulogic;
 CE : in std_ulogic;
 D1 : in std_ulogic;
 D2 : in std_ulogic;
 R : in std_ulogic;
 S : in std_ulogic
);
 end component;

--Example ODDR instantiation

U_ODDR : ODDR
Port map(
 Q => user_q,
 C => user_c,
 CE => user_ce,
 D1 => user_d1,
 D2 => user_d2,
 R => user_r,
 S => user_s
);

ODDR Verilog Template

//Example ODDR module declaration

module ODDR (Q, C, CE, D1, D2, R, S);

 output Q;

 input C;
 input CE;
 input D1;
 input D2;
 tri0 GSR = glbl.GSR;
 input R;
 input S;

 parameter DDR_CLK_EDGE = "OPPOSITE_EDGE";

Virtex-4 FPGA User Guide www.xilinx.com 359
UG070 (v2.6) December 1, 2008

OLOGIC Resources
R

 parameter INIT = 1'b0;
 parameter SRTYPE = "SYNC";

endmodule;

//Example ODDR instantiation
ODDR U_ODDR(
.Q(user_q),
.C(user_c),
.CE(user_ce),
.D1(user_d1),
.D2(user_d2),
.R(user_r),
.S(user_s)
);

OLOGIC Timing Models
This section discusses all timing models associated with the OLOGIC block. Table 7-13
describes the function and control signals of the OLOGIC switching characteristics in the
Virtex-4 Data Sheet.

Table 7-13: OLOGIC Switching Characteristics

Symbol Description

Setup/Hold

TODCK/TOCKD D1/D2 pins setup/hold with respect to CLK

TOOCECK/TOCKOCE OCE pin setup/hold with respect to CLK

TOSRCK/TOCKSR SR/REV pin setup/hold with respect to CLK

TOTCK/TOCKT T1/T2 pins setup/hold with respect to CLK

TOTCECK/TOCKTCE TCE pin setup/hold with respect to CLK

Clock to Out

TOCKQ CLK to OQ/TQ out

TRQ SR/REV pin to OQ/TQ out

360 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

Timing Characteristics

Figure 7-26 illustrates the OLOGIC output register timing.

Clock Event 1

• At time TOOCECK before Clock Event 1, the output clock enable signal becomes valid-
High at the CE input of the output register, enabling the output register for incoming
data.

• At time TODCK before Clock Event 1, the output signal becomes valid-High at the D1
input of the output register and is reflected at the Q output at time TOCKQ after Clock
Event 1.

Clock Event 4

At time TOSRCK before Clock Event 4, the SR signal (configured as synchronous reset in this
case) becomes valid-High, resetting the output register and reflected at the Q output at
time TRQ after Clock Event 4.

Figure 7-26: OLOGIC Output Register Timing Characteristics

1 2 3 4 5

C

D1

CE

SR

Q

TOCKQ

TODCK

TOOCECK

TOSRCK

ug070_7_26_080204

Virtex-4 FPGA User Guide www.xilinx.com 361
UG070 (v2.6) December 1, 2008

OLOGIC Resources
R

Figure 7-27 illustrates the OLOGIC ODDR register timing.

Clock Event 1

• At time TOOCECK before Clock Event 1, the ODDR clock enable signal becomes valid-
High at the OCE input of the ODDR registers, enabling them for incoming data. Since
the OCE signal is common to all ODDR registers, care must be taken to toggle this
signal between the rising edges and falling edges of C as well as meeting the register
setup-time relative to both clock edges.

• At time TODCK before Clock Event 1 (rising edge of C), the data signal D1 becomes
valid-High at the D1 input of ODDR register 1 and is reflected on the OQ output at
time TOCKQ after Clock Event 1.

Clock Event 2

• At time TODCK before Clock Event 2 (falling edge of C), the data signal D2 becomes
valid-High at the D2 input of ODDR register 2 and is reflected on the OQ output at
time TOCKQ after Clock Event 2 (no change at the OQ output in this case).

Clock Event 9

At time TOSRCK before Clock Event 9 (rising edge of C), the SR signal (configured as
synchronous reset in this case) becomes valid-High resetting ODDR Register 1, reflected at
the OQ output at time TRQ after Clock Event 9 (no change at the OQ output in this case)
and resetting ODDR Register 2, reflected at the OQ output at time TRQ after Clock Event 10
(no change at the OQ output in this case).

Figure 7-27: OLOGIC ODDR Register Timing Characteristics

1 2 3 4 5 6 7 8 9 10 11

TODCK

TOOCECK

TODCK

TOSRCK

TRQ

C

D1

D2

OCE

SR

OQ
TOCKQ

ug070_7_27_080204

362 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

Figure 7-28 illustrates the OLOGIC 3-state register timing.

Clock Event 1

• At time TOTCECK before Clock Event 1, the 3-state clock enable signal becomes valid-
High at the TCE input of the 3-state register, enabling the 3-state register for incoming
data.

• At time TOTCK before Clock Event 1 the 3-state signal becomes valid-High at the T
input of the 3-state register, returning the pad to high-impedance at time TOCKQ after
Clock Event 1.

Clock Event 2

• At time TOSRCK before Clock Event 2, the SR signal (configured as synchronous reset
in this case) becomes valid-High, resetting the 3-state register at time TRQ after Clock
Event 2.

Figure 7-29 illustrates IOB DDR 3-state register timing. This example is shown using DDR
in opposite edge mode. For other modes add the appropriate latencies as shown in
Figure 7-7, page 326.

Figure 7-28: OLOGIC 3-State Register Timing Characteristics

1 2 3 4 5

C

T1

CE

SR

TQ

TOCKQ TRQ

TOTCK

TOTCECK

TOSRCK

UG070_7_28_080204

Virtex-4 FPGA User Guide www.xilinx.com 363
UG070 (v2.6) December 1, 2008

OLOGIC Resources
R

Clock Event 1

• At time TOTCECK before Clock Event 1, the 3-state clock enable signal becomes valid-
High at the TCE input of the ODDR 3-state registers, enabling them for incoming
data. Since the TCE signal is common to all ODDR registers, care must be taken to
toggle this signal between the rising edges and falling edges of C as well as meeting
the register setup-time relative to both clock edges.

• At time TOTCK before Clock Event 1 (rising edge of C), the 3-state signal T1 becomes
valid-High at the T1 input of 3-state register 1 and is reflected on the TQ output at
time TOCKQ after Clock Event 1.

Clock Event 2

• At time TOTCK before Clock Event 2 (falling edge of C), the 3-state signal T2 becomes
valid-High at the T2 input of 3-state register 2 and is reflected on the TQ output at
time TOCKQ after Clock Event 2 (no change at the TQ output in this case).

Clock Event 9

• At time TOSRCK before Clock Event 9 (rising edge of C), the SR signal (configured as
synchronous reset in this case) becomes valid-High resetting 3-state Register 1,
reflected at the TQ output at time TRQ after Clock Event 9 (no change at the TQ output
in this case) and resetting 3-state Register 2, reflected at the TQ output at time TRQ
after Clock Event 10 (no change at the TQ output in this case)

Figure 7-29: OLOGIC ODDR 3-State Register Timing Characteristics

1 2 3 4 5 6 7 8 9 10 11

TOTCK

TOTCECK

TOTCK

TOSRCK

TRQ

C

T1

T2

TCE

SR

TQ
TOCKQ

ug070_7_29_080104

364 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 7: SelectIO Logic Resources
R

Virtex-4 FPGA User Guide www.xilinx.com 365
UG070 (v2.6) December 1, 2008

R

Chapter 8

Advanced SelectIO Logic Resources

Introduction
The Virtex-4 FPGA I/O functionality is described in Chapter 6 through Chapter 8 of this
user guide.

• Chapter 6 covers the electrical characteristics of input receivers and output drivers,
and their compliance with many industry standards.

• Chapter 7 describes the register structures dedicated for sending and receiving SDR
or DDR data.

This chapter covers additional Virtex-4 FPGA resources:

• Input serial-to-parallel converters (ISERDES) and output parallel-to-series converters
(OSERDES) support very fast I/O data rates, and allow the internal logic to run up to
ten times slower than the I/O.

• The Bitslip submodule can re-align data to word boundaries, detected with the help of
a training pattern.

Input Serial-to-Parallel Logic Resources (ISERDES)
The Virtex-4 FPGA ISERDES is a dedicated serial-to-parallel converter with specific
clocking and logic features designed to facilitate the implementation of high-speed source-
synchronous applications. The ISERDES avoids the additional timing complexities
encountered when designing deserializers in the FPGA logic.

ISERDES features include:

• Dedicated Deserializer/Serial-to-Parallel Converter

The ISERDES deserializer enables high-speed data transfer without requiring the
FPGA fabric to match the input data frequency. This converter supports both single
data rate (SDR) and double data rate (DDR) modes. In SDR mode, the serial-to-parallel
converter creates a 2-, 3-, 4-, 5-, 6-, 7-, or 8-bit wide parallel word. In DDR mode, the
serial-to-parallel converter creates a 4-, 6-, 8-, or 10-bit-wide parallel word.

• Digitally Controlled Delay Element – IDELAY

Every ISERDES block contains a programmable absolute delay element called
IDELAY. IDELAY is a 64-tap, wraparound, delay element with a fixed, guaranteed tap
resolution (see Virtex-4 Data Sheet). It can be applied to the combinatorial input path,
registered input path, or both. There are three modes of operation:

a. DEFAULT – Zero-hold time delay mode (similar to the Virtex®-II and Virtex-II Pro
FPGA delay elements)

b. FIXED – Delay value is set to the value in the IOBDELAY _VALUE

366 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

c. VARIABLE – Delay value can be changed at run-time by manipulating a set of
control signals

The section “Input Delay Element (IDELAY)” in Chapter 7 discusses IDELAY in detail.

• Bitslip Submodule

The Bitslip submodule allows designers to reorder the sequence of the parallel data
stream going into the FPGA logic. This can be used for training source-synchronous
interfaces that include a training pattern.

• Dedicated Support for Strobe-based Memory Interfaces

ISERDES contains dedicated circuitry (including the OCLK input pin) to handle the
strobe-to-FPGA clock domain crossover entirely within the ISERDES block. This
allows for higher performance and a simplified implementation.

• Dedicated support for Networking interfaces.

Figure 8-1 shows the block diagram of the ISERDES, highlighting all the major
components and features of the block.

Figure 8-1: ISERDES Block Diagram

D

O

DLYINC

DLYCE

DLYRST

CLKDIV

Serial to Parallel
Converter

BITSLIP
Module

CE
Module

IDELAY

OCLK

CLK

CE1

CE2

Q1 - Q6

SHIFTOUT1/2

SHIFTIN1/2

SR

REV

Bitslip
UG70_8_01_031208

Virtex-4 FPGA User Guide www.xilinx.com 367
UG070 (v2.6) December 1, 2008

Input Serial-to-Parallel Logic Resources (ISERDES)
R

ISERDES Primitive
Figure 8-2 shows the ISERDES primitive.

Table 8-1 lists the available ports in the ISERDES primitive.

Figure 8-2: ISERDES Primitive

BITSLIP

CE1

CE2

CLK

CLKDIV

D

DLYCE

DLYINC

DLYRST

OCLK

REV

SHIFTIN1

SHIFTIN2

SR SHIFTOUT1

SHIFTOUT2

Q5

Q6

Q3

Q4

Q1

Q2

O

UG70_8_02_031208

Table 8-1: ISERDES Port List and Definitions

Port Name Type Width Description

O Output 1 Combinatorial output.

Q1 – Q6 Output 1 (each) Registered outputs.

SHIFTOUT1 Output 1
Carry out for data width expansion. Connect to SHIFTIN1 of slave IOB.
See “ISERDES Width Expansion.”

SHIFTOUT2 Output 1
Carry out for data width expansion. Connect to SHIFTIN2 of slave IOB.
See “ISERDES Width Expansion.”

BITSLIP Input 1 Invokes the Bitslip operation.

CE1, CE2 Input 1 (each) Clock enable inputs.

CLK Input 1 High-speed clock input. Clocks serial input data stream.

CLKDIV Input 1
Divided clock input. Clocks delay element, deserialized data, Bitslip submodule,
and CE unit.

D Input 1 Serial input data from IOB.

368 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

ISERDES Ports

Combinatorial Output – O

The combinatorial output port (O) is an unregistered output of the ISERDES module. This
output can come directly from the data input (D), or from the data input (D) via the
IDELAY block.

Registered Outputs – Q1 to Q6

The output ports Q1 to Q6 are the registered outputs of the ISERDES module. The outputs
are synchronous to CLKDIV. The first bit clocked into the ISERDES are clocked out on Qn,
where n is the width of the deserialization. One ISERDES block can support up to six bits
(i.e., a 1:6 deserialization). Bit widths greater than 6 (up to 10) can be supported (see
“ISERDES Width Expansion”).

The bit ordering at the input of an OSERDES is the opposite of the bit ordering at the
output of an ISERDES, as shown in Figure 8-3, page 369. For example, the least significant
bit “A” of the word “FEDCBA” is placed at the D1 input of an OSERDES, but the same bit
“A” emerges from the ISERDES at the Q6 output. In other words, D1 is the least significant
input to the OSERDES, while Q6 is the least significant output of the ISERDES. When
width expansion is used, D1 of the master OSERDES is the least significant input, while Q6
of the slave ISERDES is the least significant output.

Bitslip Operation – BITSLIP

The BITSLIP pin performs a Bitslip operation synchronous to CLKDIV when asserted
(active High). Subsequently, the data seen on the Q1 to Q6 output ports shift, as in a barrel-
shifter operation, one position every time Bitslip is invoked. The nature of the shift differs
for SDR and DDR modes. See “BITSLIP Submodule” for more details.

DLYCE Input 1
Enable IDELAY increment/decrement function. The DLYCE port is the same as
the CE port in the IDELAY primitive. See “IDELAY Ports”.

DLYINC Input 1
Increment/decrement number of tap delays in IDELAY. The DLYINC port is the
same as the INC port in the IDELAY primitive. See “IDELAY Ports”.

DLYRST Input 1
Reset IDELAY to pre-programmed value. If no value programmed, reset to 0. The
DLYRST port is the same as the RST port in the IDELAY primitive. See “IDELAY
Ports”.

OCLK Input 1 High-speed clock input for memory applications.

REV Input 1 Reverse SR pin. Not available in the ISERDES block; connect to GND.

SHIFTIN1 Input 1
Carry input for data width expansion. Connect to SHIFTOUT1 of master IOB. See
“ISERDES Width Expansion”.

SHIFTIN2 Input 1
Carry input for data width expansion. Connect to SHIFTOUT2 of master IOB. See
“ISERDES Width Expansion”.

SR Input 1 Active High reset. See “Reset Input – SR” in section “ISERDES Ports.”

Table 8-1: ISERDES Port List and Definitions (Continued)

Port Name Type Width Description

Virtex-4 FPGA User Guide www.xilinx.com 369
UG070 (v2.6) December 1, 2008

Input Serial-to-Parallel Logic Resources (ISERDES)
R

Clock Enable Inputs – CE1 and CE2

Each ISERDES block contains an input clock enable module. Figure 8-4 shows the Input
Clock Enable module.

When NUM_CE = 1, the CE2 input is not used, and the CE1 input is an active High clock
enable connected directly to the input registers in the ISERDES.

When NUM_CE = 2, the CE1 and CE2 inputs are both used, with CE1 enabling the
ISERDES for half of a CLKDIV cycle, and CE2 enabling the ISERDES for the other half.

The internal clock enable signal ICE shown in Figure 8-4 is derived from the CE1 and CE2
inputs. ICE drives the clock enable inputs of registers FF0, FF1, FF2, and FF3 shown in
Figure 8-6, page 373. The remaining registers in Figure 8-6 do not have clock enable inputs.

High-Speed Clock Input – CLK

The high-speed clock input (CLK) is used to clock in the input serial data stream.

Figure 8-3: Bit Ordering at Q1–Q6 Outputs of ISERDES

F E
Q D

OSERDES ISERDES
Data Bits

D1
D C B A

A

D2B

D3C

D4D

D5E

D6

Q1

Q2

Q3

Q4

Q5

Q6F

F

E

D

C

B

A

CLKDIV_TX CLK_TX CLK_RX CLKDIV_RX

UG070_c8_20_032507

Figure 8-4: Input Clock Enable Module

D

AR
CE1R

ICE

NUM_CE ICECLKDIV

1 CE1X

2 CE2R0

2 CE1R1

(To ISERDES Input Registers)
CE1 Q

SR

CLKDIV

D

AR
CE2R

CE2 Q

SR

CLKDIV

UG070_c8_19_041007

370 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

Divided Clock Input – CLKDIV

The divided clock input (CLKDIV) is typically a divided version of CLK (depending on the
width of the implemented deserialization). It drives the output of the serial-to-parallel
converter, the delay element, the Bitslip submodule, and the CE module.

Serial Input Data from IOB – D

The serial input data port (D) is the serial (high-speed) data input port of the ISERDES.
This port works in conjunction with all the Virtex-4 FPGA I/O resources to accommodate
the desired I/O standards.

High-Speed Clock for Strobe-Based Memory Interfaces – OCLK

The OCLK clock input is used to transfer strobe-based memory data onto a free-running
clock domain. OCLK is a free-running FPGA clock at the same frequency as the strobe on
the CLK input. The domain transfer from CLK to OCLK is shown in the block diagram of
Figure 8-6. The timing of the domain transfer must be set by the user by adjusting the delay
of the strobe signal to the CLK input (e.g., using IDELAY). Examples of setting the timing
of this domain transfer are given in several memory-related application notes, including
XAPP721 (available on www.xilinx.com). When INTERFACE_TYPE is NETWORKING,
this port is unused and should be grounded.

Reset Input – SR

The reset input causes the outputs of all data flip-flops in the CLK and CLKDIV domains
to be driven LOW asynchronously. For circuits in the ISERDES running on the CLK
domain where timing is critical, there is an internal, dedicated circuit to re-time the SR
input to produce a reset signal synchronous to the CLK domain. Similarly, there is also a
dedicated circuit to re-time the SR input to produce a reset signal synchronous to the
CLKDIV domain. Because there are circuits in the ISERDES that re-time the SR input, the
user is only required to provide a reset pulse to the SR input that meets timing on the
CLKDIV frequency domain. Therefore, SR should be driven High for a minimum of one
CLKDIV cycle.

When building an interface consisting of multiple ISERDES, it may be important that all
ISERDES in the interface are synchronized to one another. The internal re-timing of the SR
input guarantees that all ISERDES that receive the same reset pulse come out of reset in
sync with one another. The reset timing of multiple ISERDES is shown in Figure 8-5,
page 371.

Clock Event 1

A reset pulse is generated on the rising edge of CLKDIV. Because the pulse must take two
different routes to get to ISERDES0 and ISERDES1, there are different propagation delays
for both paths. The difference in propagation delay is emphasized in Figure 8-5. The path
to ISERDES0 is very long and the path to ISERDES 1 is very short, such that each ISERDES
receives the reset pulse in a different CLK cycle. The internal resets for both CLK and
CLKDIV go into reset asynchronously when the SR input is asserted.

Virtex-4 FPGA User Guide www.xilinx.com 371
UG070 (v2.6) December 1, 2008

Input Serial-to-Parallel Logic Resources (ISERDES)
R

Clock Event 2

The reset pulse is deasserted on the rising edge of CLKDIV. The difference in propagation
delay between the two ISERDES causes the SR input to come out of reset in two different
CLK cycles. If there were no internal re-timing, ISERDES1 would come out of reset one
CLK cycle before ISERDES0, which would leave both ISERDES out of sync.

Clock Event 3

The release of the reset signal at the SR input is re-timed internally to CLKDIV. This brings
ISERDES 0 and 1 back into sync.

Clock Event 4

The release of the reset signal at the SR input is re-timed internally to CLK.

Figure 8-5: Two ISERDES Coming Out of Reset Synchronously with One Another

UG070_c8_21_041007

CLKDIV

ISERDES0
Signal at
SR Input

ISERDES1

ISERDES0

ISERDES1

ISERDES0

ISERDES1

CLK

Clock
Event 1

Clock
Event 2

Clock
Event 3

Clock
Event 4

Internal Reset
(CLKDIV)

Internal Reset
(CLK)

372 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

ISERDES Attributes
Table 8-2 summarizes all the applicable ISERDES attributes. A detailed description of each
attribute follows the table. For more information on applying these attributes in UCF,
VHDL, or Verilog code, refer to the Xilinx® ISE® Software Manual.

BITSLIP_ENABLE Attribute

The BITSLIP_ENABLE attribute enables the Bitslip submodule. The possible values are
TRUE and FALSE (default). BITSLIP_ENABLE must be set to TRUE when
INTERFACE_TYPE is NETWORKING and FALSE when INTERFACE_TYPE is MEMORY.
When set to TRUE, the Bitslip submodule responds to the BITSLIP signal. When set to
FALSE, the Bitslip submodule is bypassed. See “BITSLIP Submodule”.

DATA_RATE Attribute

The DATA_RATE attribute defines whether the incoming data stream is processed as
single data rate (SDR) or double data rate (DDR). The allowed values for this attribute are
SDR and DDR. The default value is DDR.

DATA_WIDTH Attribute

The DATA_WIDTH attribute defines the parallel data output width of the serial-to-parallel
converter. The possible values for this attribute depend on the INTERFACE_TYPE and
DATA_RATE attributes. See Table 8-3 for allowable data widths.

Table 8-2: ISERDES Attributes

Attribute Name Description Value
Default
Value

BITSLIP_ENABLE
Allows the user to use the Bitslip submodule
or bypass it.

Boolean: “TRUE” or “FALSE” FALSE

DATA_RATE
Enables incoming data stream to be
processed as SDR or DDR data.

String: “SDR” or “DDR” DDR

DATA_WIDTH
Defines the width of the serial-to-parallel
converter. The legal value depends on the
DATA_RATE attribute (SDR or DDR).

Integer: 2, 3, 4, 5, 6, 7, 8, or 10.

If DATA_RATE = DDR, value is
limited to 4, 6, 8, or 10.

If DATA_RATE = SDR, value is
limited to 2, 3, 4, 5, 6, 7, or 8.

4

INTERFACE_TYPE Chooses the ISERDES use model.
String: “MEMORY” or
“NETWORKING”

MEMORY

IOBDELAY Applies delay to combinatorial or registered
paths, both, or neither.

String: “NONE”, “IBUF”, “IFD”,
or “BOTH”

NONE

IOBDELAY_TYPE Sets the type of delay. See “Input Delay
Element (IDELAY)”.

String: “DEFAULT”, “FIXED”,
or “VARIABLE”

DEFAULT

IOBDELAY_VALUE Specifies the initial delay. See “Input Delay
Element (IDELAY)”.

Integer: 0 to 63 0

NUM_CE Defines the number of clock enables. Integer: 1 or 2 2

SERDES_MODE
Defines whether the ISERDES module is a
master or slave when using width expansion.

String: “MASTER” or “SLAVE” MASTER

Virtex-4 FPGA User Guide www.xilinx.com 373
UG070 (v2.6) December 1, 2008

Input Serial-to-Parallel Logic Resources (ISERDES)
R

When the DATA_WIDTH is set to widths larger than six, a pair of ISERDES must be
configured into a master-slave configuration. See “ISERDES Width Expansion.” Width
expansion is not allowed in memory mode.

INTERFACE_TYPE Attribute

The INTERFACE_TYPE attribute determines whether the ISERDES is configured in
memory or networking mode. The allowed values for this attribute are MEMORY or
NETWORKING. The default mode is MEMORY. It is recommended to use the Memory
Interface Generator (MIG) when using ISERDES in Memory mode.

When INTERFACE_TYPE is set to NETWORKING, the Bitslip submodule is available and
the OCLK port is unused. Even if the Bitslip module is not used in networking mode,
BITSLIP_ENABLE must be set to TRUE, and the Bitslip port can be tied Low to disable
Bitslip operation. When set to MEMORY, the Bitslip submodule is not available
(BITSLIP_ENABLE must be set to FALSE), and the OCLK port can be used.

Figure 8-6 illustrates the ISERDES internal connections when in Memory mode.

Table 8-3: Allowable Data Widths

INTERFACE_TYPE DATA_RATE Allowable Data Widths

NETWORKING
SDR 2, 3, 4, 5, 6, 7, 8

DDR 4, 6, 8, 10

MEMORY
SDR None

DDR 4

Figure 8-6: Internal Connections of ISERDES When in Memory Mode

Q1D

CLK

ICE

ICE

ICE

ICE

OCLK

CLKDIV

Q2

Q3

Q4

ug070_8_17_041007

FF0 FF2 FF6

FF1 FF3 FF7

FF4 FF8

FF5 FF9

374 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

IOBDELAY Attribute

The IOBDELAY attribute chooses the paths (combinatorial or registered) where the delay
through the delay element is applied. The possible values for this attribute are NONE
(default), IBUF, IFD, and BOTH. Table 8-4 summarizes the various output paths used for
each attribute value.

NUM_CE Attribute

The NUM_CE attribute defines the number of clock enables (CE1 and CE2) used. The
possible values are 1 and 2 (default = 1).

SERDES_MODE Attribute

The SERDES_MODE attribute defines whether the ISERDES module is a master or slave
when using width expansion. The possible values are MASTER and SLAVE. The default
value is MASTER. See “ISERDES Width Expansion.”

ISERDES Clocking Methods

Networking Interface Type

The phase relationship of CLK and CLKDIV is important in the serial-to-parallel
conversion process. Ideally, CLK and CLKDIV are phase-aligned. There is of course a
tolerance around the ideal phase alignment. There are several clocking arrangements
within the FPGA that are guaranteed by design to meet the phase relationship
requirements of CLK and CLKDIV (shown below). These are the only valid clocking
arrangements for the ISERDES.

• CLK driven by BUFIO, CLKDIV driven by BUFR

• CLK driven by DCM, CLKDIV driven by the CLKDV output of the same DCM

• CLK driven by PMCD, CLKDIV driven by CLKA1Dx of same PMCD

Memory Interface Type

• CLK driven by BUFIO or BUFG

• OCLK driven by DCM and CLKDIV driven by CLKDV output of same DCM

• OCLK driven by PMCD and CLKDIV driven by CLKA1Dx of same PMCD

The clocking arrangement using BUFIO and BUFR is shown in Figure 8-7. In the figure, it
appears that BUFIO and BUFR are not phase-aligned at the inputs of the ISERDES.
However, the hardware is slightly different from the software model. In hardware, BUFIO
and BUFR are actually connected in parallel, such that the CLK and CLKDIV inputs of the
ISERDES receive phase-aligned clocks. Connecting BUFIO and BUFR in HDL as shown in

Table 8-4: IOBDELAY Attribute Value

IOBDELAY
Value

Delay Element Applied on
Combinatorial Output Path (O)?

Delay Element Applied on Registered
Output Path (Q1–Q6)?

NONE No No

IBUF Yes No

IFD No Yes

BOTH Yes Yes

Virtex-4 FPGA User Guide www.xilinx.com 375
UG070 (v2.6) December 1, 2008

Input Serial-to-Parallel Logic Resources (ISERDES)
R

Figure 8-7 results in the correct hardware connection (phase-aligned inputs to CLK and
CLKDIV). No phase relationship between CLK and OCLK is expected. Calibration must be
performed for reliable data transfer from CLK to OCLK domain. See section “High-Speed
Clock for Strobe-Based Memory Interfaces – OCLK” for more information about
transferring data between CLK and OCLK.

ISERDES Width Expansion
Two ISERDES modules are used to build a serial-to-parallel converter larger than 1:6. In
every I/O tile (see “I/O Tile Overview” in Chapter 6) there are two ISERDES modules; one
master and one slave. By connecting the SHIFTOUT ports of the master ISERDES to the
SHIFTIN ports of the slave ISERDES the serial-to-parallel converter can be expanded to up
to 1:10 (DDR) and 1:8 (SDR).

Figure 8-8 illustrates a block diagram of a 1:10 DDR serial-to-parallel converter using the
master and slave ISERDES modules. Ports Q3–Q6 are used for the last four bits of the
parallel interface on the slave ISERDES (LSB to MSB).

If the input is differential, the master ISERDES must be on the positive side of the
differential input pair. If the input is not differential, the input buffer associated with the
slave ISERDES is not available for use.

Figure 8-7: Clocking Arrangement Using BUFIO and BUFR

BUFIO

Clock
Input

UG070_c8_23_032507

BUFR (÷X)
ISERDES

CLKDIV

CLK

Figure 8-8: Block Diagram of ISERDES Width Expansion

Q1D

Data Input

Q2
Q3
Q4

ISERDES
(Slave)

SERDES_MODE=SLAVE

Q5
Q6

Q1D
Q2
Q3
Q4

ISERDES
(Master)

SERDES_MODE=MASTER

Q5
Q6

SHIFTOUT1 SHIFTOUT2

SHIFTIN1 SHIFTIN2

Data_internal [0:5]

Data_internal [6:9]

ug070_8_03_072604

376 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

Guidelines for Expanding the Serial-to-Parallel Converter Bit Width

1. Both ISERDES modules must be adjacent master and slave pairs.

2. Both ISERDES modules must be in NETWORKING mode (width expansion is not
available in MEMORY mode).

3. Set the SERDES_MODE attribute for the master ISERDES to MASTER and the slave
ISERDES to SLAVE (see “SERDES_MODE Attribute”).

4. The user must connect the SHIFTIN ports of the SLAVE to the SHIFTOUT ports of the
MASTER.

5. The SLAVE only uses the ports Q3 to Q6 as outputs.

6. DATA_WIDTH for Master and Slave must match.

Verilog Instantiation Template to use Width Expansion Feature

The following Verilog code uses the width expansion feature in DDR mode with a
deserialization factor of 1:10.

//
// Module: serial_parallel_converter
//
// Description: Verilog instantiation template for
// a serial-to-parallel converter function using the
// ISERDES.
//
// Device: Virtex-4 Family
//
`timescale 1ps/1ps

module serial_parallel_converter (
 Din,

 clk_in,
 rst,
);

input Din;
input clk_in;
input rst;

wire iserdes_clkout;
wire iobclk;
wire clkdiv;
wire shiftdata1;
wire shiftdata2;
wire [9:0] data_internal;

// Instantiate ISERDES for forwarded clock
ISERDES fwd_clk (

 .O(iserdes_clkout),
 .Q1(),
 .Q2(),
 .Q3(),
 .Q4(),
 .Q5(),

 .Q6(),
 .SHIFTOUT1(),

Virtex-4 FPGA User Guide www.xilinx.com 377
UG070 (v2.6) December 1, 2008

Input Serial-to-Parallel Logic Resources (ISERDES)
R

 .SHIFTOUT2(),
 .BITSLIP(1'b0),

 .CE1(1'b1),
 .CE2(1'b1),
 .CLK(iobclk),
 .CLKDIV(clkdiv),
 .D(clk_in),
 .DLYCE(1'b0),

 .DLYINC(1'b0),
 .DLYRST(1'b0),

 .OCLK(1'b0),
 .REV(1'b0),
 .SHIFTIN1(1'b0),
 .SHIFTIN2(1'b0),
 .SR(rst),
);

// synthesis BITSLIP_ENABLE of fwd_clk is "TRUE";
// synthesis DATA_RATE of fwd_clk is "DDR";
// synthesis DATA_WIDTH of fwd_clk is 4;
// synthesis INTERFACE_TYPE of fwd_clk is "NETWORKING";
// synthesis IOBDELAY of fwd_clk is "NONE";
// synthesis IOBDELAY_TYPE of fwd_clk is "DEFAULT";
// synthesis IOBDELAY_VALUE of fwd_clk is 0;
// synthesis NUM_CE of fwd_clk is 1;
// synthesis SERDES_MODE of fwd_clk is "MASTER";

// Instantiate Master ISERDES for data channel
// 1:10 Deserialization Factor
ISERDES data_chan_master (

.O(),

.Q1(data_internal[0]),

.Q2(data_internal[1]),

.Q3(data_internal[2),

.Q4(data_internal[3]),

.Q5(data_internal[4]),

.Q6(data_internal[5]),

.SHIFTOUT1(shiftdata1),

.SHIFTOUT2(shiftdata2),

.BITSLIP(1'b0),

.CE1(1'b1),

.CE2(1'b1),

.CLK(iobclk),

.CLKDIV(clkdiv),

.D(Din),

.DLYCE(1'b0),

.DLYINC(1'b0),

.DLYRST(1'b0),

.OCLK(1'b0),

.REV(1'b0),

.SHIFTIN1(1'b0),

.SHIFTIN2(1'b0),

.SR(rst),
);

// synthesis BITSLIP_ENABLE of data_chan_master is "TRUE";
// synthesis DATA_RATE of data_chan_master is "DDR";
// synthesis DATA_WIDTH of data_chan_master is 10;
// synthesis INTERFACE_TYPE of data_chan_master is "NETWORKING";
// synthesis IOBDELAY of data_chan_master is "NONE";
// synthesis IOBDELAY_TYPE of data_chan_master is "DEFAULT";

378 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

// synthesis IOBDELAY_VALUE of data_chan_master is 0;
// synthesis NUM_CE of data_chan_master is 1;
// synthesis SERDES_MODE of data_chan_master is "MASTER";
//
// Instantiate Slave ISERDES for data channel
// 1:10 Deserialization Factor
ISERDES data_chan_slave (

.O(),

.Q1(),

.Q2(),

.Q3(data_internal[6]),

.Q4(data_internal[7]),

.Q5(data_internal[8]),

.Q6(data_internal[9]),

.SHIFTOUT1(),

.SHIFTOUT2(),

.BITSLIP(1'b0),

.CE1(1'b1),

.CE2(1'b1),

.CLK(iobclk),

.CLKDIV(clkdiv),

.D(1'b0),

.DLYCE(1'b0),

.DLYINC(1'b0),

.DLYRST(1'b0),

.OCLK(1'b0),

.REV(1'b0),

.SHIFTIN1(shiftdata1),

.SHIFTIN2(shiftdata2),

.SR(rst),
);

// synthesis BITSLIP_ENABLE of data_chan_slave is "TRUE";
// synthesis DATA_RATE of data_chan_slave is "DDR";
// synthesis DATA_WIDTH of data_chan_slave is 10;
// synthesis INTERFACE_TYPE of data_chan_slave is "NETWORKING";
// synthesis IOBDELAY of data_chan_slave is "NONE";
// synthesis IOBDELAY_TYPE of data_chan_slave is "DEFAULT";
// synthesis IOBDELAY_VALUE of data_chan_slave is 0;
// synthesis NUM_CE of data_chan_slave is 1;
// synthesis SERDES_MODE of data_chan_slave is "SLAVE";
//
BUFIO bufio1 (

.O(iobclk),

.I(iserdes_clkout)
);

// To get a 1:10 deserialization factor in DDR mode,
// set the clock divide factor to "5"
BUFR bufr1 (

.O(clkdiv),

.CE(1'b1),

.CLR(1'b0),

.I(iobclk)
);

// synthesis BUFR_DIVIDE of bufr1 is "5";

endmodule

Virtex-4 FPGA User Guide www.xilinx.com 379
UG070 (v2.6) December 1, 2008

Input Serial-to-Parallel Logic Resources (ISERDES)
R

ISERDES Latencies
When the ISERDES interface type is MEMORY, the latency through the OCLK stage is
1 CLKDIV cycle. However the total latency through the ISERDES depends on the phase
relationship between the CLK and the OCLK clock inputs. When it is NETWORKING, the
latency is 2 CLKDIV cycles. See Figure 8-12, page 385 and Figure 8-13, page 385 for a
visualization of latency in networking mode. The extra CLKDIV cycle of latency in
NETWORKING mode (compared to MEMORY mode) is due to the Bitslip submodule.

ISERDES Timing Model and Parameters
Table 8-5 describes the function and control signals of the ISERDES switching
characteristics in the Virtex-4 Data Sheet.

Table 8-5: ISERDES Switching Characteristics

Symbol Description

Setup/Hold for Control Lines

TISCCK_SR_SYNC / TISCKC_SR_SYNC SR Pin setup/hold with respect to CLKDIV

TISCCK_BITSLIP/ TISCKC_BITSLIP BITSLIP pin setup/hold with respect to CLKDIV

TISCCK_CE /TISCKC_CE CE pin setup/hold with respect to CLK (for CE1)

TISCCK_CE /TISCKC_CE CE pin setup/hold with respect to CLKDIV (for CE2)

TISCCK_DLYCE / TISCKC_DLYCE DLYCE pin setup/hold with respect to CLKDIV

TISCCK_DLYINC/ TISCKC_DLYINC DLYINC pin setup/hold with respect to CLKDIV

TISCCK_DLYRST/ TISCKC_DLYRST DLYRST pin setup/hold with respect to CLKDIV

Setup/Hold for Data Lines

TISDCK_D / TISCKD_D D pin setup/hold with respect to CLK
(IOBDELAY = IBUF or NONE)

D pin setup/hold with respect to CLK
(IOBDELAY = IFD or BOTH,
IOBDELAY_TYPE = DEFAULT)

D pin setup/hold with respect to CLK
(IOBDELAY = IFD or BOTH,
IOBDELAY_TYPE = FIXED,
IOBDELAY_VALUE = 0)

TISDCK_DDR / TISCKD_DDR D pin setup/hold with respect to CLK at DDR mode
(IOBDELAY = IBUF or NONE)

D pin setup/hold with respect to CLK at DDR mode
(IOBDELAY = IFD or BOTH,
IOBDELAY_TYPE = DEFAULT)

D pin setup/hold with respect to CLK at DDR mode
(IOBDELAY = IFD or BOTH,
IOBDELAY_TYPE = FIXED,
IOBDELAY_VALUE = 0)

Sequential Delay

TISCKO_Q CLKDIV to Out at Q pins

380 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

Timing Characteristics

In the timing diagrams of Figure 8-9, the timing parameter names change for different
modes (SDR/DDR). However, the names do not change when a different bus input width,
including when two ISERDES components are cascaded together to form 10 bits. In DDR
mode, the data input (D) switches at every CLK edge (rising and falling).

Figure 8-9 illustrates an ISERDES timing diagram for the input data to the ISERDES in SDR
mode.

Clock Event 1

• At time TISCCK_CE, before Clock Event 1, the clock enable signal becomes valid-High
and the ISERDES can sample data.

Clock Event 2

• At time TISDCK_D, before Clock Event 2, the input data pin (D) becomes valid and is
sampled at the next positive clock edge.

ISERDES VHDL and Verilog Instantiation Template
VHDL and Verilog instantiation templates are available in the Libraries Guide for all
primitives and submodules.

In VHDL, each template has a component declaration section and an architecture section.

Each part of the template should be inserted within the VHDL design file. The port map of
the architecture section should include the design signal names.

ISERDES VHDL Instantiation

-- Module: ISERDES
-- Description: VHDL instantiation template
--
-- Device: Virtex-4 Family

-- Component Declaration for ISERDES should be placed
-- after architecture statement but before "begin" keyword

component ISERDES

generic (
BITSLIP_ENABLE : string := "FALSE"; --(TRUE, FALSE)
DATA_RATE : string := "DDR"; --(SDR, DDR)
DATA_WIDTH : integer := 4; --(2,3,4,5,6,7,8,10)

Figure 8-9: ISERDES Input Data Timing Diagram

ug070_8_04_072904

CLK

CE

TISCCK_CE

TISDCK_D

1 2

D

Virtex-4 FPGA User Guide www.xilinx.com 381
UG070 (v2.6) December 1, 2008

Input Serial-to-Parallel Logic Resources (ISERDES)
R

INTERFACE_TYPE : string := "MEMORY"; --(MEMORY,
NETWORKING)

IOBDELAY : string := "NONE"; --(NONE,IBUF,IFD,BOTH)
IOBDELAY_TYPE : string := "DEFAULT"; --(DEFAULT,FIXED,

VARIABLE)
IOBDELAY_VALUE : integer := 0; --(0 to 63)
NUM_CE : integer := 2; --(1,2)
SERDES_MODE : string := "MASTER"; --(MASTER, SLAVE)

);

port (
 O : out STD_LOGIC;
 Q1 : out STD_LOGIC;
 Q2 : out STD_LOGIC;
 Q3 : out STD_LOGIC;
 Q4 : out STD_LOGIC;
 Q5 : out STD_LOGIC;
 Q6 : out STD_LOGIC;
 SHIFTOUT1 : out STD_LOGIC;
 SHIFTOUT2 : out STD_LOGIC;
 BITSLIP : in STD_LOGIC;
 CE1 : in STD_LOGIC;
 CE2 : in STD_LOGIC;
 CLK : in STD_LOGIC;
 CLKDIV : in STD_LOGIC;
 D : in STD_LOGIC;
 DLYCE : in STD_LOGIC;
 DLYINC : in STD_LOGIC;
 DLYRST : in STD_LOGIC;
 OCLK : in STD_LOGIC;
 REV : in STD_LOGIC;
 SHIFTIN1 : in STD_LOGIC;
 SHIFTIN2 : in STD_LOGIC;
 SR : in STD_LOGIC;
);
end component;

-- Component Attribute specification for ISERDES
-- should be placed after architecture declaration but
-- before the "begin" keyword

attribute BITSLIP_ENABLE : string;
attribute DATA_RATE : string;
attribute DATA_WIDTH : integer;
attribute INTERFACE_TYPE : string;
attribute IOBDELAY : string;
attribute IOBDELAY_TYPE : string;
attribute IOBDELAY_VALUE : integer;
attribute NUM_CE : integer;
attribute SERDES_MODE : string;

-- Component Instantiation for ISERDES should be placed
-- in architecture after the "begin" keyword
--
-- Instantiation Section
--
U1 : ISERDES

generic map (

382 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

BITSLIP_ENABLE => "FALSE", --(TRUE, FALSE)
DATA_RATE => "DDR", --(SDR, DDR)
DATA_WIDTH => 4, --(2,3,4,5,6,7,8,10)
INTERFACE_TYPE => "MEMORY", --(MEMORY, NETWORKING)
IOBDELAY => "NONE", --(NONE,IBUF,IFD,BOTH)
IOBDELAY_TYPE => "DEFAULT", --(DEFAULT, FIXED, VARIABLE)
IOBDELAY_VALUE => 0, --(0 to 63)
NUM_CE => 2, --(1,2)
SERDES_MODE => "MASTER", --(MASTER, SLAVE)
);

port map (
 O => data_output,
 Q1 => Q(0),
 Q2 => Q(1),
 Q3 => Q(2),
 Q4 => Q(3),
 Q5 => open,
 Q6 => open,
 SHIFTOUT1 => open,
 SHIFTOUT2 => open,
 BITSLIP => bitslip,
 CE1 => ce,
 CE2 => open,
 CLK => clk
 CLKDIV => clkdiv
 D => data_input
 DLYCE => dlyce,
 DLYINC => dlyinc,
 DLYRST => dlyrst,
 OCLK => open,
 REV => open,
 SHIFTIN1 => open,
 SHIFTIN2 => open,
 SR => rst,
);

ISERDES Verilog Instantiation

// Module: ISERDES
// Description: Verilog instantiation template
//
// Device: Virtex-4 Family
//---
// Instantiation Section
//
ISERDES U1
 (
 .O (data_output),
 .Q1 (Q[0]),
 .Q2 (Q[1]),
 .Q3 (Q[2]),
 .Q4 (Q[3]),
 .Q5 (open),
 .Q6 (open),
 .SHIFTOUT1 (open),
 .SHIFTOUT2 (open),
 .BITSLIP (bitslip),
 .CE1 (ce),

Virtex-4 FPGA User Guide www.xilinx.com 383
UG070 (v2.6) December 1, 2008

Input Serial-to-Parallel Logic Resources (ISERDES)
R

 .CE2 (open),
 .CLK (clk),
 .CLKDIV (clkdiv),
 .D (data_input),
 .DLYCE (dlyce),
 .DLYINC (dlyinc),
 .DLYRST (dlyrst),
 .OCLK (open),
 .REV (open),
 .SHIFTIN1 (open),
 .SHIFTIN2 (open),
 .SR (rst),
);

BITSLIP Submodule
All ISERDES blocks in Virtex-4 devices contain a Bitslip submodule. Bitslip shifts the
parallel data in the ISERDES block, allowing every combination of a repeating serial
pattern received by the deserializer to be presented to the FPGA logic. This repeating serial
pattern is typically called a training pattern (training patterns are supported by many
networking and telecommunication standards).

Bitslip Operation

By asserting the Bitslip pin of the ISERDES block, the incoming serial data stream is
reordered at the parallel side. This operation is repeated until the training pattern is seen.
The tables in Figure 8-10 illustrate the effects of a Bitslip operation in SDR and DDR mode.
For illustrative purposes the data width is eight. The Bitslip operation is synchronous to
CLKDIV. In SDR mode, every Bitslip operation causes the output pattern to shift left by
one. In DDR mode, every Bitslip operation causes the output pattern to alternate between
a shift right by one and shift left by three. In this example, on the eighth Bitslip operation,
the output pattern reverts to the initial pattern. This assumes that serial data is an eight bit
repeating pattern.

Figure 8-11 illustrates the ISERDES configured in 1:8 SDR mode with Bitslip_Enable set to
TRUE. Two ISERDES modules are in a master-slave configuration for a data width of eight.

Figure 8-10: Bitslip Operation Examples

ug070_8_16_072604

Bitslip
Operations
Executed

Output
Pattern (8:1)

00100111
01001110
10011100
00111001
01110010
11100100
11001001

10010011Initial
1
2
3
4
5
6
7

Bitslip Operation in SDR Mode

Bitslip
Operations
Executed

Output
Pattern (8:1)

10010011
10011100
01001110
01110010
00111001
11001001
11100100

00100111Initial
1
2
3
4
5
6
7

Bitslip Operation in DDR Mode

384 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

Guidelines for Using the Bitslip Submodule

Set the BITSLIP_ENABLE attribute to TRUE. When BITSLIP_ENABLE is set to FALSE, the
Bitslip pin has no effect. In a master-slave configuration, the BITSLIP_ENABLE attribute in
both modules must be set to TRUE.

To invoke a Bitslip operation, the Bitslip port must be asserted High for one CLKDIV cycle.
In SDR mode, Bitslip cannot be asserted for two consecutive CLKDIV cycles; Bitslip must
be deasserted for at least one CLKDIV cycle between two Bitslip assertions. In both SDR
and DDR mode, the total latency from when the ISERDES captures the asserted Bitslip
input to when the “bit-slipped” ISERDES outputs Q1–Q6 are sampled into the FPGA logic
by CLKDIV is two CLKDIV cycles.

Bitslip Timing Model and Parameters

This section discusses the timing models associated with the Bitslip controller in a 1:4 DDR
configuration. Data (D) is a repeating, 4-bit training pattern ABCD. ABCD could appear at
the parallel outputs Q1–Q4 of the ISERDES in four possible ways: ABCD, BCDA, CDAB,
and DABC. Only one of these four alignments of the parallel word makes sense to the
user's downstream logic that reads the data from the Q1–Q4 outputs of the ISERDES. In
this case, it is assumed that ABCD is the word alignment that makes sense. Asserting
Bitslip allows the user to see all possible configurations of ABCD and then choose the
expected alignment (ABCD). Figure 8-12 shows the timing of two Bitslip operations and
the corresponding re-alignments of the ISERDES parallel outputs Q1–Q4.

Figure 8-11: Circuit Diagram for Bitslip Configuration in 1:8 SDR Mode

Initial
1st

Bitslip
2nd

Bitslip
3th

Bitslip
4th

Bitslip
5th

Bitslip
6th

Bitslip
7th

BitslipBITSLIP_ENABLE = TRUE

BITSLIP_ENABLE = TRUE

BITSLIP

BITSLIP

Bitslip signal from system

8th Bitslip
(Back to initial)

Q1D

1001 0011

Q2
(Q7)Q3
(Q8)Q4

ISERDES
(Slave)

SERDES_MODE=SLAVE

IOB

Q5
Q6

Q1D
Q2
Q3
Q4

ISERDES
(Master)

SERDES_MODE=MASTER

Q5
Q6

1
0
0
1
0
0

1
1

1
1
0
0
1
0

0
1

1
1
1
0
0
1

0
0

0
1
1
1
0
0

1
0

0
0
1
1
1
0

0
1

1
0
0
1
1
1

0
0

0
1
0
0
1
1

1
0

0
0
1
0
0
1

1
1

1
0
0
1
0
0

1
1

SHIFTOUT1 SHIFTOUT2

SHIFTIN1 SHIFTIN2

UG070_8_17_031208

(repeating
 pattern)

Virtex-4 FPGA User Guide www.xilinx.com 385
UG070 (v2.6) December 1, 2008

Input Serial-to-Parallel Logic Resources (ISERDES)
R

.

Clock Event 1

The entire first word CDAB has been sampled into the input side registers of the ISERDES.
The Bitslip pin is not asserted, so the word propagates through the ISERDES without any
realignment.

Clock Event 2

The second word CDAB has been sampled into the input side registers of the ISERDES.
The Bitslip pin is asserted, which causes the Bitslip controller to shift all bits internally by
1 bit to the right.

Clock Event 3

The third word CDAB has been sampled into the input side registers of the ISERDES. The
Bitslip pin is asserted for a second time, which causes the Bitslip controller to shift all bits
internally by three bits to the left.

On this same edge of CLKDIV, the first word sampled is presented to Q1–Q4 without any
realignment. The actual bits from the input stream that appear at the Q1–Q4 outputs
during this cycle are shown in A of Figure 8-13.

Figure 8-12: Bitslip Timing Diagram

Figure 8-13: Bits from Data Input Stream (D) of Figure 8-12

UG070_8_09_032507

C D A B C D C DA B C D A B

CLK

BITSLIP

CLKDIV

D

Clock
Event 1

Clock
Event 2

Bitslip1 Bitslip2

Clock
Event 4

Clock
Event 3

Clock
Event 5

Q4–Q1 CDAB BCDA ABCD

UG070_c8_18_040207

C (2nd Bitslip, Rotate 3 Bits to Left)
Q1–Q4 During Clock Event 5

B (1st Bitslip, Rotate 1 Bit to Right)
Q1–Q4 During Clock Event 4

C D A B C D C DA B C D A B

C D A B C D C DA B C D A B

C D A B C D C DA B C D A B

A (No Bitslip)
Q1–Q4 During Clock Event 3

386 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

Clock Event 4

The first two bits of the fourth word CD have been sampled into the input side registers of
the ISERDES.

On this same edge of CLKDIV, the second word sampled is presented to Q1–Q4 with one
bit shifted to the right. The actual bits from the input stream that appear at the Q1–Q4
outputs during this cycle are shown in B of Figure 8-13.

The realigned bits on Q1–Q4 are sampled into the FPGA fabric on the CLKDIV domain.
The total latency from when the ISERDES captures the asserted Bitslip input to when the
realigned ISERDES outputs Q1–Q4 are sampled by CLKDIV is 2 CLKDIV cycles.

Clock Event 5

The third word sampled is presented to Q1–Q4 with three bits shifted to the left. The actual
bits from the input stream that appear at the Q1–Q4 outputs during this cycle are shown in
C of Figure 8-13.

Output Parallel-to-Serial Logic Resources (OSERDES)
The Virtex-4 FPGA OSERDES is a dedicated parallel-to-serial converter with specific
clocking and logic resources designed to facilitate the implementation of high-speed
source-synchronous interfaces. Every OSERDES module includes a dedicated serializer for
data and 3-state control. Both Data and 3-state serializers can be configured in SDR and
DDR mode. Data serialization can be up to 6:1 (10:1 if using “OSERDES Width
Expansion”). 3-state serialization can be up to 4:1.

Figure 8-14 shows a block diagram of the OSERDES, highlighting all the major
components and features of the block.

Data Parallel-to-Serial Converter

The data parallel-to-serial converter in one OSERDES blocks receives two to six bits of
parallel data from the fabric (10:1 if using “OSERDES Width Expansion”), serializes the
data, and presents it to the IOB via the OQ outputs. Parallel data is serialized from lowest

Figure 8-14: OSERDES Block Diagram

3-State
Parallel-to-Serial Converter

Data
Parallel-to-Serial Converter

CLK

CLKDIV

SR

D1 - D6

OCE

TCE

T1 - T4
TQ

IOB

OQ

ug070_10_041007

Output Driver

Virtex-4 FPGA User Guide www.xilinx.com 387
UG070 (v2.6) December 1, 2008

Output Parallel-to-Serial Logic Resources (OSERDES)
R

order data input pin to highest (i.e., data on the D1 input pin is the first bit transmitted at
the OQ pins). The data parallel-to-serial converter is available in two modes; single-data
rate (SDR) and double-data rate (DDR).

The OSERDES uses two clocks, CLK and CLKDIV, for data rate conversion. CLK is the
high-speed serial clock, CLKDIV is the divided parallel clock. It is assumed that CLK and
CLKDIV are phase aligned. It is required that a reset be applied to the OSERDES prior to
use. The OSERDES contains an internal counter that controls dataflow, and failure to
synchronize the reset with the CLKDIV results in unexpected output. Table 8-6 describes
the relationship between CLK and CLKDIV in all modes.

3-State Parallel-to-Serial Conversion

In addition to parallel-to-serial conversion of data, an OSERDES module also contains a
parallel-to-serial converter for 3-state control of the IOB. Unlike data conversion, the
3-state converter can only serialize up to four bits of parallel 3-state signals. The 3-state
converter cannot be cascaded.

Table 8-6: CLK/CLKDIV Relationship of the Data Parallel-to-Serial Converter

Input Data Width Output in SDR
Mode

Input Data Width Output in DDR
Mode

CLK CLKDIV

2 4 2X X

3 6 3X X

4 8 4X X

5 10 5X X

6 – 6X X

7 – 7X X

8 – 8X X

388 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

OSERDES Primitive
The OSERDES primitive is shown in Figure 8-15.

OSERDES Ports
Table 8-7 lists the available ports in the OSERDES primitive.

Figure 8-15: OSERDES Primitive

UG070_8_19_031208

CLK

CLKDIV

D1

D2

D3

D4

D5

D6

OCE

REV

SHIFTIN1

SHIFTIN2

SR

T1

T2

T3

T4

TCE

OQ

SHIFTOUT1

SHIFTOUT2

TQ

Table 8-7: OSERDES Port List and Definitions

Port Name Type Width Description

OQ Output 1 Data path output.

SHIFTOUT1 Output 1 Carry out for data width expansion. Connect to SHIFTIN1 of master OSERDES.
See “OSERDES Width Expansion”.

SHIFTOUT2 Output 1 Carry out for data width expansion. Connect to SHIFTIN2 of master OSERDES.
See “OSERDES Width Expansion”.

TQ Output 1 3-state control output.

CLK Input 1 High-speed clock input. Clocks serialized data to OQ output.

CLKDIV Input 1 Divided clock input. Clocks parallel data at D1-D6 inputs into OSERDES.

D1 – D6 Input 1 (each) Parallel data inputs.

Virtex-4 FPGA User Guide www.xilinx.com 389
UG070 (v2.6) December 1, 2008

Output Parallel-to-Serial Logic Resources (OSERDES)
R

Data Path Output – OQ

The OQ port is the data output port of the OSERDES module. Data at the input port D1
appears first at OQ. This port connects the output of the data parallel-to-serial converter to
the data input of the IOB.

3-state Control Output – TQ

This port is the 3-state control output of the OSERDES module. When used, this port
connects the output of the 3-state parallel-to-serial converter to the control/3-state input of
the IOB.

High-Speed Clock Input – CLK

This high-speed clock input drives the serial side of the parallel-to-serial converters.

Divided Clock Input – CLKDIV

This divided high-speed clock input drives the parallel side of the parallel-to-serial
converters. This clock is the divided version of the clock connected to the CLK port.

Parallel Data Inputs – D1 to D6

All incoming parallel data enters the OSERDES module through ports D1 to D6. These
ports are connected to the FPGA fabric, and can be configured from two to six bits (i.e., a
6:1 serialization). Bit widths greater than six (up to 10) can be supported by using a second
OSERDES in SLAVE mode (see “OSERDES Width Expansion”). Refer to Figure 8-3,
page 369 for bit ordering at the inputs and output of the OSERDES along with the
corresponding bit order of the ISERDES.

Output Data Clock Enable – OCE

OCE is an active High clock enable for the data path.

Parallel 3-State Inputs – T1 to T4

All parallel 3-state signals enter the OSERDES module through ports T1 to T4. The ports
are connected to the FPGA fabric, and can be configured as one, two, or four bits.

OCE Input 1 Output data clock enable.

REV Input 1 Reverse SR pin. Not available in the OSERDES block; connect to GND.

SHIFTIN1 Input 1 Carry input for data width expansion. Connect to SHIFTOUT1 of slave
OSERDES. See “OSERDES Width Expansion”.

SHIFTIN2 Input 1 Carry input for data width expansion. Connect to SHIFTOUT2 of slave
OSERDES. See “OSERDES Width Expansion”.

SR Input 1 Active High reset.

T1 to T4 Input 1 (each) Parallel 3-state inputs.

TCE Input 1 3-state clock enable.

Table 8-7: OSERDES Port List and Definitions (Continued)

Port Name Type Width Description

390 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

3-State Signal Clock Enable – TCE

TCE is an active High clock enable for the 3-state control path.

Reset Input – SR

The reset input causes the outputs of all data flip-flops in the CLK and CLKDIV domains
to be driven LOW asynchronously. For circuits in the OSERDES running on the CLK
domain where timing is critical, there is an internal, dedicated circuit to re-time the SR
input to produce a reset signal synchronous to the CLK domain. Similarly, there is also a
dedicated circuit to re-time the SR input to produce a reset signal synchronous to the
CLKDIV domain. Because there are circuits in the OSERDES that re-time the SR input, the
user is only required to provide a reset pulse to the SR input that meets timing on the
CLKDIV frequency domain (synchronous to CLKDIV). Therefore, SR should be driven
High for a minimum of one CLKDIV cycle.

When building an interface consisting of multiple OSERDES, it may be important that all
OSERDES in the interface are synchronized to one another. The internal re-timing of the SR
input guarantees that all OSERDES that receive the same reset pulse come out of reset in
sync with one another. The reset timing of multiple OSERDES is shown in Figure 8-16.

Clock Event 1

A reset pulse is generated on the rising edge of CLKDIV. Because the pulse must take two
different routes to get to OSERDES0 and OSERDES1, there are different propagation
delays for both paths. The difference in propagation delay is emphasized in Figure 8-16.
The path to OSERDES0 is very long and the path to OSERDES1 is very short, such that
each OSERDES receives the reset pulse in a different CLK cycle. The internal resets for both
CLK and CLKDIV go into reset asynchronously when the SR input is asserted.

Figure 8-16: Two OSERDES Coming Out of Reset Synchronously with One Another

UG070_c8_24_041007

CLKDIV

OSERDES0
Signal at
SR Input

OSERDES1

OSERDES0

OSERDES1

OSERDES0

OSERDES1

CLK

Clock
Event 1

Clock
Event 2

Clock
Event 3

Clock
Event 4

Internal Reset
(CLKDIV)

Internal Reset
(CLK)

Virtex-4 FPGA User Guide www.xilinx.com 391
UG070 (v2.6) December 1, 2008

Output Parallel-to-Serial Logic Resources (OSERDES)
R

Clock Event 2

The reset pulse is deasserted on the rising edge of CLKDIV. The difference in propagation
delay between the two OSERDES causes the SR input to come out of reset in two different
CLK cycles. If there were no internal re-timing, OSERDES1 would come out of reset one
CLK cycle before OSERDES0, which would leave both OSERDES out of sync.

Clock Event 3

The release of the reset signal at the SR input is re-timed internally to CLKDIV. This brings
OSERDES0 and OSERDES1 back into sync.

Clock Event 4

The release of the reset signal at the SR input is re-timed internally to CLK.

OSERDES Attributes
Table 8-8 lists and describes the various attributes that are available for the OSERDES
primitive. The table includes the default values.

DATA_RATE_OQ Attribute

The DATA_RATE_OQ attribute defines whether data is processed as single data rate (SDR)
or double data rate (DDR). The allowed values for this attribute are BUF, SDR, and DDR.
The default value is DDR. When this attribute is set to BUF, the path from the T1 input to
the TQ output of the OSERDES is completely combinatorial.

Table 8-8: OSERDES Attribute Summary

OSERDES Attribute Description Value Default Value

DATA_RATE_OQ Defines whether data (OQ) changes at every
clock edge or every positive clock edge with
respect to CLK.

String: “SDR” or “DDR” DDR

DATA_RATE_TQ Defines whether the 3-state (TQ) changes at
every clock edge, every positive clock edge
with respect to clock, or is set to buffer
configuration.

String: “BUF”, “SDR”, or
“DDR”

DDR

DATA_WIDTH Defines the parallel-to-serial data converter
width. This value also depends on the
DATA_RATE_OQ value.

Integer: 2, 3, 4, 5, 6, 7, 8, or 10. If
DATA_RATE_OQ = DDR,
value is limited to 4, 6, 8, or 10.
If DATA_RATE_OQ = SDR,
value is limited to
2, 3, 4, 5, 6, 7, or 8.

4

SERDES_MODE Defines whether the OSERDES module is a
master or slave when using width expansion.

String: “MASTER” or “SLAVE” MASTER

TRISTATE_WIDTH Defines the parallel to serial 3-state converter
width.

Integer: 1, 2, or 4

If DATA_RATE_TQ = DDR,
value is limited to 2 and 4. If
DATA_RATE_TQ = SDR or
BUF, value is limited to 1.

4

392 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

DATA_RATE_TQ Attribute

The DATA_RATE_TQ attribute defines whether 3-state control is to be processed as single
data rate (SDR) or double data rate (DDR). The allowed values for this attribute are SDR
and DDR. The default value is DDR.

DATA_WIDTH Attribute

The DATA_WIDTH attribute defines the parallel data input width of the parallel-to-serial
converter. The possible values for this attribute depend on the DATA_RATE_OQ attribute.
When DATA_RATE_OQ is set to SDR, the possible values for the DATA_WIDTH attribute
are 2, 3, 4, 5, 6, 7, and 8. When DATA_RATE_OQ is set to DDR, the possible values for the
DATA_WIDTH attribute are 4, 6, 8, and 10.

When the DATA_WIDTH is set to widths larger than six, a pair of OSERDES must be
configured into a master-slave configuration, and the DATA_WIDTH value of both
OSERDES must be set to the desired width. For example, for a width of 8, both MASTER
and SLAVE must have DATA_WIDTH set to 8. See “OSERDES Width Expansion”.

SERDES_MODE Attribute

The SERDES_MODE attribute defines whether the OSERDES module is a master or slave
when using width expansion. The possible values are MASTER and SLAVE. The default
value is MASTER. See “OSERDES Width Expansion”.

TRISTATE_WIDTH Attribute

The TRISTATE_WIDTH attribute defines the parallel 3-state input width of the 3-state
control parallel-to-serial converter. The possible values for this attribute depend on the
DATA_RATE_TQ attribute. When DATA_RATE_TQ is set to SDR or BUF, the
TRISTATE_WIDTH attribute can only be set to 1. When DATA_RATE_TQ is set to DDR,
the possible values for the TRISTATE_WIDTH attribute are 2 or 4.

TRISTATE_WIDTH cannot be set to widths larger than four. The TRISTATE_WIDTH and
DATA_RATE_TQ attribute settings do not impose any limits on the DATA_RATE_OQ and
DATA_WIDTH settings, except when TRISTATE_WIDTH is set to 4 and DATA_RATE_TQ
is set to DDR. In this case, the only allowable DATA_RATE_OQ and DATA_WIDTH
settings are:

DATA_RATE_OQ =DDR; DATA_WIDTH = 4
DATA_RATE_OQ = SDR; DATA_WIDTH = 2

OSERDES Width Expansion
Two OSERDES modules are used to build a parallel-to-serial converter larger than 6:1. In
every I/O tile there are two OSERDES modules; one master and one slave. By connecting
the SHIFTIN ports of the master OSERDES to the SHIFTOUT ports of the slave OSERDES,
the parallel-to-serial converter can be expanded to up to 10:1(DDR) and 8:1 (SDR).

If the output is differential, the master OSERDES must be on the positive side of the
differential output pair. If the output is not differential, the output buffer associated with
the slave OSERDES is not available for use.

Complementary single-ended standards (e.g., DIFF_HSTL, DIFF_SSTL) cannot be used
when using the OSERDES with width expansion. This is because the complementary
single-ended standards use both OLOGIC blocks in an I/O tile to transmit both legs of the
signal, leaving no OLOGIC blocks to use for width expansion.

Virtex-4 FPGA User Guide www.xilinx.com 393
UG070 (v2.6) December 1, 2008

Output Parallel-to-Serial Logic Resources (OSERDES)
R

Figure 8-17 illustrates a block diagram of a 10:1 DDR parallel-to-serial converter using the
master and slave OSERDES modules. Ports D3–D6 are used for the last four bits of the
parallel interface on the slave OSERDES (LSB to MSB).

Table 8-9 lists the data width availability for SDR and DDR mode.

Guidelines for Expanding the Parallel-to-Serial Converter Bit Width

1. Both the OSERDES modules must be adjacent master and slave pairs.

2. Set the SERDES_MODE attribute for the master OSERDES to MASTER and the slave
OSERDES to SLAVE (see “SERDES_MODE Attribute”).

3. The user must connect the SHIFTIN ports of the MASTER to the SHIFTOUT ports of
the SLAVE.

4. The SLAVE only uses the ports D3 to D6 as an input.

5. Master and Slave have the same DATA_WIDTH attribute value.

Table 8-10 shows the slave inputs used for data widths requiring width expansion.

Figure 8-17: Block Diagram of OSERDES Width Expansion

Table 8-9: OSERDES SDR/DDR Data Width Availability

SDR Data Widths 2, 3, 4, 5, 6, 7, 8

DDR Data Widths 4, 6, 8, 10

OQ

Data Inputs[0:5]

Data Inputs[6:9]

OSERDES
(Slave)

SERDES_MODE=SLAVE

OQ

OSERDES
(Master)

SERDES_MODE = MASTER

D1
D2
D3
D4
D5
D6

D1
D2
D3
D4
D5
D6

SHIFTIN1 SHIFTIN2

SHIFTOUT1 SHIFTOUT2

Data Out

ug070_8_20_073004

Table 8-10: Slave Inputs Used for Data Width Expansion

Data Width Slave Inputs Used

7 D3

8 D3–D4

10 D3–D6

394 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

OSERDES Latencies
The input to output latencies of OSERDES blocks depend on the DATA_RATE and
DATA_WIDTH attributes. Latency is defined as a period of time between the following
two events: (a) when the rising edge of CLKDIV clocks the data at inputs D1–D6 into the
OSERDES, and (b) when the first bit of the serial stream appears at OQ. Table 8-11
summarizes the various OSERDES latency values.

OSERDES Timing Model and Parameters
This section discusses all timing models associated with the OSERDES primitive.
Table 8-12 describes the function and control signals of the OSERDES switching
characteristics in the Virtex-4 Data Sheet.

Table 8-11: OSERDES Latencies

DATA_RATE DATA_WIDTH Latency

SDR 2:1 1 CLK cycle

3:1 3 CLK cycles

4:1 4 CLK cycles

5:1 4 CLK cycles

6:1 5 CLK cycles

7:1 5 CLK cycles

8:1 6 CLK cycles

DDR 4:1 1 CLK cycle

6:1 3 CLK cycles

8:1 4 CLK cycles

10:1 4 CLK cycles

Table 8-12: OSERDES Switching Characteristics

Symbol Description

Setup/Hold

TOSDCK_D/TOSCKD_D D input setup/hold with respect to CLKDIV

TOSDCK_T/TOSCKD_T T input setup/hold with respect to CLK

TOSDCK_T/TOSCKD_T T input setup/hold with respect to CLKDIV

TOSCCK_OCE/TOSCKC_OCE OCE input setup/hold with respect to CLK

TOSCCK_TCE/TOSCKC_TCE TCE input setup/hold with respect to CLK

Sequential Delays

TOSCKO_OQ Clock to Out from CLK to OQ

TOSCKO_TQ Clock to Out from CLK to TQ

Combinatorial

TOSCO_OQ Asynchronous Reset to OQ

TOSCO_TQ Asynchronous Reset to TQ

Virtex-4 FPGA User Guide www.xilinx.com 395
UG070 (v2.6) December 1, 2008

Output Parallel-to-Serial Logic Resources (OSERDES)
R

Timing Characteristics of 2:1 SDR Serialization

In Figure 8-18, the timing of a 2:1 SDR data serialization is illustrated.

Clock Event 1

On the rising edge of CLKDIV, the word AB is driven from the FPGA fabric to the D1 and
D2 inputs of the OSERDES (after some propagation delay).

Clock Event 2

On the rising edge of CLKDIV, the word AB is sampled into the OSERDES from the D1 and
D2 inputs.

Clock Event 3

The data bit A appears at OQ one CLK cycle after AB is sampled into the OSERDES. This
latency is consistent with Table 8-11, which states that the latency of an OSERDES in 2:1
SDR mode is one CLK cycle.

Timing Characteristics of 8:1 DDR Serialization

In Figure 8-19, the timing of an 8:1 DDR data serialization is illustrated. In contrast to the
2:1 SDR example, a second OSERDES is required to achieve a serialization of 8:1. The two
OSERDES are connected and configured using the methods of section “OSERDES Width
Expansion,” page 392. Six of the eight bits are connected to D1–D6 of the master OSERDES,
while the remaining two bits are connected to D3–D4 of the slave OSERDES.

Clock Event 1

On the rising edge of CLKDIV, the word ABCDEFGH is driven from the FPGA fabric to the
D1–D6 inputs of the master OSERDES and D3–D4 of the slave OSERDES (after some
propagation delay).

Clock Event 2

On the rising edge of CLKDIV, the word ABCDEFGH is sampled into the master and slave
OSERDES from the D1–D6 and D3–D4 inputs, respectively.

Figure 8-18: OSERDES Data Flow and Latency in 2:1 SDR Mode

UG070_c8_25_041007

D2 B D

CLKDIV

CLK

A B C D E FOQ

D1 A C

F

E

Clock
Event 1

Clock
Event 2

Clock
Event 3

396 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

Clock Event 3

The data bit A appears at OQ four CLK cycles after ABCDEFGH is sampled into the
OSERDES. This latency is consistent withTable 8-11, which states that the latency of an
OSERDES in 8:1 DDR mode is four CLK cycles.

The second word IJKLMNOP is sampled into the master and slave OSERDES from the D1–
D6 and D3–D4 inputs, respectively.

Clock Event 4

Between Clock Events 3 and 4, the entire word ABCDEFGH is transmitted serially on OQ,
a total of eight bits transmitted in one CLKDIV cycle.

The data bit I appears at OQ four CLK cycles after IJKLMNOP is sampled into the
OSERDES. This latency is consistent with Table 8-11, which states that the latency of an
OSERDES in 8:1 DDR mode is four CLK cycles.

Timing Characteristics of 4:1 DDR 3-State Controller Serialization

The operation of the 3-State Controller is illustrated in Figure 8-20. The example is a 4:1
DDR case shown in the context of a bidirectional system in which the IOB must be
frequently 3-stated.

Figure 8-19: OSERDES Data Flow and Latency in 8:1 DDR Mode

Clock
Event 1

UG070_c8_26_032507

Master.D1

Master.D2

Master.D3

Master.D4

Master.D5

Master.D6

Slave.D3

Slave.D4

A I

B J

C K

D L

E M

F N

G O

H P

CLKDIV

CLK

A B C D E F G H IOQ

Clock
Event 2

Clock
Event 3

Clock
Event 4

Virtex-4 FPGA User Guide www.xilinx.com 397
UG070 (v2.6) December 1, 2008

Output Parallel-to-Serial Logic Resources (OSERDES)
R

Clock Event 1

T1, T2, and T4 are driven Low to release the 3-state condition. The serialization paths of
T1–T4 and D1–D4 in the OSERDES are identical (including latency), such that the bits
EFGH are always aligned with the 0010 presented at the T1–T4 pins during Clock Event 1.

Clock Event 2

The data bit E appears at OQ one CLK cycle after EFGH is sampled into the OSERDES. This
latency is consistent with Table 8-11, which states that the latency of an OSERDES in 4:1
DDR mode is one CLK cycle.

The 3-state bit 0 at T1 during Clock Event 1 appears at TQ one CLK cycle after 0010 is
sampled into the OSERDES 3-state block. This latency is consistent with Table 8-11, which
states that the latency of an OSERDES in 4:1 DDR mode is one CLK cycle.

Figure 8-20: 3-State Control Serialization in 4:1 DDR Mode

Clock
Event 1

UG070_c8_27_041007

D1 A E I

B F J

C G K

D

1 0 1

1 0 1

1 11

1

A B C D E F G H

E F H

I J K L

0 1

H L

D2

D3

D4

CLKDIV

CLK

T1

T2

T3

T4

OQ

TQ

OBUFT.O

Clock
Event 2

398 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

OSERDES VHDL and Verilog Instantiation Templates
The following examples illustrate the instantiation of the OSERDES module in VHDL and
Verilog.

OSERDES VHDL Template

--Example OSERDES Component Declaration

component OSERDES
 generic(
 DATA_RATE_OQ: string:= "DDR";
 DATA_RATE_TQ: string:= "DDR";
 DATA_WIDTH: integer:= 4;
 INIT_OQ: bit:= '0';
 INIT_TQ: bit:= '0';
 SERDES_MODE: string:= "MASTER";
 SRVAL_OQ: bit:= '0';
 SRVAL_TQ: bit:= '0';
 TRISTATE_WIDTH: integer:= 4
);

 port(
 OQ: out std_ulogic;
 SHIFTOUT1: out std_ulogic;
 SHIFTOUT2: out std_ulogic;
 TQ: out std_ulogic;

 CLK: in std_ulogic;
 CLKDIV: in std_ulogic;
 D1: in std_ulogic;
 D2: in std_ulogic;
 D3: in std_ulogic;
 D4: in std_ulogic;
 D5: in std_ulogic;
 D6: in std_ulogic;
 OCE: in std_ulogic;
 REV : in std_ulogic;
 SHIFTIN1: in std_ulogic;
 SHIFTIN2: in std_ulogic;
 SR : in std_ulogic;
 T1: in std_ulogic;
 T2: in std_ulogic;
 T3: in std_ulogic;
 T4: in std_ulogic;
 TCE: in std_ulogic
);
 end component;

--Example OSERDES instantiation

U_OSERDES : OSERDES
Port map (
 OQ => user_oq,
 SHIFTOUT1 => user_shiftout1,
 SHIFTOUT2 => user_shiftout2,
 TQ => user_tq,

Virtex-4 FPGA User Guide www.xilinx.com 399
UG070 (v2.6) December 1, 2008

Output Parallel-to-Serial Logic Resources (OSERDES)
R

 CLK => user_clk,
 CLKDIV => user_clkdiv,
 D1 => user_d1,
 D2 => user_d2,
 D3 => user_d3,
 D4 => user_d4,
 D5 => user_d5,
 D6 => user_d6,
 OCE => user_oce,
 REV => user_rev,
 SHIFTIN1 => user_shiftin1,
 SHIFTIN2 => user_shiftin2,
 SR => user_sr,
 T1 => user_t1,
 T2 => user_t2,
 T3 => user_t3,
 T4 => user_t4
 TCE => user_tce
);

OSERDES Verilog Template

//Example OSERDES module declaration

module OSERDES (OQ, SHIFTOUT1, SHIFTOUT2, TQ, CLK, CLKDIV, D1, D2, D3,
D4, D5, D6, OCE, REV, SHIFTIN1, SHIFTIN2, SR, T1, T2, T3, T4, TCE);

 parameter DATA_RATE_OQ = "DDR";
 parameter DATA_RATE_TQ = "DDR";
 parameter DATA_WIDTH = 4;
 parameter INIT_OQ = 1'b0;
 parameter INIT_TQ = 1'b0;
 parameter SERDES_MODE = "MASTER";
 parameter SRVAL_OQ = 1'b0;
 parameter SRVAL_TQ = 1'b0;
 parameter TRISTATE_WIDTH = 4;

 output OQ;
 output SHIFTOUT1;
 output SHIFTOUT2;
 output TQ;

 input CLK;
 input CLKDIV;
 input D1;
 input D2;
 input D3;
 input D4;
 input D5;
 input D6;
 tri0 GSR = glbl.GSR;
 input OCE;
 input REV;
 input SHIFTIN1;
 input SHIFTIN2;
 input SR;
 input T1;
 input T2;
 input T3;

400 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 8: Advanced SelectIO Logic Resources
R

 input T4;
 input TCE;

endmodule;

//Example OSERDES instantiation

OSERDES U_OSERDES (
.OQ(user_oq),
.SHIFTOUT1(user_shiftout1),
.SHIFTOUT2(user_shiftout2),
.TQ(user_tq),
.CLK(user_clk),
.CLKDIV(user_clkdiv),
.D1(user_d1),
.D2(user_d2),
.D3(user_d3),
.D4(user_d4),
.D5(user_d5),
.D6(user_d6),
.OCE(user_oce),
.REV(user_rev),
.SHIFTIN1(user_shiftin1),
.SHIFTIN2(user_shiftin2),
.SR(user_sr),
.T1(user_t1),
.T2(user_t2),
.T3(user_t3),
.T4(user_t4),
.TCE(user_tce)
);

Virtex-4 FPGA User Guide www.xilinx.com 401
UG070 (v2.6) December 1, 2008

R

Chapter 9

Temperature Sensing Diode

Temperature-Sensing Diode (TDP/TDN)
The Virtex®-4 FPGA temperature-sensing diode is accessible through the TDP (anode) and
TDN (cathode) pins. The TDP and TDN pins are wired internally to a diode-connected
transistor, which creates a remote temperature sensor.

TDP and TDN are dedicated pins attached to the substrate/die and cannot be accessed
through the software tools. TDP and TDN are always available, and no special design is
necessary. The TDP and TDN pins are unconnected when this feature is not used.

The temperature-sensing diode is one part of a two-part system. A temperature sensor
interface device is also required. Most temperature sensor interface devices provide
corresponding pins to connect directly to the Virtex-4 FPGA TDP and TDN pins. Once the
upper and lower temperature limits are set, an output signal is created when these bounds
are exceeded. This output can be an interrupt to turn off the clock, turn on a fan, or perform
another operation to reduce heat.

The accuracy of the temperature measurement achieved by this two-part system does not
depend on the temperature-sensing diode (TDN/TDP pins). The voltage-versus-
temperature curve is determined by the physical nature of the diode. Numerical readout
accuracy relies on the temperature sensor interface device to translate the IV-versus-
temperature curves into an actual temperature reading. The accuracy specifications are
listed in the specific temperature sensor data sheets.

Temperature Sensor Examples

Maxim Remote/Local Temperature Sensors

General information on these devices is available from Maxim at:

http://www.maxim-ic.com.

Links to the specific data sheets for these devices:

• http://pdfserv.maxim-ic.com/ds/en/MAX1617.pdf

• http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3000

• http://pdfserv.maxim-ic.com/en/ds/MAX6627-MAX6628.pdf

The PC Board Layout section of these data sheets include important design considerations.

402 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

Chapter 9: Temperature Sensing Diode
R

Texas Instruments Remote/Local Temperature Sensor

The links below point to information from Texas Instruments on the Burr-Brown Products
TMP401 temperature sensor:

• http://focus.ti.com/docs/prod/folders/print/tmp401.html (Overview)

• http://focus.ti.com/lit/ds/symlink/tmp401.pdf (Data Sheet)

Refer to the “Applications Information” section of the data sheet for important design
considerations. For more information on this device, refer to http://www.ti.com.

National Semiconductor (LM83 or LM86)

These National Semiconductor devices are triple-diode input and local digital temperature
sensors with a two-wire interface. General information on these devices is available at the
National Semiconductor website: http://www.national.com.

Links to the specific data sheets for these devices:

• http://www.national.com/ds/LM/LM83.pdf

• http://www.national.com/ds/LM/LM86.pdf

The Application Hints section of these data sheets include important design considerations.

Virtex-4 FPGA User Guide www.xilinx.com 403
UG070 (v2.6) December 1, 2008

A
asynchronous

clocking 119
distributed RAM 189
FIFO 116, 122, 147
global set/reset 126
mux 36
set/reset in register or latch 188

B
Bitslip 383

See ISERDES 366
guidelines for use 384
operation 383
timing 384

block RAM 115
defined 116
asynchronous clocking 119
ECC 178

Primitive 179
Error Status 180
FIFO 122
operating modes

NO_CHANGE 119
READ_FIRST 119
WRITE_FIRST 118

ports 124
synchronous clocking 120

BLVDS 297
BUFG 31
BUFGCE 31
BUFGCTRL 28
BUFGMUX 33
BUFGMUX_VIRTEX4 35

with CE 37
BUFIO 40
BUFR 41

C
Cascading DCMs 74
CLB 183

array size by device 184
distributed RAM 188
maximum distributed RAM 184
number of flip-flops 184

number of LUTs by device 184
number of slices by device 184
register/latch configuration 188
slice description 184
SLICEL 183
SLICEM 183

CLK2X 62
CLKDV 63
CLKFB 59
CLKFX 63
clock capable I/O 40
clock forwarding 356
clock regions 39
clock tree 38
clocking wizard 89
clocks

global clock buffers 25, 27
I/O clock buffer 40
regional clock buffers 39, 41
regions 38
resources 29

combinatorial input path 323
configuration

DCM 72
CSE differential 263

HSTL Class II 268
HSTL Class II (1.8V) 276
LVPECL 297
SSTL Class II (1.8V) 291
SSTL2 Class II (2.5V) 285

D
DCI 236

defined 236
DCLK 60
DCM 55

allocation in device 57
attributes 65
clock deskew 55, 70
clocking wizard 89
configuration 72
DCM to PMCD 105
DCM_ADV 58
DCM_BASE 58
DCM_PS 58
design guidelines 70
deskew 74

dynamic reconfiguration 56, 81
frequency synthesis 55, 75
location 56
output ports 62
phase shifting 55, 76, 95
ports 59
timing models 94

DCMs
cascading 74

DDR
IDDR 323
ODDR 352

delay element
See IDELAY 331

DESKEW_ADJUST attribute 73
special cases 74

differential termination 294
DIFF_TERM 251, 294

diode (temperature sensing) 401

E
Error Correction Code (ECC) 178

F
FIFO 147

architecture 149
attributes 153
cascading 164
FWFT mode 151
operating modes 151
ports 150
primitive 149
standard mode 151
status flags 151
timing parameters 156

FIFO16 error condition work-arounds
165

G
GCLK 38
global clocks

clock buffers 25
clock I/O inputs 26

GSR
defined 126

Index

404 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

R

GTL 261
defined 261
GTL_DCI 261
GTLP 262
GTLP_DCI 262

H
HSTL 263

defined 263
class I 265
class I (1.8V) 273
class II 266
class II (1.8V) 274
class III 270
class III (1.8V) 278
class IV 271
class IV (1.8V) 279
CSE differential HSTL class II 268,

274, 276
DIFF_HSTL 281

HyperTransport
LDT 296

I
I/O standards 234

bank rules 302
compatibility 299
differential I/O 234
single-ended I/O 234

I/O tile 233
ILOGIC 233
IOB 233
OLOGIC 233

IBUF 247
PULLUP/PULLDOWN/KEEPER

251
IBUFDS 248
IBUFG 26, 247
IBUFGDS 26, 248
IDDR 323

OPPOSITE_EDGE mode 323
ports 327
primitive 327
SAME_EDGE mode 325
SAME_EDGE_PIPELINED mode

326
IDELAY 331

defined 331, 365
attributes 334
delay mode

fixed 332
variable 332
zero-hold time 332

IDELAYCTRL 341
increment/decrement 333
ports 333
primitive 332
reset 333
switching characteristics 334
timing 334

IDELAYCTRL 341
instantiating 343, 345

RDY port 344
location 343
primitive 341
REFCLK 341, 351

ILOGIC 233, 321
IDDR 323
SR 321
switching characteristics 331
timing 329

IOB 233
defined 234

IOBDELAY 374
IOBUF 248

PULLUP/PULLDOWN/KEEPER
251

IOBUFDS 249
ISERDES 365

defined 365
attributes 372
bitslip 366, 368, 383

BITSLIP_ENABLE attribute 372
IDELAY

IDELAYCTRL 341
ports 367, 368, 388
primitive 367
serial-to-parallel converter 365, 376
switching characteristics 379
timing models 379
width expansion 375

L
LDT

See HyperTransport 296
LVCMOS 255

defined 255
LVDCI 257

defined 257
LVDCI_DV2 258
source termination 304

LVDS 294
defined 294
LVDS_25_DCI 295
LVDSEXT_25_DCI 295

LVPECL 297
defined 297

LVTTL 253
defined 253

M
modes

source-synchronous 74
system-synchronous 73

N
NO_CHANGE mode 119

O
OBUF 247
OBUFDS 248
OBUFT 247

PULLUP/PULLDOWN/KEEPER
251

OBUFTDS 249
ODDR 354

clock forwarding 356
OPPOSITE_EDGE mode 354
ports 357
primitive 357
SAME_EDGE mode 356

OLOGIC 233, 351
timing 359

OSERDES 386
parallel-to-serial converter 386
switching characteristics 394
timing 394, 395

P
parallel-to-serial converter 386

DDR 387
SDR 386

PCI 260
PCI33 260
PCI66 260
PCIX 260

PFDM 315
PMCD

Virtex-4 FPGA User Guide www.xilinx.com 405
UG070 (v2.6) December 1, 2008

R

defined 99
attributes 102
clock frequencies 108
clocking wizard 109
connecting parallel PMCDs 106
connecting to a DCM 106
connecting to other clocks 105
connecting without a DCM 107
control signals

reset and release 103
delay clocks 99
divided clocks 99, 102
frequency divider 102
location 100
ports 101
primitive 101

PSCLK 60

R
READ_FIRST mode 119
REFCLK 342, 351
regional clock buffers 25, 39
regional clocks

clock buffers 41
clock nets 45

REV 321

S
SelectIO

IBUF 247
IBUFDS 248
IBUFG 247
IBUFGDS 248
IOBUF 248
IOBUFDS 249
OBUF 247
OBUFDS 248
OBUFT 247
OBUFTDS 249

Simultaneous Switching Output (SSO)
306

Slew Rate
SLEW 250

source-synchronous mode 74
SSTL 281

CSE Differential SSTL Class II (1.8V)
291

CSE Differential SSTL2 Class II
(2.5V) 285

SSTL18 Class I (1.8V) 288

SSTL18 Class II (1.8V) 289
SSTL2 Class I (2.5V) 282
SSTL2 Class II (2.5V) 283

system-synchronous mode 73

T
Temperature-Sensing Diode 401

TDN 401
TDP 401

W
WRITE_FIRST mode 118

406 www.xilinx.com Virtex-4 FPGA User Guide
UG070 (v2.6) December 1, 2008

R

