
SLLS033F - JANUARY 1988 - REVISED MARCH 1997

- Bi-MOS Technology With TTL and CMOS Compatibility
- Meets or Exceeds the Requirements of ANSI EIA/TIA-232-E and ITU Recommendation V.28
- Very Low Quiescent Current . . . 95 μA Typ
 V_{CC±} = ±12 V
- Current-Limited Outputs . . . 10 mA Typ
- CMOS-and TTL-Compatible Inputs
- On-Chip Slew Rate Limited to 30 V/μs max
- Flexible Supply Voltage Range
- Characterized at V_{CC±} of ±4.5 V and ±15 V
- Functionally Interchangeable With Texas Instruments SN75188, Motorola MC1488, and National Semiconductor DS14C88

D, DB[†], OR N PACKAGE (TOP VIEW)

† The DB package is only available left-end taped and reeled, i.e., order device SN75C188DBLE.

description

The SN75C188 is a monolithic, low-power, quadruple line driver that interfaces data terminal equipment with data communications equipment. This device is designed to conform to ANSI Standard EIA/TIA-232-E.

An external diode in series with each supply-voltage terminal is needed to protect the SN75C188 under certain fault conditions to comply with EIA/TIA-232-E.

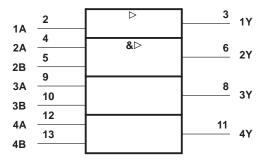
The SN75C188 is characterized for operation from 0°C to 70°C.

Function Tables

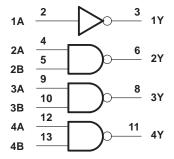
DRIVER 1							
В Ү							
Н	L						
L	н						

DRIVERS 2-4

Α	В	Υ
Н	Н	L
L	X	Н
Χ	L	Н

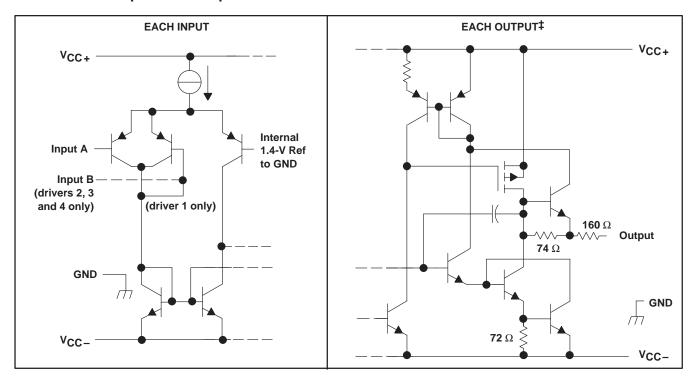

H = high level, L = low level, X = don't care

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic diagram (positive logic)

positive logic

 $Y = \overline{A} (driver 1)$ $Y = \overline{AB} \text{ or } \overline{A} + \overline{B} (drivers 2 \text{ through 4})$

schematics of inputs and outputs

[‡] All resistor values shown are nominal.

SLLS033F - JANUARY 1988 - REVISED MARCH 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC+} (see Note 1)	15 V
Supply voltage, V _{CC} (see Note 1)	
Input voltage range, V _I	V _{CC} - to V _{CC+}
Output voltage range, VO	V_{CC-} –6 V to V_{CC+} +6 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stg}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
DB	525 mW	4.2 mW/°C	336 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}	4.5	12	15	V
Supply voltage, V _{CC} _	-4.5	-12	-15	V
Input voltage, V _I	V _{CC} -+2		V _{CC+}	V
High-level Input voltage, VIH	2			V
Low-level Input voltage, V _{IL}			0.8	V
Operating free-air temperature, T _A	0		70	°C

NOTE 1: All voltage values are with respect to the network ground terminal.

SLLS033F - JANUARY 1988 - REVISED MARCH 1997

electrical characteristics over operating free-air temperature range, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -12 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CONDIT	TIONS	MIN	TYP [†]	MAX	UNIT
V _{ОН}	High-level output voltage	V _{II} = 0.8 V,	$R_1 = 3 k\Omega$	V _{CC+} = 5 V, V _{CC-} = -5 V	4			V
VOH	r ngr-lever output voltage	VIL = 0.0 V,	N_ = 3 K22	V _{CC+} = 12 V, V _{CC-} = -12 V	10			V
V _{OL}	Low-level output voltage	V _{IH} = 2 V,	$R_1 = 3 k\Omega$	V _{CC+} = 5 V, V _{CC-} = -5 V			-4	٧
VOL	(see Note 2)	VIH - 2 v,	N_ = 3 N22	V _{CC+} = 12 V, V _{CC-} = -12 V			-10	v
lН	High-level input current	V _I = 5 V					10	μΑ
IIL	Low-level input current	V _I = 0					-10	μΑ
IOS(H)	High-level short-circuit output current‡	V _I = 0.8 V,	= 0.8 V, V _O = 0 or V _{CC} -				-19.5	mA
IOS(L)	Low-level short-circuit output current‡	V _I = 2 V,	$V_O = 0$ or $V_{CC} +$		5.5	10	19.5	mA
rO	Output resistance, power off	$V_{CC+} = 0$,	V _{CC} -= 0,	$V_I = -2 V \text{ to } 2 V$	300			Ω
loo	Supply current from V _{CC+}	V _{CC+} = 5 V, No load	V _{CC} -=-5 V,	All inputs at 2 V or 0.8 V		90	160	μA
ICC+	Subbly carrent nom vCC+	V _{CC+} = 12 V, No load	V _{CC} -=-12 V,	All inputs at 2 V or 0.8 V		95	160	μΑ
loo	Supply current from Voc	V _{CC+} = 5 V, No load	V _{CC} -=-5 V,	All inputs at 2 V or 0.8 V		-90	-160	
Icc-	Supply current from V _{CC} _	V _{CC+} = 12 V, No load	V _{CC} -=-12	All inputs at 2 V or 0.8 V		-95	-160	μА

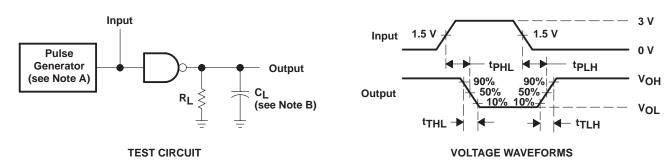
[†] All typical values are at $T_A = 25$ °C.

NOTE 2: The algebraic convention, in which the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only; e.g., if $-4\ V$ is a maximum, the typical value is a more negative voltage.

switching characteristics, V_{CC+} = 12 V, V_{CC-} = -12 V, T_A = 25°C

	PARAMETER	TEST CON	TEST CONDITIONS				UNIT
tPLH	Propagation delay time, low- to high-level output§	$R_L = 3 k\Omega$,	C _L = 15 pF,			3	μs
tPHL	Propagation delay time, high- to low-level output§	See Figure 1				3.5	μs
tTLH	Transition time, low- to high-level output			0.53		3.2	μs
^t THL	Transition time, high- to low-level output			0.53		3.2	μs
tTLH	Transition time, low- to high-level output#	$R_L = 3 k\Omega$ to $7 k\Omega$,	C _L = 2500 pF,		1.5		μs
^t THL	Transition time, high- to low-level output#	See Figure 1			1.5		μs
SR	Output slew rate§	$R_L = 3 k\Omega \text{ to } 7 k\Omega$	C _L = 15 pF	6	15	30	V/μs

[§] Measured at the 50% level



[‡] Not more than one output should be shorted at a time.

[¶] Measured between the 10% and 90% points on the output waveform

[#] Measured between the 3-V and -3-V points on the output waveform (EIA/TIA-232-E conditions), all unused inputs tied either high or low

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: t_W = 25 μ s, PRR = 20 kHZ, Z_O = 50 Ω , t_f = t_f \leq 50 ns.

B. C_L includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms

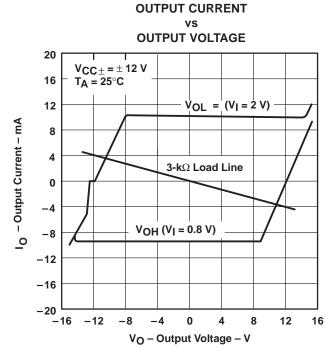
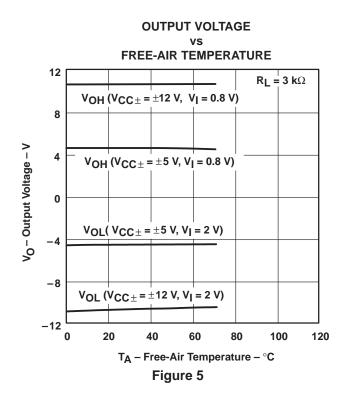
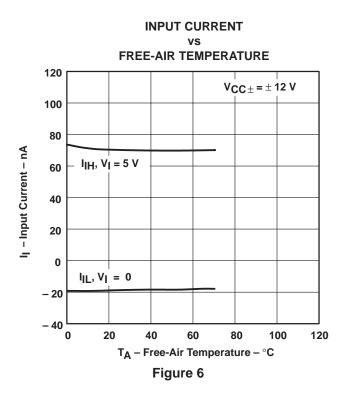
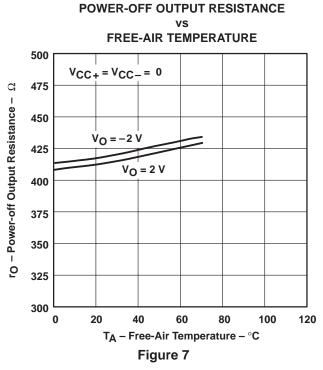
TYPICAL CHARACTERISTICS

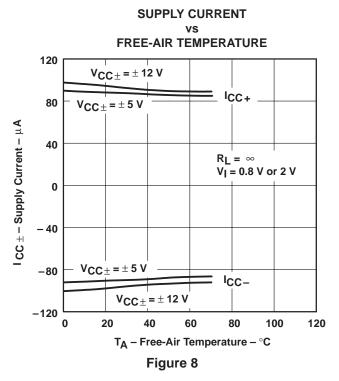
VOLTAGE TRANSFER CHARACTERISTICS 15 $V_{CC\pm} = \pm 15 V$ V_{CC±} = ±12 V 12 $V_{CC\pm} = \pm 9 V$ 9 V_O - Output Voltage - V $V_{CC\pm} = \pm 5 V$ 6 3 0 $V_{CC\pm} = \pm 5 V$ -3-6 $V_{CC\pm} = \pm 9 V$ $V_{CC\pm} = \pm 12 V$ -9 $R_L = 3 k\Omega$ $V_{CC\pm}$ = ± 5 V -12T_A = 25°C 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 VI - Input Voltage - V

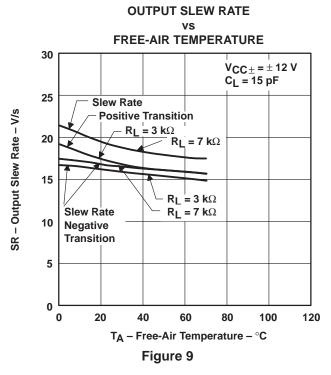
Figure 2

SHORT-CIRCUIT OUTPUT CURRENT FREE-AIR TEMPERATURE 15 $V_{CC\pm} = \pm 12 V$ IOS - Short-Circuit Output Current - mA 10 I_{OS(L)} V_I = 2 V 5 $V_O = 0$ or V_{CC+} 0 -5 $I_{OS(H)}$ $V_{I} = 0.8 V$ $V_O = 0$ or V_{CC} -10-1520 60 80 100 120 T_A - Free-Air Temperature - °C

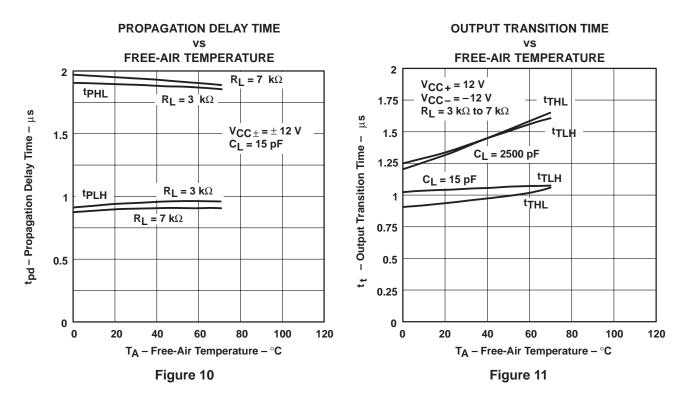
Figure 4


Figure 3



TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

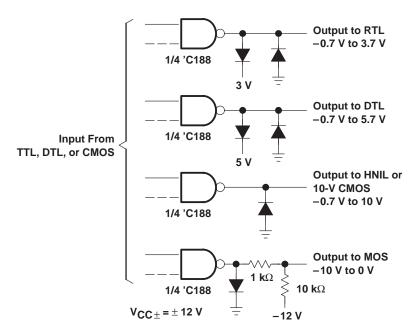
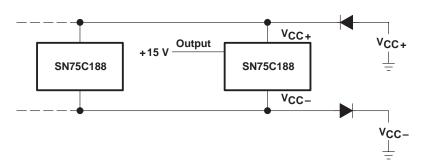



Figure 12. Logic Translator Applications

SLLS033F - JANUARY 1988 - REVISED MARCH 1997

APPLICATION INFORMATION

NOTE A: External diodes placed in series with the V_{CC-} and V_{CC-} leads protect the SN75C188 in the fault condition where the device outputs are shorted to \pm 15 V and the power supplies are at low voltage and provide low-impedance paths to GND.

Figure 13. Power Supply Protection to Meet Power-Off Fault Conditions of Standard EIA/TIA-232-E

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN75C188D	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C188
SN75C188D.A	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C188
SN75C188DBR	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA188
SN75C188DBR.A	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	CA188
SN75C188DE4	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C188
SN75C188DR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C188
SN75C188DR.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C188
SN75C188DRE4	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C188
SN75C188N	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75C188N
SN75C188N.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75C188N
SN75C188NSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75C188
SN75C188NSR.A	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75C188

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

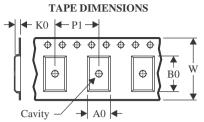
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

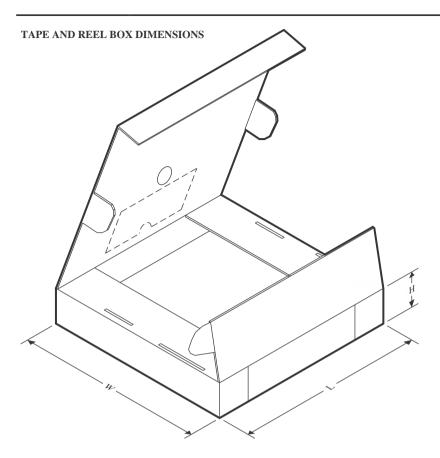
PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

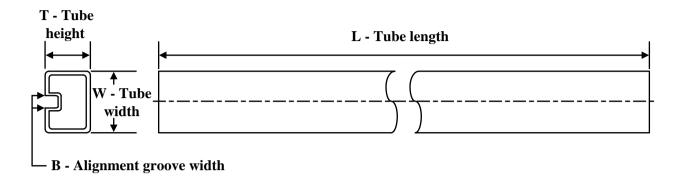
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75C188DBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN75C188DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN75C188NSR	SOP	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 23-May-2025

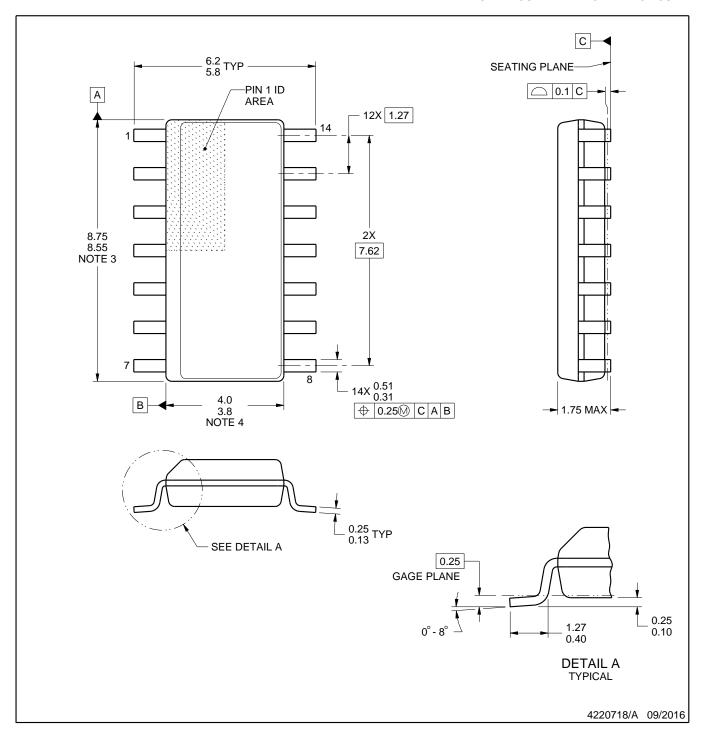

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75C188DBR	SSOP	DB	14	2000	356.0	356.0	35.0
SN75C188DR	SOIC	D	14	2500	353.0	353.0	32.0
SN75C188NSR	SOP	NS	14	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN75C188D	D	SOIC	14	50	506.6	8	3940	4.32
SN75C188D	D	SOIC	14	50	507	8	3940	4.32
SN75C188D.A	D	SOIC	14	50	507	8	3940	4.32
SN75C188D.A	D	SOIC	14	50	506.6	8	3940	4.32
SN75C188DE4	D	SOIC	14	50	507	8	3940	4.32
SN75C188DE4	D	SOIC	14	50	506.6	8	3940	4.32
SN75C188N	N	PDIP	14	25	506	13.97	11230	4.32
SN75C188N.A	N	PDIP	14	25	506	13.97	11230	4.32

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

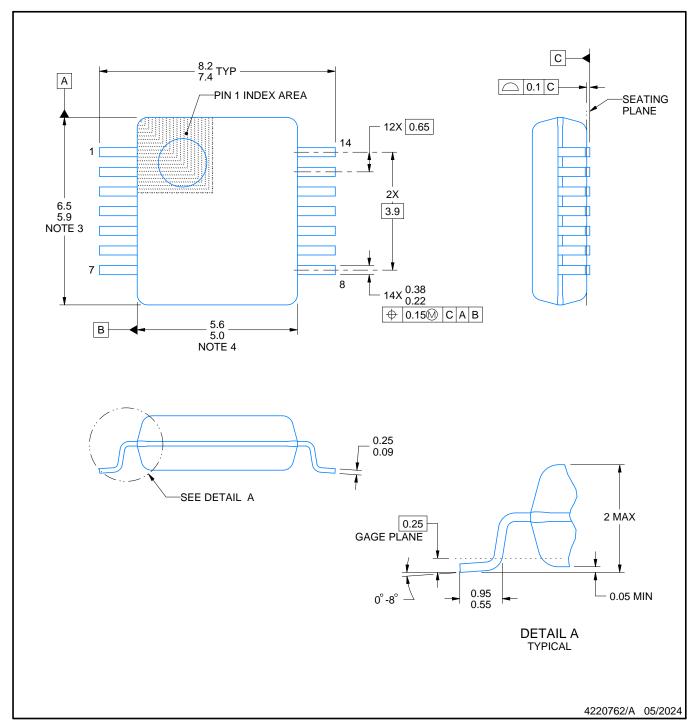
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

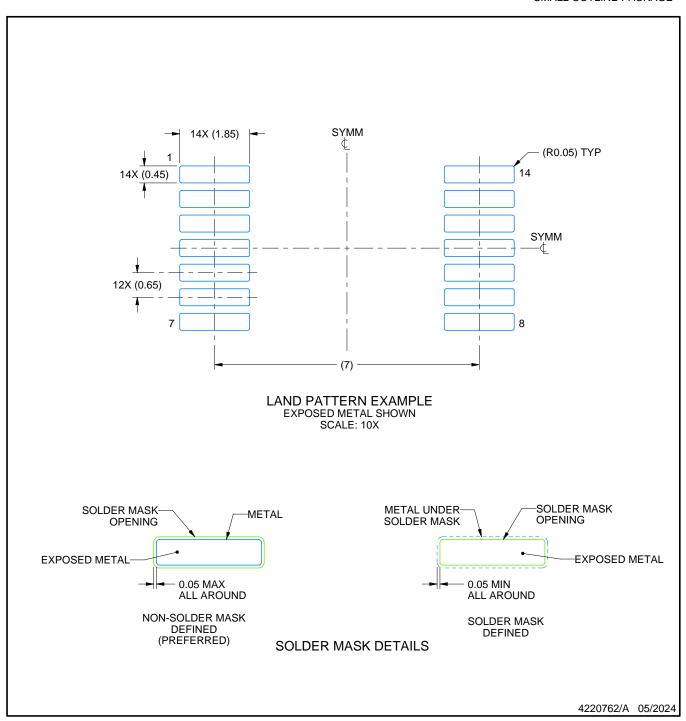
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

SMALL OUTLINE PACKAGE

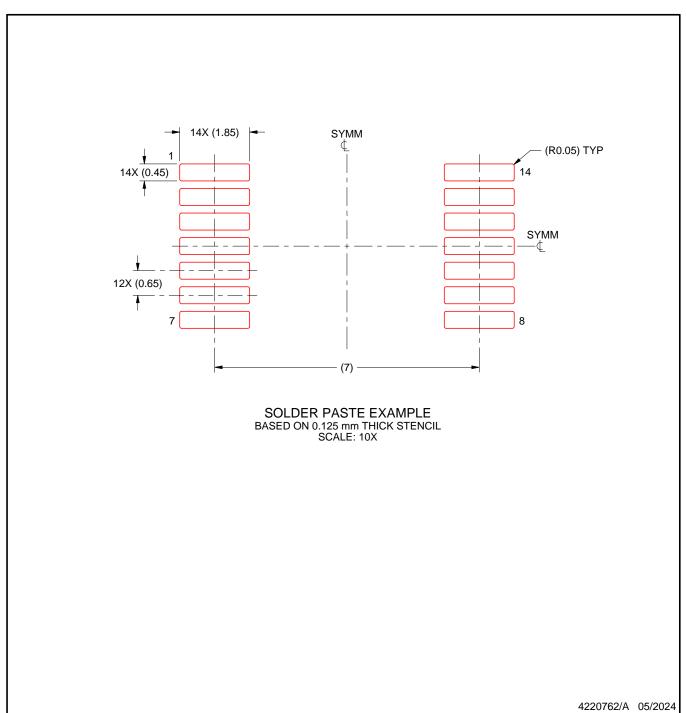
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated