Adafruit 9-DOF Orientation IMU Fusion Breakout - BNO085 Created by Bryan Siepert https://learn.adafruit.com/adafruit-9-dof-orientation-imu-fusion-breakout-bno085 Last updated on 2025-04-21 08:03:41 AM EDT © Adafruit Industries Page 1 of 36 # **Table of Contents** | Overview | 5 | |--|----| | A firehose of information in a human-friendly package | | | Pinouts | 9 | | • Power Pins | | | • I2C Logic Pins | | | UART Logic Pins | | | • SPI Logic pins: | | | Other Pins | | | Arduino | 11 | | • I2C Wiring | | | • UART Wiring | | | • SPI Wiring | | | Library Installation | | | Load Example | | | • Example Code | | | UART-RVC for Arduino | 17 | | Library Installation | | | • UART RVC Wiring | | | Load Example - Serial Console | | | Load Example - Serial Plotter | | | Arduino Docs | 20 | | Arduino UART RVC Docs | 20 | | Duthon & Circuit Duthon | 20 | | Python & CircuitPython | 20 | | CircuitPython I2C Wiring CircuitPython IAPT Wiring | | | CircuitPython UART WiringPython Computer Wiring | | | Python UART Wiring | | | CircuitPython Installation of BNO08x Library | | | Python Installation of BNO08x Library | | | CircuitPython & Python Usage | | | • Example Code | | | UART-RVC for Python & CircuitPython | 27 | | Hardware Setup | | | CircuitPython Installation of BNO08x_RVC Library | | | Python Installation of BNO08x RVC Library | | | CircuitPython & Python Usage | | | UART Initialization - CircuitPython | | | UART Initialization - Python | | | BNO08x_RVC creation and usage | | | Example Code | | | Python Docs | 30 | | Python UART RVC Docs | 31 | © Adafruit Industries Page 2 of 36 | Report Types | 31 | |------------------------|----| | Motion Vectors | | | Rotation Vectors | | | Classification Reports | | | Other Motion Reports | | | Additional Reports | | | Downloads | 34 | | • Files | | | Schematic | | | • Fab Print | | | • 3D Model | | © Adafruit Industries Page 3 of 36 © Adafruit Industries Page 4 of 36 ## Overview Here it is, the motion sensor you were looking for: the one that just gives you the directly usable information without requiring you to first consult with a PhD to learn the arcane arts of **Sensor Fusion**. The BNO085 takes the life's work of multiple people who have spent their entire career focused on how to get useful information from direct motion sensor measurements and then squeezes that information down into a 5.2x3.8mm box, along with the sensors to go along with it. The BNO085 by the motion sensing experts at Hillcrest Laboratories takes the familiar 3-axis accelerometers, gyroscopes, and magnetometers and packages then alongside an Arm Cortex M0 processor running Hillcrest's SH-2 firmware that handles the work of reading the sensors, fusing the measurements into data that you can use directly, and packaging that data and delivering it to you. If the name and description of the BNO085 sounds strikingly similar to those of the BNO055 by Bosch Sensortec, there is a good reason why: they're the same thing, but also they're not. Thanks to a unique agreement between Bosch and Hillcrest, the BNO085 uses the same hardware as the BNO055 but very different firmware running on it. The BNO08x I2C implementation violates the I2C protocol in some circumstances. This causes it not to work well with certain chip families. It does not work well with Espressif ESP32, ESP32-S3, and NXP i.MX RT1011, and it does not work well with I2C multiplexers. Operation with SAMD51, RP2040, STM32F4, and nRF52840 is more reliable. ©Adafruit Industries Page 5 of 36 "How different?" you might ask. Well my friend, pull up a chair and grab a box of popcorn because it's quite a list. First let's list the similarities. The BNO055 and BNO085 can both deliver the following types of sensor data and sensor fusion products: Acceleration Vector / Accelerometer Three axes of acceleration (gravity + linear motion) in m/s^2 Angular Velocity Vector / Gyro Three axes of 'rotation speed' in rad/s Magnetic Field Strength Vector / Magnetometer Three axes of magnetic field sensing in micro Tesla (uT) Linear Acceleration Vector Three axes of linear acceleration data (acceleration minus gravity) in m/s² Gravity Vector Three axes of gravitational acceleration (minus any movement) in m/s^2 Absolute Orientation / Rotation Vector Four-point quaternion output for accurate data manipulation Thanks to the sensor fusion and signal processing wizards from Hillcrest, with the BNO085 you also get: - Application Optimized Rotation Vectors For AR/VR, low latency, and low power consumption - Additional Base Sensor Reports Separate and simultaneous outputs of Calibrated, Uncalibrated + Correction, and Raw ADC outputs for the Accelerometer, Gyro, and Magnetometer © Adafruit Industries Page 6 of 36 #### Detection and Classification reports: - Stability Detection and Classification - Significant Motion Detector - Tap, Step, and Shake Detectors - Activity Classification As if the above wasn't enough, the BNO085 also provides an impressive suite of detection and classification products by further analyzing the measured motion: - Stability Detection and Classification - Tap Detector - Step Detector - Step Counter - Activity Classification - Significant Motion Detector - Shake Detector More information about the various report types is available on the <u>Report Types</u> (https://adafru.it/N-A) page ## A firehose of information in a human-friendly package The BNO085 is a supremely capable sensor, practically overflowing with useful information. It is also very small. As the <u>Ideal Gas Law</u> (https://adafru.it/N-B) tells us, when you shove a lot of stuff into a small space, things are going to get a bit spicy. Worry not fellow scientist, we here at Adafruit have done our part to make the BNO085 as approachable as possible. It's a pretty familiar recipe: Take the following and mix in Eagle CAD: - One part raw unprocessed Hillcrest Labs brand BNO085 - One voltage regulator for flexible input voltage - One part Level shifting circuitry for use with 3.3V (RPi/Feather) or 5V(Arduino) logic levels - Two handy dandy Stemma QT connectors for solderless connection - One, 32.768kHz crystal to provide a stable reference oscillation - One breakout PCB with breadboard friendly headers Prepare in the pick and place and bake in a reflow oven on High for about 5 minutes ©Adafruit Industries Page 7 of 36 and you get the Adafruit BNO085 IMU breakout. With the physical hardware tamed and made approachable, that leaves the software. If it wasn't already very obvious, the BNO085 can generate a wide selection of data and as a result, it has a slightly complex and unique way of delivering that information. To save you the effort of figuring out how to decode and organize all those measurements, we've written libraries for you to use with CircuitPython and Arduino. Just plug in the sensor to your favorite device using our wiring examples, and install the library for your chosen platform and you're ready to start building your very own Robot Friend. As an alternative to the cornucopia of vectors and classifications that the standard sensor hub modes provide, the BN0085 also provides a simple but useful and well executed UART-based mode that provides calibrated heading and acceleration measurements. The UART-RVC mode takes its acronym from one of its potential applications: Robot Vacuum Cleaners. This mode is exceedingly simple to interface with, and based on my limited testing, it performs astoundingly well. The ease of use to utility ratio here is off the charts. We've written libraries for the UART RVC mode for both Arduino and CircuitPython/ Python. Check out the UART RVC pages for <u>Arduino</u> (https://adafru.it/N-C) and <u>Python</u> (https://adafru.it/N-D) for wiring diagrams and example code © Adafruit Industries Page 8 of 36 ## **Pinouts** ### **Power Pins** - VIN this is the power pin. Since the sensor chip uses 3 VDC, we have included a voltage regulator on board that will take 3-5VDC and safely convert it down. To power the board, give it the same power as the logic level of your microcontroller e.g. for a 5V microcontroller like Arduino, use 5V - **3Vo** this is the 3.3V output from the voltage regulator, you can grab up to 100mA from this if you like - GND common ground for power and logic ## **I2C Logic Pins** - SCL I2C clock pin, connect to your microcontroller I2C clock line. This pin is level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin. - SDA I2C data pin, connect to your microcontroller I2C data line. This pin is level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin. #### **Optional:** STEMMA QT (https://adafru.it/Ft4) - A solderless alternative to the Vin, GND, SCL, and SDA pins. These connectors allow you to connectors to dev boards with STEMMA QT connectors and <u>various associated accessories</u> (https://adafru.it/Ft6) © Adafruit Industries Page 9 of 36 DI - I2C Address pin. Pulling this pin high will change the I2C address from 0x4 A to 0x4B ## **UART Logic Pins** - SCL UART data IN to sensor Connect to your microcontroller TX pin - SDA UART data OUT from sensor Connect to your microcontroller RX pin ## **SPI Logic pins:** - SCL This is also the SPI Clock pin / SCK, it's an input to the chip - SDA Doubles as the Data Out / Microcontroller In Sensor Out / MISO pin, for data sent from the BNO08x - DI Datal In / Microcontroller Out Sensor In / MOSI pin, for data sent from your processor to the BNO08x - CS this is the Chip Select pin, pull it low to start an SPI transaction. It's an input to the chip - INT Interrupt- Active Low. Indicates that the BNO085 needs the host's attention. Required for stable SPI operation - RST- Reset- Active Low Pull low to GND to reset the sensor. Required for stable SPI operation ### **Other Pins** P0/P1 Pins and Solder Jumpers - Mode select. Use these pins to set the BNO085's operating mode according to the table below. Both pins are pulled low by default, defaulting to I2C © Adafruit Industries Page 10 of 36 - RST- Reset, Active Low. Pull low to GND to reset the sensor - INT Interrupt/Data Ready-Active Low pin. Indicates that the BNO085 needs the host's attention - BT- Bootloader pin used to put the sensor in bootloader. EXPERT USERS should consult the datasheet for more information. If you don't know what this you probably want to just leave it be or risk damaging your sensor | PS1 | PS0 | Mode | |------|------|----------| | Low | Low | 12C | | Low | High | UART-RVC | | High | Low | UART | | High | High | SPI | ## Arduino Using the BNO08x with Arduino is a simple matter of wiring up the sensor to your Arduino-compatible microcontroller, installing the <u>Adafruit BNO08x</u> (https://adafru.it/N-E) library, and running the provided example code. The BNO08x Arduino library only supports a single BNO08x sensor. Because of the size and complexity of the BNO08x library, you will have to use an Arduino-compatible with a larger amount of memory such as the SAMD21, SAMD51, nRF52, ESP, Mega, etc. Arduino Uno or Leonardo will not work due to minimal RAM © Adafruit Industries Page 11 of 36 The BNO08x I2C implementation violates the I2C protocol in some circumstances. This causes it not to work well with certain chip families. It does not work well with Espressif ESP32, ESP32-S3, and NXP i.MX RT1011, and it does not work well with I2C multiplexers. Operation with SAMD51, RP2040, STM32F4, and nRF52840 is more reliable. The examples below show Metro and Feather M4s, and reference their 3.3V logic level for power connections. If using a board with a 5V logic level, connect the BNO085 Vin to 5V instead ## **I2C** Wiring Use this wiring if you want to connect via I2C interface. The default I2C address for the BNO08x is **0x4A** but it can be switched to **0x4B** by pulling the **DI** pin high to VCC. Here is how to wire up the sensor using one of the <u>STEMMA QT</u> (https://adafru.it/Ft4) connectors. The examples show a Metro but wiring will work the same for an Arduino or other compatible board. Connect board VIN (red wire) to Board 3V Connect board GND (black wire) to Board GND Connect board SCL (yellow wire) to Board SCL Connect board SDA (blue wire) to Board SDA Here is how to wire the sensor to a board using a solderless breadboard: © Adafruit Industries Page 12 of 36 Connect board VIN (red wire) to Board 3V Connect board GND (black wire) to Board GND Connect board SCL (yellow wire) to Board SCL Connect board SDA (blue wire) to Board SDA ## **UART** Wiring BNO085 Vin to the power supply, using the same logic level as your microcontroller. For the Metro M4 shown that is 3.3V, however check your board's documentation to be sure BNO085 GND to board GND BNO085 SCL to board TX BNO085 SDA to board RX BNO085 P1 to Board Power supply ## **SPI** Wiring Finally for SPI we are using a Feather M4 for the wiring diagram to make it easier to read. If using an Arduino compatible or other different shaped board, you will still connect to the same pin names to ensure that you use hardware SPI © Adafruit Industries Page 13 of 36 BNO085 **Vin** to 3V on the Feather M4 BNO085 **GND** to common power/data **ground** BNO085 **SCL** to the SPI S**CK** pin on the Feather M4 BNO085 **SDA** pin to the SPI **MISO** pin on the Feather M4 BNO085 **DI** to the **SPI MOSI** pin on the Feather M4 BNO085 **CS** to pin **#10** on the Feather M4 BNO085 **INT** to pin **#9** on the Feather M4 BNO085 **RST** to pin **#5** on the Feather M4 BNO085 **P0** and **P1** to 3V on the Feather M4 This is a lot of wires! You may be tempted to omit the INT and RST pin connections but do not! They are required for a good SPI connection ## **Library Installation** You can install the **Adafruit BNO08x** library for Arduino using the Library Manager in the Arduino IDE. Click the **Manage Libraries** ... menu item, search for **Adafruit BNO08x**, and select the **Adafruit BNO08x** library: © Adafruit Industries Page 14 of 36 Follow the same process for the Adafruit BuslO library. ## Load Example This example shows the Rotation Vector report however there are *many* more. See the Report Types page for more information #### Open up File -> Examples -> Adafruit BNO08x -> rotation_vector After opening the demo file, upload the compiled code to your Arduino wired up to the sensor. Once you upload the code, you will see the **rotation vector quaternion** values being printed when you open the Serial Monitor (**Tools->Serial Monitor**) at **115200** baud, similar to this: ## **Example Code** ``` Addfruit BN008x test! BN008x Found! Part 10004148: Version :3.2.13 Build 6 Part 10003606: Version :1.2.4 Build 230 Part 10003254: Version :4.4.3 Build 485 Part 10003171: Version :4.2.10 Build 548 Setting desired reports Reading events Setting desired reports Game Rotation Vector - r: 1.00 i: -0.08 j: -0.02 k: 0.00 Game Rotation Vector - r: 1.00 i: -0.08 j: -0.02 k: 0.00 Game Rotation Vector - r: 1.00 i: -0.08 j: -0.02 k: 0.00 ``` ``` // Basic demo for readings from Adafruit BN008x #include <Adafruit_BN008x.h> // For SPI mode, we need a CS pin #define BN008X_CS 10 #define BN008X_INT 9 // For SPI mode, we also need a RESET //#define BN008X_RESET 5 // but not for I2C or UART #define BN008X_RESET -1 Adafruit_BN008x bno08x(BN008X_RESET); sh2_SensorValue_t sensorValue; ``` © Adafruit Industries Page 15 of 36 ``` void setup(void) { Serial.begin(115200); // will pause Zero, Leonardo, etc until serial while (!Serial) delay(10); console opens Serial.println("Adafruit BN008x test!"); // Try to initialize! if (!bno08x.begin_I2C()) { //if (!bno08x.begin_UART(&Serial1)) { // Requires a device with > 300 byte UART //if (!bno08x.begin SPI(BN008X CS, BN008X INT)) { Serial.println("Failed to find BN008x chip"); while (1) { delay(10); } Serial.println("BN008x Found!"); for (int n = 0; n < bno08x.prodIds.numEntries; n++) {</pre> Serial.print("Part "); Serial.print(bno08x.prodIds.entry[n].swPartNumber); Serial.print(": Version :"); Serial.print(bno08x.prodIds.entry[n].swVersionMajor); Serial.print("."); Serial.print(bno08x.prodIds.entry[n].swVersionMinor); Serial.print("."); Serial.print(bno08x.prodIds.entry[n].swVersionPatch); Serial.print(" Build "); Serial.println(bno08x.prodIds.entry[n].swBuildNumber); } setReports(); Serial.println("Reading events"); delay(100); } // Here is where you define the sensor outputs you want to receive void setReports(void) { Serial.println("Setting desired reports"); if (! bno08x.enableReport(SH2 GAME ROTATION VECTOR)) { Serial.println("Could not enable game vector"); } void loop() { delay(10); if (bno08x.wasReset()) { Serial.print("sensor was reset "); setReports(); } if (! bno08x.getSensorEvent(&sensorValue)) { return; switch (sensorValue.sensorId) { case SH2 GAME ROTATION VECTOR: Serial.print("Game Rotation Vector - r: "); Serial.print(sensorValue.un.gameRotationVector.real); Serial.print(" i: "); Serial.print(sensorValue.un.gameRotationVector.i); Serial.print(" j: "); Serial.print(sensorValue.un.gameRotationVector.j); Serial.print(" k: "); Serial.println(sensorValue.un.gameRotationVector.k); ``` ©Adafruit Industries Page 16 of 36 ``` break; } ``` ## **UART-RVC** for Arduino ## **Library Installation** You can install the Adafruit BNO08x RVC library for Arduino using the Library Manager in the Arduino IDE. Click the **Manage Libraries** ... menu item, search for **Adafruit BNO08x RVC**, and select the **Adafruit BNO08x RVC** library: ## **UART RVC Wiring** Wiring up the BNO085 in UART RVC is similar to UART, but with one less wire! Board 3V to BNO085 Vin (Red Wire). Board GND to BNO085 GND (Black Wire) Board RX to BNO085 SDA (Blue Wire) Board 3V to BNO085 PO (Purple Wire) © Adafruit Industries Page 17 of 36 For an even simpler hardware setup, bridge the P0 solder jumper on the back of the board to keep it configured in UART RVC. mode. You can always remove the solder to use other modes! ## Load Example - Serial Console Open up File -> Examples -> Adafruit BNO08x RVC-> uart_rvc After opening the demo file, upload to your Arduino wired up to the sensor. Once you upload the code, you will see the **heading principal axes and acceleration** values being printed when you open the Serial Monitor (**Tools->Serial Monitor**) at **115200** baud, similar to this: | Adafruit BNO08x
BNO08x found! | IMU - UART-RVC | mode | |----------------------------------|----------------|---------| | Principal Axes: | | | | • | | | | | Pitch: -3.76 | | | Acceleration | | | | X: -0.82 | Y: -0.51 | Z: 7.50 | | | | | | | | | | Principal Axes: | | | | | Pitch: -3.76 | | | Acceleration | | | | X: -0.82 | Y: -0.47 | Z: 7.53 | | | | | ## **Load Example - Serial Plotter** In addition to the text based example code shown above, we have also included a version that is formatted to display nicely in the Arduino Serial Plotter. Open up File -> Examples -> Adafruit BNO08x RVC-> uart_rvc_plotter After opening the demo file, upload to your Arduino wired up to the sensor. Once you upload the code, open the Serial Plotter (Tools->Serial Plotter) at 115200 baud and you will see graphs of the heading and acceleration like these: © Adafruit Industries Page 18 of 36 Play around with it! Move the sensor around and see how rolling back and forth, front to back, and twisting change the graphs. I think you'll be pleasantly surprised! ``` /* Test sketch for Adafruit BNO08x sensor in UART-RVC mode */ #include "Adafruit BN008x RVC.h" Adafruit BN008x RVC rvc = Adafruit BN008x RVC(); void setup() { // Wait for serial monitor to open Serial.begin(115200); while (!Serial) delay(10); Serial.println("Adafruit BN008x IMU - UART-RVC mode"); Serial1.begin(115200); // This is the baud rate specified by the datasheet while (!Serial1) delay(10); if (!rvc.begin(&Serial1)) { // connect to the sensor over hardware serial Serial.println("Could not find BN008x!"); while (1) delay(10); Serial.println("BN008x found!"); void loop() { BN008x_RVC_Data heading; if (!rvc.read(&heading)) { return; } Serial.println(); Serial.println(F("-----")); Serial.println(F("Principal Axes:")); Serial.println(F("----- Serial.print(F("Yaw: ")); Serial.print(heading.yaw); Serial.print(F("\tPitch: ")); Serial.print(heading.pitch); ``` © Adafruit Industries Page 19 of 36 ## **Arduino Docs** Arduino Docs (https://adafru.it/Nxf) ## Arduino UART RVC Docs Arduino UART RVC Docs (https://adafru.it/NxD) # Python & CircuitPython It's easy to use the **BNO08x** with Python or CircuitPython, and the <u>Adafruit</u> <u>CircuitPython BNO08x</u> (https://adafru.it/N-F) module. This module allows you to easily write Python code that reads motion data from the **BNO08x** sensor. You can use this sensor with any CircuitPython microcontroller board or with a computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-Python compatibility library (https://adafru.it/BSN). © Adafruit Industries Page 20 of 36 The BNO08x I2C implementation violates the I2C protocol in some circumstances. This causes it not to work well with certain chip families. It does not work well with Espressif ESP32, ESP32-S3, and NXP i.MX RT1011, and it does not work well with I2C multiplexers. Operation with SAMD51, RP2040, STM32F4, and nRF52840 is more reliable. ## CircuitPython I2C Wiring First wire up a BNO08x to your board exactly as shown below. Here's an example of wiring a Feather M4 to the sensor with I2C using one of the handy <u>STEMMA QT</u> (https://adafru.it/Ft4) connectors: Board 3V to sensor VIN (red wire) Board GND to sensor GND (black wire) Board SCL to sensor SCL (yellow wire) Board SDA to sensor SDA (blue wire) You can also use the standard **0.100"/2.54mm pitch** headers to wire it up on a breadboard: Board 3V to sensor VIN (red wire) Board GND to sensor GND (black wire) Board SCL to sensor SCL (yellow wire) Board SDA to sensor SDA (blue wire) ## CircuitPython UART Wiring If you wish to use UART, you can enable the UART mode by pulling the P1 pin high and connecting the sensor to your RX and TX pins: © Adafruit Industries Page 21 of 36 Board 3V to sensor VIN (red wire) Board GND to sensor GND (black wire) Board TX to sensor SCL (yellow wire) Board RX to sensor SDA (blue wire) Board 3V to sensor P1 (purple wire) ## **Python Computer Wiring** Since there's dozens of Linux computers/boards you can use, we will show wiring for Raspberry Pi. For other platforms, <u>please visit the guide for CircuitPython on Linux to see whether your platform is supported</u> (https://adafru.it/BSN). Here's the Raspberry Pi wired to the sensor using I2C and a <u>STEMMA QT</u> (https://adafru.it/Ft4) connector: Pi 3V to sensor VCC (red wire) Pi GND to sensor GND (black wire) Pi SCL to sensor SCL (yellow wire) Pi SDA to sensor SDA (blue wire) Finally here is an example of how to wire up a Raspberry Pi to the sensor using a solderless breadboard © Adafruit Industries Page 22 of 36 Pi 3V to sensor VCC (red wire) Pi GND to sensor GND (black wire) Pi SCL to sensor SCL (yellow wire) Pi SDA to sensor SDA (blue wire) NOTE: The BNO085 seems to work best on the Raspberry Pi with an I2C clock frequency of 400kHz. You can make that change by adding this line to your / boot/config.txt file: dtparam=i2c_arm_baudrate=400000 and then rebooting. ## Python UART Wiring If you wish to use UART, you can enable the UART mode by pulling the P1 pin high and connecting the sensor to your RX and TX pins: Pi 3V3 to sensor VIN (red wire) Pi GND to sensor GND (black wire) Pi TX to sensor SCL (yellow wire) Pi RX to sensor SDA (blue wire) Pi 3V3 to sensor P1 (purple wire) ## CircuitPython Installation of BNO08x Library You'll need to install the <u>Adafruit CircuitPython BNO08x</u> (https://adafru.it/N-F) library on your CircuitPython board. © Adafruit Industries Page 23 of 36 First make sure you are running the <u>latest version of Adafruit CircuitPython</u> (https://adafru.it/Amd) for your board. Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these libraries from <u>Adafruit's CircuitPython library bundle</u> (https://adafru.it/ENC). Our CircuitPython starter guide has <u>a great page on how to install the library bundle</u> (https://adafru.it/ABU). Before continuing make sure your board's **lib** folder or root filesystem has the **adafruit _BNO08x** and **adafruit_bus_device** folders copied over. Both of these are folders with library files in them. Make sure to copy the whole folder for both into your **lib** folder! Next <u>connect to the board's serial REPL</u> (https://adafru.it/Awz)so you are at the CircuitPython >>> prompt. ## Python Installation of BNO08x Library You'll need to install the **Adafruit_Blinka** library that provides the CircuitPython support in Python. This may also require enabling I2C on your platform and verifying you are running Python 3. <u>Since each platform is a little different, and Linux changes often, please visit the CircuitPython on Linux guide to get your computer ready (https://adafru.it/BSN)!</u> Once that's done, from your command line run the following command: sudo pip3 install adafruit-circuitpython-bno08x If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use CircuitPython on Python 2.x, it isn't supported! ## CircuitPython & Python Usage The examples below show an I2C connection displaying the Rotation Vector (Quaternion) report however there are many more that can be enabled. See the Report Types page for more information on the available reports To demonstrate the usage of the sensor we'll initialize it and enable the **Rotation Vector** report type and display the readings using properties in the CircuitPython REPL © Adafruit Industries Page 24 of 36 #### **I2C** Initialization If you are using the I2C connection, run the following code to import the necessary modules and initialize the I2C connection with the sensor: ``` import time import board import busio import adafruit_bno08x from adafruit_bno08x.i2c import BN008X_I2C i2c = busio.I2C(board.SCL, board.SDA, frequency=800000) bno = BN008X_I2C(i2c) ``` ``` >>> import time >>> import board >>> import busio >>> import adafruit_bno08x >>> from adafruit_bno08x.i2c import BNO08X_I2C >>> >>> izc = busio.I2C(board.SCL, board.SDA, frequency=800000) >>> bno = BNO08X_I2C(i2c) >>> | ``` ### UART Initialization - CircuitPython If you are using the UART connection with a board (like a Feather) running CircuitPython, create your sensor object as follows: ``` import adafruit_bno08x from adafruit_bno08x.uart import BN008X_UART import board import busio uart = busio.UART(board.TX, board.RX, baudrate=3000000, receiver_buffer_size=2048) bno = BN008X_UART(uart) ``` ### **UART** Initialization - Python Check how you specific board supports UART and where the port entry is created and named. For the Raspberry Pi, this is done using the **pyserial** module and the UART used is /dev/serial0. Then you create your sensor object as follows: ``` import adafruit_bno08x from adafruit_bno08x.uart import BN008X_UART import serial uart = serial.Serial("/dev/serial0", 115200) bno = BN008X_UART(uart) ``` © Adafruit Industries Page 25 of 36 ### **Enable the Rotation Vector/Quaternion Report** Once the connection to the sensor is established we can enable one or more report types and the associated **property** ``` bno.enable_feature(adafruit_bno08x.BNO_REPORT_ROTATION_VECTOR) ``` ``` >>> bno.enable_feature(adafruit_bno08x.BNO_REPORT_ROTATION_VECTOR) >>> ``` Now you're ready to read values from the sensor using the **quaternion** property. This is a 4-tuple of orientation quaternion values. ``` print("Rotation Vector Quaternion:") quat_i, quat_j, quat_k, quat_real = bno.quaternion print("I: %0.6f J: %0.6f K: %0.6f Real: %0.6f" % (quat_i, quat_j, quat_k, quat_real)) ``` ``` >>> print("Rotation Vector Quaternion:") Rotation Vector Quaternion: >>> quat_i, quat_j, quat_k, quat_real = bno.quaternion >>> print(... "I: %0.6f J: %0.6f K: %0.6f Real: %0.6f" % (quat_i, quat_j, quat_k, quat_real) ...) I: 0.178589 J: -0.044067 K: -0.929871 Real: 0.318542 >>> || ``` ## **Example Code** ``` # SPDX-FileCopyrightText: 2020 Bryan Siepert, written for Adafruit Industries # # SPDX-License-Identifier: Unlicense import time import board import busio from adafruit_bno08x import (BNO_REPORT_ACCELEROMETER, BNO_REPORT_GYROSCOPE, BNO_REPORT_MAGNETOMETER, BNO_REPORT_ROTATION_VECTOR, from adafruit bno08x.i2c import BN008X I2C i2c = busio.I2C(board.SCL, board.SDA, frequency=400000) bno = BN008X_I2C(i2c) bno.enable_feature(BNO_REPORT_ACCELEROMETER) bno.enable feature(BNO REPORT GYROSCOPE) bno.enable feature(BNO REPORT MAGNETOMETER) bno.enable feature(BNO REPORT ROTATION VECTOR) while True: time.sleep(0.5) print("Acceleration:") accel_x, accel_y, accel_z = bno.acceleration # pylint:disable=no-member print("X: %0.6f Y: %0.6f Z: %0.6f m/s^2" % (accel_x, accel_y, accel_z)) print("") print("Gyro:") gyro_x, gyro_y, gyro_z = bno.gyro # pylint:disable=no-member print("X: %0.6f Y: %0.6f Z: %0.6f rads/s" % (gyro_x, gyro_y, gyro_z)) print("") ``` ©Adafruit Industries Page 26 of 36 ``` print("Magnetometer:") mag_x, mag_y, mag_z = bno.magnetic # pylint:disable=no-member print("X: %0.6f Y: %0.6f Z: %0.6f uT" % (mag_x, mag_y, mag_z)) print("") print("Rotation Vector Quaternion:") quat_i, quat_j, quat_k, quat_real = bno.quaternion # pylint:disable=no-member print("I: %0.6f J: %0.6f K: %0.6f Real: %0.6f" % (quat_i, quat_j, quat_k, quat_real)) print("") ``` # UART-RVC for Python & CircuitPython ## Hardware Setup The hardware setup for the **UART-RVC** mode should probably be called easyware because of how simple it is. Three wires and a solder jumper (or and additional jumper wire) and you're off to the autonomous vacuum cleaner races. ### **UART-RVC** Wiring To allow your device to listen to the heading and acceleration data being output by the BNO085 requires just a few connections. It's similar to the connections for the UART mode, but because there is no software configuration of the BNO085 required, you only need to connect your device's RX pin and pull the **PO** pin high. The TX pin on your device can be left unattached Here we show the Wiring for a Feather M4 for **CircuitPython**, and a Raspberry Pi for **Python**: © Adafruit Industries Page 27 of 36 ### Feather Wiring Feather 3V to BNO085 Vin (Red Wire). Device GND to BNO085 GND (Black Wire) Device RX to BNO085 SDA (Blue Wire) Feather 3V to BNO085 PO (Purple Wire). #### Raspberry Pi Wiring RPi 3V to BNO085 Vin (Red Wire). RPi GND to BNO085 GND (Black Wire) RPi RX to BNO085 SDA (Blue Wire) RPi 3V to BNO085 P0 (Purple Wire) For an even simpler hardware setup, bridge the P0 solder jumper on the back of the board to keep it configured in UART-RVC mode. You can always remove the solder to use other modes! ## CircuitPython Installation of BNO08x_RVC Library You'll need to install the <u>Adafruit CircuitPython BNO08x RVC</u> (https://adafru.it/O0a) library on your CircuitPython board. Follow the instructions on the <u>Python & CircuitPython page</u> (https://adafru.it/O0b) for installing CircuitPython and downloading the library bundle Before continuing make sure your board's **lib** folder or root filesystem has the **adafruit** _BNO08x_RVC.mpy file copied over. © Adafruit Industries Page 28 of 36 ## Python Installation of BNO08x RVC Library Follow the instructions on the <u>Python & CircuitPython page</u> (https://adafru.it/O0b) to set up your Raspberry Pi or other SBC and once that's done, from your command line run the following command: sudo pip3 install adafruit-circuitpython-bno08x-rvc If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use CircuitPython on Python 2.x, it isn't supported! ## CircuitPython & Python Usage he following code will walk you through a basic test of the UART RVC mode in the Python REPL To demonstrate the usage of the sensor setup a UART connection and then we'll initialize the sensor and read the heading and acceleration information from within the board's REPL. For CircuitPython <u>connect to the board's serial REPL</u> (https://adafru.it/Awz)so you are at the CircuitPython >>> prompt. For Python, just type `python` or `python3` to enter the REPL ## **UART Initialization - CircuitPython** If you are using the UART connection with a board (like a Feather) running CircuitPython, create your uart object as follows: ``` import board import busio from adafruit_bno08x_rvc import BN008x_RVC uart = busio.UART(board.TX, board.RX, baudrate=115200, receiver_buffer_size=2048) ``` ``` >>> import board >>> import busio >>> from adafruit_bno08x_rvc import BN008x_RVC >>> word = busio.UART(board.TX, board.RX, baudrate=115200, receiver_buffer_size=2048) ``` ## **UART Initialization - Python** Check how you specific board supports UART and where the port entry is created and named. For the Raspberry Pi, this is done using the pyserial module and the UART used is /dev/serial0. Then you create your sensor object as follows: ``` import serial uart = serial.Serial("/dev/serial0", 115200) ``` ©Adafruit Industries Page 29 of 36 ``` Python 3.7.7 (default, Jun 5 2020, 12:43:51) [GCC 8.3.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import serial >>> uart = serial.Serial("/dev/serial0", 115200) ``` ## BNO08x_RVC creation and usage Now you're ready to create a BN08x_RVC instance with your UART object and use it to read the heading and acceleration value using the heading property: ``` from adafruit_bno08x_rvc import BN008x_RVC rvc = BN008x_RVC(uart) yaw, pitch, roll, x_accel, y_accel, z_accel = rvc.heading print("Yaw: %2.2f Pitch: %2.2f Roll: %2.2f Degrees" % (yaw, pitch, roll)) print("Acceleration X: %2.2f Y: %2.2f Z: %2.2f m/s^2" % (x_accel, y_accel, z_accel)) ``` ``` >>> from adafruit_bno08x_rvc import BN008x_RVC >>> rvc = BN008x_RVC(uart) >>> >>> yaw, pitch, roll, x_accel, y_accel, z_accel = rvc.heading >>> print("Yaw: %2.2f Pitch: %2.2f Roll: %2.2f Degrees" % (yaw, pitch, roll)) Yaw: 0.25 Pitch: -5.74 Roll: -4.90 Degrees >>> print("Acceleration X: %2.2f Y: %2.2f Z: %2.2f m/s^2" % (x_accel, y_accel, z_accel)) Acceleration X: 0.67 Y: -0.77 Z: 7.53 m/s^2 ``` ## **Example Code** ``` # SPDX-FileCopyrightText: 2020 Bryan Siepert, written for Adafruit Industries # SPDX-License-Identifier: Unlicense import time import board import busio uart = busio.UART(board.TX, board.RX, baudrate=115200, receiver buffer size=2048) # uncomment and comment out the above for use with Raspberry Pi # import serial # uart = serial.Serial("/dev/serial0", 115200) # for a USB Serial cable: # import serial # uart = serial.Serial("/dev/ttyUSB0", baudrate=115200) from adafruit_bno08x_rvc import BN008x_RVC # pylint:disable=wrong-import-position rvc = BN008x RVC(uart) while True: yaw, pitch, roll, x_accel, y_accel, z_accel = rvc.heading print("Yaw: 2.2f Pitch: 2.2f Roll: 2.2f Degrees" (yaw, pitch, roll)) print("Acceleration X: %2.2f Y: %2.2f Z: %2.2f m/s^2" % (x_accel, y_accel, z_accel)) print("") time.sleep(0.1) ``` # **Python Docs** Python Docs (https://adafru.it/Nsb) © Adafruit Industries Page 30 of 36 # Python UART RVC Docs Python UART RVC Docs (https://adafru.it/NxE) # Report Types The BNO085 offers many different reports of sensor and classification data as listed below. Multiple reports can be enabled at the same time, allowing you to compare different results or to provide additional data for your application. ### **Motion Vectors** These reports return calibrated X, Y, and Z axis measurements for the given sensor measurement type. Acceleration Vector / Accelerometer Three axes of acceleration from gravity and linear motion, in $\mbox{m/s}^2$ · Angular Velocity Vector / Gyro Three axes of rotational speed in radians per second Magnetic Field Strength Vector / Magnetometer Three axes of magnetic field sensing in micro Teslas (uT) Linear Acceleration Vector Three axes of linear acceleration data with the acceleration from gravity, in \mathbf{m}/\mathbf{s}^2 ©Adafruit Industries Page 31 of 36 ### **Rotation Vectors** These reports are generated by the BNO085's sensor fusion firmware based on the combination of multiple three-axis motion vectors and are each optimized for different use cases - Absolute Orientation/ Rotation Vector Quaternion Optimized for accuracy and referenced to magnetic north and gravity from accelerometer, gyro, and magnetometer data. The data is presented as a four point quaternion output for accurate data manipulation - Geomagnetic Rotation Vector Quaternion Optimized for low power by fusing the accelerometer and magnetometer only, at the cost of responsiveness and accuracy - Game Rotation Vector Quaternion Optimized for a smoother gaming experience, fused from the accelerometer and gyro without the magnetometer to avoid sudden jumps in the output from magnetometer based corrections © Adafruit Industries Page 32 of 36 ## Classification Reports Using its sensor fusion products, the BNO085 can attempt to classify and detect different types of motion it measures. These are pretty neat and work very well when compared similar features found in other 3 or 6-axis motion sensors #### Stability Classification Uses the accelerometer and gyro to classify the detected motion as "On table", "Stable", or "Motion" #### Step Counter Based on the data from the step detector, the sensor tracks the number of steps taken, possibly reclassifying previous events based on the patterns detected. #### Activity Classification Classifies the detected motion as one of several activity types, providing a most likely classification along with confidence levels for the most likely and other motion types. #### Shake Detector Detects if the sensor has been shaken © Adafruit Industries Page 33 of 36 ## Other Motion Reports The BNO085 also provides raw ADC readings as well as uncorrected measurements for the accelerometer, gyro, and magnetometer. Raw Accelerometer Unscaled direct ADC readings Uncalibrated Gyroscope Angular velocity without bias compensation, with bias separated Raw Gyroscope Unscaled direct ADC readings Uncalibrated Magnetometer Magnetic field measurements without hard iron offset, offset supplied separately Raw Magnetometer Unscaled direct ADC readings ## **Additional Reports** There are more (less popular) reports that we don't support at this time, a PR to the libraries is welcome for folks who can implement and test them - Gravity Vector - AR/VR stabilized Rotation Vector - AR/VR stabilized Game rotation vector - Gyro rotation Vector - Gyro rotation Vector Prediction - Significant Motion Detector - Stability Detection - Tap Detector - Step Detector ## **Downloads** ### **Files** - BNO08x Datasheet (https://adafru.it/O0c) - EagleCAD files on GitHub (https://adafru.it/O0d) - 3D models on GitHub (https://adafru.it/19lb) - Fritzing object in the Adafruit Fritzing Library (https://adafru.it/O0e) ©Adafruit Industries Page 34 of 36 # **Schematic** ## **Fab Print** © Adafruit Industries Page 35 of 36 # 3D Model © Adafruit Industries Page 36 of 36