www.ti.com

2.5-V 460-kbps RS-232 TRANSCEIVER WITH ±15-kV ESD PROTECTION

Check for Samples: MAX3318E

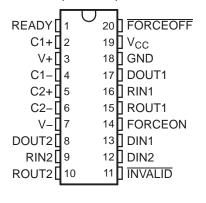
FEATURES

- ESD Protection for RS-232 I/O Pins
 - ±15 kV (Human-Body Model)
 - ±8 kV (IEC 61000-4-2, Contact Discharge)
 - ±15 kV (IEC 61000-4-2, Air-Gap Discharge)
- 300-μA Operating Supply Current
- 1-μA Low-Power Standby (With Receivers Active) Mode
- Designed to Transmit at a Data Rate of 460 kbps
- Auto-Power-Down Plus Option Features Flexible Power-Saving Mode
- Operates From a Single 2.25-V to 3-V V_{CC} Supply

APPLICATIONS

- Battery-Powered Systems
- PDAs
- Cellular Phones
- Notebooks
- Hand-Held Equipment
- Pagers

DESCRIPTION


The MAX3318E is a dual-driver, dual-receiver, RS-232-compatible transceiver. The device features auto-power-down plus and enhanced electrostatic discharge (ESD) protection integrated into the chip. Driver output and receiver input are protected to ±15 kV using the IEC 61000-4-2 Air-Gap Discharge method, ±8 kV using the IEC 61000-4-2 Contact Discharge method, and ±15 kV using the Human-Body Model (HBM).

The device operates at a data rate of 460 kbps. The transceiver has a proprietary low-dropout driver output stage, enabling RS-232-compatible operation from a 2.25-V to 3-V supply with a dual charge pump. The charge pump requires only four 0.1-µF capacitors and features a logic-level output (READY) that asserts when the charge pump is regulating and the device is ready to begin transmitting.

The MAX3318E achieves a 1-µA supply current using the auto-power-down feature. This device automatically enters a low-power power-down mode when the RS-232 cable is disconnected or the drivers of the connected peripherals are inactive for more than 30 s. The device turns on again when it senses a valid transition at any driver or receiver input. Auto power down saves power without changes to the existing BIOS or operating system.

This device is available in two space-saving packages: 20-pin SSOP and 20-pin TSSOP.

DB OR PW PACKAGE (TOP VIEW)

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

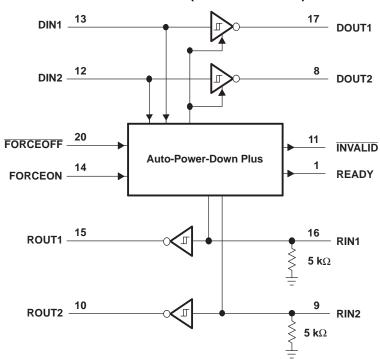
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DETAILED DESCRIPTION

Flexible control options for power management are featured when the serial port and driver inputs are inactive. The auto-power-down plus feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense valid signal transitions on all receiver and driver inputs for approximately 30 s, the built-in charge pump and drivers are powered down, reducing the supply current to 1 µA. By disconnecting the serial port or placing the peripheral drivers off, auto-power-down plus can be disabled when FORCEON and FORCEOFF are high. With auto-power-down plus enabled, the device activates automatically when a valid signal is applied to any receiver or driver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 µs (typical number). INVALID is low (invalid data) if all receiver input voltage are between -0.3 V and 0.3 V for more than 30 µs (typical number).

FUNCTION TABLE(1)

	INPUT CO	ONDITIONS			OUTPUT	STATES		
FORCEON	FORCEOFF	RECEIVER OR DRIVER EDGE WITHIN 30 s	VALID RS-232 LEVEL PRESENT AT RECEIVER	DRIVER	RECEIVER	ĪNVALID	READY	OPERATING MODE
		•	Auto-Power-D	own Plus Co	onditions			
Н	Н	No	No	Active	Active	L	Н	Normal operation, auto-power-down plus disabled
Н	Н	No	Yes	Active	Active	Н	Н	Normal operation, auto-power-down plus disabled
L	Н	Yes	No	Active	Active	L	Н	Normal operation, auto-power-down plus enabled
L	Н	Yes	Yes	Active	Active	Н	Н	Normal operation, auto-power-down plus enabled
L	Н	No	No	Z	Active	L	L	Power down, auto-power-down plus enabled
L	Н	No	Yes	Z	Active	Н	L	Power down, auto-power-down plus enabled
X	L	Х	No	Z	Active	L	L	Manual power down
X	L	X	Yes	Z	Active	Н	L	Manual power down
			Auto-Powe	r-Down Cond	ditions			
ĪNVALID	ĪNVALID	X	No	Z	Active	L	L	Power down, auto power down enabled
INVALID	ĪNVALID	х	Yes	Active	Active	Н	Н	Normal operation, auto power down enabled


⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance

Submit Documentation Feedback

Copyright © 2006–2013, Texas Instruments Incorporated

LOGIC DIAGRAM (POSITIVE LOGIC)

TERMINAL FUNCTIONS

TEDMI	NIAI	TERMINAL FUNCTIONS
TERMI	NAL	DESCRIPTION
NAME	NO.	
C1+	2	Positive voltage-doubler charge-pump capacitor
C1-	4	Negative voltage-doubler charge-pump capacitor
C2+	5	Positive inverting charge-pump capacitor
C2-	6	Negative inverting charge-pump capacitor
DIN	12, 13	CMOS driver inputs
DOUT	8, 17	RS-232 driver outputs
FORCEOFF	20	Force-off input, active low. Drive low to power down transmitters and charge pump. This overrides auto power down and FORCEON (see Function Table).
FORCEON	14	Force-on input, active high. Drive high to override auto power down, keeping transmitters on (FORCEOFF must be high) (see Function Table).
GND	18	Ground
INVALID	11	Valid signal detector output, active low. A logic high indicates that a valid RS-232 level is present on a receiver input.
READY	1	Ready to transmit output, active high. READY is enabled high when V- goes below -3.5 V and the device is ready to transmit.
RIN	9, 16	RS-232 receiver inputs
ROUT	10, 15	CMOS receiver outputs
V+	3	2 x V _{CC} generated by the charge pump
V-	7	−2 × V _{CC} generated by the charge pump
V _{CC}	19	2.25-V to 3-V single-supply voltage

Copyright © 2006–2013, Texas Instruments Incorporated

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC} to GND		-0.3	6	V
V+ to GND ⁽²⁾		-0.3	7	V
V– to GND ⁽²⁾		-7	0.3	V
V+ + IV-I ⁽²⁾			13	V
nput voltage	DIN, FORCEON, FORCEOFF to GND	-0.3	6	V
Input voltage	RIN to GND	-0.3 6 -0.3 7 -7 0.3 13	V	
Output voltage	DOUT to GND	±13.2 -0.3 V _{CC} + 0.3	V	
Output voltage	ROUT, INVALID, READY to GND	-0.3	V _{CC} + 0.3	V
Short-circuit duration	DOUT to GND		Continuous	
	16-pin SSOP (derate 7.14 mW/°C above 70°C)		571	
Continuous power dissipation ($T_A = 70$ °C)	20-pin SSOP (derate 8 mW/°C above 70°C		640	mW
	DIN, FORCEON, FORCEOFF to GND			
Storage temperature range		-65	150	°C
Lead temperature (soldering, 10 s)			300	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating" conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. V+ and V- can have maximum magnitudes of 7 V, but their absolute difference cannot exceed 13 V.

Recommended Operating Conditions

See Figure 4

				MIN	NOM	MAX	UNIT
	Supply voltage			2.25	2.5	3	V
V_{IH}	Driver and control high-level input voltage	DIN, FORCEOFF, FORCEON	V _{CC} = 2.5 V to 3 V	0.7 × V _{CC}		5.5	٧
V_{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON	V _{CC} = 2.5 V to 3 V	0		0.3 × V _{CC}	٧
V_{I}	Receiver input voltage	•		-25		25	V
_		MAX3318EC		0		70	°C
T _A	Operating free-air temperature	MAX3318EI		-40		85	

www.ti.com

Supply Current Section Electrical Characteristics

 V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
DC Characteristics (V _{CC} = 2.5 V, T _A	= 25°C)				
Auto-power-down plus supply current	FORCEON = GND, $\overline{\text{FORCEOFF}}$ = V_{CC} , All RIN and DIN idle		1	10	μΑ
Auto-power-down supply current	FORCEOFF = GND		1	10	μA
Supply current	FORCEON = FORCEOFF = V _{CC} , No load		0.3	2	mA

⁽¹⁾ Typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

ESD Protection

PARAMETER	TEST CONDITIONS	TYP	UNIT
	НВМ	±15	
RIN, DOUT	IEC 61000-4-2 Air-Gap Discharge method	±15	kV
	IEC 61000-4-2 Contact Discharge method		

Driver Section Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature,

 V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 4)

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
Driver input hysteresis			0.3		V
Input leakage current	FORCEON, DIN, FORCEOFF		±0.01	±1	μΑ
Output voltage swing	All driver outputs loaded with 3 $k\Omega$ to ground	±3.7	±4		V
Output resistance	$V_{CC} = 0$, Driver output = $\pm 2 \text{ V}$	300	10M		Ω
Output short-circuit current ⁽²⁾			±25	±60	mA
Output leakage current	V _{CC} = 0 or 2.25 V to 3 V, V _{OUT} = ±12 V, Drivers disabled			±25	μΑ

Typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Driver Section Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature,

 V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 1)

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
Maximum data rate	$R_L = 3 \text{ k}\Omega$, $C_L = 1000 \text{ pF}$, One transmitter switching	460			kbps
t _{PHL} - t _{PLH} Driver skew ⁽²⁾			100		ns
Transition-region slew rate	$\begin{split} &V_{CC}=2.5\text{ V},T_{A}=25^{\circ}\text{C},R_{L}=3\text{ k}\Omega\text{ to 7 k}\Omega,\\ &\text{Measured from 3 V to }-3\text{ V or }-3\text{ V to 3 V},\\ &C_{L}=150\text{ pF to }2500\text{ pF} \end{split}$	4		30	V/µs

Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

Typical values are at V_{CC} = 2.5 V, T_A = 25°C. Pulse skew is defined as $|t_{PLH}-t_{PHL}|$ of each channel of the same device.

Receiver Section Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature,

 $V_{CC} = 2.25 \text{ V}$ to 3 V, C1–C4 = 0.1 μ F, $T_A = T_{MIN}$ to T_{MAX} (unless otherwise noted) (see Figure 4)

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
Input voltage range		-25		25	V
Input threshold low	T _A = 25°C			0.3 × V _{CC}	V
Input threshold high	T _A = 25°C	0.7 × V _{CC}			V
Input hysteresis			0.3		V
Input resistance	T _A = 25°C	3	5	7	kΩ
Output leakage current			±0.05	±10	μΑ
Output voltage low	I _{OUT} = 0.5 mA			0.1 × V _{CC}	V
Output voltage high	$I_{OUT} = -0.5 \text{ mA}$	0.9 × V _{CC}			V

⁽¹⁾ Typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Receiver Section Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature,

 $V_{CC} = 2.25 \text{ V}$ to 3 V, C1–C4 = 0.1 μ F, $T_A = T_{MIN}$ to T_{MAX} (unless otherwise noted) (see Figure 4)

	PARAMETER	TEST CONDITIONS	TYP ⁽¹⁾	UNIT
t _{PHL}	Description propagation delay	DIN to DOUT C 450 of	0.175	
t _{PLH}	Receiver propagation delay	RIN to ROUT, C _L = 150 pF	0.175	μs
t _{PHL} - t _{PLH}	Receiver skew ⁽²⁾		50	ns

Auto-Power-Down Plus Section Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature,

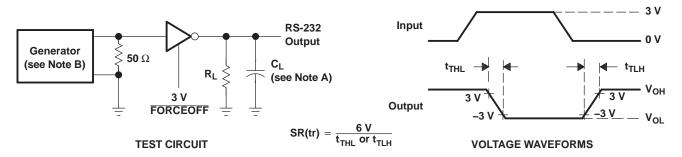
 $V_{CC} = 2.25 \text{ V}$ to 3 V, C1–C4 = 0.1 μ F, $T_A = T_{MIN}$ to T_{MAX} (unless otherwise noted) (see Figure 4)

7 77 1	7 (,		
PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
Receiver input threshold to INVALID high	Positive threshold		2.7	V
Receiver input threshold to invalid high			V	
Receiver input threshold INVALID low		-0.3	0.3	V
INVALID, READY voltage low	I _{OUT} = 0.5 mA		0.1 × V _{CC}	V
INVALID, READY voltage high	$I_{OUT} = -0.5 \text{ mA}$	0.8 × V _{CC}		V

Auto-Power-Down Plus Section Switching Characteristics

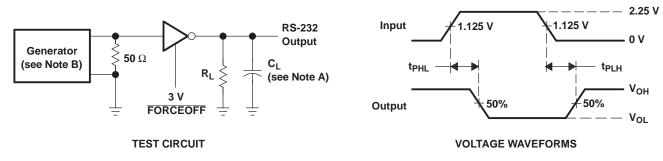
over recommended ranges of supply voltage and operating free-air temperature,

 $V_{CC} = 2.25 \text{ V}$ to 3 V, C1–C4 = 0.1 μ F, $T_A = T_{MIN}$ to T_{MAX} (unless otherwise noted) (see Figure 4)


	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{INVH}	Receiver positive or negative threshold to INVALID high	V _{CC} = 2.5 V		1		μs
t_{INVL}	Receiver positive or negative threshold to INVALID low	V _{CC} = 2.5 V		30		μs
t _{WU}	Receiver or driver edge to driver enabled	V _{CC} = 2.5 V		100		μs
t _{AUTOPRDN}	Receiver or driver edge to driver shutdown	V _{CC} = 2.5 V	15	30	60	S

(1) Typical values are at V_{CC} = 2.5 V, T_A = 25°C.

Typical values are at V_{CC} = 2.5 V, T_A = 25°C. Pulse skew is defined as $|t_{PLH}-t_{PHL}|$ of each channel of the same device.



PARAMETER MEASUREMENT INFORMATION

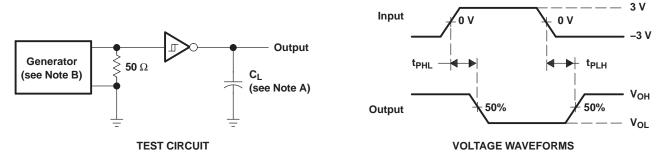
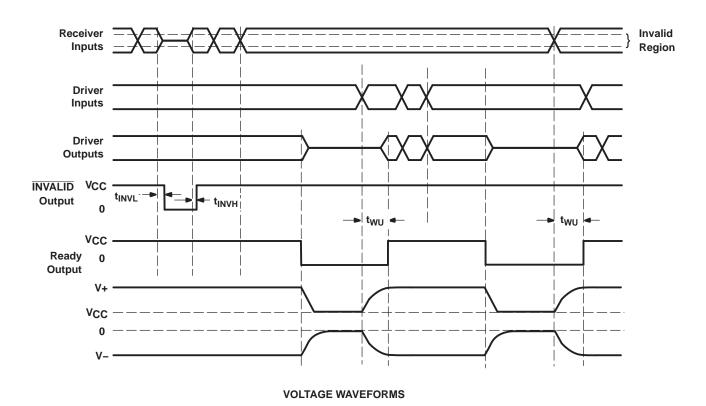

- NOTES: A. C_L includes probe and jig capacitance.
 - B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 1. Driver Slew Rate

- NOTES: A. C_L includes probe and jig capacitance.
 - B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew



- NOTES: A. C_L includes probe and jig capacitance.
 - B. The pulse generator has the following characteristics: Z_0 = 50 Ω , 50% duty cycle, $t_r \le$ 10 ns, $t_f \le$ 10 ns.

Figure 3. Receiver Propagation Delay Times

PARAMETER MEASUREMENT INFORMATION

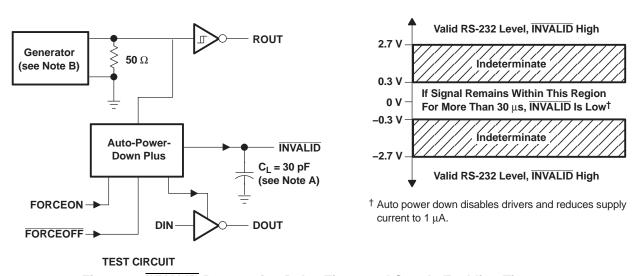


Figure 4. INVALID Propagation Delay Times and Supply Enabling Time

PARAMETER MEASUREMENT INFORMATION

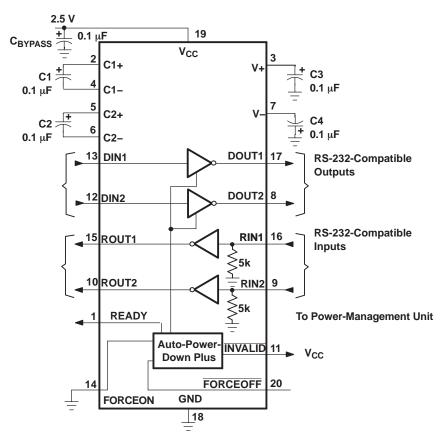


Figure 5. Typical Application Circuit

REVISION HISTORY

Changes from Original (June 2006) to Revision A						
•	Updated document to new TI datasheet format - no specification changes.	1				
•	Removed Ordering Information Table.	2				
•	Updated TERMINAL FUNCTIONS table to fix inconsistency.	3				

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(5)	(4)	(5)		(6)
MAX3318ECPW	Obsolete	Production	TSSOP (PW) 20	-	-	Call TI	Call TI	0 to 70	MP318EC
MAX3318ECPWR	Obsolete	Production	TSSOP (PW) 20	-	-	Call TI	Call TI	0 to 70	MP318EC
MAX3318EIDB	Active	Production	SSOP (DB) 20	70 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP318EI
MAX3318EIDB.A	Active	Production	SSOP (DB) 20	70 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP318EI
MAX3318EIDBR	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP318EI
MAX3318EIDBR.A	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP318EI
MAX3318EIPW	Obsolete	Production	TSSOP (PW) 20	-	-	Call TI	Call TI	-40 to 85	MP318EI
MAX3318EIPWR	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP318EI
MAX3318EIPWR.A	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP318EI
MAX3318EIPWRG4.A	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP318EI

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

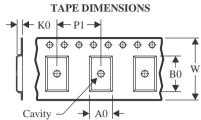
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025

and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

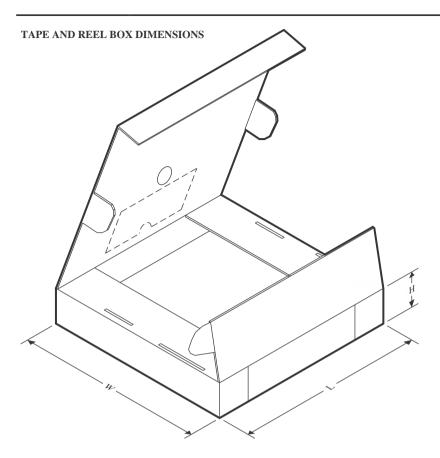

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TAPE AND REEL INFORMATION

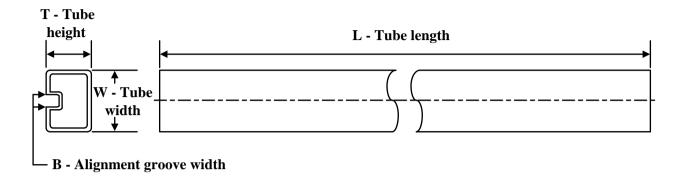
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MAX3318EIDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
MAX3318EIPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

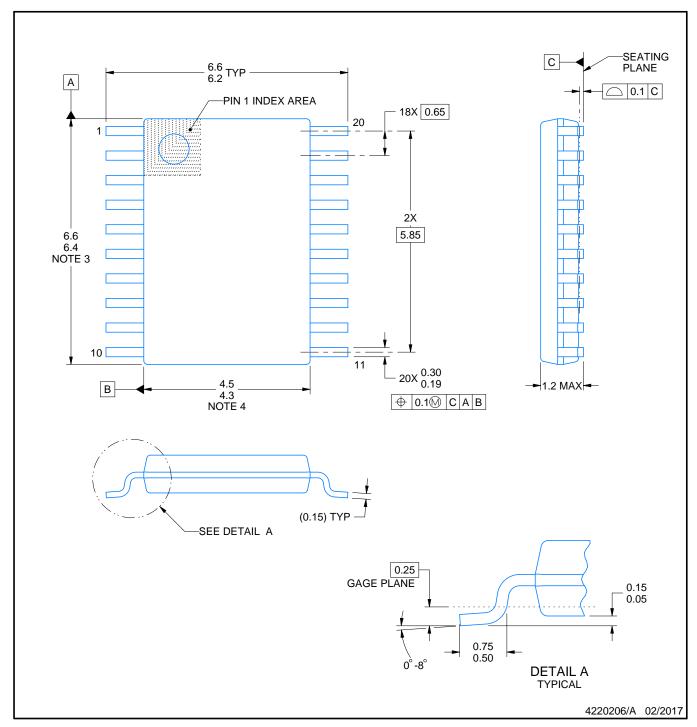
www.ti.com 23-May-2025


*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ı	MAX3318EIDBR	SSOP	DB	20	2000	356.0	356.0	35.0
ı	MAX3318EIPWR	TSSOP	PW	20	2000	356.0	356.0	35.0

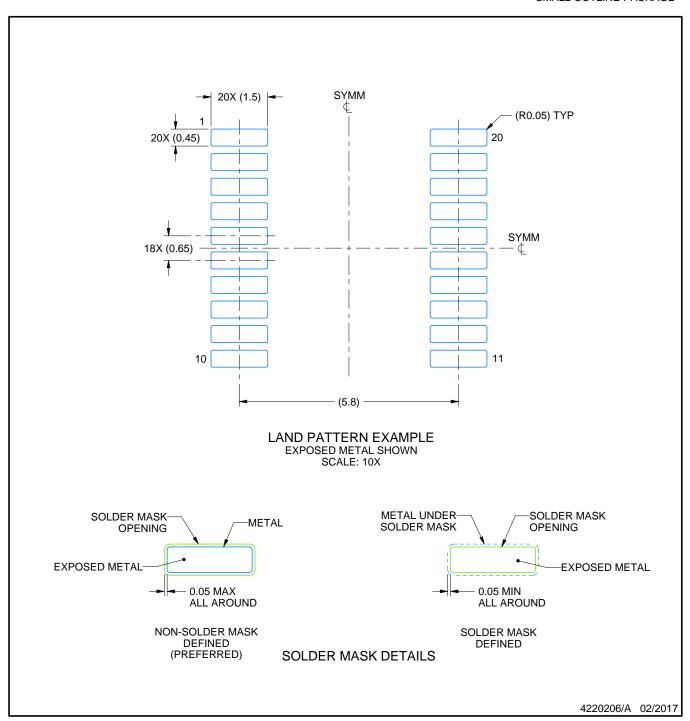
PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025


TUBE

*All dimensions are nominal

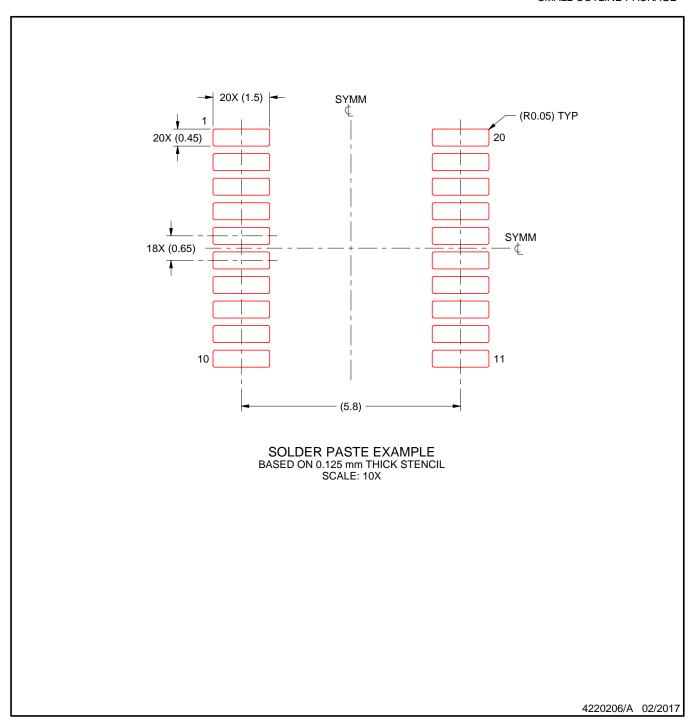
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
MAX3318EIDB	DB	SSOP	20	70	530	10.5	4000	4.1
MAX3318EIDB.A	DB	SSOP	20	70	530	10.5	4000	4.1


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

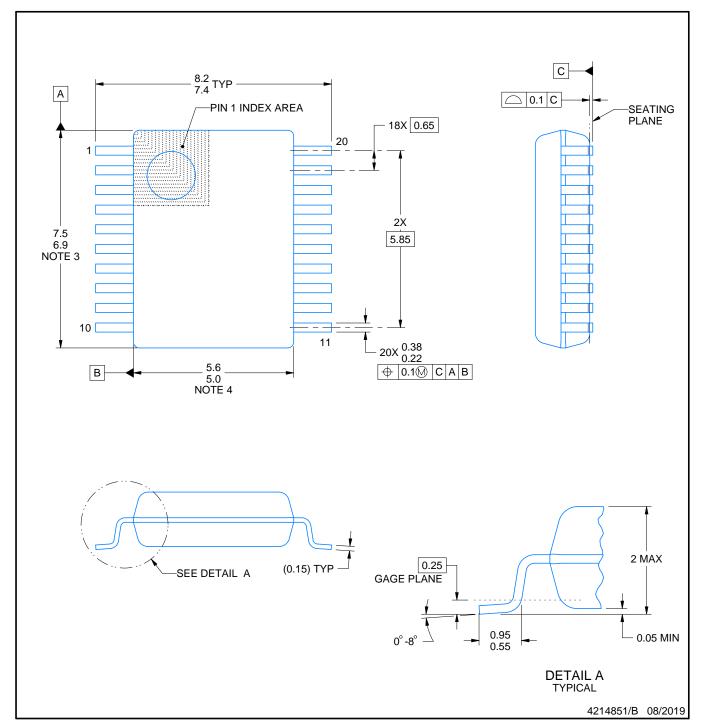
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

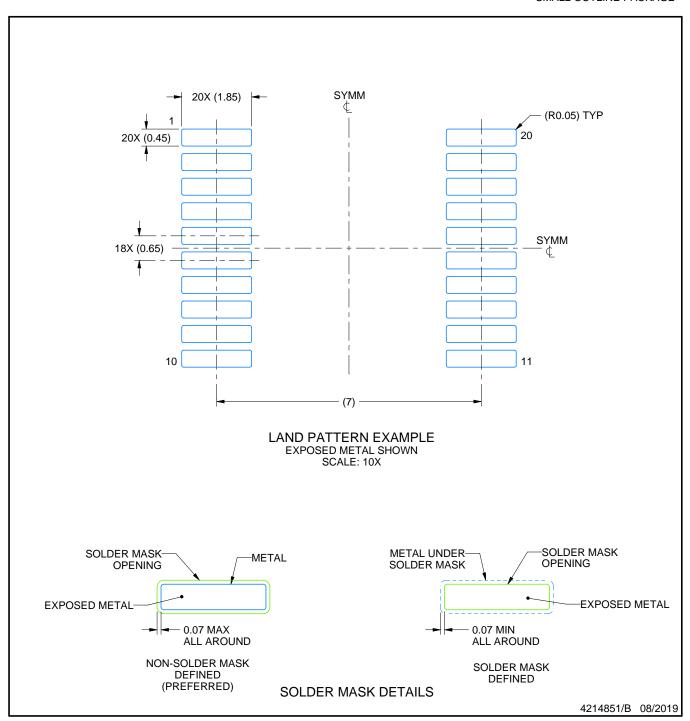
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

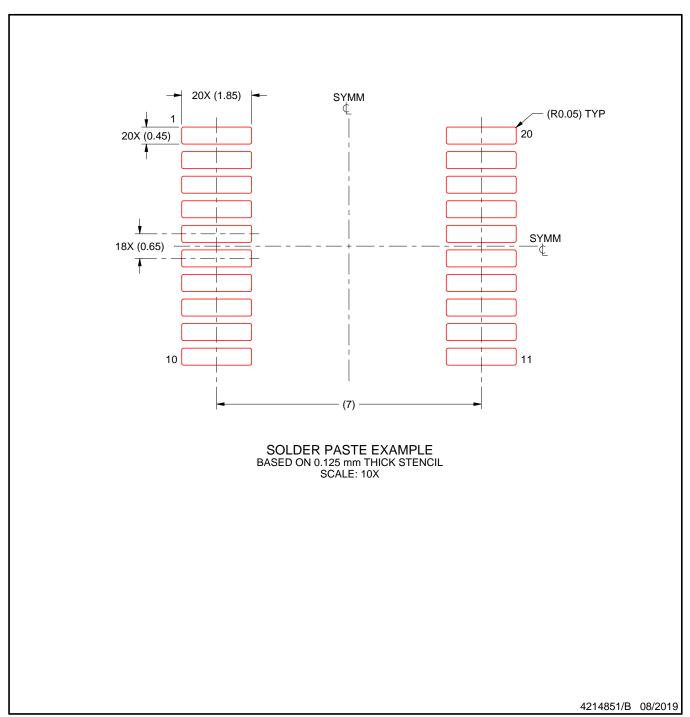
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated