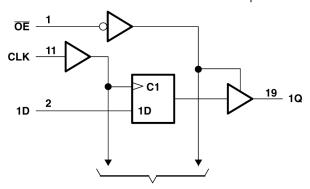


SN74ACT574 SCAS537F - OCTOBER 1995 - REVISED FEBRUARY 2024

SN74ACT574 Octal D-Type Edge-Triggered Flip-Flops With 3-State Outputs

1 Features

- Operation of 4.5V to 5.5V V_{CC}
- Inputs accept voltages to 5.5V
- Max t_{pd} of 9ns at 5V
- Inputs are TTL-voltage compatible


2 Description

These 8-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE(2)	BODY SIZE(3)
	DB (SSOP, 20)	7.2mm × 7.8mm	7.2mm × 5.30mm
	DW (SOIC, 20)	12.80mm × 10.3mm	12.80mm × 7.5mm
SN74ACT574	N (PDIP, 20)	24.33mm × 9.4mm	24.33mm × 6.35mm
	NS (SOP, 20)	12.6mm × 7.8mm	12.6mm × 5.3mm
	PW (TSSOP, 20)	6.50mm × 6.4mm	6.50mm × 4.40mm

- For more information, see Section 10.
- The package size (length × width) is a nominal value and includes pins, where applicable.
- The body size (length × width) is a nominal value and does not include pins.

To Seven Other Channels Logic Diagram (Positive Logic)

Table of Contents

1 Features1	6.2 Functional Block Diagram	8
2 Description1	6.3 Device Functional Modes	8
3 Pin Configuration and Functions3	7 Application and Implementation	9
4 Specifications4	7.1 Power Supply Recommendations	9
4.1 Absolute Maximum Ratings4	7.2 Layout	9
4.2 ESD Ratings4	8 Device and Documentation Support	10
4.3 Recommended Operating Conditions4	8.1 Documentation Support (Analog)	10
4.4 Thermal Information4	8.2 Receiving Notification of Documentation Updates	10
4.5 Electrical Characteristics5	8.3 Support Resources	10
4.6 Timing Requirements5	8.4 Trademarks	10
4.7 Switching Characteristics5	8.5 Electrostatic Discharge Caution	10
4.8 Operating Characteristics6	8.6 Glossary	10
5 Parameter Measurement Information7	9 Revision History	10
6 Detailed Description8	10 Mechanical, Packaging, and Orderable	
6.1 Overview8	Information	11

3 Pin Configuration and Functions

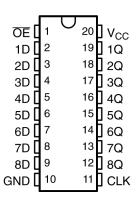


Figure 3-1. SN74ACT574 DB, DW, N, NS, or PW Package (Top View)

Table 3-1. Pin Functions

	PIN		Table 3-1. Fill Fullctions	
NAME	NO.	I/O	DESCRIPTION	
ŌĒ	1	Input	Output enable for all channels, active low	
D1	2	Input	Input for channel 1	
D2	3	Input	Input for channel 2	
D3	4	Input	Input for channel 3	
D4	5	Input	Input for channel 4	
D5	6	Input	Input for channel 5	
D6	7	Input	Input for channel 6	
D7	8	Input	Input for channel 7	
D8	9	Input	Input for channel 8	
GND	10	_	Ground	
CLK	11	Input	Clock input for all channels, rising edge triggered	
Q8	12	Output	Output for channel 8	
Q7	13	Output	Output for channel 7	
Q6	14	Output	Output for channel 6	
Q5	15	Output	Output for channel 5	
Q4	16	Output	Output for channel 4	
Q3	17	Output	Output for channel 3	
Q2	18	Output	Output for channel 2	
Q1	19	Output	Output for channel 1	
V _{CC}	20	_	Postive supply	

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
V _I ²	Input voltage range		-0.5	V _{CC} + 0.5	V
V _O ²	Output voltage range		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	(V ₁ < 0 or V ₁ > V _{CC})		±20	mA
I _{OK}	Output clamp current	$(V_O < 0 \text{ or } V_O > V_{CC})$		±20	mA
Io	Continuous output current	$(V_O = 0 \text{ to } V_{CC})$		±50	mA
	Continuous current through V _{CC} or GND			±200	mA
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

4.2 ESD Ratings

			VALUE	UNIT	
\/	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	\/	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1000	V	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

4.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)¹

		SN74ACT	SN74ACT574	
		MIN	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.5	V
V _{IH}	High-level input voltage	2		V
V _{IL}	Low-level input voltage		0.8	V
VI	Input voltage	0	V _{CC}	V
Vo	Output voltage	0	V _{CC}	V
I _{OH}	High-level output current		-8	mA
I _{OL}	Low-level output current		8	mA
Δt/Δν	Input transition rise or fall rate		20	ns/V
T _A	Operating free-air temperature	-40	85	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

4.4 Thermal Information

Submit Document Feedback

THERMAL METRIC(1)		SN74ACT574					
		THERMAL METRIC ⁽¹⁾ DB DW N NS F		PW	UNIT		
20 PII			20 PINS				
$R_{\theta JA}$	Junction-to-ambient thermal resistance	70	101.2	69	106.2	126.2	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

Product Folder Links: SN74ACT574

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	TEGT COMPLETIONS			Γ _A = 25°C		SN74ACT574			
PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	MIN	MAX	UNIT	
	50	4.5 V	4.4	4.49		4.4			
	$I_{OH} = -50 \mu A$	5.5 V	5.4	5.49		5.4			
.,	244	4.5 V	3.86			3.76		V	
V _{OH}	I _{OH} = -24 mA	5.5 V	4.86			4.76		V	
	$I_{OH} = -50 \text{ mA}^1$	5.5 V							
	$I_{OH} = -75 \text{ mA}^1$	5.5 V				3.85			
	I - 50 A	4.5 V	,		0.1		0.1		
	I _{OL} = 50 μA	5.5 V	,		0.1		0.1		
.,	L = 24 = A	4.5 V			0.36		0.44	V	
V _{OL}	I _{OL} = 24 mA	5.5 V			0.36		0.44	V	
	$I_{OL} = 50 \text{ mA}^1$	5.5 V							
	I _{OL} = 75 mA ¹	5.5 V					1.65		
I _{OZ}	V _O = V _{CC} or GND	5.5 V	,		±0.25		±2.5	μΑ	
I _I	V _I = V _{CC} or GND	5.5 V			±0.1		±1	μΑ	
I _{cc}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		40	μΑ	
ΔI _{CC} ²	One input at 3.4 V, Other inputs at GND or V _{CC}	5.5 V		0.6			1.5	mA	
C _i	V _I = V _{CC} or GND	5 V		4.5				pF	

⁽¹⁾ Not more than one output should be tested at a time, and the duration of the test should not exceed 2 ms.

4.6 Timing Requirements

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

	DADAMETED		T _A = 25°C		SN74ACT574	
PARAMETER		MIN	MAX	MIN	MAX	UNIT
f _{clock}	Clock frequency		100		85	MHz
t _w	Pulse duration, CLK high or low	3		4		ns
t _{su}	Setup time, data before CLK↑	2.5		2.5		ns
t _h	Hold time, data after CLK↑	1		1		ns

4.7 Switching Characteristics

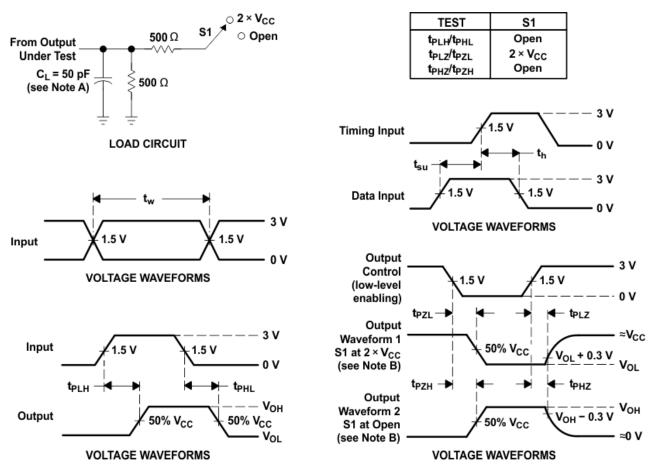
over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM	то	T _A	= 25°C		SN74AC	T574	UNIT
PARAWEIER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	UNII
f _{max}			100	110		85		MHz
	CLIC	0	2.5	7	11	2	12	
t _{pd}	CLK	Q	2	6.5	10	1.5	11	ns
	OF.	0	2	6.4	9.5	1.5	10	
t _{PHL}	ŌĒ	Q	2	6	9	1.5	10	ns
	ŌĒ	Q	2	7	10.5	1.5	11.5	
t _t	OE		2	5.5	8.5	1.5	9	ns

⁽²⁾ This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

4.8 Operating Characteristics

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$


PARAMETER		TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	$C_L = 50 \text{ pF}, f = 1 \text{ MHz}$	40	рF

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

5 Parameter Measurement Information

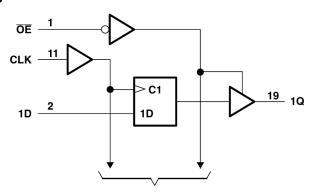
NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 5-1. Load Circuit and Voltage Waveforms

6 Detailed Description

6.1 Overview


The eight flip-flops of the 'ACT574 devices are D-type edge-triggered flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines in a bus-organized system without need for interface or pullup components.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

6.2 Functional Block Diagram

To Seven Other Channels

Figure 6-1. Logic Diagram (Positive Logic)

6.3 Device Functional Modes

Table 6-1. Function Table (Each Flip-flop)

	INPUTS	OUTPUT Q	
ŌĒ	CLK	D	OUTFUT Q
L	1	Н	Н
L	1	L	L
L	H or L	Х	Q_0
Н	X	Х	Z

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Absolute Maximum Ratings* section. Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor; if there are multiple V_{CC} terminals, then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power terminal. Multiple bypass capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor must be installed as close as possible to the power terminal for best results.

7.2 Layout

7.2.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices, inputs must never be left floating. In many cases, functions or parts of functions of digital logic devices are unused (for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used). Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC}, whichever makes more sense for the logic function or is more convenient.

7.2.2 Layout Example

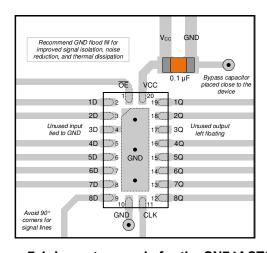


Figure 7-1. Layout example for the SN74ACT574

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

8 Device and Documentation Support

8.1 Documentation Support (Analog)

8.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
SN74ACT574	Click here	Click here	Click here	Click here	Click here	

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (November 2002) to Revision E (May 2023)

Page

Added Package Information table, Pin Functions table, and Thermal Information table......

Product Folder Links: SN74ACT574

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

www.ti.com

23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74ACT574DBR	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AD574
SN74ACT574DBR.A	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AD574
SN74ACT574DW	Obsolete	Production	SOIC (DW) 20	-	-	Call TI	Call TI	-40 to 85	ACT574
SN74ACT574DWR	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT574
SN74ACT574DWR.A	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT574
SN74ACT574N	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74ACT574N
SN74ACT574N.A	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74ACT574N
SN74ACT574NSR	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT574
SN74ACT574NSR.A	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT574
SN74ACT574PW	Obsolete	Production	TSSOP (PW) 20	-	-	Call TI	Call TI	-40 to 85	AD574
SN74ACT574PWR	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AD574
SN74ACT574PWR.A	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AD574

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

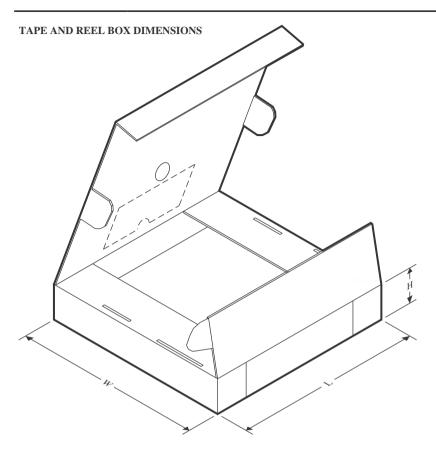
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 23-May-2025

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

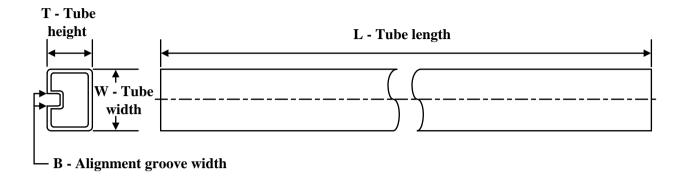
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ACT574DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74ACT574DWR	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
SN74ACT574DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74ACT574NSR	SOP	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74ACT574NSR	SOP	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74ACT574PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74ACT574PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

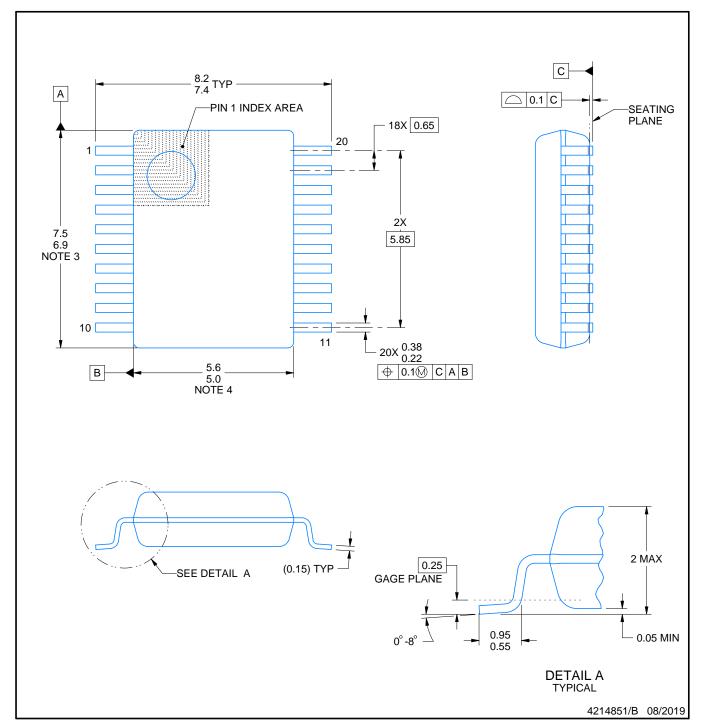
www.ti.com 23-May-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ACT574DBR	SSOP	DB	20	2000	356.0	356.0	35.0
SN74ACT574DWR	SOIC	DW	20	2000	356.0	356.0	45.0
SN74ACT574DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74ACT574NSR	SOP	NS	20	2000	367.0	367.0	45.0
SN74ACT574NSR	SOP	NS	20	2000	356.0	356.0	45.0
SN74ACT574PWR	TSSOP	PW	20	2000	353.0	353.0	32.0
SN74ACT574PWR	TSSOP	PW	20	2000	356.0	356.0	35.0

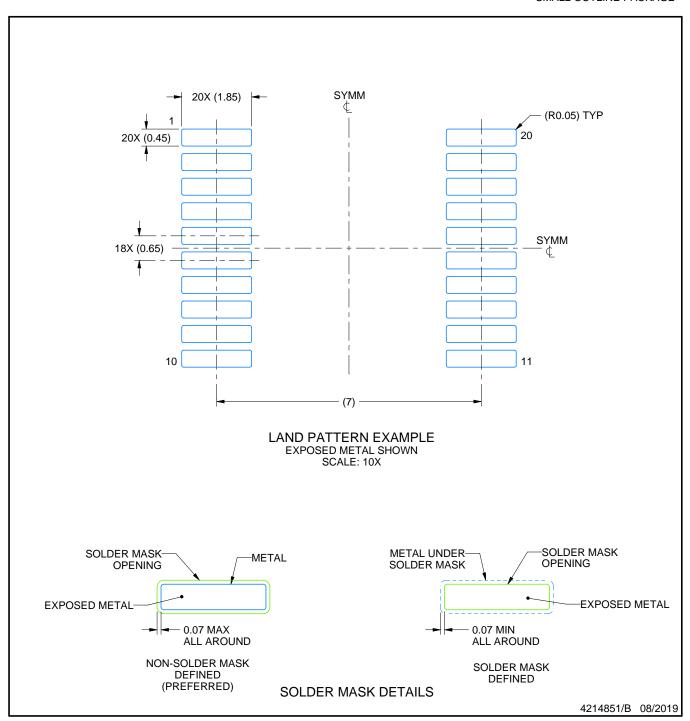
PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025


TUBE

*All dimensions are nominal

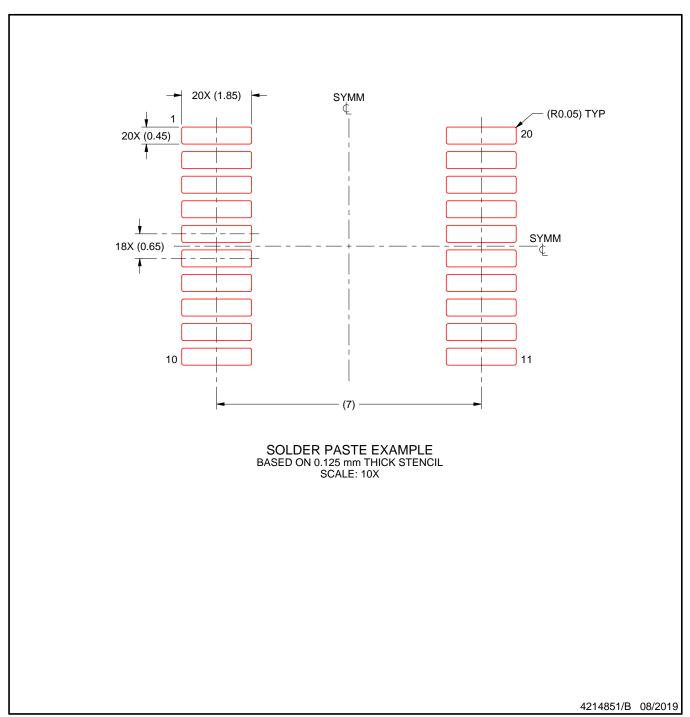
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74ACT574N	N	PDIP	20	20	506	13.97	11230	4.32
SN74ACT574N.A	N	PDIP	20	20	506	13.97	11230	4.32



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

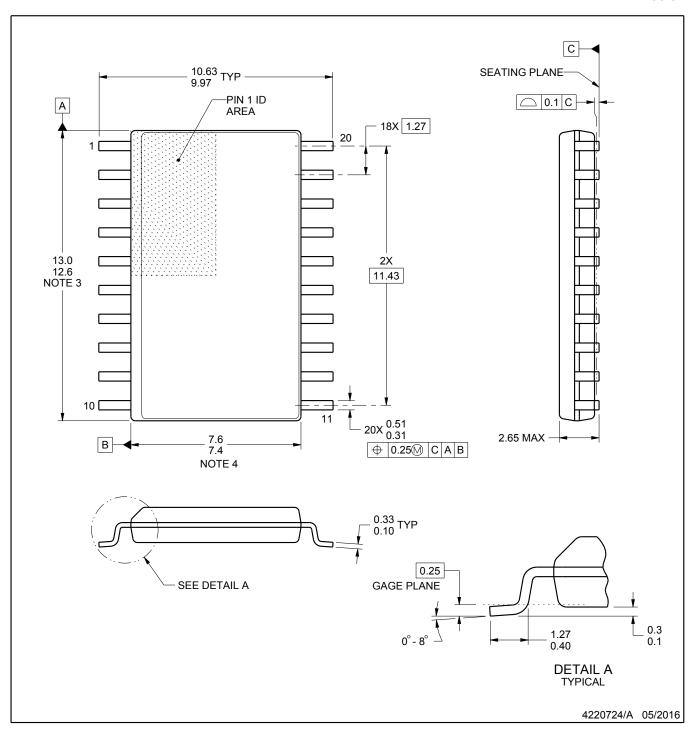
PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

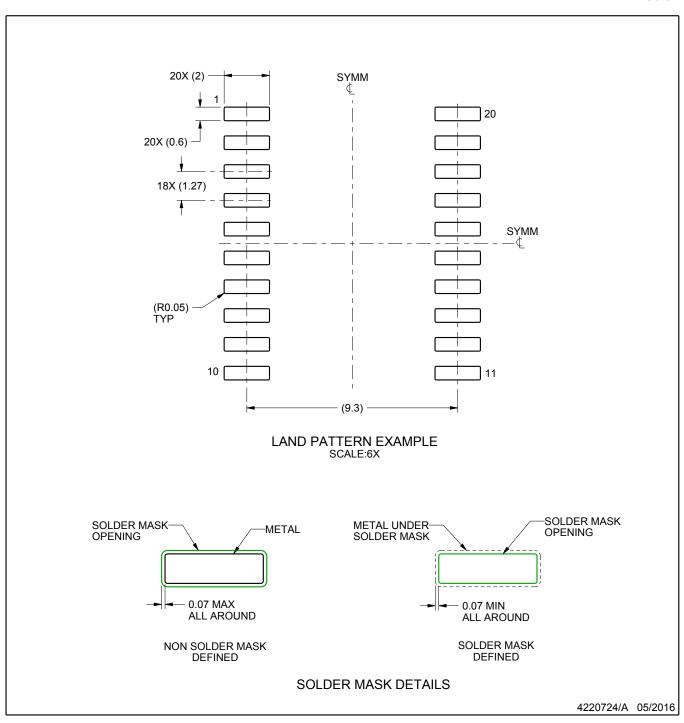
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

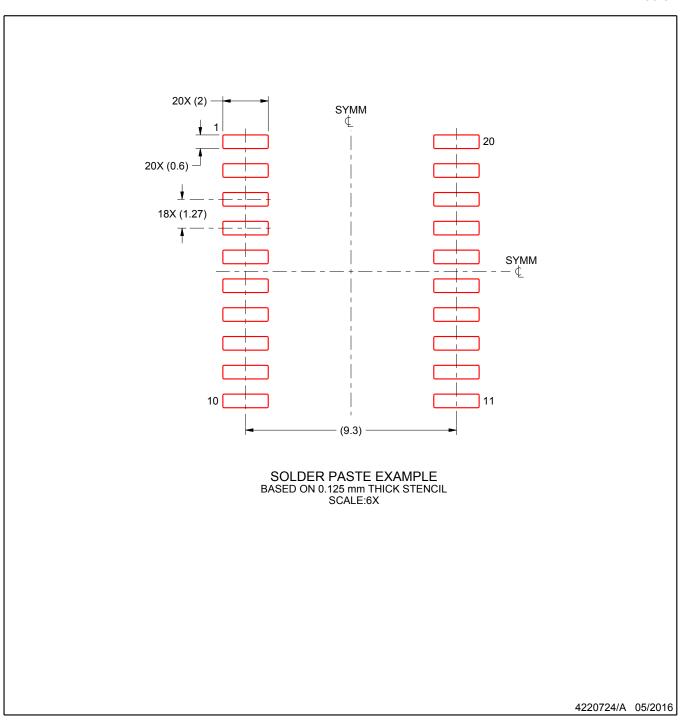
SOIC


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

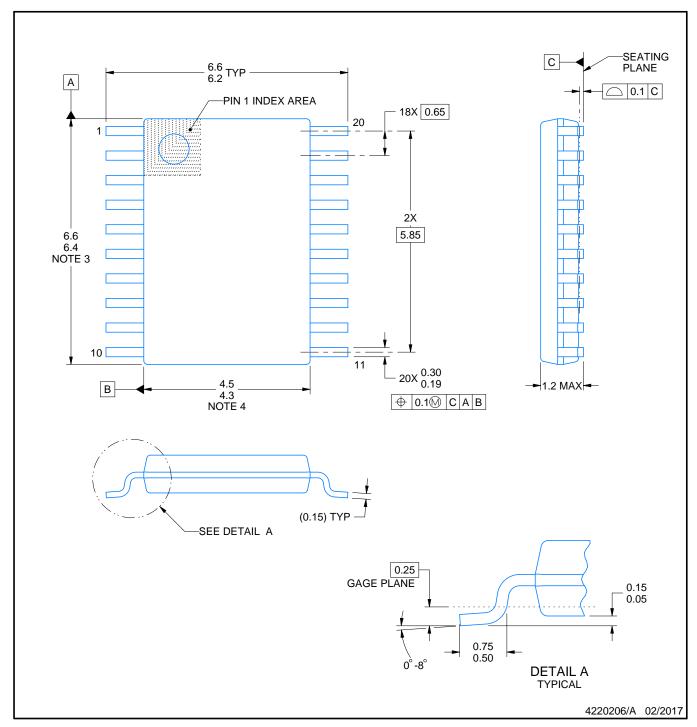
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

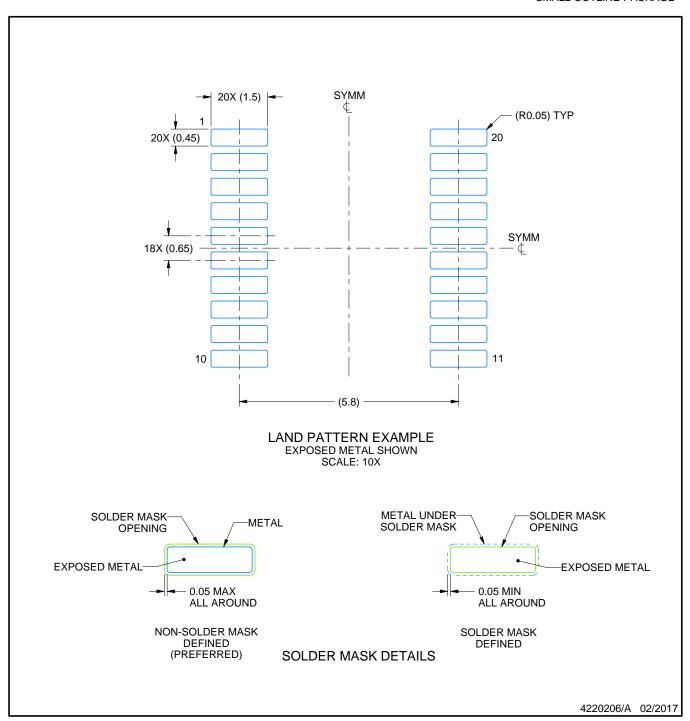
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC



NOTES: (continued)

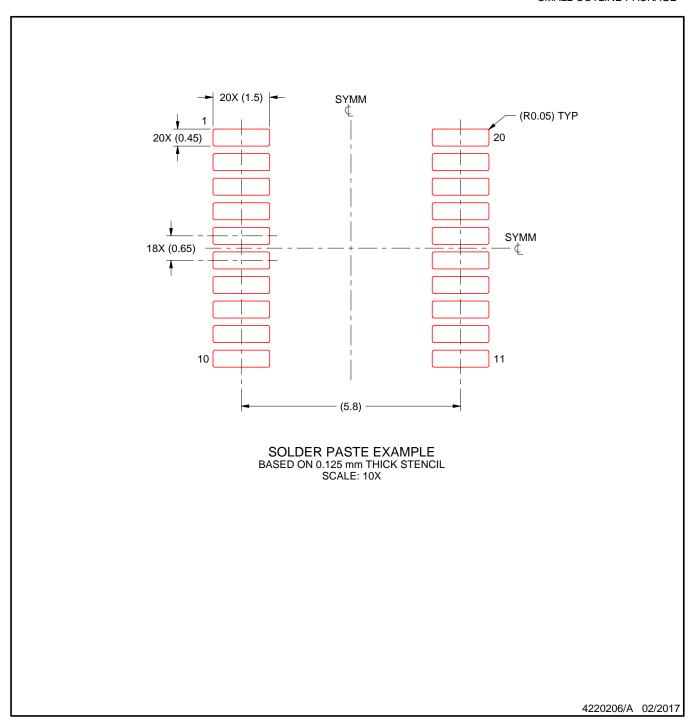
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated