
Adafruit TMP117 High Accuracy I2C
Temperature Monitor

Created by Bryan Siepert

https://learn.adafruit.com/adafruit-tmp117-high-accuracy-i2c-temperature-monitor

Last updated on 2024-06-03 03:16:18 PM EDT

©Adafruit Industries Page 1 of 30

3

5

9

11

17

18

22

23

30

Table of Contents

Overview

Featured Features
• Temperature offset management
• Temperature thresholds
• Threshold behavior
• Measurement Delay
• Sample Count and Averaging

Pinouts
• Power Pins
• Other Pins

Arduino
• I2C Wiring
• Library Installation
• Load Basic Example
• Basic Example Code
• Load Alerts Example
• Alerts Example Code

Arduino Docs

Python & CircuitPython
• CircuitPython Microcontroller Wiring
• Python Computer Wiring
• CircuitPython Installation of TMP117 Library
• Python Installation of TMP117 Library
• Basic CircuitPython & Python Usage
• Basic Example Code
• Temperature Alerts Example
• Temperature Alerts Example Code

Python Docs

WipperSnapper
• What is WipperSnapper
• Wiring
• Usage

Downloads
• Files
• Schematic
• Fab Print

©Adafruit Industries Page 2 of 30

Overview

The TMP117 Precision Temperature Sensor is an I2C temperature sensor that will help
you easily add temperature measurement and adjustment to your project. In addition
to the obvious support for reading the temperature, the TMP117 can also monitor the
temperature and alert you when corrective action needs to be taken.

With 16-bit measurement resolution and up to ±0.1°C accuracy, as well as high and
low temperature alerts and interrupt support, and hardware support required for NIST
traceability, this temperature sensor is perfect for applications where you need to

©Adafruit Industries Page 3 of 30

keep a close eye on temperature. The manufacturer, Texas Instruments, even suggest
it for use in sensitive applications like thermostats and cold chain asset tracking or
even gas and heat meters!

To make using it as easy as possible, we’ve put the TMP117 on a breakout PCB in our
Stemma QT form factor (https://adafru.it/19gF) with a sprinkle of support circuitry to
give you options when testing. You can either use a breadboard or the SparkFun
qwiic (https://adafru.it/Fpw) compatible STEMMA QT (https://adafru.it/Ft4) connectors,
and compatibility with 5V voltage levels as commonly found on Arduinos (https://
adafru.it/P4a), as well as 3.3V logic used by many other boards like the Raspberry Pi
or our Feathers.

To get started, all you need to do is look over the Pinouts page to familiarize yourself
with the board, and then use the Arduino or Python & CircuitPython pages for
instructions on how to wire up the TMP117 to your board, as well as libraries and
example code to get you started.

©Adafruit Industries Page 4 of 30

https://www.adafruit.com/?q=Stemma+QT+Sensor
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/17

Featured Features

The TMP117 is not merely a temperature sensor, any hunk of silicon can do that. It
comes with a handful of relevant features that help you make best use of this
information.

Temperature offset management

When you're trying to get an accurate measurement, despite your best efforts it's
common that the temperature reported by your measurement is different than the
actual value. You might be sitting in your kitchen, surrounded by thermometers telling
you that the room is in fact 40 degrees Celcius, however due to specifics of the
immediate environment of the sensor, it may declare with the upmost certainty that it
is actually 43 degrees C.

This type of change from the actual value will most times stay the same or close to it
as the sensor finds itself in different locations with different temperature. This type of
deviation from the known value is called an offset. No matter where the sensor is, the
sensor will measure the temperature, but because of how air flows around the sensor,
or how heat moves through the circuit board, or one of a thousand other things, it
then takes this temperature and sets it off to the side, always the same amount. The
offset remains relatively constant because the factors causing it are not changing, so
their effect on the temperature also does not change.

©Adafruit Industries Page 5 of 30

Because they're constant, a temperature offset is easy to fix by adding or subtracting
it from the reported temperature. The TMP117 will manage this for you by allowing you
to set the offset amount which is then added to the measured temperature before it is
reported to you. If the sensor says itself 43 degrees but you know from other sources
that it is actually 40 degrees, setting an offset of -3 will account for it. After setting the
offset, the TMP117 will take the measured 43 degrees, add -3 to it to account for the
offset before reporting the adjusted value to you.

Temperature thresholds

Measuring temperature is all well and good, everyone needs to know the temperature
at some point, but usually you want to know the temperature not out of pure curiosity
but because you want to do something differently depending on what the
temperature is. If it's colder than 60ºF degrees outside, you probably want to wear a
hoodie. If instead it's -10ºC and you're in Saskatoon, you probably want to think about
putting on an extra pair of dungarees.

The clever people at Texas Instruments were smart enough to predict this important
decision point and they added high and low temperature thresholds to the TMP117.
This allows you to delegate this decision to it and let it make decisions on your behalf.
Most people may be hesitant to allow a machine to make such an important pants-
related decision, however unlike your friend Joe who is well meaning but inattentive,
the TMP117 won't get distracted by other stuff. All it's doing is sitting there, doing its
part as a cog in the machine, measuring, reporting, and if appropriate, acting on the
temperature.

By setting the high and low temperature thresholds, the TMP117 can then tell you
when either threshold is exceeded. If you know you always wear pants when the

©Adafruit Industries Page 6 of 30

temperature is below 60 degrees, set the low temperature threshold to 60 degrees
and let the TMP117 tell you when it's time for pants.

If like me you also believe that wearing pants when the temperature is above 75
degrees is tepidly tyrannical, you may then also wish to set a high temperature
threshold that well tell you when it's time to release the bonds of your pants and be
free of their stifling embrace.

Threshold behavior

This behavior essentially boils down to "tell me when it's hot" and "tell me when it's
cold". You still have to decide what that _means_. Alternatively, you could ask the
TMP117 to answer the question: "Should I be wearing a skirt"?. In this case, you don't
care if the temperature is high or low exactly, you want to know if the temperature is
in a range where wearing a skirt is warranted. In this case, obviously if the
temperature is over a certain amount, you're going to be wearing a skirt. But if the
temperature goes below 40 degrees, are you going to immediately take off your skirt
and put on some capris? No, you're going to keep your skirt on as long as possible, so
you want to wait not until it's OK to wear capris, but when must you wear capris.

In this case, you would want to use the TMP117's "THERM" mode. When configured
this way, only the high threshold alert will be used. Instead of the low threshold being
the "it's cold" temperature, it is instead used as a "it's not hot anymore" value.

©Adafruit Industries Page 7 of 30

Measurement Delay

The TMP117 also allows you to made adjustments to the measurement behavior.
Unlike things like "speed" or "fashion", temperature doesn't change all that fast. If it's
too cold for a skirt one second, it's going to still be too cold 15 seconds later, barring
unexpected lava.

To make use of this, the TMP117 allows you to change how often it calculates the
temperature. By specifying a read delay, the TMP117 can go into a low power mode
when continuing to read new values would be redundant.

Sample Count and Averaging

As we've established, from a human perspective, temperature doesn't change very
quickly. Sensor are not humans however; they don't "have a feeling" about what the
temperature is, they _measure_ it. That means that even if just one second ago the
temperature was exactly 36.42 degrees C, if moments later a draft or paranormal
phenomenon causes a micro-current of cold air to wisp across the sensor, the
temperature *for the sensor* will drop, if only for a fraction of a second.

©Adafruit Industries Page 8 of 30

The result of this is that if you were to take that single measurement that occurred
while the sensor was momentarily in a cold spot, while technically accurate it won't be
representative of the overall temperature. Like good scientists, we know that to
account for this inevitable fluctuation we should instead take several measurements
and average them to get a more representative value.

The TMP117 also allows you to specify the number of readings that are taken and
averaged. While they only take approximately 15.5 milliseconds, they will add up, so
the more you average, the longer it will take to return a result.

Pinouts

©Adafruit Industries Page 9 of 30

Power Pins
VCC - this is the power pin. To power the board, give it the same power as the
logic level of your microcontroller - e.g. for a 5V microcontroller like Arduino,
use 5V
GND - common ground for power and logic

I2C Logic Pins

SCL - I2C clock pin, connect to your microcontroller I2C clock line. This pin is
level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin.
SDA - I2C data pin, connect to your microcontroller I2C data line. This pin is
level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin.
ADDR/AD0 Jumper - I2C Address pin. Pulling this pin high or bridging the
solder jumper on the back will change the I2C address from 0x48 to 0x49

STEMMA QT (https://adafru.it/Ft4) - These connectors allow you to connectors to
dev boards with STEMMA QT connectors or to other things with various
associated accessories (https://adafru.it/Ft6)

Other Pins
INT -This is the primary interrupt pin. You can setup the TMP117 to pull this low
when certain conditions are met such as new measurement data being
available, or if high or low temperature alerts are triggered.
ADDR - The address pin can be used to change the I2C address from its default
value of 0x48 to another value depending on the voltage it is tied to, according
to the table below

You can solder the back jumper closed to
change the address from 0x48 to 0x49

•

•

•

•

•

•

•

•

©Adafruit Industries Page 10 of 30

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://learn.adafruit.com//assets/97374
https://learn.adafruit.com//assets/97374

Arduino
Using the TMP117 with Arduino is a simple matter of wiring up the sensor to your
Arduino-compatible microcontroller, installing the Adafruit TMP117 (https://adafru.it/
P3A) library we've written, and running the provided example code.

I2C Wiring

Use this wiring if you want to connect via I2C interface. The default I2C address for
the TMP117 is 0x48 but it can be switched to 0x49 by pulling the address pin high to
VCC.

Here is how to wire up the sensor using one of the STEMMA QT (https://adafru.it/Ft4)
connectors. The examples show a Metro but wiring will work the same for an Arduino
or other compatible board.

ADDR Pin Voltage 7-bit I2C address (hex)

Ground (Default) 0x48

VCC (Solder Jumper) 0x49

SDA 0x4A

SCL 0x4B

©Adafruit Industries Page 11 of 30

https://github.com/adafruit/Adafruit_TMP117
https://github.com/adafruit/Adafruit_TMP117
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt

Connect board VIN (red wire) to Arduino
5V if you are running a 5V board Arduino
(Uno, etc.). If your board is 3V, connect to
that instead.
Connect board GND (black
wire) to Arduino GND
Connect board SCL (yellow
wire) to Arduino SCL
Connect board SDA (blue wire) to Arduino
SDA

Here is how to wire the sensor to a board using a solderless breadboard:

Connect board VIN (red wire) to Arduino
5V if you are running a 5V board Arduino
(Uno, etc.). If your board is 3V, connect to
that instead.
Connect board GND (black
wire) to Arduino GND
Connect board SCL (yellow
wire) to Arduino SCL
Connect board SDA (blue wire) to Arduino
SDA

Library Installation

You can install the Adafruit TMP117 library for Arduino using the Library Manager in
the Arduino IDE.

Click the Manage Libraries ... menu item, search for Adafruit TMP117 , and select
the Adafruit TMP117 library:

©Adafruit Industries Page 12 of 30

https://learn.adafruit.com//assets/97079
https://learn.adafruit.com//assets/97079
https://learn.adafruit.com//assets/97084
https://learn.adafruit.com//assets/97084

Follow the same process for the Adafruit BusIO library.

Finally follow the same process for the Adafruit Unified Sensor library:

Load Basic Example

Open up File -> Examples ->Adafruit TMP117 -> basic_test

After opening the demo file, upload to your Arduino wired up to the sensor. Once you
upload the code, you will see the Temperature values being printed when you open
the Serial Monitor (Tools->Serial Monitor) at 115200 baud, similar to this:

©Adafruit Industries Page 13 of 30

Basic Example Code

/**
 * @file basic_test.ino
 * @author Bryan Siepert for Adafruit Industries
 * @brief Shows how to specify a
 * @date 2020-11-10
 *
 * @copyright Copyright (c) 2020
 *
 */
#include <Wire.h>
#include <Adafruit_TMP117.h>
#include <Adafruit_Sensor.h>

Adafruit_TMP117 tmp117;
void setup(void) {

Serial.begin(115200);
while (!Serial) delay(10); // will pause Zero, Leonardo, etc until serial

console opens
Serial.println("Adafruit TMP117 test!");

// Try to initialize!
if (!tmp117.begin()) {

Serial.println("Failed to find TMP117 chip");
while (1) { delay(10); }

}
Serial.println("TMP117 Found!");

}
void loop() {

sensors_event_t temp; // create an empty event to be filled
tmp117.getEvent(&temp); //fill the empty event object with the current

measurements
Serial.print("Temperature "); Serial.print(temp.temperature);Serial.println("

degrees C");
Serial.println("");

delay(1000);
}

 In addition to the basic examples, we have a few other options in the examples
directory, including one for using the build in alerts.

Load Alerts Example

Open up File -> Examples -> Adafruit TMP117 -> alerts

©Adafruit Industries Page 14 of 30

You may want to adjust the high and low temperature limits to fit your conditions to
see how they trigger. If the default values don't work for your setup, changing the
argument for setLowThreshold and setHighThreshold will specify a new
temperature to use.

// You may need to adjust these thresholds to fit the temperature range of where
the test is
// being run to be able to see the alert status change.
tmp117.setHighThreshold(35.0);
Serial.print("High threshold: "); Serial.println(tmp117.getHighThreshold(), 1);
tmp117.setLowThreshold(28.5);
Serial.print("Low threshold: "); Serial.println(tmp117.getLowThreshold(), 1);

Once any adjustments are made, the file should be compiled and uploaded to your
connected board. Once finished, you can see the temperature being reported along
with the states of the two alerts.

Once you've got the alerts triggering, try changing the code below to enable or
disable "Therm" mode which makes the thresholds work more like a target
temperature and hysteresis value to designate the lower bounds of the acceptable
temperature range.

// Set the enable flag below to see how the low temp limit can be used as a
// hysteresis value that defines the acceptable range for the temperature values
where
// the high temp alert is not active
tmp117.thermAlertModeEnabled(true);

©Adafruit Industries Page 15 of 30

Alerts Example Code

/**
 * @file alerts.ino
 * @author Bryan Siepert for Adafruit Industries
 * @brief Show how to set adjust and use the sensor's included alert settings
 * @date 2020-11-10
 *
 * @copyright Copyright (c) 2020
 *
 */
#include <Adafruit_SSD1306.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_TMP117.h>
#include <Wire.h>

Adafruit_SSD1306 display = Adafruit_SSD1306(128, 32, &Wire);

Adafruit_TMP117 tmp117;
void setup(void) {

Serial.begin(115200);
while (!Serial)

delay(10); // will pause Zero, Leonardo, etc until serial console opens
Serial.println("Adafruit TMP117 test!");

// Try to initialize!
if (!tmp117.begin()) {

Serial.println("Failed to find TMP117 chip");
while (1) {

delay(10);
}

}
Serial.println("TMP117 Found!");

if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3C for 128x32
Serial.println(F("SSD1306 allocation failed"));
for (;;)

; // Don't proceed, loop forever
}
display.clearDisplay();
display.display();
display.setTextSize(2);
display.setTextColor(WHITE);
display.setRotation(0);

// Set the enable flag below to see how the low temp limit can be used as a
// hysteresis value that defines the acceptable range for the temperature values

where
// the high temp alert is not active
// tmp117.thermAlertModeEnabled(true);
Serial.print("Therm mode enabled: ");
if (tmp117.thermAlertModeEnabled()) {

Serial.println("True");
} else {

Serial.println("False");
}

// You may need to adjust these thresholds to fit the temperature range of where
the test is

// being run to be able to see the alert status change.
tmp117.setHighThreshold(35.0);
Serial.print("High threshold: "); Serial.println(tmp117.getHighThreshold(), 1);
tmp117.setLowThreshold(28.5);
Serial.print("Low threshold: "); Serial.println(tmp117.getLowThreshold(), 1);

// tmp117.interruptsActiveLow(false);

©Adafruit Industries Page 16 of 30

if(tmp117.interruptsActiveLow()){
Serial.println("Alerts are active when the INT pin is LOW");

} else {
Serial.println("Alerts are active when the INT pin is HIGH");

}

Serial.println("");
Serial.println("");

}

void loop() {
display.clearDisplay();
display.setCursor(0, 0);

tmp117_alerts_t alerts;
sensors_event_t temp;
// Reading temp clears alerts, so read alerts first
tmp117.getAlerts(&alerts); // get the status of any alerts
tmp117.getEvent(&temp); // get temperature

Serial.print("Temperature: ");
Serial.print(temp.temperature);
Serial.println(" degrees C");

Serial.print("High temperature alert active:");
if (alerts.high) {

Serial.println("True");
} else {

Serial.println("False");
}

Serial.print("Low temperature alert active:");
if (alerts.low) {

Serial.println("True");
} else {

Serial.println("False");
}
Serial.println("");

// Print to OLED
display.print("Tmp:");
display.print(temp.temperature, 1);
display.println(" C");

display.print("HI:");
if (alerts.high) {

display.print("Y");
} else {

display.print("N");
}

display.print(" LOW:");
if (alerts.low) {

display.println("Y");
} else {

display.println("N");
}

display.display();
delay(300);

}

Arduino Docs
Arduino Docs (https://adafru.it/ODJ)

©Adafruit Industries Page 17 of 30

http://adafruit.github.io/Adafruit_TMP117/html/index.html

Python & CircuitPython
It's easy to use the TMP117 with Python or CircuitPython, and the Adafruit
CircuitPython TMP117 (https://adafru.it/P3B) module. This module allows you to easily
write Python code that reads the temperature from the TMP117 sensor.

You can use this sensor with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring

First wire up a TMP117 to your board exactly as shown below. Here's an example of
wiring a Feather M4 to the sensor with I2C using one of the handy STEMMA QT (https
://adafru.it/Ft4) connectors:

Board 3V to sensor VIN (red wire)
Board GND to sensor GND (black wire)
Board SCL to sensor SCL (yellow wire)
Board SDA to sensor SDA (blue wire)

You can also use the standard 0.100" pitch headers to wire it up on a breadboard:

Board 3V to sensor VIN (red wire)
Board GND to sensor GND (black wire)
Board SCL to sensor SCL (yellow wire)
Board SDA to sensor SDA (blue wire)

©Adafruit Industries Page 18 of 30

https://github.com/adafruit/Adafruit_CircuitPython_TMP117
https://github.com/adafruit/Adafruit_CircuitPython_TMP117
https://github.com/adafruit/Adafruit_CircuitPython_TMP117
https://github.com/adafruit/Adafruit_CircuitPython_TMP117
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com//assets/97082
https://learn.adafruit.com//assets/97082
https://learn.adafruit.com//assets/97081
https://learn.adafruit.com//assets/97081

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use, we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported (https://adafru.it/BSN).

Here's the Raspberry Pi wired to the sensor using I2C and a STEMMA QT (https://
adafru.it/Ft4) connector:

Pi 3V to sensor VCC (red wire)
Pi GND to sensor GND (black wire)
Pi SCL to sensor SCL (yellow wire)
Pi SDA to sensor SDA (blue wire)

Finally here is an example of how to wire up a Raspberry Pi to the sensor using a
solderless breadboard

Pi 3V to sensor VCC (red wire)
Pi GND to sensor GND (black wire)
Pi SCL to sensor SCL (yellow wire)
Pi SDA to sensor SDA (blue wire)

CircuitPython Installation of TMP117 Library

You'll need to install the Adafruit CircuitPython TMP117 (https://adafru.it/P3B) library on
your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board.

©Adafruit Industries Page 19 of 30

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com//assets/117487
https://learn.adafruit.com//assets/117487
https://learn.adafruit.com//assets/97083
https://learn.adafruit.com//assets/97083
https://github.com/adafruit/Adafruit_CircuitPython_TMP117
https://github.com/adafruit/Adafruit_CircuitPython_TMP117
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library bundle
(https://adafru.it/ENC). Our CircuitPython starter guide has a great page on how to
install the library bundle (https://adafru.it/ABU).

Before continuing make sure your board's lib folder or root filesystem has the adafruit
_TMP117.mpy file and adafruit_bus_device folder copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz)so you are at the
CircuitPython >>> prompt.

Python Installation of TMP117 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling I2C on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer ready (https:
//adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-TMP117

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

Basic CircuitPython & Python Usage

To demonstrate the usage of the sensor we'll initialize it and read the temperature
measurements from the board's Python REPL.

Run the following code to import the necessary modules and initialize the I2C
connection with the sensor:

import time
import board
import adafruit_tmp117

i2c = board.I2C()
tmp117 = adafruit_tmp117.TMP117(i2c)

•

©Adafruit Industries Page 20 of 30

https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Now you're ready to read values from the sensor using the temperature property:

temperature - The temperature measured by the sensor, a value in degrees
Celsius.

print("Temperature: %.2f degrees C" % tmp117.temperature)

Basic Example Code

SPDX-FileCopyrightText: 2020 Bryan Siepert, written for Adafruit Industries
#
SPDX-License-Identifier: Unlicense
import time
import board
import adafruit_tmp117

i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller
tmp117 = adafruit_tmp117.TMP117(i2c)

while True:
print("Temperature: %.2f degrees C" % tmp117.temperature)
time.sleep(1)

Temperature Alerts Example

Once you've tried out the basic example, you can play with setting and checking high
and low temperature alerts. Use the code above to set up a TMP117 instance in the
REPL and then use the high_limit and low_limit properties to set alerts for high
and low temperatures:

tmp117.high_limit = 25
tmp117.low_limit = 10

The above will set the alert temperatures to 25 and 10 degrees C respectively. You
may wish to change these values to suit your needs.

•

©Adafruit Industries Page 21 of 30

Once the limits are set, we can check them using the alert_status property to
read the state of the temperature limits:

alert_status = tmp117.alert_status
print("High alert:", alert_status.high_alert)
print("Low alert:", alert_status.low_alert)

Temperature Alerts Example Code

SPDX-FileCopyrightText: 2020 Bryan Siepert, written for Adafruit Industries
#
SPDX-License-Identifier: Unlicense
import time
import board
from adafruit_tmp117 import TMP117, AlertMode

i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller

tmp117 = TMP117(i2c)

tmp117.high_limit = 25
tmp117.low_limit = 10

print("\nHigh limit", tmp117.high_limit)
print("Low limit", tmp117.low_limit)

Try changing `alert_mode` to see how it modifies the behavior of the alerts.
tmp117.alert_mode = AlertMode.WINDOW #default
tmp117.alert_mode = AlertMode.HYSTERESIS

print("Alert mode:", AlertMode.string[tmp117.alert_mode])
print("\n\n")
while True:

print("Temperature: %.2f degrees C" % tmp117.temperature)
alert_status = tmp117.alert_status
print("High alert:", alert_status.high_alert)
print("Low alert:", alert_status.low_alert)
print("")
time.sleep(1)

Python Docs
Python Docs (https://adafru.it/ODK)

©Adafruit Industries Page 22 of 30

https://circuitpython.readthedocs.io/projects/tmp117/en/latest/

WipperSnapper

What is WipperSnapper

WipperSnapper is a firmware designed to turn any WiFi-capable board into an
Internet-of-Things device without programming a single line of code. WipperSnapper
connects to Adafruit IO (https://adafru.it/fsU), a web platform designed (by
Adafruit! (https://adafru.it/Bo5)) to display, respond, and interact with your project's
data.

Simply load the WipperSnapper firmware onto your board, add credentials, and plug it
into power. Your board will automatically register itself with your Adafruit IO account.

From there, you can add components to your board such as buttons, switches,
potentiometers, sensors, and more! Components are dynamically added to hardware,
so you can immediately start interacting, logging, and streaming the data your
projects produce without writing code.

If you've never used WipperSnapper, click below to read through the quick start guide
before continuing.

Quickstart: Adafruit IO
WipperSnapper

https://adafru.it/Vfd

©Adafruit Industries Page 23 of 30

https://io.adafruit.com/
https://www.adafruit.com/about
https://www.adafruit.com/about
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

Wiring

First, wire up a TMP117 to your board exactly as follows. Here is an example of the
TMP117 wired to an Adafruit ESP32 Feather V2 (http://adafru.it/5400) using I2C with a
STEMMA QT cable (no soldering required) (http://adafru.it/4210)

Board 3V to sensor VIN (red wire on
STEMMA QT)
Board GND to sensor GND (black wire on
STEMMA QT)
Board SCL to sensor SCL (yellow wire on
STEMMA QT)
Board SDA to sensor SDA (blue wire on
STEMMA QT)

Usage

Connect your board to Adafruit IO Wippersnapper and navigate to the
WipperSnapper board list (https://adafru.it/TAu).

On this page, select the WipperSnapper board you're using to be brought to the
board's interface page.

©Adafruit Industries Page 24 of 30

https://www.adafruit.com/product/5400
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://learn.adafruit.com//assets/123399
https://learn.adafruit.com//assets/123399
https://learn.adafruit.com//assets/123401
https://learn.adafruit.com//assets/123401
https://io.adafruit.com/wippersnapper
https://io.adafruit.com/wippersnapper

If you do not see your board listed here - you need to connect your board to Adafruit
IO (https://adafru.it/Vfd) first.

On the device page, quickly check that
you're running the latest version of the
WipperSnapper firmware.

The device tile on the left indicates the
version number of the firmware running on
the connected board.

If the firmware version is green with a
checkmark - continue with this guide.
If the firmware version is red with an
exclamation mark "!" - update to the latest
WipperSnapper firmware (https://adafru.it/
Vfd) on your board before continuing.

Next, make sure the sensor is plugged into your board and click the I2C Scan button.

©Adafruit Industries Page 25 of 30

https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com//assets/123496
https://learn.adafruit.com//assets/123496
https://learn.adafruit.com//assets/123587
https://learn.adafruit.com//assets/123587
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

You should see the TMP117's default I2C address of 0x48 pop-up in the I2C scan list.

I don't see the sensor's I2C address listed!
First, double-check the connection and/or wiring between the sensor and the
board.

Then, reset the board and let it re-connect to Adafruit IO WipperSnapper.

With the sensor detected in an I2C scan, you're ready to add the sensor to your
board.

Click the New Component button or the + button to bring up the component picker.

©Adafruit Industries Page 26 of 30

Adafruit IO supports a large amount of components. To quickly find your sensor,
type TMP117 into the search bar, then select the TMP117 component.

On the component configuration page, the TMP117's sensor address should be listed
along with the sensor's settings.

The Send Every option is specific to each sensor's measurements. This option will tell
the Feather how often it should read from the TMP117 sensor and send the data to
Adafruit IO. Measurements can range from every 30 seconds to every 24 hours.

For this example, set the Send Every interval to every 30 seconds.

©Adafruit Industries Page 27 of 30

Your device interface should now show the sensor components you created. After the
interval you configured elapses, WipperSnapper will automatically read values from
the sensor(s) and send them to Adafruit IO.

To view the data that has been logged from the sensor, click on the graph next to the
sensor name.

©Adafruit Industries Page 28 of 30

Here you can see the feed history and edit things about the feed such as the name,
privacy, webhooks associated with the feed and more. If you want to learn more
about how feeds work, check out this page (https://adafru.it/10aZ).

©Adafruit Industries Page 29 of 30

https://learn.adafruit.com/all-the-internet-of-things-episode-four-adafruit-io/advanced-feeds

Downloads
Files

TMP117 Datasheet (https://adafru.it/P3C)
EagleCAD files on GitHub (https://adafru.it/P3D)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/P3E)

Schematic

Fab Print

•
•
•

©Adafruit Industries Page 30 of 30

https://www.ti.com/lit/ds/symlink/tmp117.pdf
https://www.ti.com/lit/ds/symlink/tmp117.pdf
https://github.com/adafruit/Adafruit-TMP117-PCB
https://github.com/adafruit/Adafruit-TMP117-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20TMP117.fzpz
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20TMP117.fzpz

	Adafruit TMP117 High Accuracy I2C Temperature Monitor
	Table of Contents
	Overview
	Featured Features
	Pinouts
	Arduino
	Arduino Docs
	Python & CircuitPython
	Python Docs
	WipperSnapper
	Downloads

	Overview
	Featured Features
	Temperature offset management
	Temperature thresholds
	Threshold behavior
	Measurement Delay
	Sample Count and Averaging

	Pinouts
	Power Pins
	Other Pins

	Arduino
	I2C Wiring
	Library Installation
	Load Basic Example
	Basic Example Code
	Load Alerts Example
	Alerts Example Code

	Arduino Docs
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of TMP117 Library
	Python Installation of TMP117 Library
	Basic CircuitPython & Python Usage
	Basic Example Code
	Temperature Alerts Example
	Temperature Alerts Example Code

	Python Docs
	WipperSnapper
	What is WipperSnapper
	Wiring
	Usage
	I don't see the sensor's I2C address listed!

	Downloads
	Files
	Schematic
	Fab Print

