
Virtual JTAG Intel® FPGA IP Core
User Guide

Updated for Quartus® Prime Design Suite: 20.3

Online Version

Send Feedback UG-SLDVRTL

683705

2021.08.12

https://www.intel.com/content/www/us/en/docs/programmable/683705.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

Virtual JTAG Intel® FPGA IP Core User Guide..3
Introduction.. 3

Installing and Licensing Intel FPGA IP Cores... 4
On-Chip Debugging Tool Suite.. 4
Applications of the Virtual JTAG Intel FPGA IP Core..5
JTAG Protocol... 6
JTAG Circuitry Architecture...7

System-Level Debugging Infrastructure.. 9
Transaction Model of the SLD Infrastructure..9
SLD Hub Finite State Machine... 11

Virtual JTAG Interface Description...12
Input Ports...14
Output Ports...14
Parameters...16
Design Flow of the Virtual JTAG Intel FPGA IP Core.. 16
Simulation Model.. 17
Run-Time Communication...18
Running a DR Shift Operation Through a Virtual JTAG Chain....................................19

Run-Time Communication..19
Virtual IR/DR Shift Transaction without Returning Captured IR/DR Values................. 20
Virtual IR/DR Shift Transaction that Captures Current VIR/VDR Values......................22
Reset Considerations when Using a Custom JTAG Controller....................................23

Instantiating the Virtual JTAG Intel FPGA IP Core..24
IP Catalog and Parameter Editor..24
Specifying IP Core Parameters and Options...24
Instantiating Directly in HDL...26

Simulation Support...28
Compiling the Design..31

Third-Party Synthesis Support...32
SLD_NODE Discovery and Enumeration... 32

Issuing the HUB_INFO Instruction... 33
HUB IP Configuration Register...33
SLD_NODE Info Register.. 34

Capturing the Virtual IR Instruction Register.. 35
AHDL Function Prototype ..36
VHDL Component Declaration.. 36
VHDL LIBRARY-USE Declaration..37
Design Example: TAP Controller State Machine...37
Design Example: Modifying the DCFIFO Contents at Runtime... 39

Write Logic...39
Read Logic... 40
Runtime Communication.. 41

Design Example: Offloading Hardwired Revision Information.. 42
Configuring the JTAG User Code Setting... 43

Document Revision History for the Virtual JTAG Intel FPGA IP Core User Guide................... 43

Contents

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Virtual JTAG Intel® FPGA IP Core User Guide
The Virtual JTAG Intel® FPGA IP core provides access to the PLD source through the
JTAG interface. This IP core is optimized for Intel device architectures. Using IP cores
in place of coding your own logic saves valuable design time, and offers more efficient
logic synthesis and device implementation. You can scale the IP core's size by setting
parameters.

Related Information

Introduction to Intel FPGA IP Cores

Introduction

The Virtual JTAG Intel FPGA IP core allows you to create your own software solution
for monitoring, updating, and debugging designs through the JTAG port without using
I/O pins on the device, and is one feature in the On-Chip Debugging Tool Suite. The
Quartus® Prime software or JTAG control host identifies each instance of this IP core
by a unique index. Each IP core instance functions in a flow that resembles the JTAG
operation of a device. The logic that uses this interface must maintain the continuity of
the JTAG chain on behalf the PLD device when this instance becomes active.

With the Virtual JTAG Intel FPGA IP core you can build your design for efficient, fast,
and productive debugging solutions. Debugging solutions can be part of an evaluation
test where you use other logic analyzers to debug your design, or as part of a
production test where you do not have a host running an embedded logic analyzer. In
addition to debugging features, you can use the Virtual JTAG Intel FPGA IP core to
provide a single channel or multiple serial channels through the JTAG port of the
device. You can use serial channels in applications to capture data or to force data to
various parts of your logic.

Each feature in the On-Chip Debugging Tool Suite leverages on-chip resources to
achieve real time visibility to the logic under test. During runtime, each tool shares the
JTAG connection to transmit collected test data to the Quartus Prime software for
analysis. The tool set consists of a set of GUIs, IP core intellectual property (IP) cores,
and Tcl application programming interfaces (APIs). The GUIs provide the configuration
of test signals and the visualization of data captured during debugging. The Tcl
scripting interface provides automation during runtime.

The Virtual JTAG Intel FPGA IP core provides you direct access to the JTAG control
signals routed to the FPGA core logic, which gives you a fine granularity of control
over the JTAG resource and opens up the JTAG resource as a general-purpose serial
communication interface. A complete Tcl API is available for sending and receiving
transactions into your device during runtime. Because the JTAG pins are readily
accessible during runtime, this IP core enables an easy way to customize a JTAG scan
chain internal to the device, which you can then use to create debugging applications.

683705 | 2021.08.12

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683102/current/introduction-to-cores.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Examples of debugging applications include induced trigger conditions evaluated by a
Signal Tap logic analyzer by exercising test signals connected to the analyzer instance,
a replacement for a front panel interface during the prototyping phase of the design,
or inserted test vectors for exercising the design under test.

The infrastructure is an extension of the JTAG protocol for use with Intel-specific
applications and user applications, such as the Signal Tap logic analyzer.

Installing and Licensing Intel FPGA IP Cores

The Quartus Prime software installation includes the Intel FPGA IP library. This library
provides many useful IP cores for your production use without the need for an
additional license. Some Intel FPGA IP cores require purchase of a separate license for
production use. The Intel FPGA IP Evaluation Mode allows you to evaluate these
licensed Intel FPGA IP cores in simulation and hardware, before deciding to purchase a
full production IP core license. You only need to purchase a full production license for
licensed Intel IP cores after you complete hardware testing and are ready to use the
IP in production.

The Quartus Prime software installs IP cores in the following locations by default:

Figure 1. IP Core Installation Path

intelFPGA(_pro)

quartus - Contains the Intel Quartus Prime software
ip - Contains the Intel FPGA IP library and third-party IP cores

altera - Contains the Intel FPGA IP library source code
<IP name> - Contains the Intel FPGA IP source files

Table 1. IP Core Installation Locations

Location Software Platform

<drive>:\intelFPGA_pro\quartus\ip\altera Quartus Prime Pro Edition Windows*

<drive>:\intelFPGA\quartus\ip\altera Quartus Prime Standard Edition Windows

<home directory>:/intelFPGA_pro/quartus/ip/altera Quartus Prime Pro Edition Linux*

<home directory>:/intelFPGA/quartus/ip/altera Quartus Prime Standard Edition Linux

Note: The Quartus Prime software does not support spaces in the installation path.

On-Chip Debugging Tool Suite

The On-Chip Debugging Tool Suite enables real time verification of a design and
includes the following tools:

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2. On-Chip Debugging Tool Suite

Tool Description Typical Circumstances for Use

Signal Tap Logic
Analyzer

Uses FPGA resources to sample tests nodes
and outputs the information to the Quartus
Prime software for display and analysis.

You have spare on-chip memory and want functional
verification of your design running in hardware.

Signal Probe Incrementally routes internal signals to I/O
pins while preserving the results from your
last place-and-route.

You have spare I/O pins and want to check the
operation of a small set of control pins using either an
external logic analyzer or an oscilloscope.

Logic Analyzer
Interface (LAI)

Multiplexes a larger set of signals to a
smaller number of spare I/O pins. LAI
allows you to select which signals are
switched onto the I/O pins over a JTAG
connection.

You have limited on-chip memory and have a large set
of internal data buses that you want to verify using an
external logic analyzer. Logic analyzer vendors, such as
Tektronics and Agilent, provide integration with the tool
to improve usability.

In-System
Memory
Content Editor

Displays and allows you to edit on-chip
memory.

You want to view and edit the contents of either the
instruction cache or data cache of a Nios® II processor
application.

In-System
Sources and
Probes

Provides a way to drive and sample logic
values to and from internal nodes using the
JTAG interface.

You want to prototype a front panel with virtual buttons
for your FPGA design.

Virtual JTAG
Interface

Opens the JTAG interface so that you can
develop your own custom applications.

You want to generate a large set of test vectors and
send them to your device over the JTAG port to
functionally verify your design running in hardware.

Related Information

Intel Quartus Prime Standard Edition User Guide: Debug Tools

Applications of the Virtual JTAG Intel FPGA IP Core

You can instantiate single or multiple instances of the Virtual JTAG Intel FPGA IP core
in your HDL code. During synthesis, the Quartus Prime software assigns unique IDs to
each instance, so that each instance is accessed individually. You can instantiate up to
128 instances of the Virtual JTAG Intel FPGA IP core. The figure below shows a typical
application in a design with multiple instances of the IP core.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

5

https://www.intel.com/content/www/us/en/docs/programmable/683552/current/system-debugging-tools-overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Application Example

Logic

Logic

JTAG

sld_virtual_jtag

sld_virtual_jtag

tck
tms
trst
tdi

tdo

The hub automatically arbitrates between multiple applications that share a single
JTAG resource. Therefore, you can use the IP core in tandem with other on-chip
debugging applications, such as the Signal Tap logic analyzer, to increase debugging
visibility. You can also use the IP core to provide simple stimulus patterns to solicit a
response from the design under test during run-time, including the following
applications:

• To diagnose, sample, and update the values of internal parts of your logic. With
this IP core, you can easily sample and update the values of the internal counters
and state machines in your hardware device.

• To build your own custom software debugging IP using the Tcl commands to debug
your hardware. This IP communicates with the instances of the Virtual JTAG Intel
FPGA IP core inside your design.

• To construct your design to achieve virtual inputs and outputs.

• If you are building a debugging solution for a system in which a microprocessor
controls the JTAG chain, you cannot use the Signal Tap logic analyzer because the
JTAG control must be with the microprocessor. You can use low-level controls for
the JTAG port from the Tcl commands to direct microprocessors to communicate
with the Virtual JTAG Intel FPGA IP core inside the device core.

JTAG Protocol

The original intent of the JTAG protocol (standardized as IEEE 1149.1) was to simplify
PCB interconnectivity testing during the manufacturing stage. As access to integrated
circuit (IC) pins became more limited due to tighter lead spacing and FPGA packages,
testing through traditional probing techniques, such as “bed-of-nails” test fixtures,
became infeasible. The JTAG protocol alleviates the need for physical access to IC pins
via a shift register chain placed near the I/O ring. This set of registers near the I/O
ring, also known as boundary scan cells (BSCs), samples and forces values out onto
the I/O pins. The BSCs from JTAG-compliant ICs are daisy-chained into a serial-shift
chain and driven via a serial interface.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

During boundary scan testing, software shifts out test data over the serial interface to
the BSCs of select ICs. This test data forces a known pattern to the pins connected to
the affected BSCs. If the adjacent IC at the other end of the PCB trace is
JTAG-compliant, the BSC of the adjacent IC samples the test pattern and feeds the
BSCs back to the software for analysis. The figure below illustrates the boundary-scan
testing concept.

Figure 3. IEEE Std. 1149.1 Boundary-Scan Testing

Serial
Data In

JTAG Device 1 JTAG Device 2

Serial
Data Out

Core
Logic

Core
Logic

Boundary-Scan Cell
IC Pin Signal

Interconnection
to be Tested

Because the JTAG interface shifts in any information to the device, leaves a low
footprint, and is available on all Intel devices, it is considered a general purpose
communication interface. In addition to boundary scan applications, Intel devices use
the JTAG port for other applications, such as device configuration and on-chip
debugging features available in the Quartus Prime software.

Related Information

AN 39: IEEE 1149.1 JTAG Boundary-Scan Testing

JTAG Circuitry Architecture

The basic architecture of the JTAG circuitry consists of the following components:

• A set of Data Registers (DRs)

• An Instruction Register (IR)

• A state machine to arbitrate data (known as the Test Access Port (TAP) controller)

• A four- or five-pin serial interface, consisting of the following pins:

— Test data in (TDI), used to shift data into the IR and DR shift register chains

— Test data out (TDO), used to shift data out of the IR and DR shift register
chains

— Test mode select (TMS), used as an input into the TAP controller

— TCK, used as the clock source for the JTAG circuitry

— TRST resets the TAP controller. This is an optional input pin defined by the
1149.1 standard.

Note: The TRST pin is not present in the Cyclone device family.

The bank of DRs is the primary data path of the JTAG circuitry. It carries the payload
data for all JTAG transactions. Each DR chain is dedicated to serving a specific
function. Boundary scan cells form the primary DR chain. The other DR chains are
used for identification, bypassing the IC during boundary scan tests, or a custom set

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

7

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an039.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

of register chains with functions defined by the IC vendor. Intel uses two of the DR
chains with user-defined IP that requires the JTAG chain as a communication resource,
such as the on-chip debugging applications. The Virtual JTAG Intel FPGA IP core, in
particular, allows you to extend the two DR chains to a user-defined custom
application.

You use the instruction register to select the bank of Data Registers to which the TDI
and TDO must connect. It functions as an address register for the bank of Data
Registers. Each IR instruction maps to a specific DR chain.

All shift registers that are a part of the JTAG circuitry (IR and DR register chains) are
composed of two kinds of registers: shift registers, which capture new serial shift
input from the TDI pin, and parallel hold registers, which connect to each shift
register to hold the current input in place when shifting. The parallel hold registers
ensure stability in the output when new data is shifted.

The following figure shows a functional model of the JTAG circuitry. The TRST pin is an
optional pin in the 1149.1 standard and not available in Cyclone devices. The TAP
controller is a hard controller; it is not created using programmable resources. The
major function of the TAP controller is to route test data between the IR and DR
register chains.

Figure 4. Functional Model of the JTAG Circuitry

IR Shift Registers

IR Update Registers

DR Shift Register 1

DR Update Register 1

DR Shift Register 2

DR Update Register 2

DR Shift Register n

DR Update Register n

JTAG TAP
Controller

(2)

TDI TDO

Tap
Controller

Output (3)

Tap
Controller
Output (3)

TRST (1)

TCK

TMS

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System-Level Debugging Infrastructure

On-chip debugging tools that require the JTAG resources share two Data Register
chain paths; USER1 and USER0 instructions select the Data Register chain paths. The
datapaths are an extension of the JTAG circuitry for use with the programmable logic
elements in Intel devices.

Because the JTAG resource is shared among multiple on-chip applications, an
arbitration scheme must define how the USER0 and USER1 scan chains are allocated
between the different applications. The system-level debugging (SLD) infrastructure
defines the signaling convention and the arbitration logic for all programmable logic
applications using a JTAG resource. The figure below shows the SLD infrastructure
architecture.

Figure 5. System Level Debugging Infrastructure Functional Model

JTAG Tap
Controller

TC

TM

TD

TD

FPGA

SLD Node

SLD Node

SLD Node

SLD Node

SLD Hub

User’s Design
(Core Logic)

Transaction Model of the SLD Infrastructure

In the presence of an application that requires the JTAG resource, the Quartus Prime
software automatically implements the SLD infrastructure to handle the arbitration of
the JTAG resource. The communication interface between JTAG and any IP cores is
transparent to the designer. All components of the SLD infrastructure, except for the
JTAG TAP controller, are built using programmable logic resources.

The SLD infrastructure mimics the IR/DR paradigm defined by the JTAG protocol. Each
application implements an Instruction Register, and a set of Data Registers that
operate similarly to the Instruction Register and Data Registers in the JTAG standard.
Note that the Instruction Register and the Data Register banks implemented by each

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

application are a subset of the USER1 and USER0 Data Register chains. The SLD
infrastructure consists of three subsystems: the JTAG TAP controller, the SLD hub, and
the SLD nodes.

The SLD hub acts as the arbiter that routes the TDI pin connection between each SLD
node, and is a state machine that mirrors the JTAG TAP controller state machine.

The SLD nodes represent the communication channels for the end applications. Each
instance of IP requiring a JTAG communication resource, such as the Signal Tap logic
analyzer, would have its own communication channel in the form of a SLD node
interface to the SLD hub. Each SLD node instance has its own Instruction Register and
bank of DR chains. Up to 255 SLD nodes can be instantiated, depending on resources
available in your device.

Together, the sld_hub and the SLD nodes form a virtual JTAG scan chain within the
JTAG protocol. It is virtual in the sense that both the Instruction Register and DR
transactions for each SLD node instance are encapsulated within a standard DR scan
shift of the JTAG protocol.

The Instruction Register and Data Registers for the SLD nodes are a subset of the
USER1 and USER0 Data Registers. Because the SLD Node IR/DR register set is not
directly part of the IR/DR register set of the JTAG protocol, the SLD node Instruction
Register and Data Register chains are known as Virtual IR (VIR) and Virtual DR (VDR)
chains. The figure below shows the transaction model of the SLD infrastructure.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Extension of the JTAG Protocol for PLD Applications

IR Shift Registers

IR Update Registers

DR Shift Register 1

DR Update Register 1

USER 0 Data Registers

USER 1 Data Registers

TDI TDO

TAP
Controller

Output

TAP
Controller
Output

Intel PLD JTAG Extension

Intel PLD JTAG Extension

Node 1

Node N

USER0 / USER1 and
SLD_HUB Control Signals

TDI TDO

VIR

VDR 1

VDR N

VIR

VIR 1

VIR N

SLD Hub Finite State Machine

The SLD hub decodes TMS independently from the hard JTAG TAP controller state
machine and implements an equivalent state machine (called the “SLD hub finite state
machine”) for the internal JTAG path. The SLD hub performs a similar function for the
VIR and VDR chains that the TAP controller performs for the JTAG IR and DR chains. It
enables an SLD node as the active path for the TDI pin, selects the TDI data between

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the VIR and VDR registers, controls the start and stop of any shift transactions, and
controls the data flow between the parallel hold registers and the parallel shift
registers of the VIR and VDR.

Because all shifts to VIR and VDR are encapsulated within a DR shift transaction, an
additional control signal is necessary to select between the VIR and VDR data paths.
The SLD hub uses the USER1 command to select the VIR data path and the USER0
command to select the VDR data path.

This state information, including a bank of enable signals, is forwarded to each of the
SLD nodes. The SLD nodes perform the updates to the VIR and VDR according to the
control states provided by the sld_hub. The SLD nodes are responsible for
maintaining continuity between the TDI and TDO pins.

The figure below shows the SLD hub finite state machine. There is no direct state
signal available to use for application design.

Figure 7. sld_hub Finite State Machine

USR0 USR1

JTAG_Test_Logic_Reset

JTAG_Run_Test_Idle Virtual_Select_DR_Scan (1) Virtual_Select_IR_Scan (1)

Virtual_Capture_DR

Virtual_Shift_DR

Virtual_Exit1_DR

Virtual_Pause_DR

Virtual_Exit2_DR

Virtual_Update_DR

Virtual_Capture_IR

Virtual_Shift_IR (1)

Virtual_Exit1_IR (1)

Virtual_Pause_IR (1)

Virtual_Exit2_IR (1)

Virtual_Update_IR

Virtual JTAG Interface Description

The Virtual JTAG Interface implements an SLD node interface, which provides a
communication interface to the JTAG port. The IP core exposes control signals that are
part of the SLD hub; namely, JTAG port signals, all finite state machine controller
states of the TAP controller, and the SLD hub finite state machine. Additionally, each
instance of the Virtual JTAG Intel FPGA IP cores contain the virtual Instruction Register
for the SLD node. Instantiation of this IP core automatically infers the SLD
infrastructure, and one SLD node is added for each instantiation.

The Virtual JTAG Intel FPGA IP core provides a port interface that mirrors the actual
JTAG ports. The interface contains the JTAG port pins, a one-hot decoded output of all
JTAG states, and a one-hot decoded output of all the virtual JTAG states. Virtual JTAG
states are the states decoded from the SLD hub finite state machine. The ir_in and
ir_out ports are the parallel input and output to and from the VIR. The VIR ports are

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

used to select the active VDR datapath. The JTAG states and TMS output ports are
provided for debugging purposes only. Only the virtual JTAG, TDI, TDO, and the IR
signals are functional elements of the IP core. When configuring this IP core using the
parameter editor, you can hide TMS and the decoded JTAG states.

The figure below shows the input and output ports of the virtual JTAG Intel FPGA IP
core. The JTAG TAP controller outputs and TMS signals are used for informational
purposes only. These signals can be exposed using the Create primitive JTAG state
signal ports option in the parameter editor.

Figure 8. Input and Output Ports of the Virtual JTAG Intel FPGA IP Core

my_vji

tdo

ir_out[1..0]

tck
tdi

ir_in[1..0]

virtual_state_uir

jtag_state_sdrs

jtag_state_sdr
jtag_state_e1dr

jtag_state_pdr

jtag_state_udr
jtag_state_sirs
jtag_state_cir
jtag_state_sir

jtag_state_e1ir
jtag_state_pir

jtag_state_e2ir
jtag_state_uir

tms

jtag_state_e2dr

jtag_state_cdr

jtag_state_rti
jtag_state_tlr

virtual_state_cir
virtual_state_udr

virtual_state_e2dr
virtual_state_pdr

virtual_state_e1dr
virtual_state_sdr
virtual_state_cdr

Inputs

One-Hot Decoded Outputs
from the SLD Hub FSM

One-Hot Decoded Outputs
from the TAP Controller

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Input Ports

Table 3. Input Ports for the Virtual JTAG Intel FPGA IP Core

Port name Required Description Comments

tdo Yes Writes to the TDO pin on the device.

ir_out[] No Virtual JTAG instruction register
output. The value is captured
whenever virtual_state_cir is
high.

Input port [SLD_IR_WIDTH-1..0]
wide. Specify the width of this bus with
the SLD_IR_WIDTH parameter.

Output Ports

Table 4. Output Ports for the Virtual JTAG Intel FPGA IP Core

Port Name Required Description Comments

tck Yes JTAG test clock. Connected directly to the TCK device
pin. Shared among all virtual JTAG
instances.

tdi Yes TDI input data on the device. Used
when virtual_state_sdr is high.

Shared among all virtual JTAG
instances.

ir_in[] No Virtual JTAG instruction register data.
The value is available and latched
when virtual_state_uir is high.

Output port [SLD_IR_WIDTH-1..0]
wide. Specify the width of this bus with
the SLD_IR_WIDTH parameter.

Table 5. High-Level Virtual JTAG State Signals

Port Name Required Description Comments

virtual_state_cdr No Indicates that virtual JTAG is in
Capture_DR state.

virtual_state_sdr Yes Indicates that virtual JTAG is in
Shift_DR state.

In this state, this instance is
required to establish the JTAG
chain for this device.

virtual_state_e1dr No Indicates that virtual JTAG is in
Exit1_DR state.

virtual_state pdr No Indicates that virtual JTAG is in
Pause_DR state.

The Quartus Prime software does
not cycle through this state using
the Tcl command.

virtual_state_e2dr No Indicates that virtual JTAG is in
Exit2_DR state.

The Quartus Prime software does
not cycle through this state using
the Tcl command.

virtual_state_udr No Indicates that virtual JTAG is in
Update_DR state.

virtual_state_cir No Indicates that virtual JTAG is in
Capture_IR state.

virtual_state_uir No Indicates that virtual JTAG is in
Update_IR state.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6. Low-Level Virtual JTAG State Signals

Port Name Required Description Comments

jtag_state_tlr No Indicates that the device JTAG
controller is in the
Test_Logic_Reset state.

Shared among all virtual JTAG
instances.

jtag_state_rti No Indicates that the device JTAG
controller is in the Run_Test/Idle
state.

Shared among all virtual JTAG
instances.

jtag_state_sdrs No Indicates that the device JTAG
controller is in the
Select_DR_Scan state.

Shared among all virtual JTAG
instances.

jtag_state_cdr No Indicates that the device JTAG
controller is in the Capture_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_sdr No Indicates that the device JTAG
controller is in the Shift_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_e1dr No Indicates that the device JTAG
controller is in the Exit1_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_pdr No Indicates that the device JTAG
controller is in the Pause_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_e2dr No Indicates that the device JTAG
controller is in the Exit2_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_udr No Indicates that the device JTAG
controller is in the Update_DR
state.

Shared among all virtual JTAG
instances.

jtag_state_sirs No Indicates that the device JTAG
controller is in the
Select_IR_Scan state.

Shared among all virtual JTAG
instances.

jtag_state_cir No Indicates that the device JTAG
controller is in the Capture_IR
state.

Shared among all virtual JTAG
instances.

jtag_state_sir No Indicates that the device JTAG
controller is in the Shift_IR state.

Shared among all virtual JTAG
instances.

jtag_state_e1ir No Indicates that the device JTAG
controller is in the Exit1_IR
state.

Shared among all virtual JTAG
instances.

jtag_state_pir No Indicates that the device JTAG
controller is in the Pause_IR
state.

Shared among all virtual JTAG
instances.

jtag_state_e2ir No Indicates that the device JTAG
controller is in the Exit2_IR
state.

Shared among all virtual JTAG
instances.

jtag_state_uir Indicates that the device JTAG
controller is in the Update_IR
state.

Shared among all virtual JTAG
instances.

tms TMS input pin on the device. Shared among all virtual JTAG
instances.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameters

Table 7. Virtual JTAG Parameters

Parameter Type Required Description

SLD_AUTO_INSTANCE_INDEX String Yes Specifies whether the Compiler automatically assigns
an index to the Virtual JTAG instance. Values are
YES or NO. When you specify NO, you can find the
auto assigned value of INSTANCE_ID in the
quartus_map file. When you specify NO, you must
define INSTANCE_INDEX. If the index specified is
not unique in a design, the Compiler automatically
reassigns an index to the instance. The default value
is YES.

SLD_INSTANCE_INDEX Integer No Specifies a unique identifier for every instance of
alt_virtual_jtag when AUTO_INSTANCE_ID is
specified to YES. Otherwise, this value is ignored.

SLD_IR_WIDTH Integer Yes Specifies the width of the instruction register
ir_in[] of this virtual JTAG between 1 and 24. If
omitted, the default is 1.

Design Flow of the Virtual JTAG Intel FPGA IP Core

Designing with the Virtual JTAG Intel FPGA IP core includes the following processes:

• Configuring the Virtual JTAG Intel FPGA IP core with the desired Instruction
Register length and instantiating the IP core.

• Building the glue logic for interfacing with your application.

• Communicating with the Virtual JTAG instance during runtime.

In addition to the JTAG datapath and control signals, the Virtual JTAG Intel FPGA IP
core encompasses the VIR. The Instruction Register size is configured in the
parameter editor. The Instruction Register port on the Virtual JTAG Intel FPGA IP core
is the parallel output of the VIR. Any updated VIR information can be read from this
port after the virtual_state_uir signal is asserted.

After instantiating the IP core, you must create the VDR chains that interface with
your application. To do this, you use the virtual instruction output to determine which
VDR chain is the active datapath, and then create the following:

• Decode logic for the VIR

• VDR chains to which each VIR maps

• Interface logic between your VDR chains and your application logic

Your glue logic uses the decoded one-hot outputs from the IP core to determine when
to shift and when to update the VDR. Your application logic interfaces with the VDR
chains during any one of the non-shift virtual JTAG states.

For example, your application logic can parallel read an updated value that was shifted
in from the JTAG port after the virtual_state_uir signal is asserted. If you load a
value to be shifted out of the JTAG port, you would do so when the
virtual_state_cdr signal is asserted. Finally, if you enable the shift register to
clock out information to TDO, you would do so during the assertion of
virtual_state_sdr.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Maintaining TDI-to-TDO connectivity is important. Ensure that all possible instruction
codes map to an active register chain to maintain connectivity in the TDI-to-TDO
datapath. Intel recommends including a bypass register as the active register for all
unmapped IR values.

Note that TCK (a maximum 10-MHz clock, if using an Intel programming cable)
provides the clock for the entire SLD infrastructure. Be sure to follow best practices for
proper clock domain crossing between the JTAG clock domain and the rest of your
application logic to avoid metastability issues. The decoded virtual JTAG state signals
can help determine a stable output in the VIR and VDR chains.

After compiling and downloading your design into the device, you can perform shift
operations directly to the VIR and VDR chains using the Tcl commands from the
quartus_stp executable and an Intel programming cable (for example, an Intel
FPGA Download Cable, a MasterBlaster™ cable, or an Intel FPGA Parallel Port Cable).
The quartus_stp executable is a command-line executable that contains Tcl
commands for all on-chip debug features available in the Quartus Prime software.

The figure below shows the components of a design containing one instance of the
Virtual JTAG Intel FPGA IP core. The TDI-to-TDO datapath for the virtual JTAG chain,
shown in red, consists of a bank of DR registers. Input to the application logic is the
parallel output of the VDR chains. Decoded state signals are used to signal start and
stop of shift transactions and signals when the VDR output is ready.

The IR_out port, not shown, is an optional input port you can use to parallel load the
VIR from the FPGA core logic.

Figure 9. Block Diagram of a Design with a Single Virtual JTAG Instantiation

Inferred by Instantiation
of Intel FPGA IP Core

Glue Logic between VJI and User Design
(Created by Designer)

Original Design

Application
Logic

SLD
Hub

VJI Intel FPGA
IP Core Instance

IR

JTAG TAP
Controller

TDI

TDO

TMS

TCK
TRST

TMS & Decoded
State Signals

IR_in

TDI

TDO

Input Vector 1

Input Vector 2

Input Vector nVD
R C

ha
in

1

VD
R C

ha
in

2

VD
R C

ha
in

n

Simulation Model

The virtual JTAG Intel FPGA IP core contains a functional simulation model that
provides stimuli that mimic VIR and VDR shifts. You can configure the stimuli using
the parameter editor. You can use this simulation model for functional verification only,
and the operation of the SLD hub and the SLD node-to-hub interface is not provided in
this simulation model.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Run-Time Communication

The Tcl API for the Virtual JTAG Intel FPGA IP core consists of a set of commands for
accessing the VIR and VDR of each virtual JTAG instance.

These commands contain the underlying drivers for accessing an Intel programming
cable and for issuing shift transactions to each VIR and VDR. The table below provides
the Tcl commands in the quartus_stp executable that you can use with the Virtual
JTAG Intel FPGA IP core, and are intended for designs that use a custom controller to
drive the JTAG chain.

Each instantiation of the Virtual JTAG Intel FPGA IP core includes an instance index. All
instances are sequentially numbered and are automatically provided by the Quartus
Prime software. The instance index starts at instance index 0. The VIR and VDR shift
commands described in the table decode the instance index and provide an address to
the SLD hub for each IP core instance. You can override the default index provided by
the Quartus Prime software during configuration of the IP core.

The table below provides the Tcl commands in the quartus_stp executable that you
can use with the Virtual JTAG Intel FPGA IP core, and are intended for designs that
use a custom controller to drive the JTAG chain.

Table 8. Virtual JTAG Intel FPGA IP Core Tcl Commands

Command Arguments Description

Device virtual ir shift -instance_index <instance_index>
-ir_value <numeric_ir_value>
-no_captured_ir_value(1)

-show_equivalent_device_ir_dr_shift(1)

Perform an IR shift operation to
the virtual JTAG instance specified
by the instance_index. Note
that ir_value takes a numerical
argument.

Device virtual dr shift -instance_index <instance_index>
-dr_value <dr_value>
-length <data_register_length>
-no_captured_dr_value(1)

-show_equivalent_device_ir_dr_shift

-value_in_hex(1)

Perform a DR shift operation to
the virtual JTAG instance.

Get hardware names NONE Queries for all available
programming cables.

Open device -device_name <device_name>
-hardware_name <hardware_name>

Selects the active device on the
JTAG chain.

Close device NONE Ends communication with the
active JTAG device.

Device lock -timeout <timeout> Obtains exclusive communication
to the JTAG chain.

Device unlock NONE Releases device_lock.

Device ir shift -ir_value <ir_value>
-no_captured_ir_value

Performs a IR shift operation.

Device dr shift -dr_value <dr_value>
-length <data register length>

Performs a DR shift operation.

continued...

(1) This argument is optional.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Description

-no_captured_dr_value

-value_in_hex

Central to Virtual JTAG Intel FPGA IP core are the device_virtual_ir_shift and
device_virtual_dr_shift commands. These commands perform the shift
operation to each VIR/VDR and provide the address to the SLD hub for the active JTAG
datapath.

Each device_virtual_ir_shift command issues a USER1 instruction to the JTAG
Instruction Register followed by a DR shift containing the VIR value provided by the
ir_value argument prepended by address bits to target the correct SLD node
instance.

Note: Use the -no_captured_ir_value argument if you do not care about shifting out the
contents of the current VIR value. Enabling this argument increases the speed of the
VIR shift transaction by eliminating a command cycle within the underlying
transaction.

Similarly, each device_virtual_dr_shift command issues a USER0 instruction to
the JTAG Instruction Register followed by a DR shift containing the VDR value provided
by the dr_value argument. These commands return the underlying JTAG
transactions with the show_equivalent_device_ir_dr_shift option set.

Note: The device_virtual_ir_shift takes the ir_value argument as a numeric value.
The device_virtual_dr_shift takes the dr_value argument by either a binary
string or a hexadecimal string. Do not use numeric values for the
device_virtual_dr_shift.

Running a DR Shift Operation Through a Virtual JTAG Chain

A simple DR shift operation through a virtual JTAG chain using an Intel download cable
consists of the following steps:

1. Query for the Intel programming cable and select the active cable.

2. Target the desired device in the JTAG chain.

3. Obtain a device lock for exclusive communication to the device.

4. Perform a VIR shift.

5. Perform a VDR shift.

6. Release exclusive link with the device with the device_unlock command.

7. Close communication with the device with the close_device command.

Run-Time Communication

The Virtual JTAG Intel FPGA IP core Tcl API requires an Intel programming cable.
Designs that use a custom controller to drive the JTAG chain directly must issue the
correct JTAG IR/DR transactions to target the Virtual JTAG Intel FPGA IP core
instances. The address values and register length information for each Virtual JTAG
Intel FPGA IP core instance are provided in the compilation reports.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Compilation Report
This figure shows the compilation report for a Virtual JTAG Intel FPGA IP core Instance.

Table 9. Parameter Settings for Virtual JTAG
This table describes each row in the Virtual JTAG Settings compilation report.

Setting Description

sld_auto_instance_index Details whether the index was auto-assigned.

sld_instance_index Instance index of the Virtual JTAG Intel FPGA IP core. Assigned at compile time.

sld_ir_width Length of the Virtual IR register for this IP core instance; defined in the
parameter editor.

Note: The description of the other settings shown in the Compilation Report diagram can be
obtained from the Description of Simulation Parameters table.

The Tcl API provides a way to return the JTAG IR/DR transactions by using the
show_equivalent_device_ir_dr_shift argument with the
device_virtual_ir_shift and device_virtual_dr_shift commands. The
following examples use returned values of a virtual IR/DR shift to illustrate the format
of the underlying transactions.

To use the Tcl API to query for the bit pattern in your design, use the
show_equivalent_device_ir_dr_shift argument with the
device_virtual_ir_shift and device_virtual_dr_shift commands.

Both examples are from the same design, with a single Virtual JTAG instance. The VIR
length for the reference Virtual JTAG instance is configured to 3 bits in length.

Related Information

Simulation Support on page 28
Provides the settings description in the Description of Simulation Parameters table.

Virtual IR/DR Shift Transaction without Returning Captured IR/DR Values

VIR shifts consist of a USER1 (0x0E) IR shift followed by a DR shift to the virtual
Instruction Register. The DR Scan shift consists of the value passed by the -
dr_value argument. The length and value of the DR shift is dependent on the
number of SLD nodes in your design. This value consists of address bits to the SLD

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

node instance concatenated with the desired value of the virtual Instruction Register.
The addressing scheme is determined by the Quartus Prime software during design
compilation.

The Tcl command examples below show a VIR/VDR transaction with the
no_captured_value option set. The commands return the underlying JTAG shift
transactions that occur.

Virtual IR Shift with the no_captured_value Option

device_virtual_ir_shift -instance_index 0 -ir_value 1 \

-no_captured_ir_value -show_equivalent_device_ir_dr_shift ↵

Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 14
Info: device_dr_shift -length 5 -dr_value 11 -value_in_hex

Virtual DR Shift with the no_captured_value Option

device_virtual_dr_shift -instance_index 0 -length 8 -dr_value \

04 -value_in_hex -no_captured_dr_value \

-show_equivalent_device_ir_dr_shift ↵

Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 12
Info: device_dr_shift -length 8 -dr_value 04 -value_in_hex

The VIR value field in the figure below is four bits long, even though the VIR length is
configured to be three bits long, and shows the bit values and fields associated with
the VIR/VDR scans. The Instruction Register length for all Intel FPGAs and CPLDs is
10-bits long. The USER1 value is 0x0E and USER0 value is 0x0C for all Intel FPGAs
and CPLDs. The Address bits contained in the DR scan shift of a VIR scan are
determined by the Quartus Prime software.

All USER1 DR chains must be of uniform length. The length of the VIR value field
length is determined by length of the longest VIR register for all SLD nodes
instantiated in the design. Because the SLD hub VIR is four bits long, the minimum
length for the VIR value field for all SLD nodes in the design is at least four bits in
length. The Quartus Prime Tcl API automatically sizes the shift transaction to the
correct length. The length of the VIR register is provided in the Virtual JTAG settings
compilation report. If you are driving the JTAG interface with a custom controller, you
must pay attention to size of the USER1 DR chain.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Equivalent Bit Pattern Shifted into Device by VIR/VDR Shift Commands

Virtual IR Scan

Virtual DR Scan

IR Scan Shift

IR Scan Shift

DR Scan Shift

DR Scan Shift

USER1

USER0

VIR Value

VDR Value

Addr
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 00 0 0

1 1

1 1 0 01

1 1 10

Virtual IR/DR Shift Transaction that Captures Current VIR/VDR Values

The Tcl command examples below show that the no_captured_value option is not
set in the Virtual IR/DR shift commands and the underlying JTAG shift commands
associated with each. In the VIR shift command, the command returns two
device_dr_shift commands.

Virtual IR Shift

device_virtual_ir_shift -instance_index 0 -ir_value 1 \

-no_captured_ir_value -show_equivalent_device_ir_dr_shift

Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 14
Info: device_dr_shift –length 5 –dr_value 0B –value_in_hex
Info: device_dr_shift -length 5 -dr_value 11 -value_in_hex

Virtual DR Shift

device_virtual_dr_shift -instance_index 0 -length 8 -dr_value \

04 -value_in_hex -show_equivalent_device_ir_dr_shift

Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 12
Info: device_dr_shift -length 8 -dr_value 04 -value_in_hex

The figure below shows an example of VIR/VDR Shift Commands with captured IR
values. DR Scan Shift 1 is the VIR_CAPTURE command, as shown in the figure below.
It targets the VIR of the sld_hub. This command is an address cycle to select the
active VIR chain to shift after jtag_state_cir is asserted. The HUB_FORCE_IR
capture must be issued whenever you capture the VIR from a target SLD node that is
different than the current active node. DR Scan Shift 1 targets the SLD hub VIR to
force a captured value from Virtual JTAG instance 1 and is shown as the VIR_CAPTURE
command. DR Scan Shift 2 targets the VIR of Virtual JTAG instance.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Equivalent Bit Pattern Shifted into Device by VIR/VDR Shift Commands with
Captured IR Values

Virtual IR Scan

Virtual DR Scan

IR Scan Shift

IR Scan Shift

DR Scan Shift 1

DR Scan Shift

USER1

USER0

VIR Value

VDR Value

Addr

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 00 0 0

1 1

1 1 0 01

1 0 10

DR Scan Shift 2
VIR ValueAddr

0 0 01 1

Note: If you use an embedded processor as a controller for the JTAG chain and your Virtual
JTAG Intel FPGA IP core instances, consider using the JAM Standard Test and
Programming Language (STAPL). JAM STAPL is an industry-standard
flow-control-based language that supports JTAG communication transactions. JAM
STAPL is open source, with software downloads and source code available from the
Intel website.

Related Information

• ISP & the Jam STAPL

• Embedded Programming With Jam STAPL

Reset Considerations when Using a Custom JTAG Controller

The SLD hub decodes TMS independently to determine the JTAG controller state.
Under normal operation, the SLD hub mirrors all of the JTAG TAP controller states
accurately. The JTAG pins (TCK, TMS, TDI, and TDO) are accessible to the core
programmable logic; however, the JTAG TAP controller outputs are not visible to the
core programmable logic. In addition, the hard JTAG TAP controller does not use any
reset signals as inputs from the core programmable logic.

This can cause the following two situations in which control states of the SLD hub and
the JTAG TAP controller are not in lock-step:

• An assertion of the device wide global reset signal (DEV_CLRn)

• An assertion of the TRST signal, if available on the device

DEV_CLRn resets the SLD hub but does not reset the hard TAP controller block. The
TAP controller is meant to be decoupled from USER mode device operation to run
boundary scan operations. Asserting the global reset signal does not disrupt
boundary-scan test (BST) operation.

Conversely, the TRST signal, if available, resets the JTAG TAP controller but does not
reset the SLD hub. The TRST signal does not route into the core programmable logic
of the PLD.

To guarantee that the states of the JTAG TAP controller and the SLD hub state
machine are properly synchronized, TMS should be held high for at least five clock
cycles after any intentional reset of either the TAP controller or the system logic. Both
the JTAG TAP controller and the sld_hub controller are guaranteed to be in the Test
Logic Reset state after five clock cycles of TMS held high.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

23

https://www.intel.com/content/www/us/en/programmable/support/support-resources/support-centers/devices/programming-tools/jam-stapl/tls-jam.html?wapkw=ISP%20%26%20the%20Jam%20STAPL
https://www.intel.com/content/www/us/en/programmable/support/support-resources/support-centers/devices/programming-tools/jam-stapl/tls-jam-embedded.html?wapkw=Embedded%20Programming%20With%20Jam%20STAPL
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instantiating the Virtual JTAG Intel FPGA IP Core

To create the Virtual JTAG Intel FPGA IP core in an Quartus Prime design requires the
following system and software requirements:

• The Quartus Prime software

• An Intel download cable, such as an Intel FPGA Download Cable cable

The download cable is required to communicate with the Virtual JTAG Intel FPGA IP
core from a host running the quartus_stp executable.

IP Catalog and Parameter Editor

The IP Catalog displays the IP cores available for your project, including Intel FPGA IP
and other IP that you add to the IP Catalog search path. Use the following features of
the IP Catalog to locate and customize an IP core:

• Filter IP Catalog to Show IP for active device family or Show IP for all
device families. If you have no project open, select the Device Family in IP
Catalog.

• Type in the Search field to locate any full or partial IP core name in IP Catalog.

• Right-click an IP core name in IP Catalog to display details about supported
devices, to open the IP core's installation folder, and for links to IP documentation.

• Click Search for Partner IP to access partner IP information on the web.

The Parameter Editor

The parameter editor helps you to configure IP core ports, parameters, and output file
generation options. The basic parameter editor controls include the following:

• Use the Presets window to apply preset parameter values for specific applications
(for select cores).

• Use the Details window to view port and parameter descriptions, and click links to
documentation.

• Click Generate ➤ Generate Testbench System to generate a testbench system
(for select cores).

• Click Generate ➤ Generate Example Design to generate an example design
(for select cores).

The IP Catalog is also available in Platform Designer (View ➤ IP Catalog). The
Platform Designer IP Catalog includes exclusive system interconnect, video and image
processing, and other system-level IP that are not available in the Quartus Prime IP
Catalog. Refer to Creating a System with Platform Designer or Creating a System with
Platform Designer (Standard) for information on use of IP in Platform Designer
(Standard) and Platform Designer, respectively.

Specifying IP Core Parameters and Options

Follow these steps to specify IP core parameters and options.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Platform Designer IP Catalog (Tools ➤ IP Catalog), locate and double-
click the name of the IP core to customize. The parameter editor appears.

2. Specify a top-level name for your custom IP variation. This name identifies the IP
core variation files in your project. If prompted, also specify the target FPGA
device family and output file HDL preference. Click OK.

3. Specify parameters and options for your IP variation:

• Optionally select preset parameter values. Presets specify all initial parameter
values for specific applications (where provided).

• Specify parameters defining the IP core functionality, port configurations, and
device-specific features.

• Specify options for generation of a timing netlist, simulation model, testbench,
or example design (where applicable).

• Specify options for processing the IP core files in other EDA tools.

4. Click Finish to generate synthesis and other optional files matching your IP
variation specifications. The parameter editor generates the top-level .qsys IP
variation file and HDL files for synthesis and simulation. Some IP cores also
simultaneously generate a testbench or example design for hardware testing.

5. To generate a simulation testbench, click Generate ➤ Generate Testbench
System. Generate Testbench System is not available for some IP cores that do
not provide a simulation testbench.

6. To generate a top-level HDL example for hardware verification, click Generate ➤
HDL Example. Generate ➤ HDL Example is not available for some IP cores.

The top-level IP variation is added to the current Quartus Prime project. Click Project
➤ Add/Remove Files in Project to manually add a .qsys (Quartus Prime Standard
Edition) or .ip (Quartus Prime Pro Edition) file to a project. Make appropriate pin
assignments to connect ports.

Files Generated for Intel FPGA IP Cores (Legacy Parameter Editor)

The Quartus Prime software version generates the following output for your IP core
that uses the legacy parameter editor.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. IP Core Generated Files

Notes:
1. If supported and enabled for your IP variation
2. If functional simulation models are generated

<Project Directory>

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

synthesis - IP synthesis files

<your_ip>.qip - Lists files for synthesis

testbench - Simulation testbench files 1

<testbench_hdl_files>

<simulator_vendor> - Testbench for supported simulators

<simulation_testbench_files>

<your_ip>.v or .vhd - Top-level IP variation synthesis file

simulation - IP simulation files
<your_ip>.sip - NativeLink simulation integration file

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.qip or .qsys - System or IP integration file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation startup scripts 1

<your_ip>.html - Contains memory map

<your_ip>.sopcinfo - Software tool-chain integration file

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist 1

<your_ip>.debuginfo - Lists files for synthesis

<your_ip>.v, .vhd, .vo, .vho - HDL or IPFS models2

<your_ip>_tb - Testbench for supported simulators
<your_ip>_tb.v or .vhd - Top-level HDL testbench file

Instantiating Directly in HDL

To properly connect the Virtual JTAG Intel FPGA IP core in your design, follow these
basic connection rules:

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The tck output from the Virtual JTAG Intel FPGA IP core is the clock used for
shifting the data in and out on the TDI and TDO pins.

• The TMS output of the Virtual JTAG Intel FPGA IP core reflects the TMS input to the
main JTAG circuit.

• The ir_in output port of the Virtual JTAG Intel FPGA IP core is the parallel output
of the contents that get shifted into the virtual IR of the Virtual JTAG instance.
This port is used for decoding logic to select the active virtual DR chain.

The purpose of instantiating a Virtual JTAG instance in this example is to load
my_counter through the JTAG port using a software application built with Tcl
commands and the quartus_stp executable. In this design, the Virtual JTAG
instance is called my_vji. Whenever a Virtual JTAG Intel FPGA IP core is instantiated
in a design, three logic blocks are usually needed: a decode logic block, a TDO logic
block, and a Data Register block. The example below combines the Virtual JTAG
instance, the decode logic, the TDO logic and the Data Register blocks.

You can use the following Verilog HDL template as a guide for instantiating and
connecting various signals of the IP cores in your design.

module counter (clock, my_counter);
input clock;
output [3:0] my_counter;
reg [3:0] my_counter;
always @ (posedge clock)
 if (load && e1dr) // decode logic: used to load the counter my_counter
 my_counter <= tmp_reg;
 else
 my_counter <= my_counter + 1;
// Signals and registers declared for VJI instance
wire tck, tdi;
reg tdo;
wire cdr, eldr, e2dr, pdr, sdr, udr, uir, cir;
wire [1:0] ir_in;

// Instantiation of VJI
my_vji VJI_INST(
 .tdo (tdo),
 .tck (tck),
 .tdi (tdi),
 .tms(),
 .ir_in(ir_in),
 .ir_out(),
 .virtual_state_cdr (cdr),
 .virtual_state_e1dr(e1dr),
 .virtual_state_e2dr(e2dr),
 .virtual_state_pdr (pdr),
 .virtual_state_sdr (sdr),
 .virtual_state_udr (udr),
 .virtual_state_uir (uir),
 .virtual_state_cir (cir)
);
// Declaration of data register
reg [3:0] tmp_reg;
// Deocde Logic Block
// Making some decode logic from ir_in output port of VJI
wire load = ir_in[1] && ~ir_in[0];
// Bypass used to maintain the scan chain continuity for
// tdi and tdo ports

bypass_reg <= tdi;
// Data Register Block
always @ (posedge tck)
 if (load && sdr)
 tmp_reg <= {tdi, tmp_reg[3:1]};

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

// tdo Logic Block
always @ (tmp_reg[0] or bypass_reg)
 if(load)
 tdo <= tmp_reg[0]
 else
 tdo <= bypass_reg;
endmodule

The decode logic is produced by defining a wire load to be active high whenever the
IR of the Virtual JTAG Intel FPGA IP core is 01. The IR scan shift is used to load the
data into the IR of the Virtual JTAG Intel FPGA IP core. The ir_in output port reflects
the IR contents.

The Data Register logic contains a 4-bit shift register named tmp_reg. The always
blocks shown for the Data Register logic also contain the decode logic consisting of the
load and sdr signals. The sdr signal is the output of the Virtual JTAG Intel FPGA IP
core that is asserted high during a DR scan shift operation. The time during which the
sdr output is asserted high is the time in which the data on tdi is valid. During that
time period, the data is shifted into the tmp_reg shift register. Therefore, tmp_reg
gets the data from the Virtual JTAG Intel FPGA IP core on the tdi output port during a
DR scan operation.

There is a 1-bit register named bypass_reg whose output is connected with tdo
logic to maintain the continuity of the scan chain during idle or IR scan shift operation
of the Virtual JTAG Intel FPGA IP core. The tdo logic consists of outputs coming from
tmp_reg and bypass_reg and connecting to the tdo input of the Virtual JTAG Intel
FPGA IP core. The tdo logic passes the data from tmp_reg to the Virtual JTAG Intel
FPGA IP core during DR scan shift operations.

The always block of a 4-bit counter also consists of some decode logic. This decode
logic uses the load signal and e1dr output signal of the Virtual JTAG Intel FPGA IP
core to load the counter with the contents of tmp_reg. The Virtual JTAG output signal
e1dr is asserted high during a DR scan shift operation when all the data is completely
shifted into the tmp_reg and sdr has been de-asserted. In addition to sdr and e1dr,
there are other outputs from the Virtual JTAG Intel FPGA IP core that are asserted
high to show various states of the TAP controller and internal states of the Virtual
JTAG Intel FPGA IP core. All of these signals can be used to perform different logic
operations as needed in your design.

Simulation Support

Virtual JTAG interface operations can be simulated using all Intel-supported
simulators. The simulation support is for DR and IR scan shift operations. For
simulation purposes, a behavioral simulation model of the IP core is provided in both
VHDL and Verilog HDL in the altera_mf libraries. The I/O structure of the model is
the same as the IP core.

In its implementation, the Virtual JTAG Intel FPGA IP core connects to your design on
one side and to the JTAG port through the JTAG hub on the other side. However, a
simulation model connects only to your design. There is no simulation model for the
JTAG circuit. Therefore, no stimuli can be provided from the JTAG ports of the device
to imitate the scan shift operations of the Virtual JTAG Intel FPGA IP core in
simulation.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The scan operations in simulation are realized using the simulation model. The
simulation model consists of a signal generator, a model of the SLD hub, and the
Virtual JTAG model. The stimuli defined in the wizard are passed as parameters to this
simulation model from the variation file. The simulation parameters are listed in the
table below. The signal generator then produces the necessary signals for Virtual JTAG
Intel FPGA IP core outputs such as tck, tdi, tms, and so forth.

The model is parameterized to allow the simulation of an unlimited number of Virtual
JTAG instances. The parameter sld_sim_action defines the strings used for IR and
DR scan shifts. Each Virtual JTAG’s variation file passes these parameters to the
Virtual JTAG component. The Virtual JTAG’s variation file can always be edited for
generating different stimuli, though the preferred way to specify stimuli for DR and IR
scan shifts is to use the parameter editor.

Note: To perform functional and timing simulations, you must use the altera_mf.v library
located in the <Quartus Prime installation directory>\eda\sim_lib directory. For
VHDL, you must use the altera_mf.vhd library located in the <Quartus Prime
installation directory>\eda\sim_lib directory. The VHDL component declaration
file is located in the altera_mf_components.vhd library in the <Quartus Prime
installation directory>\eda\sim_lib directory.

Table 10. Description of Simulation Parameters

Parameter Comments

sld_sim_n_scan Specifies the number of shifts in the simulation model.

sld_sim_total_length The total number of bits to be shifted in either an IR shift or a DR shift. This value
should be equal to the sum of all the length values specified in the sld_sim_action
string.

sld_sim_action Specifies the strings used for instruction register (IR) and data register (DR) scan
shifts. The string has the following format:

((time,type,value,length),
(time,type,value,length),
 ...
(time,type,value,length))

where:
• time—A 32-bit value in milliseconds that represents the start time of the shift

relative to the completion of the previous shift.
• type—A 4-bit value that determines whether the shift is a DR shift or an IR shift.
• value—The data associated with the shift. For IR shifts, it is a 32-bit value. For DR

shifts, the length is determined by length.
• length—A 32-bit value that specifies the length of the data being shifted. This

value should be equal to SLD_NODE_IR_WIDTH; otherwise, the value field may be
padded or truncated. 0 is invalid.

Entries are in hexadecimal format.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulation has the following limitations:

• Scan shifts (IR or DR) must be at least 1 ms apart in simulation time.

• Only behavioral or functional level simulation support is present for this IP core.
There is no gate level or timing level simulation support.

• For behavioral simulation, the stimuli tell the signal generator model in the Virtual
JTAG model to generate the sequence of signals needed to produce the necessary
outputs for tck, tms, tdi, and so forth. You cannot provide the stimulus at the
JTAG pins of the device.

• The tck clock period used in simulation is 10 MHz with a 50% duty cycle. In
hardware, the period of the tck clock cycle may vary.

• In a real system, each instance of the Virtual JTAG Intel FPGA IP core works
independently. In simulation, multiple instances can work at the same time. For
example, if you define a scan shift for Virtual JTAG instance number 1 to happen
at 3 ms and a scan shift for Virtual JTAG instance number 2 to happen at the same
time, the simulation works correctly.

If you are using the ModelSim* - Intel FPGA Edition simulator, the altera_mf.v and
altera_mf.vhd libraries are provided in precompiled form with the simulator.

The inputs and outputs of the Virtual JTAG Intel FPGA IP core during a typical IR scan
shift operation are shown in the figure below.

Figure 14. IR Shift Waveform

The figure below shows the inputs and outputs of the Virtual JTAG Intel FPGA IP core
during a typical DR scan shift operation.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. DR Shift Waveform

Value of shift register
feed_reg changes
from xxxx to 1100
after a DR shift

Compiling the Design

You can instantiate a maximum of 128 instances of the Virtual JTAG Intel FPGA IP core
in a design. After compilation, each instance has a unique ID, as shown on the
Parameter Setting for User Entity Instance: <instance of virtual jtag> page of
the Synthesis section of the Compilation Report, as shown in the figure below.

Figure 16. IDs of Virtual JTAG Instances

ID of sld_virtual_jtag
 instances

These unique IDs are necessary for the Quartus Prime Tcl API to properly address
each instance of the IP core.

The addition of Virtual JTAG Intel FPGA IP cores uses logic resources in your design.
The Fitter Resource Section in the Compilation Report shows the logic resource
utilization, as shown in the figure below.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. Logic Resources Utilization

sld_virtual_jtag
 instances

Related Information

Introducing the Quartus Prime Pro and Standard Edition Software User Guides
Provides the Quartus Prime Standard Edition Software user guides.

Third-Party Synthesis Support

In addition to the variation file, the parameter editor creates a black box file for the
Virtual JTAG Intel FPGA IP core you created.

For example, if you create a my_vji.v file, a my_vji_bb.v file is also created. In
third-party synthesis, you include this black box file with your design files to
synthesize your project. A VQM file is usually produced by third-party synthesis tools.
This VQM netlist and the Virtual JTAG Intel FPGA IP core’s variation files are input to
the Quartus Prime software for further compilation.

SLD_NODE Discovery and Enumeration

You can use a custom JTAG controller to discover transactions necessary to enumerate
all Virtual JTAG Intel FPGA IP core instances from your design at runtime. All SLD
nodes and the virtual JTAG registers that they contain are targeted by two Instruction
Register values, USER0 and USER1, which are shown in the table below.

Table 11. USER0 and USER1 Instruction Values

Instruction Binary Pattern

USER0 00 0000 1100

USER1 00 0000 1110

The USER1 instruction targets the virtual IR of either the sld_hub or a SLD node.
That is, when the USER1 instruction is issued to the device, the subsequent DR scans
target a specific virtual IR chain based on an address field contained within the DR
scan. The table below shows how the virtual IR, the DR target of the USER1
instruction is interpreted.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

32

https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/user-guides.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The VIR_VALUE in the table below is the virtual IR value for the target SLD node. The
width of this field is m bits in length, where m is the length of the largest VIR for all of
the SLD nodes in the design. All SLD nodes with VIR lengths of fewer than m bits must
pad VIR_VALUE with zeros up to a length of m.

Table 12. USER1 DR

m + n – 1 m m – 1 0

ADDR [(n – 1)..0] VIR_VALUE [(m – 1)..0]

The ADDR bits act as address values to signal the active SLD node that the virtual IR
shift targets. ADDR is n bits in length, where n bits must be long enough to encode all
SLD nodes within the design, as shown below.

 n = CEIL(log2(Number of SLD_nodes +1))

The SLD hub is always 0 in the address map, as shown below.

ADDR[(n -1)..0] = 0

Discovery and enumeration of the SLD instances within a design requires interrogation
of the sld_hub to determine the dimensions of the USER1 DR (m and n) and
associating each SLD instance, specifically the Virtual JTAG Intel FPGA IP core
instances, with an address value contained within the ADDR bits of the USER1 DR.

The discovery and enumeration process consists of the following steps:

1. Interrogate the SLD hub with the HUB_INFO instruction.

2. Shift out the 32-bit HUB IP Configuration Register to determine the number of SLD
nodes in the design and the dimensions of the USER1 DR.

3. Associate the Virtual JTAG instance index to an ADDR value by shifting out the
32-bit SLD node info register for each SLD node in the design.

Issuing the HUB_INFO Instruction

The SLD hub contains the HUB IP Configuration Register and SLD_NODE_INFO register
for each SLD node in the design. The HUB IP configuration register provides
information needed to determine the dimensions of the USER1 DR chain.

The SLD_NODE_INFO register is used to determine the address mapping for Virtual
JTAG instance in your design. This register set is shifted out by issuing the HUB_INFO
instruction. Both the ADDR bits for the SLD hub and the HUB_INFO instruction is
0 × 0.

Because m and n are unknown at this point, the DR register
(ADDR bits + VIR_VALUE) must be filled with zeros. Shifting a sequence of 64
zeroes into the USER1 DR is sufficient to cover the most conservative case for m and
n.

HUB IP Configuration Register

When the USER1 and HUB_INFO instruction sequence is issued, the USER0 instruction
must be applied to enable the target register of the HUB_INFO instruction.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The HUB IP configuration register is shifted out using eight four-bit nibble scans of the
DR register. Each four-bit scan must pass through the UPDATE_DR state before the
next four-bit scan. The 8 scans are assembled into a 32-bit value with the definitions
shown in the table below.

Table 13. Hub IP Configuration Register

Nibble7 Nibble6 Nibble5 Nibble4 Nibble3 Nibble2 Nibble1 Nibble0

31 27 26 19 18 8 7 0

HUB IP version N ALTERA_MFG_ID (0 × 06E) m

The dimensions of the USER1 DR chain can be determined from the SUM (m, n) and N
(number of nodes in the design). The equations below shows the values of m and n.

n = CEIL(log2(N+1))
m = SUM(m,n) – n

SLD_NODE Info Register

When the number of SLD nodes is known, the nodes on the hub can be enumerated
by repeating the 8 four-bit nibble scans, once for each Node, to yield the
SLD_NODE_INFO register of each node.

The DR nibble shifts are a continuation of the HUB_INFO DR shift used to shift out the
Hub IP Configuration register.

The order of the Nodes as they are shifted out determines the ADDR values for the
Nodes, beginning with, for the first Node SLD_NODE_INFO shifted out, up to and
including, for the last node on the hub. The tables below show the SLD_NODE_INFO
register and their functional descriptions.

Table 14. SLD_NODE_INFO Register

31 27 26 19 18 8 7 0

Node Version NODE ID NODE MFG_ID NODE_INST_ID

Table 15. SLD_NODE_INFO Register Descriptions

Field Function

Node Version Identifies the version of the SLD node

NODE ID Identifies the type of NODE IP (0x8 for the Virtual JTAG Intel FPGA IP core)

NODE MFG_ID SLD Node Manufacturer ID (0x6E for Virtual JTAG Intel FPGA IP core)

NODE_INST_ID Used to distinguish multiple instances of the same IP. Corresponds to the instance index
assigned in the parameter editor.

You can identify each Virtual JTAG instance within the design by decoding NODE ID
and NODE_INST_ID. The Virtual JTAG Intel FPGA IP core uses a NODE ID of 8. The
NODE_INST_ID corresponds to the instance index that you configured within the
parameter editor. The ADDR bits for each Virtual JTAG node is then determined by
matching each Virtual JTAG instance to the sequence number in which the
SLD_NODE_INFO register is shifted out.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Capturing the Virtual IR Instruction Register

In applications that contain multiple nodes, capturing the value of the VIR may require
issuing an instruction to the SLD hub to target a SLD node. You can query for a VIR
using the VIR_CAPTURE instruction.

Each NODE VIR register acts as a parallel hold rank register to the USER1 DR chain.
The sld_hub uses the bits prepended to the VIR shift value to target the correct SLD
NODE VIR register. After the SLD_state_machine asserts virtual_update_IR,
the active SLD node latches VIR_VALUE of the USER1 DR register.

The figure below shows a functional model of the interaction of the USER1 DR register
and the SLD node VIR. The ADDR bits target the selection muxes in the figure after
the sld_hub FSM has exited the virtual_update_IR state. Upon the next USER1 DR
transaction, the USER1 DR chain will latch the VIR of the last active SLD_NODE to
shift out of TDO. Thus, if you need to capture the VIR of an SLD node that is different
than the one addressed in the previous shift cycle, you must issue the VIR_CAPTURE
instruction. The VIR_CAPTURE instruction to the sld_hub acts as an address cycle to
force an update to the muxes.

Figure 18. Functional Model Interaction between USER1 DR CHAIN and SLD Node VIRs

TDI TDOADDR[n - 1..0] VIR_value

msb lsb

ADDR[n - 1..0]

ADDR[n - 1..0]

SL
D

NO
DE

1 VI
R

SL
D

NO
DE

2 VI
R

SL
D

NO
DE

 N VI
R

USER1 DR

SLD Nodes

To form the VIR_CAPTURE instruction, use the following instruction format:

VIR_CAPTURE = ZERO [(m – 4)..0] ## ADDR [(n – 1)..0] ## 011

In this format, ZERO[] is an array of zeros, ## is the concatenation operator, m is the
width of VIR_VALUE, and n is the width of the ADDR bit.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AHDL Function Prototype

The following AHDL function prototype is located in the sld_virtual_jtag.inc file in
the <Quartus Prime installation directory> \libraries\megafunctions directory.

Note: Port name and order also apply to Verilog HDL.

FUNCTION sld_virtual_jtag(
 ir_out[sld_ir_width-1..0],

 tdo
)

WITH(
 lpm_hint,
 lpm_type,
 sld_auto_instance_index,
 sld_instance_index,
 sld_ir_width,
 sld_sim_action,
 sld_sim_n_scan,
 sld_sim_total_length
)
RETURNS(
 ir_in[sld_ir_width-1..0],
 jtag_state_cdr,
 jtag_state_cir,
 jtag_state_e1dr,
 jtag_state_e1ir,
 jtag_state_e2dr,
 jtag_state_e2ir,
 jtag_state_pdr,
 jtag_state_pir,
 jtag_state_rti,
 jtag_state_sdr,
 jtag_state_sdrs,
 jtag_state_sir,
 jtag_state_sirs,
 jtag_state_tlr,
 jtag_state_udr,
 jtag_state_uir,
 tck,
 tdi,
 tms,
 virtual_state_cdr,
 virtual_state_cir,
 virtual_state_e1dr,
 virtual_state_e2dr,
 virtual_state_pdr,
 virtual_state_sdr,
 virtual_state_udr,
 virtual_state_uir
);

VHDL Component Declaration

The following VHDL component declaration is located in the
ALTERA_MF_COMPONENTS.vhd file located in the <Quartus Prime installation
directory>\libraries\vhdl\altera_mf directory.

component sld_virtual_jtag
 generic (

 lpm_hint : string := "UNUSED";
 lpm_type : string := "sld_virtual_jtag";

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 sld_auto_instance_index : string := "NO";
 sld_instance_index : natural := 0;
 sld_ir_width : natural := 1;
 sld_sim_action : string := "UNUSED";
 sld_sim_n_scan : natural := 0;
 sld_sim_total_length : natural := 0);
 port(
 ir_in : out std_logic_vector(sld_ir_width-1 downto 0);
 ir_out: in std_logic_vector(sld_ir_width-1 downto 0);
 jtag_state_cdr : out std_logic;
 jtag_state_cir : out std_logic;
 jtag_state_e1dr : out std_logic;
 jtag_state_e1ir : out std_logic;
 jtag_state_e2dr : out std_logic;
 jtag_state_e2ir : out std_logic;
 jtag_state_pdr : out std_logic;
 jtag_state_pir : out std_logic;
 jtag_state_rti : out std_logic;
 jtag_state_sdr : out std_logic;
 jtag_state_sdrs : out std_logic;
 jtag_state_sir : out std_logic;
 jtag_state_sirs : out std_logic;
 jtag_state_tlr : out std_logic;
 jtag_state_udr : out std_logic;
 jtag_state_uir : out std_logic;
 tck : out std_logic;
 tdi : out std_logic;
 tdo : in std_logic;
 tms : out std_logic;
 virtual_state_cdr : out std_logic;
 virtual_state_cir : out std_logic;
 virtual_state_e1dr : out std_logic;
 virtual_state_e2dr : out std_logic;
 virtual_state_pdr : out std_logic;
 virtual_state_sdr : out std_logic;
 virtual_state_udr : out std_logic;
 virtual_state_uir : out std_logic
);
end component;

VHDL LIBRARY-USE Declaration

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component
Declaration.

LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;

Design Example: TAP Controller State Machine

The TAP controller is a state machine with a set of control signals that routes TDI data
between the Instruction Register and the bank of DR chains. It controls the start and
stop of any shift transactions, and controls the data flow between the parallel hold
registers and the shift registers of the Instruction Register and the Data Register. The
TAP controller is controlled by the TMS pin.

The figure below shows the TAP controller state machine. The table that follows
provides a description of each of the states.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19. JTAG TAP Controller State Machine

CAPTURE_DR

SHIFT_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

CAPTURE_IR

SHIFT_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

RUN_TEST/
IDLE

TEST_LOGIC/
RESET

TMS = 1

TMS = 0

TMS = 1

TMS = 0 TMS = 1

TMS = 1

TMS = 0 TMS = 0

TMS = 0

TMS = 1

TMS = 1

TMS = 1

TMS = 0

TMS = 0 TMS = 0

TMS = 1

TMS = 1

TMS = 1

TMS = 0

TMS = 0 TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0 TMS = 0

TMS = 0

TMS = 1

SELECT_
DR_SCAN

SELECT_
IR_SCAN

Table 16. Functional Description for the TAP Controller States

TAP Controller State Functional Description

Test-Logic-Reset The test logic of the JTAG scan chain is disabled.

Run-Test/Idle This is a hold state. Once entered, the controller remains in this state as long as
TMS is held low.

Select DR-Scan/Select IR Scan These are temporary controller states. A decision is made here whether to enter
the DR states or the IR states.

continued...

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TAP Controller State Functional Description

Capture DR/Capture IR These states enable a parallel load of the shift registers from the hold registers
on the rising edge of TCK.

Shift DR/Shift IR These states enable shifting of the DR and IR chains.

Exit1 DR/Exit1 IR Temporary hold states. A decision is made in these states to either advance to
the Update states or the Pause states.

Pause DR/Pause IR This controller state allows shifting of the Instruction Register and Data Register
to be temporarily halted.

Exit2 DR/Exit2 IR Temporary hold states. A decision is made in these states to advance to the
Update states.

Update DR/Update IR These states enable a parallel load of the hold registers from the shift registers.
Update happens on the falling edge of TCK.

Design Example: Modifying the DCFIFO Contents at Runtime

This design example demonstrates the use of the Virtual JTAG Intel FPGA IP core and
a command-line script to dynamically modify the contents of a DCFIFO at runtime.

The Tcl API that ships with the Virtual JTAG Intel FPGA IP core makes it an ideal
solution for developing command-line scripts that can be used to either update data
values or toggle control bits at run time. This visibility into the FPGA can help expedite
debug closure during the prototyping phase of the design, especially when external
equipment is not available to provide a stimulus.

This design example consists of an Quartus Prime project file that implements a
DCFIFO and a command-line script that is used to modify the contents of the FIFO at
runtime.

The RTL consists of a single instantiation of the Virtual JTAG Intel FPGA IP core to
communicate with the JTAG circuitry. Both read and write ports of the DCFIFO are
clocked at 50 MHz. A Signal Tap logic analyzer instance taps the data output bus of
the DCFIFO to read burst transactions from the DCFIFO. The following sections discuss
the RTL implementation and the runtime control of the DCFIFO using the Tcl API.

Write Logic

The RTL uses a single instance of the Virtual JTAG Intel FPGA IP core to decode both
the instructions for the write side and read side logic. The IR register is three bits
wide, with the three instructions decoded in the RTL, as shown in the table below.

Table 17. Instruction Register Values

Instruction Register Value Function

PUSH Instruction to write a single value to the write side logic of the DCFIFO.

POP Instruction to read a single value from the read side logic of the DCFIFO

FLUSH Instruction to perform a burst read transaction from the FIFO until empty.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The IR decode logic shifts the Push_in virtual DR chain when the PUSH instruction is
on the IR port and virtual_state_sdr is asserted. A write enable pulse,
synchronized to the write_clock, asserts after the virtual_state_udr signal
goes high. The virtual_state_udr signal guarantees stability from the virtual DR
chain. The figure below shows the write side logic for the DCFIFO.

Figure 20. Write Side Logic for DCFIFO

DCFIFO

IR Decode/State
Decode Logic

IR_register

State
Information

TDI
TDO

Write_req

Data[7:0]
Write_clock

Read_req

Read_clock

Q[7:0]
Rd_empty

Data_out

Vir
tu

al_
DR

(P
us

h_
in)

VJI Instance

Read Logic

Two runtime instructions read the contents out of the FIFO. The IR decode logic
selects the Push_out virtual DR chain and generates a single read pulse to the read
logic when the POP instruction is active. The Push_out DR chain is parallel loaded
upon the assertion of virtual_state_cdr and shifted out to TDO upon the
assertion of virtual_state_sdr.

When the FLUSH instruction is shifted into the Virtual JTAG instance, the IR decode
logic asserts the read_req line until the FIFO is empty. The bypass register is
selected when the FLUSH instruction is active to maintain TDI-to-TDO connectivity.
The figure below shows the read side logic for the DCFIFO.

Figure 21. Read Side Logic for DCFIFO Design Example

IR Decode/State
Decode Logic

IR_register

State
Information

TDO

TDO

Write_req

Data[7:0]

Write_clock

Read_req

Read_clock

Q[7:0]

Rd_empty

Data_out

VJI Instance

Virtual DR
(Push_out)

Signal Tap
Embedded Logic

Analyzer

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Runtime Communication

The Tcl script, dc_fifo_vji.tcl, contains three procedures, each corresponding to
one of the virtual JTAG instructions. The table below describes each of the procedures.

Table 18. Run-Time Communication Tcl Procedures

Procedure Description

push [value] IR shift the PUSH instruction, followed by a DR shift of the value argument. Value
must be an integer less than 256.

pop IR shift the POP instruction, followed by a DR shift of 8 bits.

flushfifo IR shift the FLUSH instruction.

The figure below shows runtime execution of eight values pushed into the DCFIFO and
a flushfifo command, and a Signal Tap logic analyzer capture triggering on a flush
operation.

Figure 22. Runtime Execution

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23. Signal Tap Logic Analyzer Capture Triggering on a Flush Operation

Design Example: Offloading Hardwired Revision Information

This example demonstrates how you can use a GUI to offload revision information that
is hardwired into a design. The GUI offloads the time that the design was compiled,
the USERCODE from the device, and compile number that tracks the number of
compile iterations that have been performed.

Because the Quartus Prime software ships with an installation of Tcl/Tk, you can use
the Tk package to build a custom GUI to interact with your design. In many cases, the
JTAG port is a convenient interface to use, since it is present in most designs for
debug purposes. By leveraging Tk and the virtual JTAG interface, you perform rapid
prototyping such as creating virtual front panels or creating simple software
applications. The figure below shows the organization of the design.

Figure 24. Design Organization Example

JTAG
Version
Control

Information
VJI

USERCODE

Top-Level Design

A Tcl script creates and updates the verilog file containing the hardcoded version
control information every time the project goes through a full compile. The Tcl script is
executed automatically by adding the following assignment to the project’s .qsf file.

The USERCODE value shifted out by this design example is a user-configurable 32-bit
JTAG register. This value is configured in the Quartus Prime software using the Device
and Pin Options dialog box.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Configuring the JTAG User Code Setting

The following steps describe how to configure the JTAG User Code setting. A separate
script generates the GUI and is executed with the quartus_stp command line
executable. During runtime, the GUI queries the device for the version information
and formats it for display within the message box.

1. On the Assignment menu, click Settings.

2. On the Settings page, in the Category list, click Device.

3. The Device dialog box appears. Click Device and Pin Options.

4. In the Device and Pin Options dialog box, on the General tab, the JTAG user
code appears. Type the user code in 32-bit hexadecimal format.

5. Click OK.

Related Information

Quartus II Tcl Example: Automatic Version Number

Document Revision History for the Virtual JTAG Intel FPGA IP Core
User Guide

Document Version Quartus Prime
Version

Changes

2021.08.12 20.3 Corrected the table title to: USER0 and USER1 Instruction Values in the
SLD_NODE Discovery and Enumeration section.

2020.12.01 20.3 • Changed table title from Virtual JTAG Settings Description to Parameter
Settings for Virtual JTAG and updated the content.

• Updated parameters in the Description of Simulation Parameters table.
• Updated the description in the Compiling the Design section.
• Updated the following diagrams:

— Compilation Report
— IDs of Virtual JTAG Instances
— Logic Resources Utilization

• Renamed IP from Virtual JTAG (altera_virtual_jtag) IP core to Virtual
JTAG Intel FPGA IP core.

2018.07.19 16.1 • Updated the following terms:
— Changed Quartus II to Intel Quartus Prime.
— Changed SignalTap II to Signal Tap.
— Changed megafunction to Intel FPGA IP core.
— Changed USB Blaster to Intel FPGA Download Cable.
— Changed ByteBlaster II to Intel FPGA Parallel Port Cable.
— Changed ModelSim-Altera to ModelSim - Intel FPGA Edition.

• Rebranded as Intel.

Date Version Changes

October 2016 2016.10.31 Removed Upgrading IP Cores section.

November 2015 2015.11.20 Corrected the flow for EXIT2_DR to SHIFT_DR in the JTAG TAP
Controller State Machine figure.

continued...

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Send Feedback Virtual JTAG Intel® FPGA IP Core User Guide

43

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/tcl/tcl-version-number.html?wapkw=Tcl%20Example%20Scripts%3A%20%22Automatic%22%20Version%20Number
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

July 2014 2014.07.08 • Replaced MegaWizard Plug-In Manager information with IP Catalog.
• Added standard information about upgrading IP cores.
• Added standard installation and licensing information.
• Removed outdated device support level information. IP core device

support is now available in IP Catalog and parameter editor.

March 2014 2014.03.19 Updated the description of the SLD_IR_WIDTH parameter in the
"Parameters for the Virtual JTAG Megafunction" table.

February 2014 2014.02.25 • Added Document Revision History table.
• Updated "Hub IP Configuration Register" figure.

Virtual JTAG Intel® FPGA IP Core User Guide

683705 | 2021.08.12

Virtual JTAG Intel® FPGA IP Core User Guide Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Virtual%20JTAG%20Intel%20FPGA%20IP%20Core%20User%20Guide%20(683705%202021.08.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	 Virtual JTAG Intel FPGA IP Core User Guide
	Contents
	Virtual JTAG Intel® FPGA IP Core User Guide
	Introduction
	Installing and Licensing Intel FPGA IP Cores
	On-Chip Debugging Tool Suite
	Applications of the Virtual JTAG Intel FPGA IP Core
	JTAG Protocol
	JTAG Circuitry Architecture

	System-Level Debugging Infrastructure
	Transaction Model of the SLD Infrastructure
	SLD Hub Finite State Machine

	Virtual JTAG Interface Description
	Input Ports
	Output Ports
	Parameters
	Design Flow of the Virtual JTAG Intel FPGA IP Core
	Simulation Model
	Run-Time Communication
	Running a DR Shift Operation Through a Virtual JTAG Chain

	Run-Time Communication
	Virtual IR/DR Shift Transaction without Returning Captured IR/DR Values
	Virtual IR/DR Shift Transaction that Captures Current VIR/VDR Values
	Reset Considerations when Using a Custom JTAG Controller

	Instantiating the Virtual JTAG Intel FPGA IP Core
	IP Catalog and Parameter Editor
	The Parameter Editor

	Specifying IP Core Parameters and Options
	Files Generated for Intel FPGA IP Cores (Legacy Parameter Editor)

	Instantiating Directly in HDL

	Simulation Support
	Compiling the Design
	Third-Party Synthesis Support

	SLD_NODE Discovery and Enumeration
	Issuing the HUB_INFO Instruction
	HUB IP Configuration Register
	SLD_NODE Info Register

	Capturing the Virtual IR Instruction Register
	AHDL Function Prototype
	VHDL Component Declaration
	VHDL LIBRARY-USE Declaration
	Design Example: TAP Controller State Machine
	Design Example: Modifying the DCFIFO Contents at Runtime
	Write Logic
	Read Logic
	Runtime Communication

	Design Example: Offloading Hardwired Revision Information
	Configuring the JTAG User Code Setting

	Document Revision History for the Virtual JTAG Intel FPGA IP Core User Guide

