
AN1564
Configuring and Using the Event Detection

Module of MCP795WXX RTCCs
INTRODUCTION

This application note is designed to take the design
engineer through the steps to configure and set up the
event detect module of Microchip SPI MCP795WXX
Real-Time Clock/Calendar (RTCC) family. Topics
covered include:

• Configuring the event detection module

• Using the event detection module

• Overview of the provided drivers/libraries

The information presented in this document is
designed to be an example of possible configurations.
The code supplied can be modified to change device
functionality.

This application note should be read in conjunction with
application note, AN1365 – “Recommended Usage of
Microchip Serial RTCC Devices” (DS00001365) and
the device data sheet. The latest documentation can be
found on Microchip website, at the following address:

http://www.microchip.com/rtcc

WHAT IS THE EVENT DETECT
MODULE?

The event detect module on the MCP795WXX RTCCs
enables systems to respond in a fast and automatic
manner to external events (through interrupts).

Low-Speed Event Detect

The low-speed event detect (EVLS input) has been
designed to interface directly with a mechanical
system, for example, a switch (supporting a built-in
debounce feature).

This can be used to generate an interrupt to the MCU
when a push button event is detected and debounced
(for example, detecting a tamper of an enclosure). See
Figure 3 for an example.

High-Speed Event Detect

The high-speed event part (EVHS input) can be used
to generate an interrupt after detecting a
programmable number of digital transitions.

This could be used to interrupt an MCU, when a digital
preamble is received from a communication channel.
Figure 2 shows an example of the high-speed event
detect triggering after 16 transitions.

SCHEMATIC DIAGRAM

The schematic illustrated in Figure 1 shows the
minimum components required to operate the RTCC,
when using the event detection module.

The schematic also shows the required components for
battery backup operation using a lithium coin cell (for
other options refer to AN1365). If the VBAT input and
battery backup feature is not required, this pin should
be tied to GND.

In the provided code, the following signals are defined:

• #define NCS_SPI_RTCC PORTCbits.RC2 //
CS for the SPI RTCC.

• #define IRQ PORTBbits.RB1

// interrupt request from the EVDET
module used through polling

A GPIO (i.e., RC6) on the PIC® microcontroller is used
to simulate an external event on the EVHS pin of the
RTCC.

Accordingly, a related #define directive was
created in the firmware:

#define EVHS PORTCbits.RC6

The low-speed input (EVLS) is tied to the S1 push
button. There is no need to define EVLS, since it is
controlled by the S1 push button and not by the GPIO.

Author: Alexandru Valeanu
Microchip Technology Inc.
 2013-2017 Microchip Technology Inc. DS00001564B-page 1

http://www.microchip.com/rtcc

AN1564
FIGURE 1: SCHEMATIC

The best way to get started with the MCP795WXX is to
use the SPI RTCC PICtail™ module (AC164147).

FIRMWARE OVERVIEW

The host MCU will communicate with the RTCC using
the SPI protocol, based on the MSSP1 serial module of
the PIC18 MCU.

The code presented with this application note is
designed to compile with the XC8 (V 1.34) compiler
and using MPLAB® X IDE (V3.55) for the following
hardware:

• Explorer 18 Evaluation Board (DM183032)

• PIC18F87J11 PIM Module (MA180020)

• RTCC SPI PICtail module (AC164147)

The code is presented in C and is portable with minimal
effort to other PIC MCU devices. This code is designed
to be a starting point for application development and is
based on the drivers/libraries presented in this text and
the related code.

APPLICATION DESCRIPTION

The code presents the basics of the event detect
configuration and usage. After initializing the RTCC
and the module, the user can choose between two test
functions:

• High-speed test: evhs_test()

• Low-speed test: evls_test()

The high-speed test will output clock pulses on the
EVHS input, using the RC6 GPIO, until the high-speed
event detect module generates an interrupt, by
asserting IRQ low. The code will then turn on the
appropriate LEDs to show the number of clock pulses
in binary. The low-speed test will wait the action of the
S1 push button, connected to the EVLS input. When
this is detected through polling (IRQ=0), the firmware
will turn on the LEDs.

RA4/T0 CKI

RC3/SCK1/SCL1

RB0

PIC18F87J11

VDD

S1

10K

BAT

1K

R4

100pF

BAT 85

Y

CX2

CX1 32.768 kHz

X1

X2

VBAT

WDO

IRQ

CS

Vss

Vcc

CLKOUT

EVHS

EVLS

SCK

SDI

SDO

SPI RTCC
MCP795W20

3

7

13

14

12

11

10

9

8

1

2

RC5/SDO1

RC4/SDI1

C3 = 0.1 uF

VDD VDD

VDD VDD

RC2 RB2/INT2 RB1/INT1

IRQ

IRQ

J1

J2

10K10K

10K 10K

AC164147 PICtail™ Plus Board

RC6

C4

VDD = 3.3V

S1
Pushbutton

WDO

WDO

4

6

5

EVLS
DS00001564B-page 2  2013-2017 Microchip Technology Inc.

AN1564
FIGURE 2: EVHS INPUT

FIGURE 3: EVLS INPUT
 2013-2017 Microchip Technology Inc. DS00001564B-page 3

AN1564
CONFIGURATION OF THE EVENT
DETECTION MODULE

The operation of the module is tied around the related
Event Detection register (EVDTCON) (address 0Bh).

TABLE 1: EVENT DETECTION REGISTER

R/W R/W R/W R/W R/W R/W R/W R/W

EVHIF EVLIF EVHEN EVLEN EVWDTEN EVLPS EVHCS1 EVHCS0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

bit 7 EVHIF: High-Speed Event Detect Interrupt Flag bit

1 = High-speed event detection occurred (must be cleared in software)
0 = High-speed event detection did not occur

bit 6 EVLIF: Low-Speed Event Detect Interrupt Flag bit

1 = Low-speed event detection occurred (must be cleared in software)
0 = Low-speed event detection did not occur

bit 5 EVHEN: High-Speed Event Detect Module Enable bit

If EVWDTEN = 0:
1 = High-Speed Event Detect enabled
0 = High-Speed Event Detect disabled

If EVWDTEN = 1:
Unused.

bit 4 EVLEN: Low-Speed Event Detect Module Enable bit

1 = Low-Speed Event Detect enabled
0 = Low-Speed Event Detect disabled

bit 3 EVWDTEN: EVHS Input WDT Clear Enable bit

1 = Enable Watchdog Timer clear on EVHS input transition. Disables high-speed event detect
module.

0 = Disable EVHS input clearing Watchdog Timer.

bit 2 EVLPS: Low-Speed Event Detect Debounce Period Select bit

1 = 16,384 oscillator cycles (500 ms nominal)
0 = 1,024 oscillator cycles (31.25 ms nominal)

bit 1-0 EVHCS<1:0>: High-Speed Event Detect Transition Count Select bits

Selects how many transitions must occur on the EVHS input before an interrupt is triggered
00 = 1 transition
01 = 4 transitions
10 = 16 transitions
11 = 32 transitions
DS00001564B-page 4  2013-2017 Microchip Technology Inc.

AN1564
To program the register, several masks were used, as
in Example 1:

EXAMPLE 1:

The high-speed test will initialize the related register as
in Example 2:

EXAMPLE 2:

The low-speed test will initialize the related register as
in Example 3:

EXAMPLE 3:

Any other combination is allowed using the above
#define directives.

#define EVHIF 0x80 // EVDT High Speed Interrupt Flag

#define EVLIF 0x40 // EVDT Low Speed Interrupt Flag

#define EVDT_BOTH_OFF 0x00 // Low Speed and High Speed Modules are OFF

#define EVDT_LS_ON 0x10 // Low Speed ON

#define EVDT_HS_ON 0x20 // High Speed ON

#define EVDT_BOTH_ON 0x30 // Both modules ON

#define EVWDTEN 0x08 // High Speed Event Detection will clear the WDT

#define EVLPS 0x04 // Low Speed Event period: 500 ms (0 value -> 31.25 ms)

#define EVDT_EV_NR_1 0x00 // 1st Event on EVHS will assert low /IRQ

#define EVDT_EV_NR_4 0x01 // 4th Event on EVHS will assert low /IRQ

#define EVDT_EV_NR_16 0x02 // 16th Event on EVHS will assert low /IRQ

#define EVDT_EV_NR_32 0x03 // 32nd Event on EVHS will assert low /IRQ

#define EVDTCON 0x0B // address of the event detect register

#define IRQ PORTBbits.RB1 // interrupt from the event detect module (polling)

#define EVHS PORTCbits.RC6 // GPIO creating pulses on the EVHS input

spi_rtcc_wr(EVDTCON, EVDT_HS_ON + EVDT_EV_NR_32);

// enable the high-speed module, set event number at 32

spi_rtcc_wr(EVDTCON, EVDT_LS_ON + EVLPS);

// enable the low-speed module, debounce value = 500 msec
 2013-2017 Microchip Technology Inc. DS00001564B-page 5

AN1564
CLEARING THE EVENT DETECTION
INTERRUPT FLAG

The interrupt flags must be cleared by the user to
obtain additional interrupts. To write to the flags, the
entire Event Detection register must be written. The
most robust method is to read the current value from
the Event Detection register, clear the necessary bits,
and write back the result. The following code shows an
example of how to perform this:

EXAMPLE 4:

Alternatively, disabling the high-speed and low-speed
modules by clearing the Event Detection register, as
well as rewriting the initial configuration value to the
register, will also clear the interrupt flags.

unsigned char aux ;

aux = spi_rtcc_rd(EVDTCON)&(~EVHIF) ;

spi_rtcc_wr(EVDTCON,aux);
DS00001564B-page 6  2013-2017 Microchip Technology Inc.

AN1564
CONCLUSION

Following the steps in this application note, along with
the included MPLAB® X IDE project, will help set up the
basic configuration of the event detection module avail-
able in the Microchip MCP795WXX SPI RTCC devices.
By using available off-the-shelf development tools, any
hardware issues will be mitigated, allowing the
engineer to concentrate on the firmware development.

This allows the engineer to easily work with low-speed
components, such as mechanical switches, as well as
high-speed interfaces that require the detection of a
number of digital transitions.

The code is presented in C (XC8-V1.34 compiler on
MPLAB® X IDE-V3.55) and can easily be ported to
other PIC® device platforms.
 2013-2017 Microchip Technology Inc. DS00001564B-page 7

AN1564
APPENDIX A: TEST FUNCTIONS FOR THE EVENT DETECT MODULE

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

High-speed test

evhs_test(){

spi_rtcc_wr(EVDTCON, EVDT_HS_ON + EVDT_EV_NR_32);

// enable the high speed module, set event number at 32

while(1){

EVHS = ~EVHS ; // toggle the high speed input

dly1_5ms() ; cnt++ ; // delay = 1.5 msec, increment counter

if(!IRQ)break; } // if the interrupt will assert low, break

 // the infinite while(1) loop

LATD = cnt ; } // display the EVHS counter, exit

Low-speed test

evls_test() {

spi_rtcc_wr(EVDTCON, EVDT_LS_ON + EVLPS);

// enable the low speed module, debounce value = 500 msec.

While(IRQ) ; // wait IRQ to assert low,when S1 push button is pressed

LATD = 0xff ; } // print message when IRQ=0 was detected
DS00001564B-page 8  2013-2017 Microchip Technology Inc.

AN1564
APPENDIX B: DRIVERS LIBRARY

Delay Drivers (delay_drivers.h)

Not accessed in the present project. Used by the LCD
drivers or as general purpose timing functions.

Represent a good starting point for further develop-
ment on PIC18-based projects (they use the timers of
the MCU) (see AN1355, AN1364, AN1413 for the
usage of these drivers).

LCD Drivers (lcd_drivers.h)

Not accessed in the present project. Represent a good
starting point on Explorer18-based projects (see
AN1355, AN1364, AN1413 for the usage of these
drivers).

SPI Drivers (spi_drivers.h)

Represent the low-level communication between the
MSSP1 module of the PIC18 and the SPI RTCC.

The related functions will be detailed in the next para-
graph, as called functions.

SPI RTCC Drivers
(spi_rtcc_drivers.h)

Represent the medium-level communication between
the MSSP1 module of the PIC18 and the SPI RTCC.

The related functions call the SPI drivers, as described
below. Moreover, the library defines all necessary con-
stants, as register addresses and masks.

EXAMPLE 5: WRITING A BYTE TO THE SPI RTCC

The firmware for writes to the RTCC is shown in
Example 6.

EXAMPLE 6:

void spi_rtcc_wr (unsigned char rtcc_reg, unsigned char time_var){

 // SPI write to the SPI RTCC

spi_rtcc_start() ; // start SPI comm with the SPI RTCC

spi_wrbyte(SPI_RTCC_WRITE) ; // send the SPI WRITE command

spi_wrbyte(rtcc_reg) ; // send the register's address

spi_wrbyte(time_var) ; // send the SPI data byte

spi_rtcc_stop() ; } // stop SPI comm

Assert low CS

Write the SPI Write
command

Write the register’s address

Write data byte

Assert high CS
 2013-2017 Microchip Technology Inc. DS00001564B-page 9

AN1564
EXAMPLE 7: READING A BYTE FROM THE SPI RTCC

The firmware for reads from the RTCC is shown in
Example 8.

EXAMPLE 8:

unsigned char spi_rtcc_rd(unsigned char rtcc_reg){

 // SPI read from the SPI RTCC

spi_rtcc_start() ; // start the SPI comm with the SPI RTCC

spi_wrbyte(SPI_RTCC_READ) ; // send the SPI READ command

spi_wrbyte(rtcc_reg) ; // send the register's address

rtcc_buf = spi_rdbyte() ; // read the result and store it

spi_rtcc_stop() ; // stop the SPI comm with the SPI RTCC

return rtcc_buf ;} // return the read result

Assert low CS

Write the SPI Read
command

Write the register’s address

Read data byte

Assert high CS
DS00001564B-page 10  2013-2017 Microchip Technology Inc.

AN1564
APPENDIX C: REVISION HISTORY

Revision A (09/2013)

Initial release of this document.

Revision B (11/2017)

Updated register and bit names.
 2013-2017 Microchip Technology Inc. DS00001564B-page 11

AN1564
NOTES:
DS00001564B-page 12  2013-2017 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2013-2017 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT
logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR,
Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK
MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST
logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32
logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC,
SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are
registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,
CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,
ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-
Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi,
MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,
PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix,
RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial
Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II,
Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2013-2017, Microchip Technology Incorporated, All Rights
Reserved.

ISBN:
DS00001564B-page 13

DS00001564B-page 14  2013-2017 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

10/25/17

http://support.microchip.com
http://support.microchip.com
http://www.microchip.com

	Introduction
	What Is The Event Detect Module?
	Low-Speed Event Detect
	High-Speed Event Detect

	Schematic Diagram
	FIGURE 1: Schematic

	Firmware Overview
	Application Description
	FIGURE 2: EVHS Input
	FIGURE 3: EVLS Input

	Configuration of the event Detection Module
	TABLE 1: Event Detection Register
	EXAMPLE 1:
	EXAMPLE 2:
	EXAMPLE 3:

	Clearing the Event Detection Interrupt Flag
	EXAMPLE 4:

	Conclusion
	Appendix A: Test Functions for the Event Detect Module
	Appendix B: Drivers Library
	Delay Drivers (delay_drivers.h)
	LCD Drivers (lcd_drivers.h)
	SPI Drivers (spi_drivers.h)
	SPI RTCC Drivers (spi_rtcc_drivers.h)
	EXAMPLE 5: Writing a Byte to the SPI RTCC
	EXAMPLE 6:
	EXAMPLE 7: Reading a byte from the SPI RTCC
	EXAMPLE 8:

	Appendix C: Revision History
	Revision A (09/2013)
	Revision B (11/2017)
	ASIA/PACIFIC

	Trademarks
	Worldwide Sales

