
 AN2462
 AVR231: AES Bootloader

Introduction

This application note describes how firmware can be updated securely on AVR® microcontrollers with
bootloader capabilities. The method uses the Advanced Encryption Standard (AES) to encrypt the
firmware.

Figure 1. Overview

int main()
{

…
}

Plaintext Encrypted
Programming

AlgorithmEncrypted Plaintext

Bootloader

Features

• Fits AVR Microcontrollers with bootloader capabilities and at least 1 KB SRAM
• Enables secure transfer of firmware and sensitive data to an AVR-based application
• Includes easy-to-use configurable example applications:

– Encrypting binary files and data
– Creating target bootloaders
– Downloading encrypted files to a target

• Implements the Advanced Encryption Standard (AES):
– 128-, 192-, and 256-bit keys

• AES Bootloader fits into 2 KB
• Typical update times of a 64 KB application, 115200 baud, 3.69 MHz target frequency:

– AES128: 27 seconds
– AES192: 30 seconds
– AES256: 33 seconds

• The application can be evaluated Out Of the Box on ATmega328PB Xplained Mini
• The firmware has been tested to work on the following devices with minimal or no change:

– ATmega 8/16/162/169/32/64/128/256
– ATmega168PA
– ATmega328PB

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 1

Table of Contents

Introduction..1

Features.. 1

1. Description...4

2. Glossary.. 7

3. Pre-Requisites... 8

4. Cryptography Overview .. 9
4.1. Encryption ... 9
4.2. Decryption.. 9

5. AES Overview .. 10
5.1. AES Implementation...10
5.2. AES Encryption ... 13
5.3. AES Decryption ...16
5.4. Key Expansion .. 16
5.5. Cipher Block Chaining – CBC.. 18

6. Software Implementation and Usage ... 19
6.1. Motivation ..19
6.2. Usage Overview ..19
6.3. Configuration File .. 20
6.4. PC Application – GenTemp ... 22
6.5. PC Application – Create ..22
6.6. PC Application – Update ... 26

7. Hardware Setup ..29
7.1. Connecting the ATmega328PB Xplained Mini Kit.. 29
7.2. Programming and Debugging.. 30

8. AVR Bootloader .. 32
8.1. Key and Header Files ..33
8.2. Project Files ...34
8.3. Atmel Studio and IAR Settings...34
8.4. Installing the Bootloader ..41
8.5. Performance ..42

9. Summary... 44

10. Get Source Code from Atmel | START..45

11. References.. 46

 AN2462

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 2

12. Revision History...47

The Microchip Web Site.. 48

Customer Change Notification Service..48

Customer Support... 48

Microchip Devices Code Protection Feature... 48

Legal Notice...49

Trademarks... 49

Quality Management System Certified by DNV...50

Worldwide Sales and Service..51

 AN2462

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 3

1. Description
Electronic designs with microcontrollers always need to be equipped with firmware, be it a portable music
player, a hairdryer, or a sewing machine. As many electronic designs evolve rapidly there is a growing
need for being able to update products that have already been shipped or sold. It may prove difficult to
make changes to hardware, especially if the product has already reached the end customer, but the
firmware can easily be updated on products based on Flash microcontrollers, such as the AVR. Many
AVR microcontrollers are configured such that it is possible to implement a bootloader able to receive
firmware updates and to reprogram the Flash memory on demand. The program memory space is divided
in two sections; the Bootloader Section (BLS) and the Application Section. Both sections have dedicated
lock bits for read and write protection so that the bootloader code can be secured in the BLS while still
being able to update the code in the application area. Hence, the update algorithm in the BLS can easily
be secured against outside access.

The problem remains with the firmware, which typically is not secure before it has been programmed into
Flash memory and lock bits have been set. This means that if the firmware needs to be updated in the
field, it will be open for unauthorized access from the moment it leaves the programming bench or
manufacturer’s premises.

This application note shows how data to be transferred to Flash and EEPROM memories can be secured
at all times by using cryptographic methods. The idea is to encrypt the data before it leaves the
programming bench and decrypts it only after it has been downloaded to the target AVR. This procedure
does not prevent unauthorized copying of the firmware, but the encrypted information is virtually useless
without the proper decryption keys. Decryption keys are stored in only one location outside the
programming environment - inside the AVR. The keys cannot be regenerated from the encrypted data.
The only way to gain access to the data is by using the proper keys.

The following figure shows an example of how a product is first manufactured, loaded with initial
firmware, sold, and later updated with a new revision of the firmware.

 AN2462
Description

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 4

Figure 1-1. An Example of the Typical Production and Update Procedure

1

3

2

4

FIRMWARE
(INITIAL)

BOOTLOADER

DECRYPTION
KEYS

FIRMWARE
(UPDATE)

FIRMWARE UPDATES

PRODUCT SOLD
PRODUCT BEING
MANUFACTURED

PRODUCT BEING
UPDATED

MANUFACTURER THIRD PARTY

AVR AVR

Note: 
1. During manufacturing, the microcontroller is first equipped with a bootloader, decryption keys, and

application firmware. The bootloader takes care of receiving the actual application and
programming it into Flash memory, while keys are required for decrypting the incoming data. Lock
bits are set to secure the firmware inside the AVR.

2. The product is then shipped to a distributor or sold to the end customer. Lock bit settings continue
to keep the firmware secured inside the AVR.

3. A new release of the firmware is completed and there is a need to update products, which already
have been distributed. The firmware is therefore encrypted and shipped to the distributor. The
encrypted firmware is useless without decryption keys and therefore even local copies of the
software (for example, on the hard drive of the distributor) do not pose a security hazard.

 AN2462
Description

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 5

4. The distributor upgrades all units in stock and those returned by customers (for example, during
repairs). The encrypted firmware is downloaded to the AVR and decrypted once inside the
microcontroller. Lock bit settings continue to keep the updated firmware secured inside the AVR.

 AN2462
Description

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 6

2. Glossary
BLS Bootloader Section

EEPROM Electrically Erasable PROM

AES Advanced Encryption Standard

RAM Random Access Memory

CBC Cipher Block Chaining

PC Personal Computer

CRC Cyclic Redundancy Check

USART Universal Synchronous Asynchronous Receiver Transmitter

KB Kilobytes

LCD Liquid Crystal Display

IDE Integrated Development Environment

 AN2462
Glossary

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 7

3. Pre-Requisites
The solutions discussed in this document require basic familiarity with the following:

• Atmel® Studio 7 or later
• ATmega328PB Xplained Mini
• AES concepts
• Bootloader concepts and its implementation in AVR

This application note covers the basic overview of Advanced Encryption Standard (AES). Users who wish
to have a better understanding of the concepts of AES are requested to do further reading on relevant
literature.

 AN2462
Pre-Requisites

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 8

4. Cryptography Overview
The term cryptography is used when information is locked and made unavailable using keys. Unlocking
information can only be achieved using the correct keys.

Algorithms based on cryptographic keys are divided into two classes; symmetric and asymmetric.
Symmetric algorithms use the same key for encryption and decryption while asymmetric algorithms use
different keys. AES is a symmetric key algorithm.

4.1 Encryption
Encryption is the method of encoding a message or data so that its contents are hidden from outsiders.
The plain-text message or data in its original form may contain information the author or distributor wants
to keep secret, such as the firmware for a microcontroller. For example, when a microcontroller is updated
in the field it may prove difficult to secure the firmware against illicit copying attempts and reverse
engineering. Encrypting the firmware will render it useless until it is decrypted.

4.2 Decryption
Decryption is the method of retrieving the original message or data and typically cannot be performed
without knowing the proper key. Keys can be stored in the bootloader of a microcontroller so that the
device can receive encrypted data, decrypt it, and reprogram selected parts of the Flash or EEPROM
memory. Decryption keys cannot be retrieved from the encrypted data and cannot be read from AVR
microcontrollers if lock bits have been programmed accordingly.

 AN2462
Cryptography Overview

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 9

5. AES Overview

5.1 AES Implementation
This section is not intended to be a detailed description of the AES algorithm or its history. The intention is
rather to describe the AVR-specific implementations for the various parts of the algorithm. Since memory
is a scarce resource in embedded applications, the focus has been on saving code memory. The
bootloader application will never be run the same time as the main code, and it is therefore not important
to save data memory (RAM) as long as the data memory requirements do not exceed the capacity of the
microcontroller.

In the following subsections, some basic mathematical operations and their AVR-specific implementations
are described. Note that there are some references to finite field theory from mathematics. Knowledge of
finite fields is not required to read this document, but the interested reader should study the AES
specification.

Note:  If the reader has sufficient knowledge of the implementation of AES, they can skip to 6. Software
Implementation and Usage without loss of continuity.

5.1.1 Byte Addition
In the AES algorithm, byte addition is defined as addition of individual bits without carry propagation. This
is identical to the standard XOR operation. The XOR operation is its own inverse; hence byte subtraction
is identical to addition in the AES algorithm. XOR operations are trivial to implement on AVR.

5.1.2 Byte Multiplication
In the AES algorithm, byte multiplication is defined as finite field multiplication with modulus 0x11B (binary
1 0001 1011). A suggested implementation is to repetitively multiply the first factor by 2 (modulo 0x11B)
and sum up the intermediate results for each bit in the second factor having value 1.

An example: If the second factor is 0x1A (binary 0001 1010), then the first, third, and fourth intermediate
results should be summed.

Another example is shown in the following figure. This method uses little memory and is well suited for an
8-bit microcontroller.

 AN2462
AES Overview

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 10

Figure 5-1. Byte Multiplication
A = 01110010 B = 00110101

A

A = 2A

A = 2A

A = 2A

A = 2A

A = 2A

A = 2A

A = 2A

*

*

*

*

*

*

*

*

1

0

0

1

1

0

1

0

=

=

=

=

=

=

=

=

01110010

0

0

11000010

01100001

0

11010011

0

00000010

Use multiplication
modulo 0x11B

Use addition modulo 2,
i.e. XOR

The Byte Multiplication can be described by the following pseudo code:
bitmask = 1
tempresult = 0
tempfactor = firstfactor
while bitmask < 0x100
 if bitmask AND secondfactor <> 0
 add tempfactor to tempresult using XOR
 end if
 shift bitmask left once
 multiply tempfactor by 2 modulo 0x11B
end while
return tempresult

5.1.3 Multiplicative Inverses
To be able to compute finite field multiplicative inverses, that is, 1/x, a trick has been used in this
implementation. Using exponentiation and logarithms with a common base, the following identity can be
utilized:

Using exponentiation and logarithms to compute 1/x.

 AN2462
AES Overview

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 11

In this case, the base number 3 has been chosen, as it is the simplest primitive root. By using finite field
multiplication when computing the exponents and logarithms, the multiplicative inverse is easy to
implement. Instead of computing exponents and logarithms every time, two lookup tables are used. Since
the multiplicative inverse is only used when preparing the S-box described in 5.1.4 S-Boxes, the memory
used for the two lookup tables can be used for other purposes when the S-box has been prepared.

The lookup table computation can be described by the following pseudo code:
tempexp = 0
tempnum = 1
do
 exponentiation_table[tempexp] = tempnum
 logarithm_table[tempnum] = tempexp
 increase tempexp
 multiply tempnum by 3 modulo 0x11B
loop while tempexp < 256

5.1.4 S-Boxes
The AES algorithm uses the concept of substitution tables or S-boxes. One of the steps of the algorithm
is to apply an invertible transformation to a byte. The S-box is the pre-computed results of this
transformation for all possible byte values. The transformation consists of two steps: (1) A multiplicative
inverse as described in 5.1.3 Multiplicative Inverses, and (2) a linear transformation according to the
following equation, where a~i~ are the bits of the result and b~i~ are the bits of the result from step 1.

Linear transformation used in the S-box:

A closer look at the matrix reveals that the operation can be implemented as the sum (using XOR
addition) of the original byte, the right-hand vector, and the original byte rotated left one, two, three and
four times. This method is well suited for an 8-bit microcontroller.

The inverse S-box, used for decryption, has a similar structure and is also implemented using XOR
additions and rotations. Refer to the AES specification for the corresponding matrix and to the source
code for implementation details.

5.1.5 The ‘State’
The AES algorithm is a block cipher, which means that data is managed in blocks. For the AES cipher,
the block size is 16 bytes. The AES block is often organized in a 4x4 array called the ‘State’ or the ‘State
array’. The leftmost column of the State holds the first four bytes of the block, from top to bottom, and so
on. The reader should also be aware that in the AES specification, four consecutive bytes are referred to
as a word.

 AN2462
AES Overview

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 12

5.2 AES Encryption
Before discussing the steps of the encryption process, the concept ‘encryption round’ needs to be
introduced. Most block ciphers consist of a few operations that are executed in a loop a number of times.
Each loop iteration uses a different encryption key. At least one of the operations in each iteration
depends on the key. The loop iterations are referred to as encryption rounds, and the series of keys used
for the rounds is called the key schedule. The number of rounds depends on the key size.

The flowchart for the encryption process is shown in the following figure. The following subsections
explain the different steps in the process. Each step is implemented as a subroutine for convenience.
Using an optimizing compiler removes unnecessary function calls to save code memory.

Figure 5-2. Encryption Flowchart

Encrypt Block

Ready for the
last round ?

Add Round Key

Substitute Bytes

Shift Rows

Mix Columns

Add Round Key

No

Substitute Bytes

Shift Rows

Add Round Key

Return

Yes

5.2.1 Add Round Key
This step uses XOR addition to add the current round key to the current State array. The round key has
the same size as the State, that is, 16 bytes or four words. This operation is implemented as a 16-step
loop.

 AN2462
AES Overview

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 13

Figure 5-3. Adding the Round Key to the Current State

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S'1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S'3,0 S'3,1 S'3,2 S'3,3

S S'xor (round key)

XOR
key3,2

5.2.2 Substitute Bytes
This step uses the precalculated S-box lookup table to substitute the bytes in the State. This step is also
implemented in a 16-step loop like the previous section.

Figure 5-4. Substituting the Bytes of the Current State

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S'1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S'3,0 S'3,1 S'3,2 S'3,3

S S'S-box lookup

S-box[S3,2]

5.2.3 Shift Rows
This step operates on the rows of the current State. The first row is left untouched, while the last three are
cycled left one, two, and three times, respectively. To cycle left once, the leftmost byte is moved to the
rightmost column, and the three remaining bytes are moved one column to the left. The process is shown
in the following figure.

 AN2462
AES Overview

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 14

Figure 5-5. Cycling the Rows of the Current State

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S S'cycle rows

0x left

1x left

2x left

3x left

S0,0 S0,1 S0,2 S0,3

S1,1 S1,2 S1,3 S1,0

S2,2 S2,3 S2,0 S2,1

S3,3 S3,0 S3,1 S3,2

The naive implementation would be to write a subroutine that cycles a row left one time, and then call it
the required number of times on each row. However, tests show that implementing the byte shuffling
directly, without any loops or subroutines, results in only a small penalty in code size but a significant gain
(3x) in speed. Therefore, the direct implementation has been chosen. Refer to the ShiftRows() function
in the source code for details.

5.2.4 Mix Columns
This step operates on the State column by column. Each column is treated as a vector of bytes and is
multiplied by a fixed matrix to get the column for the modified State.

Figure 5-6. Mixing the Columns of the Current State

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S'1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S'3,0 S'3,1 S'3,2 S'3,3

S S'
Matrix multiplication ,
column by column

Matrix

The operation can be described by the following equation, which are the bytes of the mixed column and
are the bytes of the original column.

Figure 5-7. Matrix Multiplication When Mixing One Column

This step is implemented directly without any secondary function calls. From the matrix equation, one can
see that every byte of the mixed column is a combination of the original bytes and their doubles. Refer to
the MixColumns() function in the source code for details.

 AN2462
AES Overview

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 15

Note:  XOR Addition and Finite Field Multiplication from sections 5.1.1 Byte Addition and 5.1.2 Byte
Multiplication are used.

5.3 AES Decryption
The process is very similar to the encryption process, except the order of the steps has changed. All
steps except “Add Round Key” have their corresponding inverses. “Inverse Shift Rows” cycles the rows
right instead of left. “Inverse Substitute Bytes” uses inverse S-boxes.

“Inverse Mix Columns” also uses an inverse transformation. Refer to the AES specification for the
corresponding matrix and to the source code for implementation details. The flowchart for the decryption
process is shown as follows.

Figure 5-8. Decryption Flowchart

Decrypt Block

Ready for the
last round ?

Add Round Key

Inverse Shift Rows

Inverse Substitute
Bytes

Add Round Key

Inverse Mix Columns

No

Inverse Shift Rows

Inverse Substitute
Bytes

Add Round Key

Return

Yes

Note:  The key schedule used for decryption is the same as for encryption but in reverse order.

5.4 Key Expansion
Key expansion is the process of generating the key schedule from the original 128-, 196-, or 256-bit
cipher key. The flowchart for key expansion is shown as follows:

 AN2462
AES Overview

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 16

Figure 5-9. Key Expansion Flowchart
Key Expansion

Set round constant word to
{0x01 0x00 0x00 0x00}

Current position
is a multiple of the key

length ?

Cycle temporary
word left one byte

Copy original key to start
of expanded key

Copy last 4 bytes of key to
temporary word

Set current position in
expanded key right after

copy of original key

Multiply round
constant by 2

Add current round
constant to

temporary word

Substitute each byte
in temporary word

Add word from one
key length before
current position to
temporary word

Copy temporary word to
current position and

advance to next word

Reached end of
expanded key ?

Return

Yes

Yes
Current position

is one block length past a
multiple of the key

length ?

Substitute each byte
in temporary word

No

Yes

No

No

Only if key size is
larger than

192 bits

 AN2462
AES Overview

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 17

The algorithm uses operations already described, such as XOR addition, finite field multiplication,
substitution, and word cycling. Refer to the source code for details.

Note:  The key expansion is identical for both encryption and decryption. Therefore the S-box used for
encryption is required even if only decryption is used. In the AVR implementation, the ordinary S-box is
computed prior to key expansion, and then its memory is reused when computing the inverse S-box.

5.5 Cipher Block Chaining – CBC
AES is a block cipher, meaning that the algorithm operates on fixed-size blocks of data. The cipher key is
used to encrypt data in blocks of 16 bytes. For a known input block and a constant (although unknown)
encryption key, the output block will always be the same. This might provide useful information for
somebody wanting to attack the cipher system.

There are some methods commonly used which cause identical plaintext blocks being encrypted to
different ciphertext blocks. One such method is called Cipher Block Chaining (CBC).

CBC is a method of connecting the cipher blocks so that leading blocks influence all trailing blocks. This
is achieved by first performing an XOR operation on the current plaintext block and the previous
ciphertext block. The XOR result is then encrypted instead of the plaintext block. This increases the
number of plaintext bits one ciphertext bit depends on.

 AN2462
AES Overview

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 18

6. Software Implementation and Usage
This section first discusses some important topics for improving system security. These topics motivate
many of the decisions in the later software design.

6.1 Motivation
This application note presents techniques that can be used when securing a design from outside access.
Although no design can ever be fully secured it can be constructed such that the effort required to break
the security is as high as possible. There is a significant difference between an unsecured design that a
person with basic engineering skills can duplicate and a design that only a few, highly skilled intruders
can break. In the unsecured case, the design is easily copied and even reverse engineered, violating the
intellectual property of the manufacturer and jeopardizing the market potential for the design. In the
secured case, the effort required to break the design is so high that most intruders simply focus on
developing their own products.

There is only one general rule on how to build a secure system: It should be designed to be as difficult to
break as possible. Any mechanism that can be used to circumvent security will be tried during a break
attempt. A few examples of what must be considered are given below.

• What will happen if power is removed during a firmware update? What is the state of the
microcontroller when power is restored back? Are lock bits and reset vectors set properly at all
times?

• Are there any assumptions that can be made on what plain-text data will look like? In order for AES
to be broken, there must be a pattern to look for. The attack software will have to be configured to
search for a known pattern, such as interrupt vectors at the start of program memory, memory
areas padded with zero or one, and so on.

• Is there any feedback that can be derived from the decryption process? Any such feedback can
help the attacker. For example, if the decryption algorithm inside the bootloader would give an OK/
Not-OK type of signal for each block processed, then this signal could be used as feedback to the
attacker.

• Should encrypted frames be sent in another order? If the first frame sent to the bootloader always
includes the first block of the encrypted file then the attacker can make some assumptions from
this. For example, it can be assumed that the first frame maps program data starting from address
zero and that it contains the interrupt vector table. This information helps the attacker to refine the
key search. To increase the security of the system, send the frames in random order (the decrypted
frames will be mapped to their proper address, anyhow).

6.2 Usage Overview
This and the following subsections describe how to use and configure the applications. The process is
illustrated in the following figure.

 AN2462
Software Implementation and Usage

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 19

Figure 6-1. Overview of the Project Flow

EEPROM
Data

Application Builder

Create

FirmwareConfiguration
File

Header
File Key File Encrypted

Firmware

Text editor/ GenTemp Miscellaneous Editor

Atmel Studio

Frames

Update

Bootloader
Source

Bootloader

Target AVR

Application note

The main steps are:

• Create an application for the target AVR. If required, create an EEPROM layout in a separate file.
• Create a configuration file with project dependent information. The application called GenTemp can

be used for creating a file frame.
• Run the application called Create. This will create the header file, key file, and the encrypted file.
• Use Atmel Studio 7 or later, configure and build the bootloader for the target AVR
• Download bootloader to target AVR and set lock and fuse bits
• Now the encrypted firmware may be downloaded to the AVR at any time

6.3 Configuration File
The configuration file contains a list of parameters, which are used to configure the project. The
parameters are described in the following table.

Table 6-1. Summary of Configuration File Options

Parameter Description Default Required

PAGE_SIZE Size of AVR Flash page in decimal bytes. This
parameter is part dependent. See the data
sheet.

N/A Yes

KEY1 First part (128-bit) of the encryption key in hex.
Should be 16 random bytes, with odd-parity bits
inserted after every 8th bit, making a total of 18
bytes.

None: No
encryption

No, but strongly
recommended

KEY2 Second part (64-bit) of the encryption key in
hex. Should be eight random bytes, with odd-
parity bits inserted after every 8th bit, making a
total of nine bytes. If omitted, AES128 will be
used.

None: Use
AES128

No, but
recommended

KEY3 Third part (64-bit) of the encryption key in hex.
Should be nine random bytes, with odd-parity
bits inserted after every 8th bit, making a total of

None: Use
AES128 or
AES192

No, but
recommended

 AN2462
Software Implementation and Usage

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 20

Parameter Description Default Required

nine bytes. If omitted AES128 or AES192 will
be used.

INITIAL_VECTOR Used for chaining cipher blocks. Should be 16
random bytes in hex.

0 No, but strongly
recommended

SIGNATURE Frame validation data in hex. This can be any
four bytes, but it is recommended that the
values are chosen at random.

0 No

ENABLE_CRC Enable CRC checking: YES or NO. If enabled,
the whole application section will be overwritten
and the application must pass a CRC check
before it is allowed to start.

No No, but
recommended

MEM_SIZE Size of application section in target AVR (in
decimal bytes).

N/A Yes, if CRC is
used

The configuration file can be given any valid file name. The name is later given as a parameter to the
application that will create the project files. Below is a sample configuration file for the ATmega328PB.
The KEY1 parameter is an example 128-bit key (hex 0123456789ABCDEF0123456789ABCDEF) with
parity bits inserted.
PAGE_SIZE = 128
MEM_SIZE = 30720
CRC_ENABLE = YES
KEY1 = EC38ECC4C11DBC16151A5E346A872AADAD36
INITIAL_VECTOR = F24D994D5DD3E9F1EEE897616C425028
SIGNATURE = 89DBF334

Some of the parameters cannot be set without specific knowledge of the target AVR. The following table
summarizes the features of some present AVR microcontrollers with bootloader functionality. For devices
not present in this table, refer to the data sheet of the device.

Table 6-2. AVR Feature Summary

Feature M8 M16 M162 M169 M32 M64 M128 M328PB

Flash Size, bytes 8192 16384 16384 16384 32768 65536 131072 32768

Flash Page size,
bytes

64 128 128 128 128 256 256 128

Flash Pages 128 128 128 128 256 256 512 256

BLS (max.), bytes 2048 2048 2048 2048 4096 8192 8192 4096

BLS (max.) Pages 32 16 16 16 32 32 32 32

MEM_SIZE (min.),
bytes

6144 14336 14336 14336 28672 57344 122880 28672

PAGE_SIZE, bytes 64 128 128 128 128 256 256 128

 AN2462
Software Implementation and Usage

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 21

6.4 PC Application – GenTemp
This application generates a template for the configuration file. The application generates random
encryption keys and initial vectors, leaving other parameters for the user to be filled in (such as the Flash
page size). It is recommended to always start with creating a template using this application.

The application is used as follows:

gentemp FileName.ext

FileName.ext is the name of the configuration file to be created. After the file has been generated it can
be edited using any plain text editor.

6.5 PC Application – Create
This application reads information from the configuration file and generates key and header files for the
bootloader. It is also used for encrypting the firmware. Typically, the application is run at least twice:

1. To generate key and header files for the bootloader.
2. When new firmware is encrypted.

Note:  It is very important that the same encryption information (configuration file) is used when
generating project files and encoding the firmware. Otherwise, the bootloader may not have the correct
set of encryption keys and cannot decrypt the data. It should also be noted that it is possible to use the
information in the configuration file to decrypt the encrypted firmware. Hence, the configuration file must
be kept safe at all times and should not be modified after it has been used for the first time.

6.5.1 Command Line Arguments
The following table shows the available command line arguments.

Table 6-3. Summary of Command Line Arguments

Argument Description

-c <filename.ext> The path to a configuration file.

-d If set, contents of each Flash page is deleted before writing. Else, previous
data will be preserved if not specifically written to.

-e <filename.ext> The path to an EEPROM file (data that goes into EEPROM).

-f <filename.ext> The path to a Flash file (code that goes into Application Section).

-h <filename.ext> The name of the output header file. This file is later included in the
bootloader.

-k <filename.ext> The name of the output key file. This file is later included in the bootloader.

-l [BLB12] [BLB11] [BLB02]
[BLB01]

Lock bits to set. These lock bits are set after all data has been transferred
and before control is transferred to the updated application.

 AN2462
Software Implementation and Usage

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 22

Argument Description

-n Nonsense. Add a random number of nonsense records to an encrypted
file. As nonsense records are ignored by the bootloader, this setting does
not affect the application, only the predictability of the output file.

-o <filename.ext> Output file name. This is the encrypted file that may be distributed and sent
to the target when it needs to be updated.

6.5.2 First Run
In the first run, typically, only key and header files for the bootloader are generated. The generation of key
and header files is requested using command line arguments. For example:

create –c Config.txt –h BootLdr.h –k AESKeys.inc

The key and header files must be copied to the project directory of the bootloader application and be
included into the bootloader code.

Note:  The bootloader project files are preconfigured to use the file names mentioned above, that is,
BootLdr.h and AESKeys.inc. It is recommended these file names are not changed.

6.5.3 Subsequent Runs
In subsequent runs, the application is used for encoding the firmware. Prior to encryption, the source file
must be compiled, assembled and linked into one code segment file and/or one EEPROM segment file.
Files must be of type Intel® hex.

A file name is given at the command prompt and an encrypted file will be generated according to data in
the configuration file. For example:

create –c Config.txt –e EEPROM.hex –f Flash.hex –o Update.enc –l BLB11 BLB12

The application software and EEPROM data files will be combined into a single encrypted file.

 AN2462
Software Implementation and Usage

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 23

6.5.4 Program Flow
Figure 6-2. Flowchart of the Create Application

Create

Read config file

Command line
arguments?

How many keys ?

Use
AES128

Use
AES196

Use
AES256

1 3
2

Key file
name given?

Create key file

Yes

Header file
name given?

Create header file

Yes

No

Flash file
name given?

Include flash file
in encryption

Yes

EEPROM file
name given?

Include EEPROM file
in encryption

Yes

No

No

Output file
name given?

Create encrypted file

Yes

No

No

Done

Done

Give instructions

No

Yes

6.5.5 The Encrypted File
The Flash and EEPROM files are encrypted and stored in one target file. Before encryption, however,
data is organized into records. There are seven types of records, as illustrated in the following figure.

 AN2462
Software Implementation and Usage

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 24

Figure 6-3. Record Types for Encrypted File

0

FLASH PAGE DATA (VARIABLE LENGTH)

2 NBAB

4 NBAB

3 NBAB

(VARIABLE LENGTH)5 NBAB

6 L R

7 R

FLASH PAGE PREPARE

END OF FRAME

FLASH PAGE PROGRAM

EEPROM SECTION DATA

LOCK BITS

RESET

RECORD TYPE LAYOUT

LEGEND

AB

L
NB

R

ADDRESS IN BYTES

LOCK BITS
LENGTH IN BYTES

RANDOM DATA

1 NBABFLASH PAGE ERASE

NNONSENSE

N ANY VALUE IN 8...255

The record type is given as the first byte in the record. The application data is broken down to record
types 1, 2, 3, and 4 (that is, erase, prepare, load, and write buffer page to Flash). The data for the
EEPROM section is formatted into record type 5. Lock bits are sent in record type 6. Record types 0 and
7 are for ending a frame and transmission, respectively.

All other records, that is, those with a record identifier above 7, are of type nonsense. When this option is
enabled (see create tool), a random number of nonsense records will be placed at random locations in
the file.

The output file is created as illustrated in the following figure.

Figure 6-4. Creating the Encrypted File

CHAINED AND ENCRYPTED DATA

INITIAL VECTOR

STEP 1

STEP 2

C

FZ

C

STEP 3

STEP 4

STEP 5

FRAMEFILE

CIPHER BLOCK

RECORD

CIPHER BLOCK CIPHER BLOCK CIPHER BLOCK CIPHER BLOCK

RECORDRECORDRECORD

CHAINED AND ENCRYPTED DATA

CHAINED AND ENCRYPTED DATA

The steps are described below (the numbers refer to the figure above):

 AN2462
Software Implementation and Usage

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 25

1. Data is formatted into records, which are then lined up following the frame signature (SIG). A zero
(Z) is added to mark the end of the frame and the frame is padded with random data (F) to create a
frame size that is a multiple of 16 bytes.

2. The initial vector is attached to the frame. In the first frame, the vector is equal to the one given in
the configuration file. In subsequent frames, the initial vector is equal to the last cipher block of the
previous frame.

3. The initial vector and cipher blocks are chained and encrypted. The initial vector is then removed
from the frame.

4. A CRC-16 checksum (C) is calculated and added to the frame.
5. The length (L) of the frame, excluding the length information, is calculated and saved at the start of

the frame.

The frame is written to the output file and the procedure is repeated until all data has been processed.

6.6 PC Application – Update
This application is used for sending the encrypted file to the target. The data can be sent via a serial port
on the PC directly to the USART on the target hardware. The program flow is illustrated as follows.

 AN2462
Software Implementation and Usage

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 26

Figure 6-5. Overview of the Project Flow

Two
Arguments?

YESNO

Update

Give Instructions

Read All File Into Buffer

Done

Done

File
Exists?

YESNO

Port Number
Given?

YESNO

Port
Initializes?

YESNO

Show Error Message

Show Error Message

Initialize Buffer Pointer

Read Size of Next Frame

Flush Input of Serial Port

Send Frame

Byte
Received?

YES

NO

Byte
Value?

OKCRC

Retry < 4?
YESNO

Show CRC Error Message Increase Retry Counter

Reset Retry Counter

Show Error Message

Close Serial Port

Close File

Pointer < Size
of Buffer?

YESNO

Increase Pointer

Close File

The Update application reads in files generated with the Create application. The file consists of one or
more concatenated frames of encrypted data. The application transmits data one frame at a time,
pausing in between to wait for a reply from the bootloader. The next frame is transmitted only after an
acknowledgment has been received; otherwise, the application will either resend the frame or close
communication.

 AN2462
Software Implementation and Usage

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 27

The update application is run from the command prompt. The command prompt arguments are listed in
the table below.

Table 6-4. Command Line Arguments for the Update Application

Argument Description

<filename.ext> The path to the encrypted file to be transferred

-COMn Serial port, where n is the serial port number

-baudrate Baudrate, where baudrate is the actual baudrate figure

For example:

update blinky.ext -COM1 -115200

It should be noted that the update system only updates those parts of the Flash and EEPROM denoted in
the application and EEPROM files. If CRC check of the application section is enabled, or the erase option
is selected in the create tool, all application memory will be cleared before programming.

 AN2462
Software Implementation and Usage

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 28

7. Hardware Setup
The target hardware must be properly set up before the encrypted firmware can be sent to the
bootloader. In this application note, it is assumed that an ATmega328PB Xplained Mini board is used for
evaluation. The details on configuration, steps to program, and debug are explained in the following
sections. These sections cover only the basic information needed to get an ATmega328PB Xplained Mini
up and running. For more information, refer to ATmega328PB Xplained Mini User Guide.

7.1 Connecting the ATmega328PB Xplained Mini Kit
This section helps the user to connect the ATmega328PB Xplained Mini with the Atmel Studio 7.

1. Download and install Atmel Studio version 7 or later versions.
2. Launch the Atmel Studio.
3. Connect the ATmega328PB Xplained Mini to the USB port and it will be visible in the Atmel Studio.

7.1.1 Auto Board Identification of Xplained Mini Kit
• Once the ATmega328PB Xplained Mini kit is connected to the PC, the Windows® Task bar will pop-

up a message as shown below:
Figure 7-1. ATmega328PB Xplained Mini Driver Installation

• If the driver installation is proper, EDBG will be listed in the Device Manager as shown below:

 AN2462
Hardware Setup

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 29

http://www.microchip.com/developmenttools/productdetails.aspx?partno=atmega328pb-xmini
http://www.microchip.com/development-tools/atmel-studio-7

Figure 7-2. Successful mEDBG Driver Installation

• Open Atmel Studio and go to View → Available Tools. The EDBG should get listed in the tools as
mEDBG and the tool status should display as Connected. This indicates that the tool is
communicating properly with Atmel Studio.

Figure 7-3. mEDBG under Available Tools

7.1.2 Connect the ATmega328PB Xplained Mini UART to the mEDBG COM Port
1. Connect the mEDBG USB to the PC.
2. Use the Device Manager to find the COM port number.
3. Default COM port settings are 9600 baud N 8 1. The COM port settings can be changed according

to the application by using the Device Manager. This application has been tested with a baud rate
of 115200.

7.2 Programming and Debugging
This section helps to program and debug the ATmega328PB Xplained Mini kit by using mEDBG.

7.2.1 Programming the ATmega328PB Xplained Mini By Using mEDBG
1. Connect the mEDBG USB to the PC.
2. Go to the Atmel Studio: Click Tools, select Device Programming, and then select the connected

mEDBG as Tool with Device as ATmega328PB and Interface as ISP, click Apply.

 AN2462
Hardware Setup

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 30

3. Select Memories and locate the source .hex or .elf file and then click Program.
4. If the source contains fuse settings, go to Production file and upload the .elf file and program the

fuses.

Note:  If ISP programming fails it could be because the debugWIRE is enabled. See 7.2.2 Debugging
the ATmega328PB Xplained Mini By Using mEDBG on how to disable debugWIRE mode.

7.2.2 Debugging the ATmega328PB Xplained Mini By Using mEDBG
1. Start Atmel Studio.
2. Connect the mEDBG USB to the PC.
3. Open your project.
4. In the Project menu, select the project properties page. Select the Tools tab, and select mEDBG

as debugger and debugWIRE as the interface.
5. In the Debug menu click Start Debugging and Break.
6. Atmel Studio will display an error message if the DWEN fuse in the ATmega328PB is not enabled,

click YES to make Studio set the fuse using the ISP interface.
7. A debug session is started with a break in main. Debugging can start.
8. When exiting debug mode select Disable debugWIRE and Close in the Debug menu. This will

disable the DWEN fuse.

Note: 
1. If the debug mode is not exited by selecting Disable debugWIRE and Close in the Debug menu,

the DWEN fuse will be enabled and the target will still be in debug mode, i.e. it will not be possible
to program the target by using the SPI (ISP) interface.

2. The bootloader code supplied with this application note has been optimized for size and hence it
may not be possible to do debugging. Removing the optimization will increase the code size and it
may not fit into the bootloader section. Hence it is recommended to use only the programming
mode.

 AN2462
Hardware Setup

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 31

8. AVR Bootloader
The bootloader must reside in the target AVR before the device can be updated with encrypted firmware.
The bootloader communicates with the PC and is capable of programming the EEPROM and the
application area of the Flash memory. The bootloader included with this application note has been
created by using Atmel Studio 7. The program flow is illustrated in the figure below.

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 32

Figure 8-1. Flowchart for the AVR Bootloader

Switch SW7
Pressed?

YESNO

Bootldr

Load Initial Vector for CBC

Calculate CRC of Appl. Section

Application
CRC Valid?

YES

NO

Read Frame Size (Two Characters)

Read Character, Store in RAM

Update Frame CRC Counter

Jump to Application

End of
Frame?

YES

NO

Frame CRC
Valid?

YES NO

Decrypt and Unchain Send Frame CRC Error

Signature
Valid?

YES NO

Ignore Frame BUT Send OK
Type?

Load
Data

Write
Page

Write
EEPROM

Write
Lock Bits

Set Initial
Vector

Prepare
Page

Send OK

PREPARE DATA PROGRAM EEPROM LOCKBITS RESET EOF

NOTE WELL: IF CRC IS VALID, FRAME IS
DECRYPTED. ANY INFORMATION SENT
ON DECRYPTION STATUS OTHER THAN
OK MAY BE USED IN AN ATTACK ATTEMPT

Erase
Page

ERASE

CRC Check
Enabled?

YES

NO

Do
Nothing

NONSENSE

8.1 Key and Header Files
Before the bootloader can be compiled, there are some parameters that need to be set up. To start with,
the encryption key and target header files generated by the PC application create must be copied to the

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 33

bootloader directory. The files will be included when they are referred to with the #include directive inside
the bootloader source code.

8.2 Project Files
The application note comes with device-specific project files for ATmega328PB.

For other AVR devices, use the project file and modify them as per the steps given in the following
section.

8.3 Atmel Studio and IAR Settings
The common settings for Atmel Studio and IAR™ will be listed in this section.

1. The essential fuse settings:
1.1. The boot reset vector must be enabled.
1.2. Set Low Fuse Byte to use External Clock @ 16 MHz to make the ATmega328PB example

(BAUD RATE 38400) download from Atmel START work properly.
2. The SPMCSR register address has to be defined using SPMREG (refer to the table below) macro

in reg.h file, this register address will change if the register is located in the indirect memory region,
the address of this register can be found in the register summary section of the data sheet.
Figure 8-2. Setting SPMREG Address in reg.h

3. Other register addresses defined in reg.h file have to be modified according to the device data
sheet.

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 34

4. Symbol __RAMPZ__ (refer to the table below) has to be defined in compiler and assembler for the
devices with flash size greater than 64 KB.

5. Symbol __MEMSPM__ (refer to the table below) has to be defined in assembler for the devices
whose SPMCSR register is located above the direct memory access region (i.e. if SPMCSR
register is located above 0x3F). For e.g. ATmega128 has SPMCSR located at 0x68 and hence the
definition is required for accessing it.

6. Symbol BOOT_ADDR=<bootloader section start address> (refer to the table below) has to be
defined in the compiler for the devices with flash size greater than 64 KB.

Table 8-1. Summary of Symbol Settings

Setting M8 M16 M32 M64 M128 M256 M162 M169 M328PB M168PA

__RAMPZ__ No No No No Yes Yes No No No No

__MEMSPM__ No No No No Yes No No No No No

BOOT_ADDR No No No No 0x1E000 0x3E000 No No No No

BOOT_START(IAR) 0x1800 0x3800 0x7000 0xE000 0x1E000 0x3E000 0x3800 0x3800 0x7000 0x3800

.text(Atmel Studio) 0x1800 0x3800 0x7000 0xE000 0x1E000 0x3E000 0x3800 0x3800 0x7000 0x3800

SPMREG 0x37 0x37 0x37 0x37 0x68 0x37 0x37 0x37 0x37 0x37

Note:  The value of BOOT_ADDR,BOOT_START and .text in the table above is the value when the boot
size is maximum. You can change this value according to the actual boot size.

8.3.1 Atmel Studio Settings
The compiler, linker, and assembler setting, shown below are required while configuring for a specific
device in Atmel Studio.

1. Bootloader start address .text (refer to Table 8-1) has to be defined in the linker setting for linking
the code to the bootloader start address (as shown in the figure below). Start address should be
given as byte address (multiplying word address by 2). For e.g., if bootloader word address of
ATmega328PB is 0x3C00, corresponding byte would be 0x3C00 * 2 = 0x7800.

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 35

Figure 8-3. Setting Bootloader Address Code Link Address

2. Optimization Settings (as shown in the figure below).
Figure 8-4. Optimization Settings

3. Other Linker Settings (as shown in the figure below).

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 36

Figure 8-5. Other Linker Settings

8.3.2 IAR Settings
The compiler, linker, and assembler settings shown below are required while configuring for a specific
device in IAR.

1. When using the mEDBG in the ATmega328PB Xplained Mini kit, the Atmel-ICE should be selected
in Debugger Driver setting (as shown in the figure below).

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 37

Figure 8-6. Debugger Driver

2. A user-defined .xcl file should be used to override default linker file. Follow the steps below to make
the linker work properly:
2.1. Copy the template linker file (for example, C:\Program Files (x86)\IAR Systems\Embedded

Workbench 7.4\avr\src\template\cfgm328pb.xcl) according to the device to your project and
rename it what you like.

2.2. Open this file and paste the below content under the original content and save it.
-ca90
-w29

//===
// Interrupt vectors

-Z(CODE)INTVEC=BOOT_START-(BOOT_START+_..X_INTVEC_SIZE-1)
//-H1895
-h(CODE)BOOT_START-(BOOT_START+_..X_INTVEC_SIZE-1)

//===
// Code memory

-Z(CODE)NEAR_F,HUGE_F,SWITCH,INITTAB,DIFUNCT,CODE=BOOT_START-_..X_FLASH_END
-Z(FARCODE)FAR_F,FARCODE=BOOT_START-_..X_FLASH_END

//===
// RAM

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 38

-Z(DATA)NEAR_I,NEAR_Z=_..X_SRAM_BASE-_..X_SRAM_END
-Z(DATA)RSTACK+_..X_RSTACK_SIZE=(_..X_SRAM_END-_..X_RSTACK_SIZE+1)-_..X_SRAM_END
-Z(DATA)CSTACK+_..X_CSTACK_SIZE=(_..X_SRAM_END-_..X_RSTACK_SIZE-_..X_CSTACK_SIZE
+1)-(_..X_SRAM_END-_..X_RSTACK_SIZE)
//-Z(DATA)RSTACK+40=(_..X_SRAM_END-40+1)-_..X_SRAM_END
//-Z(DATA)CSTACK+300=(_..X_SRAM_END-40-300+1)-(_..X_SRAM_END-40)
//-Z(DATA)TINY_I,TINY_Z,TINY_N=RAM_BASE-FF
//-Z(DATA)TINY_I,TINY_Z,TINY_N=RAM_BASE-100

2.3. Use this file to override the default linker file (as shown in the figure below).
Figure 8-7. Override Default Linker File

2.4. Define BOOT_START (refer to Table 8-1) according to the device (as shown in the figure
below).

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 39

Figure 8-8. Linker #define

3. Optimization Settings (as shown in the figure below).

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 40

Figure 8-9. Optimization Settings

8.4 Installing the Bootloader
Compile the bootloader and then download it to the target using Atmel Studio 7 or later. Before running
the bootloader, the following fuse bits must be configured:

• Size of Boot Loader Section. Set fuse bits so that the section size matches the BOOT_SIZE setting,
as described earlier. Note that the BLS is usually given in words, but the BOOT_SIZE parameter is
given in bytes.

• Boot reset vector. The boot reset vector must be enabled.
• Oscillator options. The oscillator fuse bits are device dependent. They may require configuration

(affects USART).

Note:  Pay special attention in setting oscillator options correctly. Even a small misadjustment could
result in communication failure.

Recommended fuse bit settings are provided in the table below. See the device data sheet for detailed
explanation of device dependent fuse bits.

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 41

Table 8-2. Recommended Fuse Bits

M8, M8515, M8535,
M16, M162, M169, M32,
M64

M128 328PB

BOOTSZ1:0 0:0 0:1 0:1

BOOTRST 0 0 0

Note:  “0” means programmed, “1” means not programmed.

It is recommended to program lock bits to protect both the application memory and the bootloader, but
only after fuse bits have been set. Lock bits can be programmed using Microchip IDE (Atmel Studio 7 or
later). BLS lock bits will also be set during firmware update, provided that they have been defined as
command line arguments when the firmware is encrypted. The recommended lock bit settings are:

• Memory lock bits: These should be set to prevent unauthorized access to memory. Note that after
the memory has been locked it cannot be accessed via in-system programming without erasing the
device.

• Protection mode for Boot Loader Section: SPM and LPM should not be allowed to write to or read
from the BLS. This will prevent the firmware in the application section to corrupt the bootloader and
will keep the decryption keys safe.

• Protection mode for application section: No restrictions should be set for SPM or LPM accessing
the application section; otherwise the bootloader cannot program it.

Note:  It is important to understand that if the device is not properly locked then the memory can be
accessed via an ISP interface and the whole point of encrypting the firmware is gone.

Recommended lock bit setting for present AVR MCUs are given in the table below. See the device data
sheet for a detailed explanation of lock bits.

Table 8-3. Recommended Lock Bits

M8, M8515, M8535, M16,

M162, M169, M32, M64, M128

328PB

BLB12 : BLB11 0 0 0 0

BLB02 : BLB01 1 1 1 1

LB2 : LB1 0 0 0 0

8.5 Performance
The following sections summarize the system performance with respect to execution time and code size.

8.5.1 Execution Time
The time required for the target device to receive, decode, and program data depends on the following
factors:

• File size. The more data, the longer it takes.
• Baudrate. The higher the transmission speed, the shorter the transmission time.
• Target AVR speed. The higher the clock frequency, the shorter the decoding time.

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 42

• Programming time of Flash page. This is a device constant and cannot be altered.
• Key-size. AES128 is faster to decrypt than AES256. In fact, AES192 is slower than AES256. It has

something to do with 192 not being a power of 2.
• Miscellaneous settings. For example, CRC check of application section takes short time.

8.5.2 Code Size
Using the highest optimization setting for the compiler, the bootloader will fit nicely into 2 KB of Flash
memory.

It should be noted that if no encryption keys are given, the bootloader is built without AES support. This
application note then performs as a standard bootloader system and can be used on any AVR with
bootloader support.

 AN2462
AVR Bootloader

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 43

9. Summary
This application note has presented a method for transferring data securely to an AVR microcontroller
with bootloader capabilities. This document has also highlighted techniques that should be implemented
when building a secured system. The following issues should be considered in order to increase the
security of an AVR design.

Implement a bootloader that supports downloading in encrypted form. When the bootloader is first
installed (during manufacturing) it must be equipped with decryption keys, required for future firmware
updates. The firmware can then be distributed in an encrypted form, securing the contents from outsiders.

Use AVR lock bits to secure Application and Boot Loader sections. When lock bits are set to prevent
reading from the device, the memory contents cannot be retrieved. If lock bits are not set, there is no use
encrypting the firmware.

Encrypt the firmware before distribution. Encrypted software is worthless to any outside the entity without
the proper decryption keys.

Keep encryption keys safe. Encryption keys should be stored in two places only: in the bootloader, which
has been secured by lock bits, and in the firmware development bench at the manufacturer.

Chain encrypt data. When data is chained, each encrypted block depends on the previous block. As a
consequence, equal plaintext blocks produce different encrypted outputs.

Avoid standard, predictable patterns in the firmware. Most programs have a common framework and any
predictable patterns, such as an interrupt vector table starting with a jump to a low address, only serve to
help the intruder. Also, avoid padding unused memory areas with a constant number.

Hide the method. There is no need to mention which algorithm is being used or what the key length is.
The less the intruder knows about the system, the better. It may be argued that knowing the encryption
method fends off some attackers, but knowing nothing about the method increases the effort and may
fend off even more.

The bootloader may also be used to erase the application section, if required. Many attack attempts
include removing the device from its normal working environment and powering it up in a hacking bench.
Detecting, for example, that an LCD is missing or that there are CRC errors in the memory, the
bootloader may initiate a complete erase of all memory (including the bootloader section and decryption
keys).

In applications where it is not feasible or possible to use an external communications channel for
updates, the firmware can be stored in one of the CryptoMemory® devices. The memory can be
packaged as a removable smart card, which can easily be inserted in a slot of the device when an
upgrade is needed. The microcontroller can check for the presence of a CryptoMemory upon start-up and
retrieve a firmware upgrade as needed.

Use secure hardware. A strong encryption protocol is useless if the hardware has structural flaws. There
are no reported security issues with the AVR microcontrollers.

This list can be made much longer but the purpose of it is merely to set the designer off in the right
direction. Do not underestimate the wit or endurance of your opponent.

 AN2462
Summary

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 44

10. Get Source Code from Atmel | START
The example code is available through Atmel | START, which is a web-based tool that enables
configuration of application code through a Graphical User Interface (GUI). The code can be downloaded
for both Atmel Studio and IAR Embedded Workbench® via the direct example code-link(s) below or the
BROWSE EXAMPLES button on the Atmel | START front page.

Atmel | START web page: http://start.atmel.com/

Example Code

• AVR231 AES Bootloader:
– http://start.atmel.com/#example/Atmel:AVR231_AES_Bootloader:

0.0.1::Application:AVR231_AES_Bootloader:

Press User guide in Atmel | START for details and information about example projects. The User guide
button can be found in the example browser, and by clicking the project name in the dashboard view
within the Atmel | START project configurator.

Atmel Studio

Download the code as an .atzip file for Atmel Studio from the example browser in Atmel | START, by
clicking DOWNLOAD SELECTED EXAMPLE. To download the file from within Atmel | START, click
EXPORT PROJECT followed by DOWNLOAD PACK.

Double-click the downloaded .atzip file and the project will be imported to Atmel Studio 7.0.

IAR Embedded Workbench

For information on how to import the project in IAR Embedded Workbench, open the Atmel | START user
guide, select Using Atmel Start Output in External Tools, and IAR Embedded Workbench. A link to the
Atmel | START user guide can be found by clicking About from the Atmel | START front page or Help And
Support within the project configurator, both located in the upper right corner of the page.

 AN2462
Get Source Code from Atmel | START

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 45

http://start.atmel.com/
http://start.atmel.com/#example/Atmel:AVR231_AES_Bootloader:0.0.1::Application:AVR231_AES_Bootloader:
http://start.atmel.com/#example/Atmel:AVR231_AES_Bootloader:0.0.1::Application:AVR231_AES_Bootloader:

11. References
• ATmega328PB data sheet (http://www.microchip.com/wwwproducts/en/atmega328pb)
• ATmega328PB Xplained Mini kit (http://www.microchip.com/developmenttools/productdetails.aspx?

partno=atmega328pb-xmini)
• Atmel Studio (http://www.atmel.com/tools/atmelstudio.aspx?tab=overview)
• Atmel START (http://start.atmel.com)
• AT10764 (http://ww1.microchip.com/downloads/en/appnotes/atmel-42508-software-library-for-

aes-128-encryption-and-decryption_applicationnote_at10764.pdf)
• AVR230 DES Bootloader (http://ww1.microchip.com/downloads/en/appnotes/doc2541.pdf)
• Handbook of Applied Cryptography (http://cacr.uwaterloo.ca/hac)
• AES Specification (http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf)

 AN2462
References

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 46

http://www.microchip.com/wwwproducts/en/atmega328pb
http://www.microchip.com/developmenttools/productdetails.aspx?partno=atmega328pb-xmini
http://www.microchip.com/developmenttools/productdetails.aspx?partno=atmega328pb-xmini
http://www.microchip.com/development-tools/atmel-studio-7
http://www.microchip.com/development-tools/atmel-studio-7/atmel-start
http://ww1.microchip.com/downloads/en/appnotes/atmel-42508-software-library-for-aes-128-encryption-and-decryption_applicationnote_at10764.pdf
http://ww1.microchip.com/downloads/en/appnotes/atmel-42508-software-library-for-aes-128-encryption-and-decryption_applicationnote_at10764.pdf
http://ww1.microchip.com/downloads/en/appnotes/doc2541.pdf
http://cacr.uwaterloo.ca/hac
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

12. Revision History
Doc Rev. Date Comments

B 04/2018 Section "Get Source Code from Atmel START" is added, with the link to Atmel
START example code.

A 06/2017 Converted to Microchip format and replaced the Atmel document number 2589.
The document is updated and the application code is tested for the ATmega328PB
device.

2589E 03/2012 New template.
Section "PC Application" is updated.

Fixed wrong interrupt vector size in the ATmega32 project.

Removed cycle dependance on data.

2589D 08/2006 Some minor fixes.

 AN2462
Revision History

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 47

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 AN2462

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 48

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings,
BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA,
SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL
ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 AN2462

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 49

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-2831-2

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 AN2462

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 50

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2018 Microchip Technology Inc. Application Note DS00002462B-page 51

	Introduction
	Features
	Table of Contents
	1. Description
	2. Glossary
	3. Pre-Requisites
	4. Cryptography Overview
	4.1. Encryption
	4.2. Decryption

	5. AES Overview
	5.1. AES Implementation
	5.1.1. Byte Addition
	5.1.2. Byte Multiplication
	5.1.3. Multiplicative Inverses
	5.1.4. S-Boxes
	5.1.5. The ‘State’

	5.2. AES Encryption
	5.2.1. Add Round Key
	5.2.2. Substitute Bytes
	5.2.3. Shift Rows
	5.2.4. Mix Columns

	5.3. AES Decryption
	5.4. Key Expansion
	5.5. Cipher Block Chaining – CBC

	6. Software Implementation and Usage
	6.1. Motivation
	6.2. Usage Overview
	6.3. Configuration File
	6.4. PC Application – GenTemp
	6.5. PC Application – Create
	6.5.1. Command Line Arguments
	6.5.2. First Run
	6.5.3. Subsequent Runs
	6.5.4. Program Flow
	6.5.5. The Encrypted File

	6.6. PC Application – Update

	7. Hardware Setup
	7.1. Connecting the ATmega328PB Xplained Mini Kit
	7.1.1. Auto Board Identification of Xplained Mini Kit
	7.1.2. Connect the ATmega328PB Xplained Mini UART to the mEDBG COM Port

	7.2. Programming and Debugging
	7.2.1. Programming the ATmega328PB Xplained Mini By Using mEDBG
	7.2.2. Debugging the ATmega328PB Xplained Mini By Using mEDBG

	8. AVR Bootloader
	8.1. Key and Header Files
	8.2. Project Files
	8.3. Atmel Studio and IAR Settings
	8.3.1. Atmel Studio Settings
	8.3.2. IAR Settings

	8.4. Installing the Bootloader
	8.5. Performance
	8.5.1. Execution Time
	8.5.2. Code Size

	9. Summary
	10. Get Source Code from Atmel | START
	11. References
	12. Revision History
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

