
 SMART ARM-based Microcontrollers

 AT03664: Getting Started with FreeRTOS on SAM
D20/D21/R21/L21/L22

 APPLICATION NOTE

Introduction

Operating systems appear to allow multiple concurrent tasks to be executed
simultaneously. Actually, the operating system executes each task for a short
time and then rapidly switches between them without the user noticing. This
is referred to as multi-tasking. FreeRTOS™ is a light-weight Real Time
Operating System (RTOS) which allows multi-tasking on microcontrollers
such as SAM MCUs. Readers who are not familiar with the RTOS concept
and would like to know more can refer "What is an RTOS?" and "Why use an
RTOS?" at the FreeRTOS website: http://www.freertos.org.

Features

This application note describes the steps to get started with FreeRTOS™ on
Atmel® | SMART ARM®-based microcontrollers by showing the following
steps and describing the demo application.

• To start a FreeRTOS Project in Atmel Studio
• To configure FreeRTOS
• To use the Atmel provided ASF drivers with FreeRTOS

The following devices can use this module:
• Atmel | SMART SAM D20
• Atmel | SMART SAM D21
• Atmel | SMART SAM R21
• Atmel | SMART SAM L21
• Atmel | SMART SAM L22

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

http://www.freertos.org/about-RTOS.html
http://www.freertos.org/FAQWhat.html#WhyUseRTOS
http://www.freertos.org/FAQWhat.html#WhyUseRTOS
http://www.freertos.org

Table of Contents

Introduction..1

Features.. 1

1. Creating a FreeRTOS Project in Atmel Studio.. 3

2. Setting Up Clock and Tick Rate...7

3. During Development..8
3.1. Atmel FreeRTOS Viewer.. 8
3.2. Percepio FreeRTOS+Trace..8
3.3. Debugging and Optimization Parameters.. 8

4. Using Drivers in FreeRTOS... 10
4.1. Concurrency... 10
4.2. Timing... 11
4.3. OS Compatibility of ASF Drivers...11

5. Description of Demo Application..12
5.1. Overview...12
5.2. Running the Demos..12
5.3. Application Structure, Control, and Data Flow... 13

6. Revision History...16

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

2

1. Creating a FreeRTOS Project in Atmel Studio
To create a FreeRTOS project in Atmel Studio, start with either a user board or Atmel board template
project for a SAM MCU device, such as the SAM D20 Xplained Pro. The following screen capture shows
the New Project dialog in this case.

To open this dialog, click File > New > Project in the menu bar or press Ctrl + Shift + N.

Figure 1-1. Creating a Project From the SAM D20 Xplained Pro Template

After creating the new project, the FreeRTOS must be added to the project. Start the ASF Wizard by
right-clicking the project and select ASF Wizard in the context menu, as shown in the following image.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

3

Figure 1-2. Starting the ASF Wizard

FreeRTOS must be selected in the list of available modules, on the left panel in the ASF Wizard, and
added to the project. Instead of searching through the list, you can enter "free" as a filtering term to
narrow down the list of module names. This is shown in the following figure.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

4

Figure 1-3. Adding FreeRTOS to the Project

FreeRTOS v7.4.2 is provided for SAM MCUs and an additional version of v7.5.2 is provided from ASF
v3.14.0 or newer. A default tickless feature is implemented in v7.5.2, which allows longer sleep periods by
shutting down the OS tick when it is not needed. This feature can be toggled on or off to compare power
consumption.

After FreeRTOS has been selected, press the Add button at the bottom of the wizard to add it to the
project. This will move it to the list on the right side of the ASF Wizard, with green text signifying that it is a
staged change.

You might require to change the selection of which of the four memory manager variants to use in the
project. Expand the FreeRTOS dependency tree to reveal the FreeRTOS memory heap manager service,
as shown in the following figure. Short descriptions of the variants can be read in the info box at the
bottom. For more details on the various variants, see information about "Memory Management".

Note:  The ASF Wizard can be reopened to change the memory manager variant at a later point of time.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

5

http://www.freertos.org/a00111.html

Figure 1-4. Selecting a FreeRTOS Memory Manager Variant

The ASF Wizard has staged all the necessary changes to add FreeRTOS with the selected memory
manager to the project. Click the Apply button available at the bottom of the screen, to apply the
changes.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

6

2. Setting Up Clock and Tick Rate
The FreeRTOS configuration file FreeRTOSConfig.h is located in src/config/ in the Atmel Studio
project tree. This file contains defines for system parameters like the CPU frequency and OS tick rate,
and for enabling or configuring specific features and functions such as mutexes, co-routines, and memory
allocation failure handling.

When starting a FreeRTOS project, the first configuration parameters one should set/verify are the
aforementioned CPU frequency and OS tick rate, which are used by FreeRTOS to time the task switches
and delays. The corresponding defines are named configCPU_CLOCK_HZ and configTICK_RATE_HZ.
These defines need not be numerical constants, but it is strongly recommended that they are defined as
compile-time constants. For example, when using the clock driver and the system clock source is generic
clock 0, the clock rate can be specified for FreeRTOS with:
#include <gclk.h>

#define configCPU_CLOCK_HZ (system_gclk_gen_get_hz(GCLK_GENERATOR_0))

For more information on the available configuration parameters and defines, refer to the information about
Customisation on the FreeRTOS website at http://www.freertos.org.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

7

http://www.freertos.org/a00110.html
http://www.freertos.org

3. During Development
While developing applications using FreeRTOS, there are several tools and configuration parameters that
can help to debug and optimize the project. For example, the following extensions for Atmel Studio are
available in the Atmel Studio Gallery:

• Atmel FreeRTOS Viewer
• Percepio FreeRTOS+Trace

The upcoming sections introduce these extensions and describe useful debugging and optimization
parameters.

3.1. Atmel FreeRTOS Viewer

Atmel FreeRTOS Viewer allows the user to see the state of FreeRTOS when you break execution of the
target in a debug session. The user can see the current state of the tasks in the system, as well as
queues, semaphores, and mutexes. To be able to see queues, semaphores, and mutexes the
configQUEUE_REGISTRY_SIZE need to be configured and the queue, semaphore, or mutex needs to
be added to the registry by calling vQueueAddToRegistry.

Refer to "FreeRTOS Viewer documentation" for more information about how to use the Atmel FreeRTOS
Viewer.

3.2. Percepio FreeRTOS+Trace

Percepio’s FreeRTOS+Trace allows the user to record and analyze the runtime behavior of FreeRTOS
over time. By using a trace recorder library FreeRTOS+Trace is able to record FreeRTOS behavior
without using a debugger. Percepio’s FreeRTOS+Trace is also available as a standalone application.
Refer to "FreeRTOS+Trace documentation" for more information.

3.3. Debugging and Optimization Parameters

Among the configuration parameters for debugging and optimization, the most important ones are:
• configUSE_TICK_HOOK: Enables calling a user-defined function whenever an OS tick occurs,

allowing for inspection of the rate and consistency of the ticks. For details, see Hook Functions.
• configUSE_IDLE_HOOK: Enables calling a user-defined function whenever the idle task is

executed, i.e. there are no other tasks to execute. For details, see Hook Functions and Tasks.
• configCHECK_FOR_STACK_OVERFLOW: Enables detection of tasks that use more than their

allocated chunk of working memory (stack). Two detection methods are available, both of which
require a user-defined handler function. For more details, see Stack Usage and Stack Overflow
Checking.

• configUSE_MALLOC_FAILED_HOOK: Enables calling of a user-defined handler function if
memory allocation fails. Memory is allocated on the heap whenever a semaphore, queue, or task is
created, and may fail due to, e.g. insufficient size of or too fragmented heap, or simply using the
wrong memory manager. For details, see Hook Functions and Customisation.

• configGENERATE_RUN_TIME_STATS: Enables tracking of time spent executing the individual
tasks. The statistics can be dumped to a character buffer. For details, see Run Time Statistics.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

8

http://www.atmel.no/webdoc/FreeRTOSViewer/FreeRTOSViewer.html
http://percepio.com/tracealyzer/freertostrace/
http://www.freertos.org/a00016.html
http://www.freertos.org/a00016.html
http://www.freertos.org/RTOS-idle-task.html
http://www.freertos.org/Stacks-and-stack-overflow-checking.html
http://www.freertos.org/Stacks-and-stack-overflow-checking.html
http://www.freertos.org/a00016.html
http://www.freertos.org/a00110.html#configUSE_MALLOC_FAILED_HOOK
http://www.freertos.org/rtos-run-time-stats.html

• Trace hook macros: Allows user-defined functions to be called whenever an OS-related event such
as creation or switching of tasks occurs in the application. This is the mechanism which Percepio's
FreeRTOS+Trace uses. For details, see Trace Hook Macros.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

9

http://www.freertos.org/rtos-trace-macros.html

4. Using Drivers in FreeRTOS
FreeRTOS uses preemptive scheduling, which means that execution of a task can be interrupted at any
time for another task to start/continue its execution. The two main considerations for hardware or software
resources,used in an environment with task interruptions are:

1. Concurrency issues.
2. Timing criticality.

In the following subsections, these two issues and methods to handle them are explained.

4.1. Concurrency
When a resource is shared between tasks that can interrupt each other, there is a chance that it is
accessed or used by multiple tasks, simultaneously. This property is called concurrency. If the resource
does not support it, an additional layer of access control must be put in place to avoid issues.

Note:  If a function supports concurrency, it is said to be reentrant. This means that the function can be
interrupted in the middle of its execution and safely be called again in the interrupting code.

Let's say we have a large buffer X that is shared between tasks A, which generates data, and B, which
consumes data. If the system switches from task A to B before A has finished updating X, B will get
corrupted or will be an incoherent data. In this case, X requires mutually exclusive access, meaning only
one task can operate on it at the time.

A mutex is a type of semaphore, a signalling mechanism, which would solve this issue. Its sole purpose is
to indicate whether a resource is in use or not , and any tasks which need to use the resource must then
wait until they can take the mutex, i.e., the resource becomes available. The operating system avoids
running the waiting tasks until the relevant mutex is released, or the tasks' wait times run out.

An alternative method is to define the relevant section of code as being critical. This will delay handling of
all interrupts for the duration of the section, thus inhibiting task switches. However, this method can affect
the timing of other tasks, which may have a higher priority than the currently executing one, and prevents
operation of interrupt-based drivers. For these reasons, critical sections should only be used on short
blocks of code, such as a read-modify-write operation on a status flag:
taskENTER_CRITICAL();

// Read
my_status = SOME_MODULE->status_flags;

if (!(my_status & BUSY_FLAG)) {
 // Modify (set flag)
 my_status |= BUSY_FLAG;
 // Write
 SOME_MODULE->status_flags = my_status;
}

taskEXIT_CRITICAL();

In the preceeding example, the critical section prevents other tasks from modifying status_flags
before the local code has a chance to overwrite it with my_status. Without the critical section, if an
interrupt occurs after the read and modifies status_flags, that modification will be lost once execution
returns to the local code because it overwrites it with its my_status, based on the outdated
status_flags.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

10

Now consider the case where tasks A and B send data via USART using a polled driver. Although the
USART peripheral and driver may look like they are available for use as soon as a byte transfer has
finished, it does not mean that a task has finished sending its data. If task A, sending "Hello, world!", is
interrupted by task B, sending "copter", the system may actually send "Hellocopter, world!".

This issue could be solved by use of either a mutex or a queue. For the latter, a queueing layer must be
added to the USART driver. Task A and B could then enqueue their strings (or pointers to them) for
sending, and the USART queue layer send them in order.

For more details on FreeRTOS queues, mutexes, and semaphores, see "Inter-task Communication". The
macros for defining critical sections to FreeRTOS are documented under "Kernel Control".

4.2. Timing
If an operation on a resource is timing critical, even if a resource is not shared, task switching or other
interruptions may cause problems. For example, some system-critical features require that a timed
sequence is followed in order to change their configuration. This ensures that the configuration is not
inadvertently changed by, e.g., misconfigured DMA or otherwise buggy code. In an application with
interrupts and preemptive task scheduling, the only way to ensure that the timing is not disturbed is to
define it as a critical section.

As stated earlier, the macros for defining critical sections to FreeRTOS are documented under "Kernel
Control".

4.3. OS Compatibility of ASF Drivers
The drivers in ASF have not been designed to support a particular OS, but are reentrant. However, the
driver instances do not support concurrent access. It is up to the user to determine the need and to
implement an access control or queuing layer if an instance is shared between tasks.

If the application or a driver uses the SysTick peripheral after the FreeRTOS task scheduler has been
started, it will interfere with the task scheduling1. The timing mechanisms of the application or driver must
be replaced with a different implementation. The driver in ASF which uses SysTick is the "Delay routines"
one, but other drivers may depend on it.
Note:  FreeRTOS uses the SysTick peripheral for timing.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

11

http://www.freertos.org/Inter-Task-Communication.html
http://www.freertos.org/a00020.html
http://www.freertos.org/a00020.html
http://www.freertos.org/a00020.html

5. Description of Demo Application

5.1. Overview
A graphical FreeRTOS demo application is available for related SAM Xplained Pro and OLED1 Xplained
Pro. The application demonstrates basic use of queues and mutexes/semaphores, and creation,
suspension, and resumption of tasks. It requires the OLED1 Xplained Pro to be connected to the EXT3
header on the SAM D20/D21/L21/L22 Xplained Pro or the EXT1 header on the SAM R21 Xplained Pro.
The demo application is provided with both FreeRTOS versions supported: v7.4.2 and v7.5.2.

The application shows a menu on the bottom of the OLED, giving the user the choice between three
different screens:

• Graph: Shows pseudo-random graph which is continuously updated, even while it is not shown.
• Terminal: Prints text which has been received via the Embedded Debugger (EDBG) Virtual COM

Port.
• About: Prints a short text about the application, with a simple zooming effect.

To select a screen, press the corresponding button on the OLED1 Xplained Pro.

On the upper part of the OLED, the content of the selected screen is displayed. By default, the graph
screen is selected during startup. An example of the display state shortly after startup is displayed in the
following image.

Figure 5-1. The Default Startup Screen of FreeRTOS Demo Application

5.2. Running the Demos
A demo application named "FreeRTOS demo using OLED1 Xplained Pro" is available in the "New
Example Project" wizard, for the Atmel Corp. extension "ASF(3.9.1)" or newer.

An additional demo application named "FreeRTOS tickless demo with using OLED1 Xplained Pro",
represents tickless feature of FreeRTOS v7.5.2, is provided with "ASF(3.14.0)" or newer.

Both these demos share the same features except the tickless feature of the FreeRTOS v7.5.2 kernel.

Considering the demo of FreeRTOS v7.4.2 for SAM D20 as an example, to open the wizard, click File >
New > Example Project in the menu bar or press Ctrl + Shift + E. As shown in the following figure, enter
"freertos" as a filter term to avoid having to scroll through the entire list of projects.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

12

Figure 5-2. The Demo Project Selected in the Example Project Wizard

After the project has been selected in the wizard, click OK to create it. The project creation process will
show the applicable licenses for the project, which must all be accepted for the process to complete.

To run the demo on the board, ensure that the Xplained Pro is connected to a USB port on the computer.
Then, click Debug>Start Without Debugging in the top menu bar in Atmel Studio. This triggers the build
process, after which the Select Tool dialog will pop up. Select the XPRO-EDBG tool and click OK. The
demo is then programmed into the device and run.

To transmit text to the terminal screen, connect to the EDBG Virtual COM Port with a terminal emulator.

For the communication to be successful, the configuration must be set as:
• 9600 baud
• no handshake
• one stop-bit
• parity disabled

To ensure that the communication works, the application echoes back all characters that have been
received without errors. It is not necessary to select the terminal screen for the application to handle the
received characters.

5.3. Application Structure, Control, and Data Flow

The demo application consists of five tasks, all of which are defined and configured in demotasks.c:
1. Main task: Handles button presses, switches/clears the display buffer and draws the menu if

needed, and suspends/resumes on-screen tasks.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

13

2. Graph task: Draws a pseudo-random graph to a dedicated display buffer, one pixel every 50
milliseconds.

3. Terminal task: Prints text received from UART (up to three lines with 21 characters each) to the
display every second.

4. About task: Prints a short text about the demo in several iterations to achieve a zooming effect.
5. UART task: Reads from a FreeRTOS queue that contains incoming characters and updates the

terminal buffer accordingly every 10 milliseconds.

The main, graph, and UART tasks are persistent, they are never suspended. Depending on the screen
selected by the user, the main task will suspend and resume the terminal and about tasks. Since the
graph screen has a dedicated display buffer, the main task only needs to switch to its display buffer when
it is selected.

In addition, there is a custom interrupt handler for the UART communication via the EDBG Virtual COM
Port. The interrupt handler is based on the ASF's SERCOM USART callback driver's handler. It has been
modified to handle only the receive interrupt, and to put the received characters into a FreeRTOS queue
(for handling by the UART task) before echoing them back.

The following figure is a visualization of the five tasks and their flow of data and control.

Figure 5-3. Application Structure, Control, and Data Flow

Persistent tasks

Suspendable tasks

cdc_rx_handler()

terminal_in_queue

gfx_mono_...()

uart_task()

terminal_buffer

main_task() graph_task()

terminal_task()about_task()

Mutexes are used to avoid problems with concurrent access to the display driver or terminal buffer by
different tasks. These are indicated with the cyan and red coloured edges in the preceding figure.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

14

The terminal buffer mutex is used to prevent the terminal screen becomes corrupted if the EDBG Virtual
COM Port receives characters while the screen is being printed. In this case, the UART task must wait
until the printing is done before it can process the queue of incoming characters. Vice versa, the terminal
screen cannot be printed while the UART task is processing incoming characters.

The display mutex is used to prevent tasks from interfering with each other's graphical output. Also, it
signals when it is safe for the main task to switch display buffers or suspend the currently displayed task
because it is released at the end of the task loops, when they have updated the display.

Note:  The graphics stack, GFX MONO, relies on the "Delay routines" driver, which uses SysTick for
timing. However, this is only used for a hard reset in a low level driver. The hard reset occurs only once
during initialization of the stack, which is done before the FreeRTOS task scheduler is started. The
graphics driver does not interfere with the task scheduler.

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

15

6. Revision History
Doc. Rev. Date Comments

42138D 03/2016 Added support for SAM L22

42138C 10/2015 Added support for SAM R21 and L21

42138B 01/2014 Added support for FreeRTOS v7.5.2 and SAM D21

42138A 06/2013 Initial release

Atmel AT03664: Getting Started with FreeRTOS on SAM D20/D21/R21/L21/L22 [APPLICATION
NOTE]

Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

16

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42138D-Getting-Started-with-FreeRTOS-on-SAM-D20-D21-R21-L21-L22_AT03664_Application Note-03/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected®, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Creating a FreeRTOS Project in Atmel Studio
	2. Setting Up Clock and Tick Rate
	3. During Development
	3.1. Atmel FreeRTOS Viewer
	3.2. Percepio FreeRTOS+Trace
	3.3. Debugging and Optimization Parameters

	4. Using Drivers in FreeRTOS
	4.1. Concurrency
	4.2. Timing
	4.3. OS Compatibility of ASF Drivers

	5. Description of Demo Application
	5.1. Overview
	5.2. Running the Demos
	5.3. Application Structure, Control, and Data Flow

	6. Revision History

