
 

  
 

 
AVR32723: Sensor Field Oriented Control for 

Brushless DC motors with AT32UC3B0256  

Features 

• Standalone Space Vector Modulation library for AVR®32 UC3 microcontroller. 
• Park and Clarke mathematical transformation library for AVR32 UC3 

microcontroller. 
• Theory of Field Oriented Control. 
• PC application for real time motor remote control and display of regulated 

variables. 
 
 

1 Introduction 
This application note delivers an implementation of Sensor Field Oriented Control 
algorithm for brushless DC motor on Atmel® AVR32 UC3B microcontrollers. 

This software includes standalone libraries for all mathematical transformations 
required by the algorithm. 

For more information about the AVR32 architecture, please refer to the appropriate 
documents available from http://www.atmel.com/avr32. 

2 Requirements 
The software provided with this application note requires several components: 

• A computer running Microsoft® Windows® 2000/XP/Vista® or Linux® 

• AVR32Studio and the GNU toolchain (GCC) or IAR Embedded 
Workbench® for AVR32 compiler. 

• A JTAGICE mkII or AVROne! debugger 
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3 Theory of Operation 

3.1 Overview 
As continuity in the energy efficiency process, the increase of capability of 
microcontrollers allows to implement complex algorithm as Field Oriented Control 
methodology which allows to: 

• Reduce power consumption (less power loss) of electrical motor driving. 

• Provide smoother and more accurate motor control than sinusoidal command 
with hall feedback. 

• Optimize motor choice (torque): find the best alternative between dimension 
and power. 

But this algorithm requires more complex computation and requires more CPU 
bandwidth than standard algorithms. 

Moreover, this command strategy fits with some brushless DC motors with dynamical 
load changes due to reduction of response time. It allows regulating torque and speed 
at the same time. 

3.2 Block Diagram 
The following block diagram describes the principle of the algorithm. Indeed, it is 
based on: 

• A vectorial command for 3-phases Brushless DC Motors. 

• A periodic current sampling of the 3 shunts located on these 3-phases. 

• 2 encapsulated regulation loops: one for the current (torque and power loss) 
and another for the speed. 

Figure 3-1. Block Diagram 
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3.3 System Overview 
As shown Figure 3-2, the 3-phases current are measured and one Hall Effect 
feedback is used to compute field oriented control algorithm. 
 
 
Figure 3-2. System Overview 
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The USB connection is used through a PC application for real time motor remote 
control and display of regulated variables. This data monitor displays feedback control 
remotely. This GUI provides: 
- 3 graphs and 1 cursor display. 

- 4 inputs control. 

The purpose is to be able to connect to the application without disturbing the behavior 
of the application. The application offers the following features: 

- Implements vector control of a Brushless DC motor. 

- Speed range from 400 rpm to 2000 rpm.1 

- With a 100 µsec control loop, the CPU is used at 35% by the Sensor Field 
Oriented Control Process at 42MHz. 

- Display in real time the current and speed measured. 

- Control of speed in real time. 

                                                      
1 See section 5.9 for the explanation of this limitation. 
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4 Motor Control Theory 

4.1 General Model. 
The mathematical model in a constant domain linked to the stator is linked to 
differential equation with constant coefficients defining the motor behavior. 
Applying the Lenz-Faraday model, we have:    
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R is the statoric resistance, [ ]tcba vvv  are the statoric voltages, [ ]tcba iii  are 

the statoric current and [ ]tcba ΦΦΦ are the global fields in the statoric solenoid. 
 

[ ] [ ][ ] [ ]sfabcabc IL Φ+=Φ        
     
We can write :  

  
 
 
 
 
 
 
 
 
 

Ls (constant) is the inductance in a statoric gyres. 
M (constant) is the mutual inductance between the 2 statoric gyres  
θ is the electrical position of the rotor (θ= θélec) 
Фsf  is the max value (constant) of the flux create by the permanents magnet through 
the statoric gyres. 
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In order to simplify the mathematical resolution of this system, some mathematical 
transformations are used. 
Using the Park P1(θ), the instantaneous power is kept and it allows to have a 
mathematical expression of the torque still acceptable for the real motor. 
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Using the Park inverse transformation, it is possible to return to the values space from 
regulated values and generate commands. 
 

4.1.1 Park Transformation (P1(θ)) and Clarke Transformation (inv P-1(θ))2. 

The Park transformation is defined from the matrix P1(θ), it defines the link between 
the real vectors [ ]abcV , [ ]abcI  et [ ]abcΦ , the new vectors [ ]dqV 0 , [ ]dqI 0  et [ ]dq0Φ .  
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Figure 4-1. Park Transformation 
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2 The Park and Clarke transformations are implemented as a software library 
component in the software package associated with this application note. See also 
section 5. 
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4.2  Power Bridge Command. 
The power bridge stage is here to power the BLDC motor with alternatives voltages 
from a continuous source. This bridge allows modulating frequency and amplitude. 
 

Figure 4-3. Power Bridge Stage 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II-1 Onduleur de tension triphasé. 
 

 

The logical signals Ca, C’a, Cb, C’b, Cc and C’c are command signals for the power 
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The output voltages are given from the ground ‘m’ of source generator and from the 
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The following table gives the voltage values in the spaces (α ,β ) and (a, b, c). 
 
Table 4-2. Voltage Values in the spaces (α , β ) and (a, b, c) 
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Figure 4-4. Space Vector values in the regular hexagon. 
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4.2.1 Space Vector PWM.3 

The vectorial modulation uses directly the signal for the Concordia transformation. It 
supposes that a regulation loop is ever implemented for the generation of Vα  and Vβ 
components. 
As stated below, at a instantaneous point, the power bridge is able to generate only 8 
voltages (Vi, i = 0,…,7) in the space of transformation Concordia (Vα  , Vβ) with two 

components equal to 0 and 6 with the module equal to 32E  and the angle 

to ( ) )1(3 −iπ . Two successive vectors, called Vi and Vi+1 defined a sector i (Figure 
4-4) with I from the interval [I, VI]. 
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The power stage is only able to deliver voltages instantaneous voltages on a 
sampling period T, we can write: 
 
 
 11)( +++= iiii VVV δδαβ        
 
 
Where iδ and 1+iδ are the duration for relative values are the relatives voltages when 
Vi and Vi+1 ; iiVδ and 11 ++ ii Vδ  are the projection of vector (Vαβ ). 
 

                                                      
3 The Space Vector Modulation is implemented as a software library component in the 
software package associated with this application note. See also section 5. 
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Figure 4-5. Sector Determination Algorithm. 
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Table 4-2. Sector expressions 
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4.3 Current Measurement Stage 
Three identical shunts are used to read the current Ia,Ib and Ic. These values should 
be amplified to be in the range of the ADC. Indeed, if we measure current of several 
milliamps (500mA), the maximum voltage is around 0.025V. 
 
Figure 4-6. Amplifier stage 
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When measuring the three currents Ia,Ib and Ic, only two measures are required, 
indeed Ia + Ib + Ic = 0. 

Figure 4-7. ADC and PWM synchronization 
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4.4 Current regulation and speed Regulation4 
In order to reduce time consuming effect of regulator, we have used the Integrator 
Proportional (IP) regulator. 
 

4.4.1 Current Regulation 

In a continuous domain, the closed loop has the mathematical expression: 
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It is possible to easily identify the second order of the transfer function: 
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These correctors have been chosen to have a depreciation rate ε =2 and a response 
time of 5℅ (TrWn). 
 
Figure 4-8. Response time vs Depreciation rate. 
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4 The PI regulator is implemented as a software library component in the software 
package associated with this application note. See also section 5. 
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We choose ωn=0.1R/Lc  and ε=2,  So J
L
RKetJ

L
RK

c
dv

c
iv 4.001.0 2

2

==  

4.5 Execution Time and Regulation Loop 
The following table gives the number of operations for each function 

Table 4-2. Operations costs 
Function Add Mul Div Shift 

Concordia 

abc-to- αβ 

7 0 0 17 

Clark 

αβ-to-dq 

2 4 0 62 

Clark Inv 

dq-to- αβ 

2 4 0 62 

Regulation 7 4 0 124 

Decoupling5 3 5 0 62 

SVPWM 27 0 0 354 

 

                                                      
5 The decoupling stage is the stage to separate torque and power loss regulations 
after the current measurement stage. The idea is to be sure to only regulate torque 
(without disturbing the power loss loop). 
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4.6 General Algorithm 
As shown in Figure 4-9, the regulation_loop_task() process is sequenced on tick 
reference (every 100µs). This task synchronizes current measurement and computes 
all mathematical transformations to execute the Field Oriented Control algorithm.  
Inside this task, there are two regulation loops interlinked: 

- Current regulation loop. 

- Speed regulation loop. 

 

Figure 4-9. Regulation Loop Task Step Machine 
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5  Source Code Architecture 

5.1 Software Architecture 
Figure 4-10. Software Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This application does not require any operating system to run. The main() function is 
in charge of calling the software «tasks» (using a scheduler) realizing FOC algorithm 
computation and USB communication with the Communication Device Class (CDC) 
for HMI management. There are 2 tasks: 

• regulation_loop_task()The regulation task that computes all calculation for 
dedicated FOC algorithm. 

• usb_task() / device_cdc_task()The USB Task: This task is in charge of the 
CDC communication management. 

The main loop of the application is a simple free-running task scheduler: 

   while(TRUE) 
   { 
#ifdef USB_DEBUG 
      usb_task(); 
      device_cdc_task(); 
#endif 
      mc_regulation_task(); 
       } 
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5.2 Package  
The EVK1101-SENSOR-FIELD-ORIENTED-CONTROL-X.Y.Z.zip contains projects 
for AT32UC3B0256 RevF or later: 

• EVK1101-SENSOR-FIELD-ORIENTED-CONTROL-X.Y.Z 

Default hardware configuration of the project is to run on the EVK1101 board, 
although any board can be used (refer to section 5.5.5)  

5.3 Documentation 
For full source code documentation, please refer to the auto-generated Doxygen 
source code documentation found in: 

• AVR32723/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/readme.html 

5.4 Projects/ Compiler 
The IAR™ project is located here: 

• src/ APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/IAR/ 

The GCC makefile is located here: 

• src/ APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/GCC/ 

The Avr32Studio project is located in the root-dir of the package: 

-./ 

5.5 Implementations Details 

5.5.1 Main() 

The main() function of the program is located in the file: 

• src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/main.c 

This function will: 

• Initialize PWM outputs for Space Vector Generation. 

• Initialize ADC inputs for 3-phases current measurement. 

• Initialize USB connection for CDC HMI connection. 

5.5.2 Motor Control Library 

The motor control library is located here: 

• src/SERVICES/MOTOR_CONTROL/ 

This folder delivers: 

• The Park and Clarke transformations explained in section 4.1.1 are delivered in 
the folder src/SERVICES/MOTOR_CONTROL/PARK_CLARKE/  

• The Space Vector Modulation explained in section 4.2.1 is delivered in the folder 
src/SERVICES/MOTOR_CONTROL/SVPWM/  
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5.5.3 HMI CDC Task  

The HMI CDC Task is located here: 

• src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/device_cdc_task.c 

This task receives and sends messages through the USB communication. 

With: 

• The message definition located in  src/APPLICATIONS/EVK110x-MOTOR-
CONTROL/BLDC-FOC/EXAMPLE/ENUM/frame.h 

5.5.4 AT32UC3B Drivers 

The example firmware uses the AVR32 UC3 driver library available in  

• src/UTILS/LIBS/DRIVERS/AT32UC3B/ 

5.5.5 Board File Definition 

The application is designed to run on the EVK1101. All projects are configured with 
the following 

define: BOARD=EVK1101. The EVK1101 definition can be found in the 
src/BOARDS/EVK1101 directory. 

5.5.5.1 Board customization 

For IAR project, open the project options (Project -> Options), choose the «C/C++ 
Compiler», then «Preprocessor». Modify the BOARD=EVK1101 definition by 
BOARD=USER_BOARD. For GCC, just modify in the config.mk file 
(src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/GCC) the DEFS 
definition with –D BOARD=USER_BOARD. For Avr32Studio, open the project 
properties (Project -> Properties), go in the «C/C++ build», then «Settings», «tool 
settings» and «Symbols». Modify the BOARD=EVK1101 definition by 
BOARD=USER_BOARD. 

5.6 Project Configuration 
The project configuration files can be found in the src/APPLICATIONS/EVK110x-
MOTOR-CONTROL/BLDC-FOC/EXAMPLE/CONF/ directory. 

Configuration files are not linked to IAR, GCC or Avr32Studio projects. The user can 
alter any of them, then rebuild the entire project in order to reflect the new 
configuration. 

 /CONF: configuration header files of demo modules: 

CPU settings , Peripheral Clock settings and Motor settings 

5.7 GUI Application 
The GUI application installer is located here:  

• src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/LABVIEW/FOC_Gui.msi 

The USB driver is located here:  

• src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/LABVIEW/usb_cdc.inf 



 AVR32723
 

 
32126A-AVR32-06/09 

5.8  CPU Cost and Memory Usage for Sensor Field Oriented Control algorithm. 
All results are given using IAR Workbench 5.3 compiler revision 3.10A with speed 
optimization level and Hmatrix optimization. 

Criteria Result 

CPU Occupation 35% with a tick 
value of 100 us at 
42MHz. 

Code Size 17Kb 

Data 13Kb 

Const 3.5Kb 

 

5.9 Limitation of the Sensor Field Oriented Control algorithm. 
 

All the application has been implemented with a fixed point library written in a 32-bit 
format (Q1.31)6.  

The usage of this library allows accelerated computations but it generates some 
limitations in the variation range of each variable. 

For example, when computing current regulation, every ADC samples are scaled by a 
variable named E. This variable matches a ratio of the bus voltage. In the current 
implementation, this variable has been fixed to half of the nominal voltage of the 
motor. In that case, the nominal speed is equal to 2000 rpm. 

                                                      
6 See the application note:  

http://www.atmel.com/dyn/resources/prod_documents/doc32076.pdf for more details. 
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5.10 Compiling the application 
The following steps show you how to build the embedded firmware according to your 
environment. 

5.10.1 If you are using AVR32Studio 

• Launch avr32Studio 

• Create a new AVR32 C project («File» -> «new» -> «AVR32 C Project»). 

• Fill-in the dialogue box with project name, set target MCU to UC3B0256 and 
press finish. 

• Choose Import archive file («File» -> «import»…), press the “next” button. 

• Select the EVK1101-SENSOR-FIELD-ORIENTED-CONTROL-X.Y.Z.zip archive 
file with the browse button. Select «into folder», check «Overwrite existing 
resources without warning» and press the “finish” button. 

• The project is now available in the given project name.  

• Press the build button 

• Load the Code: Please refer to the application note AVR32723: AVR32 Studio 
getting started 

5.10.2 If you are using GCC with the AVR32 GNU Toolchain 

• Open a shell, go to the src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/GCC/ directory and type: 

make rebuild program run 

5.10.3 If you are using IAR Embedded Workbench® for Atmel AVR32 

•  Open IAR and load the associated IAR project of this application (located in the 
directorysrc/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/IAR) 

• Press the “Debug” button at the top right of the IAR interface. 

• The project should compile. Then the generated binary file is downloaded to the 
microcontroller to finally switch to the debug mode. 

•  Click on the “Go” button in the “Debug” menu or press F5. 
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5.11 Start the PC application 
• Plug the EVK1101 to the PC through a USB Connection. 

• The USB enumeration should start; a new serial port appeared in Windows.  

• Power-up the power bridge. 

5.11.1 Field Oriented Control GUI 

Once the GUI is launched, the user can select a serial port number and connect the 
application. 

Figure 4-11. Field Oriented Control GUI 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.11.1.1 Increase Speed Value 

When the speed reference increases with constant resistive torque value, the Iq 
increases smoothly to target the new speed value. The Id remains at ‘0’. 

Figure 4-12. Increase Speed Value Step 
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5.11.1.2 Increase Resistive Torque Value 

The resistive torque value increases so the measured speed value decreases. To 
compensate it, the FOC algorithm should increase the Iq reference and finally the 
speed is regulated. The Id remains at ‘0’. 

Figure 4-13. Increase Resistive Torque Value Step 
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6 Reference 
[1] Commande vectorielle sans capteur de position d'une machine synchrone à 
aimants permanents – Atmel Nantes & IREENA- 

[2] NI LabWindows™/CVI http://www.ni.com/lwcvi/ 
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7 Appendix 
Figure 14. Hardware Schematic. 
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