AVR32723: Sensor Field Oriented Control for A mEl
Brushless DC motors with AT32UC3B0256 —

Features 32.bit AVR

« Standalone Space Vector Modulation library for AVR®32 UC3 microcontroller. H
» Park and Clarke mathematical transformation library for AVR32 UC3 M |Cr0C0ntrO| Iers
microcontroller.

* Theory of Field Oriented Control.
» PC application for real time motor remote control and display of regulated H H
N Application Note

1 Introduction

This application note delivers an implementation of Sensor Field Oriented Control
algorithm for brushless DC motor on Atmel® AVR32 UC3B microcontrollers.

This software includes standalone libraries for all mathematical transformations
required by the algorithm.

For more information about the AVR32 architecture, please refer to the appropriate
documents available from http://www.atmel.com/avr32.

2 Requirements
The software provided with this application note requires several components:
e A computer running Microsoft® Windows® 2000/XP/Vista® or Linux®

e AVR32Studio and the GNU toolchain (GCC) or IAR Embedded
Workbench® for AVR32 compiler.

e A JTAGICE mkll or AVROne! debugger

Rev. 32126A-AVR32-06/09

AIMEL

@

3 Theory of Operation

3.1 Overview

As continuity in the energy efficiency process, the increase of capability of
microcontrollers allows to implement complex algorithm as Field Oriented Control
methodology which allows to:

¢ Reduce power consumption (less power loss) of electrical motor driving.

e Provide smoother and more accurate motor control than sinusoidal command
with hall feedback.

e Optimize motor choice (torque): find the best alternative between dimension
and power.

But this algorithm requires more complex computation and requires more CPU
bandwidth than standard algorithms.

Moreover, this command strategy fits with some brushless DC motors with dynamical
load changes due to reduction of response time. It allows regulating torque and speed
at the same time.

3.2 Block Diagram

The following block diagram describes the principle of the algorithm. Indeed, it is
based on:

e A vectorial command for 3-phases Brushless DC Motors.
e A periodic current sampling of the 3 shunts located on these 3-phases.

e 2 encapsulated regulation loops: one for the current (torque and power loss)
and another for the speed.

Figure 3-1. Block Diagram

Field Oriented Control Block

3-phases current Current Vectorial
_____________ = 1 Regulation loop
(1a,1b,1¢c) Command

Speed J

Speed Target—

Regulation loop

©

Speed

— e —— -
and Position

2 AVR32723

32126A-AVR32-06/09

= AVR32723

3.3 System Overview

As shown Figure 3-2, the 3-phases current are measured and one Hall Effect
feedback is used to compute field oriented control algorithm.

Figure 3-2. System Overview

PWM 3-phases Inverter

PWM_XH

A Y

PWM_XL

PWM_YH

PWM_YL > j \
PWM_ZH R

»
PWM_ZL R

3-phases
BLDC

Sensor
FieldOriented
Ccontrol
Process

A

A

DI XXX XX

AT32UC3B0256 (256K flash, 32 K RAM)

A
)

Speed

I

USB-CDC

PC

- ATMEL

[0
32126A-AVR32-06/09

AVR32723

The USB connection is used through a PC application for real time motor remote
control and display of regulated variables. This data monitor displays feedback control
remotely. This GUI provides:

3 graphs and 1 cursor display.

4 inputs control.

The purpose is to be able to connect to the application without disturbing the behavior
of the application. The application offers the following features:

Implements vector control of a Brushless DC motor.
Speed range from 400 rpm to 2000 rpm."

With a 100 usec control loop, the CPU is used at 35% by the Sensor Field
Oriented Control Process at 42MHz.

Display in real time the current and speed measured.

Control of speed in real time.

! See section 5.9 for the explanation of this limitation.

32126A-AVR32-06/09

= AVR32723

4 Motor Control Theory

4.1 General Model.

32126A-AVR32-06/09

The mathematical model in a constant domain linked to the stator is linked to
differential equation with constant coefficients defining the motor behavior.
Applying the Lenz-Faraday model, we have:

[Vave ER [Iabc]-v—%[q)abc]

With:
Va la ®a
[Vabc]: Vo |, [Iabc]: ib| and [CDabc]z [T
Ve ic D

R is the statoric resistance, [Va Vb Vc|' are the statoric voltages, [ia ib ic|' are

the statoric current and [a Op (I)c]t are the global fields in the statoric solenoid.
[(Dabc] = [L][lahc] + [(Dsf]

We can write :

s M M | ia ® s cos(@)
[@ac]=|M Ls M [[iv|+ CDsfcos(e—zT”)

@ cos(6 + ZT”)

Ls (constant) is the inductance in a statoric gyres.

M (constant) is the mutual inductance between the 2 statoric gyres

0 is the electrical position of the rotor (8= B4ec)

® is the max value (constant) of the flux create by the permanents magnet through
the statoric gyres.

Va la Ls M M | ia Dsi COS(H)

Vb |=R|ib +i M Ls M|ib +i ®sfcos(9—2—ﬂ)
. dt) dt 3

Ve ic M M Ls{ic

2r
(O cos(6’+?)
In order to simplify the mathematical resolu_tion of this syste;n, some mathematical
transformations are used.
Using the Park P1(8), the instantaneous power is kept and it allows to have a
mathematical expression of the torque still acceptable for the real motor.

. AIMEL

I)

AIMEL

Using the Park inverse transformation, it is possible to return to the values space from
regulated values and generate commands.

4.1.1 Park Transformation (P1(8)) and Clarke Transformation (inv P-1(0))2.
The Park transformation is defined from the matrix P1(0), it defines the link between
the real vectors [Vabc], [labc] et [CDabc], the new vectors [VOdq], [I Odq] et [CDOdq].

P1(0) = \E

Figure 4-1. Park Transformation

cos(0) —sin(6)

27 . 27
cos(f —— —sin(@ ——
-5 —sin(0-)

Slesles-

27 . 27
cos(@ ——) -—sin(@ ——
(3) (3)_

Y e
P1®)"

—> VvV, =)

[Xabc]=P1(8)[Xodq]

Ve

With V, =0V, |y =0A and ®, =0Wb, the normalized Park transformation is the addition
the Concordia Transformation T3, and the rotating matrix p(0) :

V20

_g NE p(g){cose —sine}

T 1
R=— .
V3 2 sing cosé
J2. [3

L2 2

Figure 4-2. 3D to 2D Transformation
Xa —p Xa o _’Xd
X —p Ty o P |
Xe —Pp Xg L —» Xq

% The Park and Clarke transformations are implemented as a software library
component in the software package associated with this application note. See also
section 5.

6 AVR32723

32126A-AVR32-06/09

= AVR32723

4.2 Power Bridge Command.

32126A-AVR32-06/09

The power bridge stage is here to power the BLDC motor with alternatives voltages
from a continuous source. This bridge allows modulating frequency and amplitude.

Figure 4-3. Power Bridge Stage

!
Ll

Ta Tb Tc
E a 1 1 ;
E | | i iy
- | . b i —
E Lol
' Ta ' To ' T
C{iCa [Gy !iCh [ColiCh

Power Bridge Stage

The logical signals Ca, C’a, Cb, C’b, Cc and C’c are command signals for the power
bridge.

The output voltages are given from the ground ‘m’ of source generator and from the
virtual neutral point ‘n’ of BLDC motor.

Vam Ca Vam = Van +Vmm
Vom |= E| Cob (n-1) Vom = Vbn +Vim
Vem Cc Vem =Ven +Vim

1
For an equilibrated load: Van +Vbn +Ven =0V, so :Vim = E(Vam +Vom +Ven).

In that way, we have:

Ven . 2 -1 -1|Vam 2 -1 -1|Ca
Vin =3 -1 2 -1|Vom _E -1 2 -1|GC
Ven -1 -1 2 |Vem -1 -1 2|C

- ATMEL

I)

ATmEL

Or:
2 -1 -1 Van
¢ 1 t Va t
Taz.—|-1 2 -1|=Ts2.and =T3s2'| Vbn
3 Vg
-1 -1 2 Ven
y Ca
We conclude so: {VQ} =T E|Cb |, (Ts2' is the translation of T32)
B
Cc

The following table gives the voltage values in the spaces («,) and (a, b, c).

Table 4-2. Voltage Values in the spaces (&, f) and (a, b, c)

Vector Ca Cy CH Vo Vg Van Von Ven
Vo 0 0 0 0 0 0 0 0
v,) 0 0 1 2 -1 1
v, . . o ;_ g 1 1 2
Ve 0 1 0 2 _;_ ¢% E ! 2 !
v . 1 1 =] 0 3 2 1 1
Vs 0 0 1 ‘;_ _J; 1 -1 2
Vs 1 0 1 ;— —\/; 1 -2 1
A 1 1 1 0 0 0 0 0

We show that all vectors components (V«, V) are with modules/2/3E and are
located in the regular hexagon.

Figure 4-4. Space Vector values in the regular hexagon.

V
0,1,0 A7

=

2
\5

(0,1, 1) Vg Va

(0,0, 1) /(1,0,1)

AVR32723

32126A-AVR32-06/09

4.2.1 Space Vector PWM.?

32126A-AVR32-06/09

= AVR32723

The vectorial modulation uses directly the signal for the Concordia transformation. It
supposes that a regulation loop is ever implemented for the generation of V.« and Vg

components.
As stated below, at a instantaneous point, the power bridge is able to generate only 8
voltages (V; i = 0,...,7) in the space of transformation Concordia (V« , Vg) with two

components equal to 0 and 6 with the module equal to E1/2/3 and the angle

to(/3)(i —1) . Two successive vectors, called V; and V. defined a sector i (Figure
4-4) with | from the interval [l, VI].

)l el

The power stage is only able to deliver voltages instantaneous voltages on a
sampling period T, we can write:

Vep) =0iVi+Ji+1 Vi

Where 6i and 0i-+1 are the duration for relative values are the relatives voltages when
Viand Vi, ; diViand Ji+1Vi+1 are the projection of vector (V oz).

*The Space Vector Modulation is implemented as a software library component in the
software package associated with this application note. See also section 5.

. AIMEL

I)

ATMEL

Figure 4-5. Sector Determination Algorithm.

Ve« and Vg

\4

i=1or2or3 i=4or5o0r6
Yes ’ No Yes No
i=1or2 i=2or3 i=5 or 6 i=4 or 5
Yes No Yes No Yes No Yes No

In all cases, it is needed to determined sector number « i » where is located the
vector V;. To reduce time execution computing oi et di+1, we have used this

algorithm.

In that way, Ji et Ji+1 are calculated directly from V 4 and Vg :

M MEEY]
v e e g el

And so

10 AVR32723

32126A-AVR32-06/09

32126A-AVR32-06/09

Table 4-2. Sector expressions

AVR32723

Sector Ti=T+ T+ 1
1 To= T+ To _
T3: To |_|
Ti= 12+ 1o W P V, (110)
5 To= T3+ Tot+ To I y M
T5=To [e _I_I_ / 1 \‘\
/ Noae N,
T.=1 [S B /J—L
1= o L, S e T
3 To= T3+ T4+ Tg | ¥ 4 %
Ta= T4+ To _ Jff'\ o—1
T.= e A
1= To [] 4 3 &
4 To= 14+ 1o TN
T3=Ts5+ T4+ Tg 1 S — O
— Vg (101)
Ti=To+ Ts]
5 T2= To |_|
T3=Tot T5+ Ts I
Ti=To+r 11+ Te _I?l—
6 To=1o
T3=Tot Te
- AIMEL

I)

4.3 Current Measurement Stage

Three identical shunts are used to read the current la,lb and lc. These values should
be amplified to be in the range of the ADC. Indeed, if we measure current of several
milliamps (500mA), the maximum voltage is around 0.025V.

Figure 4-6. Amplifier stage

R 2
“ I_I |a
Shun L_RT—»ADC - >
& VA |, A
L= | V2 V1
Vi za za
V2 R v
Offset
T
For example:

Vs = Offset + E(v2 ~V1)
R1

When measuring the three currents la,lb and Ic, only two measures are required,
indeed la+Ib +Ic=0.

Figure 4-7. ADC and PWM synchronization

A
v
A
v

| T1

A

v

tn tn t
R

A
v

The ADC measures are done every period of the PWM. The first ADC measure
should be done in the time range named tm. This time is the minimum time where
none of the 3-phases are driven.

For example:

In case of sector 1, T1 is the longest time so it means that T1 > T-tm, in that case it is
not possible to measure la. So Ib and Ic are measured and la is derived from the two
others measures with the equation la = —Ib —Ic.

12 AVR32723

32126A-AVR32-06/09

= AVR32723

4.4 Current regulation and speed Regulation*

4.4.1 Current Regulation

4.4.2 Speed Regulation

32126A-AVR32-06/09

Response Time

In order to reduce time consuming effect of regulator, we have used the Integrator
Proportional (IP) regulator.

In a continuous domain, the closed loop has the mathematical expression:

Ki
" T L’ +(R+Ki)s+ K

|dref

It is possible to easily identify the second order of the transfer function:
a

2
s°+2cm, S + o,

With Ki= Lew,” and Ko =2s0, Lc - R

These correctors have been chosen to have a depreciation rate € =2 and a response
time of 5% (T.W,).

Figure 4-8. Response time vs Depreciation rate.

:‘ GO0 T T —
A soof= — — A
200 Y _‘-__- PR - - — //
100 ’//
sof e = EEss =
_L___ e, — //l HER
10 ‘T‘l i e i _'1‘1_ - - /
= — =
s I e B . 5 i
— } T NENIE
2]] 1 e |
, I |
[+ X121 003 0.0° 10 03 05 2 3 5 7 10 20 40 &0 100
Depreciation rate
For that

w, =2R/Lc with Ki=4R?/Lc and Ks=7.R

The external closed loop for speed regulation has the following mathematical
expression:

Q Ki B a
Qret J 52 + Kav S + Kiv S2 + 2¢ , S+ C()n2
Kdv

With @] =% et 2ean=

* The PI regulator is implemented as a software library component in the software
package associated with this application note. See also section 5.

- AlmEL

AIMEL

@
R? R
We choose w,=0.1R/L; and €=2, So K = O.OlL—2 J etKw= O.4f J
Cc C
4.5 Execution Time and Regulation Loop
The following table gives the number of operations for each function

Table 4-2. Operations costs

Function Add Mul Div Shift
Concordia 7 0 0 17
abc-to- af

Clark 2 4 0 62
ap-to-dq
Clark Inv 2 4 0 62
dg-to- af
Regulation 7 4 0 124
Decoupling® 3 5 0 62
SVPWM 27 0 0 354

®The decoupling stage is the stage to separate torque and power loss regulations
after the current measurement stage. The idea is to be sure to only regulate torque
(without disturbing the power loss loop).

14 AVR32723

32126A-AVR32-06/09

4.6 General Algorithm

AVR32723

As shown in Figure 4-9, the regulation_loop_task() process is sequenced on tick
reference (every 100us). This task synchronizes current measurement and computes
all mathematical transformations to execute the Field Oriented Control algorithm.
Inside this task, there are two regulation loops interlinked:

- Current regulation loop.

- Speed regulation loop.

Figure 4-9. Regulation Loop Task Step Machine

Hall Interrupt

Compute new Teta and
Speed

32126A-AVR32-06/09

regulation_loop_task()

\ 4

MC_current_measurement()

Current measurement of
the 3-phases

}

hall_estimator_update()

Update Teta and Speed
values

i

Clarke()

Realize the Clarke
Transformation

|

park()

Realize the Park
Transformation

Y

Speed

Regulation?

Execute Speed

No .
Regulation
a 4
Realize the Inverse
park_inv() Park
Transformation

l

Current Regulation

!

svpwm()

Execute Current
Regulation

Compute new
vectorial command

Message Ready?

Sleep()

ATMEL

I)

Prepare New Message
for the HMI CDC Task

AIMEL

5 Source Code Architecture

5.1 Software Architecture

Figure 4-10. Software Architecture

Field Oriented Control application

v v

main.c

CDC communication Motor Control
task regulation_loop_task() me-contrel.c
HMI
usb_task() dovice oo tack Motor Driver _
device_cdc_task() ~ me_driver.c

Motor Control Library

PI Regulator , PARK HALL ESTIMATOR
SERVICES I TERIE Space Vector Modulation SERVICES/MOTOR/PARK SERVICES/MOTOR/HALL
SERVICES/MOTOR/SVPWM
CLARKE
SERVICES/MOTOR/CLARKE

DRIVERS

usb.c adc.c pwm.c flashc.c pm.c gpio.c

This application does not require any operating system to run. The main() function is
in charge of calling the software «tasks» (using a scheduler) realizing FOC algorithm
computation and USB communication with the Communication Device Class (CDC)
for HMI management. There are 2 tasks:

e regulation_loop_task()The regulation task that computes all calculation for
dedicated FOC algorithm.

e usb_task() / device_cdc_task()The USB Task: This task is in charge of the
CDC communication management.

The main loop of the application is a simple free-running task scheduler:
while(TRUE)

{

#ifdef USB_DEBUG
usb_task();
device_cdc_task();

#endif
mc_regulation_task(Q);

}

16 AVR32723

32126A-AVR32-06/09

5.2 Package

5.3 Documentation

5.4 Projects/ Compiler

= AVR32723

The EVK1101-SENSOR-FIELD-ORIENTED-CONTROL-X.Y.Z.zip contains projects
for AT32UC3B0256 RevF or later:

e EVK1101-SENSOR-FIELD-ORIENTED-CONTROL-X.Y.Z

Default hardware configuration of the project is to run on the EVK1101 board,
although any board can be used (refer to section 5.5.5)

For full source code documentation, please refer to the auto-generated Doxygen
source code documentation found in:

e AVR32723/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/readme.html

The IAR™ project is located here:

e src/ APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/I1AR/
The GCC makefile is located here:

e src/ APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/GCC/
The Avr32Studio project is located in the root-dir of the package:

-/

5.5 Implementations Details

5.5.1 Main()

5.5.2 Motor Control Library

32126A-AVR32-06/09

The main() function of the program is located in the file:

e sSrc/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/main.c
This function will:

o Initialize PWM outputs for Space Vector Generation.

e Initialize ADC inputs for 3-phases current measurement.

e Initialize USB connection for CDC HMI connection.

The motor control library is located here:
e sSrc/SERVICES/MOTOR_CONTROL/
This folder delivers:

e The Park and Clarke transformations explained in section 4.1.1 are delivered in
the folder src/SERVICES/MOTOR_CONTROL/PARK_CLARKE/

e« The Space Vector Modulation explained in section 4.2.1 is delivered in the folder
src/SERVICES/MOTOR_CONTROL/SVPWM/

. AIMEL

I)

5.5.3 HMI CDC Task

5.5.4 AT32UC3B Drivers

5.5.5 Board File Definition

5.5.5.1 Board customization

5.6 Project Configuration

5.7 GUI Application

18

AVR32723

ATmEL

The HMI CDC Task is located here:

e src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/device_cdc_task.c

This task receives and sends messages through the USB communication.
With:

e The message definition located in src/APPLICATIONS/EVK110x-MOTOR-
CONTROL/BLDC-FOC/EXAMPLE/ENUM/ frame .h

The example firmware uses the AVR32 UC3 driver library available in
e src/UTILS/LIBS/DRIVERS/AT32UC3B/

The application is designed to run on the EVK1101. All projects are configured with
the following

define: BOARD=EVK1101. The EVK1101 definition can be found in the
src/BOARDS/EVK1101 directory.

For IAR project, open the project options (Project -> Options), choose the «C/C++
Compiler», then «Preprocessor». Modify the BOARD=EVK1101 definition by
BOARD=USER_BOARD. For GCC, just modify in the configmk file
(src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/GCC) the DEFS
definition with —D BOARD=USER_BOARD. For Avr32Studio, open the project
properties (Project -> Properties), go in the «C/C++ build», then «Settings», «tool
settings» and «Symbols». Modify the BOARD=EVK1101 definition by
BOARD=USER_BOARD.

The project configuration files can be found in the src/APPLICATIONS/EVK110x-
MOTOR-CONTROL/BLDC-FOC/EXAMPLE/CONF/ directory.

Configuration files are not linked to IAR, GCC or Avr32Studio projects. The user can
alter any of them, then rebuild the entire project in order to reflect the new
configuration.

= /CONF: configuration header files of demo modules:

CPU settings , Peripheral Clock settings and Motor settings

The GUI application installer is located here:

e src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/LABVIEW/FOC_Gui .msi
The USB driver is located here:

e sSrc/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/LABVIEW/usb_cdc. inf

32126A-AVR32-06/09

= AVR32723

5.8 CPU Cost and Memory Usage for Sensor Field Oriented Control algorithm.

All results are given using IAR Workbench 5.3 compiler revision 3.10A with speed
optimization level and Hmatrix optimization.

Criteria Result

CPU Occupation 35% with a tick
value of 100 us at
42MHz .

Code Size 17Kb

Data 13Kb

Const 3.5Kb

5.9 Limitation of the Sensor Field Oriented Control algorithm.

All the application has been implemented with a fixed point library written in a 32-bit
format (Q1.31)°.

The usage of this library allows accelerated computations but it generates some
limitations in the variation range of each variable.

For example, when computing current regulation, every ADC samples are scaled by a
variable named E. This variable matches a ratio of the bus voltage. In the current
implementation, this variable has been fixed to half of the nominal voltage of the
motor. In that case, the nominal speed is equal to 2000 rpm.

® See the application note:

http://www.atmel.com/dyn/resources/prod documents/doc32076.pdf for more details.

. AIMEL

I)

32126A-AVR32-06/09

5.10 Compiling the application
The following steps show you how to build the embedded firmware according to your
environment.
5.10.1 If you are using AVR32Studio
e Launch avr32Studio
o Create a new AVR32 C project («File» -> «new» -> «AVR32 C Project»).

e Fill-in the dialogue box with project name, set target MCU to UC3B0256 and
press finish.

e Choose Import archive file («File» -> «import»...), press the “next” button.

e Select the EVK1101-SENSOR-FIELD-ORIENTED-CONTROL-X.Y.Z.zip archive
file with the browse button. Select «into folder», check «Overwrite existing
resources without warning» and press the “finish” button.

e The project is now available in the given project name.
e Press the build button
e Load the Code: Please refer to the application note AVR32723: AVR32 Studio
getting started
5.10.2 If you are using GCC with the AVR32 GNU Toolchain

e Open a shell, go to the src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/GCC/ directory and type:

make rebuild program run

5.10.3 If you are using IAR Embedded Workbench® for Atmel AVR32

e Open IAR and load the associated IAR project of this application (located in the
directorysrc/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/1AR)

o Press the “Debug” button at the top right of the IAR interface.

e The project should compile. Then the generated binary file is downloaded to the
microcontroller to finally switch to the debug mode.

e Click on the “Go” button in the “Debug” menu or press F5.

20 AVR32723

32126A-AVR32-06/09

= AVR32723

5.11 Start the PC application
e Plug the EVK1101 to the PC through a USB Connection.

e The USB enumeration should start; a new serial port appeared in Windows.

o Power-up the power bridge.

5.11.1 Field Oriented Control GUI
Once the GUI is launched, the user can select a serial port number and connect the
application.

Figure 4-11. Field Oriented Control GUI

ield Oriented Control GUI

0
000059 00:00:59
Iquef and Ig Speedref and Speed <1Spid
T
S a0t 12007
Lo s
1 %200 a0 <
= Speed Ref Serial port
T T T F’orliy
| 3 -
000053 1 ‘ImEl
I
Idref and Id ')

5.11.1.1 Increase Speed Value
When the speed reference increases with constant resistive torque value, the Iq
increases smoothly to target the new speed value. The Id remains at ‘0.

Figure 4-12. Increase Speed Value Step

d Oriented Control GUI

oo: EIIEI:EIS

J 0- i
00:00:59 00:00:59

Speedief and 5peed

lgref and g

ot st
Speed Ref

Poit Mumber

R]
00:00:58 00:00:59

ATMEL

i = '
A00E+6-
° _— 00,0008 000009

Idref and I1d

—_— AIMEL

I)

32126A-AVR32-06/09

AIMEL

®

5.11.1.2 Increase Resistive Torque Value

The resistive torque value increases so the measured speed value decreases. To
compensate it, the FOC algorithm should increase the Iq reference and finally the
speed is regulated. The Id remains at ‘0.

Figure 4-13. Increase Resistive Torque Value Step

B Field Oriented Control GUI =

A00E +5- | !
000058 00:00:59 00,0059

o0:01:20

Igref and Ig Speedief and Speed

T
R

Speed Ref

Port Number

oF g T — | 50,
000058 000053 i | AII“EL O0EsE
i — SIU e+
Idref and 1d b :) 00:01:19

DD'DI1 20

22 AVR32723

32126A-AVR32-06/09

= AVR32723

6 Reference

[11 Commande vectorielle sans capteur de position d'une machine synchrone a
aimants permanents — Atmel Nantes & IREENA-

[2] NI LabWindows ™/CVI http://www.ni.com/lwcvi/

. AIMEL

[0
32126A-AVR32-06/09

7 Appendix

AIMEL

@

Figure 14. Hardware Schematic.

i
F]
™
e
T Vin Vewt
0 re l_h.u“
T o
&
2
o
1 G2
e 5
i
g yl | uam
: kikbbbkkbRbRLL)
ArauresooynzaEnas AT IR
bbbl FEEREEEEE
- ER i -
- FaL Erogk i T
1 L ez A5 o
- e
o
| =) o [
o Al Dg— oan
] Bh
i I e
- FELY Bl - o — i
. sz ©On chip debug
= TCE
1 ur
D o
vas n T — e
e -
nn Bon zed HEE in
gie BSE 5@ HdE BEC
qtﬂ HE,E ’) i
1 = w [
=
- =g e 28] £
o e 2ar ar =
oL L
i s
ccor wort——,
g i
o 15 =5 i
roco Nt
T =
e [
= =
= T
TR

3 Phase power stage

U PPt sug
tige fena:

Iann
i

m
Ic
0y
4
un

,!M.MLF_;““

iy Ty [=

. HB Tami i

I i w o |B

o]

L =
—m

5

S

vezs
==
]
oo wem wemn
-!-u' nat Tm
P g
" [
Wk
oy LT
0K
w1
mm L
i
e =
1 1ar
ATHEL Hemmar
Vartos Tostan 1]
wams
wory —
[e | caknw|mE 3w 1 |
[——— DarLraz] &
o+
W sckdc

24 AVR32723

32126A-AVR32-06/09

= AVR32723

Frama s

AR
E-)

- AIMEL

[0
32126A-AVR32-06/09

AIMEL

Y ()

Headquarters

International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia

Unit 1-5 & 16, 19/F

BEA Tower, Millennium City 5
418 Kwun Tong Road

Kwun Tong, Kowloon

Hong Kong

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud
BP 309

78054 Saint-Quentin-en-
Yvelines Cedex

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551

France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Tel: (852) 2245-6100
Fax: (852) 2722-1369

Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Sales Contact
www.atmel.com/contacts

Technical Support
Avr32@atmel.com

Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’'S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio® and others, are the
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of
Microsoft Corporation in the U.S. and or other countries. Other terms and product names may be trademarks of others.

32126A-AVR32-06/09

	Features
	1 Introduction
	2 Requirements
	3 Theory of Operation
	4 Motor Control Theory
	5 Source Code Architecture
	5.2 Package
	5.3 Documentation
	5.4 Projects/ Compiler
	5.5 Implementations Details
	5.5.1 Main()
	5.5.2 Motor Control Library
	5.5.3 HMI CDC Task
	5.5.4 AT32UC3B Drivers
	5.5.5 Board File Definition

	5.6 Project Configuration
	5.7 GUI Application
	5.8 CPU Cost and Memory Usage for Sensor Field Oriented Control algorithm.
	5.9 Limitation of the Sensor Field Oriented Control algorithm.
	5.10.1 If you are using AVR32Studio
	5.10.2 If you are using GCC with the AVR32 GNU Toolchain
	5.10.3 If you are using IAR Embedded Workbench® for Atmel AVR32

	6 Reference
	7 Appendix
	Disclaimer

