

AVR32723: Sensor Field Oriented Control for

Brushless DC motors with AT32UC3B0256

Features

• Standalone Space Vector Modulation library for AVR®32 UC3 microcontroller.
• Park and Clarke mathematical transformation library for AVR32 UC3

microcontroller.
• Theory of Field Oriented Control.
• PC application for real time motor remote control and display of regulated

variables.

1 Introduction
This application note delivers an implementation of Sensor Field Oriented Control
algorithm for brushless DC motor on Atmel® AVR32 UC3B microcontrollers.

This software includes standalone libraries for all mathematical transformations
required by the algorithm.

For more information about the AVR32 architecture, please refer to the appropriate
documents available from http://www.atmel.com/avr32.

2 Requirements
The software provided with this application note requires several components:

• A computer running Microsoft® Windows® 2000/XP/Vista® or Linux®

• AVR32Studio and the GNU toolchain (GCC) or IAR Embedded
Workbench® for AVR32 compiler.

• A JTAGICE mkII or AVROne! debugger

32-bit
Microcontrollers

Application Note

Rev. 32126A-AVR32-06/09

2 AVR32723
32126A-AVR32-06/09

3 Theory of Operation

3.1 Overview
As continuity in the energy efficiency process, the increase of capability of
microcontrollers allows to implement complex algorithm as Field Oriented Control
methodology which allows to:

• Reduce power consumption (less power loss) of electrical motor driving.

• Provide smoother and more accurate motor control than sinusoidal command
with hall feedback.

• Optimize motor choice (torque): find the best alternative between dimension
and power.

But this algorithm requires more complex computation and requires more CPU
bandwidth than standard algorithms.

Moreover, this command strategy fits with some brushless DC motors with dynamical
load changes due to reduction of response time. It allows regulating torque and speed
at the same time.

3.2 Block Diagram
The following block diagram describes the principle of the algorithm. Indeed, it is
based on:

• A vectorial command for 3-phases Brushless DC Motors.

• A periodic current sampling of the 3 shunts located on these 3-phases.

• 2 encapsulated regulation loops: one for the current (torque and power loss)
and another for the speed.

Figure 3-1. Block Diagram

3-phases current

(Ia,Ib,Ic)

Speed

and Position

Speed Target

Field Oriented Control Block
Vectorial

Command

Speed

Regulation loop

Current

Regulation loop
3-phases current

(Ia,Ib,Ic)

Speed

and Position

Speed Target

Field Oriented Control Block
Vectorial

Command

Speed

Regulation loop

Current

Regulation loop

Field Oriented Control Block
Vectorial

Command

Speed

Regulation loop

Current

Regulation loop

 AVR32723

32126A-AVR32-06/09

3.3 System Overview
As shown Figure 3-2, the 3-phases current are measured and one Hall Effect
feedback is used to compute field oriented control algorithm.

Figure 3-2. System Overview

A
T3

2U
C

3B
02

56
 (2

56
K

 fl
as

h,
 3

2
K

 R
A

M
)

U
SB

-C
D

C

PC

PWM

Current

Speed

3-phases Inverter

3-phases
BLDC

PWM_XH

PWM_XL

PWM_YH

PWM_YL

PWM_ZH

PWM_ZL

IA

IB

IC

Hall Effect A

Sensor
FieldOriented

Ccontrol
Process

USB Task

4 AVR32723
32126A-AVR32-06/09

The USB connection is used through a PC application for real time motor remote
control and display of regulated variables. This data monitor displays feedback control
remotely. This GUI provides:
- 3 graphs and 1 cursor display.

- 4 inputs control.

The purpose is to be able to connect to the application without disturbing the behavior
of the application. The application offers the following features:

- Implements vector control of a Brushless DC motor.

- Speed range from 400 rpm to 2000 rpm.1

- With a 100 µsec control loop, the CPU is used at 35% by the Sensor Field
Oriented Control Process at 42MHz.

- Display in real time the current and speed measured.

- Control of speed in real time.

1 See section 5.9 for the explanation of this limitation.

 AVR32723

32126A-AVR32-06/09

4 Motor Control Theory

4.1 General Model.
The mathematical model in a constant domain linked to the stator is linked to
differential equation with constant coefficients defining the motor behavior.
Applying the Lenz-Faraday model, we have:

[] [] []abcabcabc dt
dIRV Φ+=

With:

 []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

c

b

a

abc

v
v
v

V , []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

c

abc

i
i
i

I b

a

 and []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Φ
Φ
Φ

=Φ
c

b

a

abc

R is the statoric resistance, []tcba vvv are the statoric voltages, []tcba iii are

the statoric current and []tcba ΦΦΦ are the global fields in the statoric solenoid.

[] [][] []sfabcabc IL Φ+=Φ

We can write :

Ls (constant) is the inductance in a statoric gyres.
M (constant) is the mutual inductance between the 2 statoric gyres
θ is the electrical position of the rotor (θ= θélec)
Фsf is the max value (constant) of the flux create by the permanents magnet through
the statoric gyres.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+Φ

−Φ

Φ

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)
3

2cos(

)
3

2cos(

)cos(

πθ

πθ

θ

sf

sf

sf

c

b

a

c

b

a

c

b

a

dt
d

i
i
i

LsMM
MLsM
MMLs

dt
d

i
i
i

R
v
v
v

In order to simplify the mathematical resolution of this system, some mathematical
transformations are used.
Using the Park P1(θ), the instantaneous power is kept and it allows to have a
mathematical expression of the torque still acceptable for the real motor.

[]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+Φ

−Φ

Φ

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Φ

)
3

2cos(

)
3

2cos(

)cos(

πθ

πθ

θ

sf

sf

sf

c

b

a

abc

i
i
i

LsMM
MLsM
MMLs

6 AVR32723
32126A-AVR32-06/09

Using the Park inverse transformation, it is possible to return to the values space from
regulated values and generate commands.

4.1.1 Park Transformation (P1(θ)) and Clarke Transformation (inv P-1(θ))2.

The Park transformation is defined from the matrix P1(θ), it defines the link between
the real vectors []abcV , []abcI et []abcΦ , the new vectors []dqV 0 , []dqI 0 et []dq0Φ .

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−

=

)
3

2sin()
3

2cos(
2

1

)
3

2sin()
3

2cos(
2

1

)sin()cos(
2

1

3
2)(1

πθπθ

πθπθ

θθ

θP

Figure 4-1. Park Transformation

With V0 =0V, I0 =0A and Φ0 =0Wb, the normalized Park transformation is the addition
the Concordia Transformation T32 and the rotating matrix p(θ) :

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+

−

−

+

=

2
3
2
3

2
2

2
2

02

3
1

32T ⎥
⎦

⎤
⎢
⎣

⎡ −
=

θθ
θθ

θ
cossin
sincos

)(p

Figure 4-2. 3D to 2D Transformation

2 The Park and Clarke transformations are implemented as a software library
component in the software package associated with this application note. See also
section 5.

[xabc]=P1(θ)[X0dq]

va

vb

vc

[P1(θ)]-1
va

V0

Vd

Vq

θ

T32

t

xa

 xb

xc

xα

 xβ

P(-θ)

Xd

Xq

 AVR32723

32126A-AVR32-06/09

4.2 Power Bridge Command.
The power bridge stage is here to power the BLDC motor with alternatives voltages
from a continuous source. This bridge allows modulating frequency and amplitude.

Figure 4-3. Power Bridge Stage

Figure II-1 Onduleur de tension triphasé.

The logical signals Ca, C’a, Cb, C’b, Cc and C’c are command signals for the power
bridge.
The output voltages are given from the ground ‘m’ of source generator and from the
virtual neutral point ‘n’ of BLDC motor.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

c

b

a

cm

bm

am

C
C
C

E
V
V
V

 (II-1)

nmcncm

nmbnbm

nmanam

VVV
VVV
VVV

+=
+=
+=

For an equilibrated load: 0=++ cnbnan VVV V, so : ()cmbmamnm VVVV ++=
3
1

.

In that way, we have:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

c

b

a

cm

bm

am

cn

bn

an

C
C
C

E

V
V
V

V
V
V

211
121
112

3
211
121
112

3
1

Power Bridge Stage
m

E

Ta

a

b

c

ia

ib

ic

a
b

c

n

I

Tb Tc

T’
a T’

b T’
c

Ca Cb Cc C’
a C’

b C’
c

8 AVR32723
32126A-AVR32-06/09

Or :

.
211
121
112

3
1. 3232

tt TT =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

cn

bn

an

V
V
V

T
V
V

t
32

β

α

We conclude so:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

c

b

a

C
C
C

ET
V
V

t.32
β

α
, (tT 32 is the translation of 32T)

The following table gives the voltage values in the spaces (α ,β) and (a, b, c).

Table 4-2. Voltage Values in the spaces (α , β) and (a, b, c)

We show that all vectors components (Vα , V β) are with modules E32 and are
located in the regular hexagon.

Figure 4-4. Space Vector values in the regular hexagon.

Ca Cb Cc Vα Vβ Van Vbn Vcn Vector

0 0 0 V0

1 0 0 V1

1 1 0 V2

0 1 0 V3

0 1 1 V4

0 0 1 V5

1 0 1 V6

1 1 1 V7

E

3

0 0 0

2 -1 -1

1 1 -2

-1 2 -1

-2 1 1

-1 -1 2

1 -2 1

0 0 0

E
2

3

0 0

 1 0

 1
 2

 3
 2
√

 1
 2

 3
 2
√

-1 0

 1
 2

 3
 2
√

 1
 2

 3
 2
√

0 0

Vβ

 1 3

4
5

6
 V α V1

V2
V3

V4

V5
V6

(1, 0, 0)

(1, 1, 0)
(0, 1, 0)

(0, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 0,
(1, 1,

2

2
3

 AVR32723

32126A-AVR32-06/09

4.2.1 Space Vector PWM.3

The vectorial modulation uses directly the signal for the Concordia transformation. It
supposes that a regulation loop is ever implemented for the generation of Vα and Vβ
components.
As stated below, at a instantaneous point, the power bridge is able to generate only 8
voltages (Vi, i = 0,…,7) in the space of transformation Concordia (Vα , Vβ) with two

components equal to 0 and 6 with the module equal to 32E and the angle

to ())1(3 −iπ . Two successive vectors, called Vi and Vi+1 defined a sector i (Figure
4-4) with I from the interval [I, VI].

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ −=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ −

⎭
⎬
⎫

⎩
⎨
⎧ −

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
1

)1(
33

2

)1(
3

sin

)1(
3

cos

3
2 ipE

i

i
E

V
V

V
i

i
π

π

π

β

α

The power stage is only able to deliver voltages instantaneous voltages on a
sampling period T, we can write:

 11)(+++= iiii VVV δδαβ

Where iδ and 1+iδ are the duration for relative values are the relatives voltages when
Vi and Vi+1 ; iiVδ and 11 ++ ii Vδ are the projection of vector (Vαβ).

3 The Space Vector Modulation is implemented as a software library component in the
software package associated with this application note. See also section 5.

10 AVR32723
32126A-AVR32-06/09

Figure 4-5. Sector Determination Algorithm.

In all cases, it is needed to determined sector number « i » where is located the
vector Vi . To reduce time execution computing iδ et 1+iδ , we have used this
algorithm.

In that way, iδ et 1+iδ are calculated directly from V α and V β :

1

1

+

+ ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

i

i

i

i
V
V

V
V

V
V

β

α

β

α

β

α
δδ

And so

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡Π
+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=⎥

⎦

⎤
⎢
⎣

⎡
+

0
1

)
3

(
0
1

)1(
33

2
1 ipipE

V
V

ii δπδ
β

α

V α and Vβ

Vβ ≥ 0

i=1 or 2 or 3

Vα ≤ 0

i=1 or 2

Yes

Yes

Yes

i=1 i=2

No

i=2 or 3

i=3 i=2

No
n

No

i=4 or 5 or 6

Vα ≥ 0

i=5 or 6

Yes

i=5 i=6

No

i=4 or 5

i=5 i=4

No

No

No

Vβ-√3 Vα≤ 0 Vβ+√3 Vα≤ 0 Vβ+√3 Vα≤ 0 Vβ-√3 Vα≤ 0

Yes Yes Yes

Yes

 AVR32723

32126A-AVR32-06/09

Table 4-2. Sector expressions

1
T1= τ1+ τ2+ τ0
T2= τ2+ τ0

 T3= τ0

T1= τ2+ τ0
T2= τ3+ τ2+ τ0

T3= τ0

T1= τ0

T2= τ3+ τ4+ τ0

T3= τ4+ τ0

T1= τ0

 T2= τ4+ τ0

T3= τ5+ τ4+ τ0

T1= τ0+ τ6
T2= τ0

T3= τ0+ τ5+ τ6

T1= τ0+ τ1+ τ6

 T2= τ0

 T3= τ0+ τ6

2

3

4

5

6

Sector

12 AVR32723
32126A-AVR32-06/09

4.3 Current Measurement Stage
Three identical shunts are used to read the current Ia,Ib and Ic. These values should
be amplified to be in the range of the ADC. Indeed, if we measure current of several
milliamps (500mA), the maximum voltage is around 0.025V.

Figure 4-6. Amplifier stage

For example:

 ()12
1
2 VV

R
ROffsetVs −+=

When measuring the three currents Ia,Ib and Ic, only two measures are required,
indeed Ia + Ib + Ic = 0.

Figure 4-7. ADC and PWM synchronization

The ADC measures are done every period of the PWM. The first ADC measure
should be done in the time range named tm. This time is the minimum time where
none of the 3-phases are driven.
For example:
In case of sector 1, T1 is the longest time so it means that T1 > T-tm, in that case it is
not possible to measure Ia. So Ib and Ic are measured and Ia is derived from the two
others measures with the equation Ia = –Ib –Ic.

T T

PWM

tm tm tm

ADC t

T1

R

R

R

R

-

+
R ADC

V

VA
Shun

V2

V1

Offset

ia

V2 V1

 AVR32723

32126A-AVR32-06/09

4.4 Current regulation and speed Regulation4
In order to reduce time consuming effect of regulator, we have used the Integrator
Proportional (IP) regulator.

4.4.1 Current Regulation

In a continuous domain, the closed loop has the mathematical expression:

dref
idc

i
d I

KsKRsL
KI

+++
=

)(2

It is possible to easily identify the second order of the transfer function:

 22 2 nn ss
a

ωωε ++

With RLKandLK cndnci −== εωω 22

These correctors have been chosen to have a depreciation rate ε =2 and a response
time of 5℅ (TrWn).

Figure 4-8. Response time vs Depreciation rate.

For that
 ωn = 2 cLR with RKandLRK dci .74 2 ==

4.4.2 Speed Regulation

The external closed loop for speed regulation has the following mathematical
expression:

222 2 nnivdv

i

ref ss
a

KsKsJ
K

ωωε ++
=

++
=

Ω
Ω

With
J

Ket
J

K dv
n

iv
n == ωεω 22

4 The PI regulator is implemented as a software library component in the software
package associated with this application note. See also section 5.

Depreciation rate

R
es

po
ns

e
Ti

m
e

14 AVR32723
32126A-AVR32-06/09

We choose ωn=0.1R/Lc and ε=2, So J
L
RKetJ

L
RK

c
dv

c
iv 4.001.0 2

2

==

4.5 Execution Time and Regulation Loop
The following table gives the number of operations for each function

Table 4-2. Operations costs
Function Add Mul Div Shift

Concordia

abc-to- αβ

7 0 0 17

Clark

αβ-to-dq

2 4 0 62

Clark Inv

dq-to- αβ

2 4 0 62

Regulation 7 4 0 124

Decoupling5 3 5 0 62

SVPWM 27 0 0 354

5 The decoupling stage is the stage to separate torque and power loss regulations
after the current measurement stage. The idea is to be sure to only regulate torque
(without disturbing the power loss loop).

 AVR32723

32126A-AVR32-06/09

4.6 General Algorithm
As shown in Figure 4-9, the regulation_loop_task() process is sequenced on tick
reference (every 100µs). This task synchronizes current measurement and computes
all mathematical transformations to execute the Field Oriented Control algorithm.
Inside this task, there are two regulation loops interlinked:

- Current regulation loop.

- Speed regulation loop.

Figure 4-9. Regulation Loop Task Step Machine

MC_current_measurement()

park_inv()

Speed
Regulation?

Yes Proceed Speed
Regulation

No Execute Speed
Regulation

Compute new
vectorial command

regulation_loop_task()

Hall Interrupt Wait
No

Yes
hall_estimator_update()

park()

Clarke()

svpwm()

Message Ready? Prepare New Message
for the HMI CDC Task

Compute new Teta and
Speed

Sleep()

Current measurement of
the 3-phases

Update Teta and Speed
values

²

Realize the Clarke
Transformation

Realize the Park
Transformation

Realize the Inverse
Park

Transformation

Current Regulation
Execute Current

Regulation

16 AVR32723
32126A-AVR32-06/09

5 Source Code Architecture

5.1 Software Architecture
Figure 4-10. Software Architecture

This application does not require any operating system to run. The main() function is
in charge of calling the software «tasks» (using a scheduler) realizing FOC algorithm
computation and USB communication with the Communication Device Class (CDC)
for HMI management. There are 2 tasks:

• regulation_loop_task()The regulation task that computes all calculation for
dedicated FOC algorithm.

• usb_task() / device_cdc_task()The USB Task: This task is in charge of the
CDC communication management.

The main loop of the application is a simple free-running task scheduler:

 while(TRUE)
 {
#ifdef USB_DEBUG
 usb_task();
 device_cdc_task();
#endif
 mc_regulation_task();
 }

Motor Driver
mc_driver.c

Field Oriented Control application
main.c

DRIVERS
usb.c adc.c pwm.c flashc.c pm.c gpio.c

Motor Control
mc_control.c

CDC communication
task
HMI

device_cdc_task.c

Motor Control Library

PARK
SERVICES/MOTOR/PARKSpace Vector Modulation

SERVICES/MOTOR/SVPWM

CLARKE
SERVICES/MOTOR/CLARKE

HALL ESTIMATOR
SERVICES/MOTOR/HALL

PI Regulator
SERVICES/MOTOR//PI

usb_task()
device_cdc_task()

regulation_loop_task()

 AVR32723

32126A-AVR32-06/09

5.2 Package
The EVK1101-SENSOR-FIELD-ORIENTED-CONTROL-X.Y.Z.zip contains projects
for AT32UC3B0256 RevF or later:

• EVK1101-SENSOR-FIELD-ORIENTED-CONTROL-X.Y.Z

Default hardware configuration of the project is to run on the EVK1101 board,
although any board can be used (refer to section 5.5.5)

5.3 Documentation
For full source code documentation, please refer to the auto-generated Doxygen
source code documentation found in:

• AVR32723/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/readme.html

5.4 Projects/ Compiler
The IAR™ project is located here:

• src/ APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/IAR/

The GCC makefile is located here:

• src/ APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/GCC/

The Avr32Studio project is located in the root-dir of the package:

-./

5.5 Implementations Details

5.5.1 Main()

The main() function of the program is located in the file:

• src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/main.c

This function will:

• Initialize PWM outputs for Space Vector Generation.

• Initialize ADC inputs for 3-phases current measurement.

• Initialize USB connection for CDC HMI connection.

5.5.2 Motor Control Library

The motor control library is located here:

• src/SERVICES/MOTOR_CONTROL/

This folder delivers:

• The Park and Clarke transformations explained in section 4.1.1 are delivered in
the folder src/SERVICES/MOTOR_CONTROL/PARK_CLARKE/

• The Space Vector Modulation explained in section 4.2.1 is delivered in the folder
src/SERVICES/MOTOR_CONTROL/SVPWM/

18 AVR32723
32126A-AVR32-06/09

5.5.3 HMI CDC Task

The HMI CDC Task is located here:

• src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/device_cdc_task.c

This task receives and sends messages through the USB communication.

With:

• The message definition located in src/APPLICATIONS/EVK110x-MOTOR-
CONTROL/BLDC-FOC/EXAMPLE/ENUM/frame.h

5.5.4 AT32UC3B Drivers

The example firmware uses the AVR32 UC3 driver library available in

• src/UTILS/LIBS/DRIVERS/AT32UC3B/

5.5.5 Board File Definition

The application is designed to run on the EVK1101. All projects are configured with
the following

define: BOARD=EVK1101. The EVK1101 definition can be found in the
src/BOARDS/EVK1101 directory.

5.5.5.1 Board customization

For IAR project, open the project options (Project -> Options), choose the «C/C++
Compiler», then «Preprocessor». Modify the BOARD=EVK1101 definition by
BOARD=USER_BOARD. For GCC, just modify in the config.mk file
(src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/EXAMPLE/GCC) the DEFS
definition with –D BOARD=USER_BOARD. For Avr32Studio, open the project
properties (Project -> Properties), go in the «C/C++ build», then «Settings», «tool
settings» and «Symbols». Modify the BOARD=EVK1101 definition by
BOARD=USER_BOARD.

5.6 Project Configuration
The project configuration files can be found in the src/APPLICATIONS/EVK110x-
MOTOR-CONTROL/BLDC-FOC/EXAMPLE/CONF/ directory.

Configuration files are not linked to IAR, GCC or Avr32Studio projects. The user can
alter any of them, then rebuild the entire project in order to reflect the new
configuration.

 /CONF: configuration header files of demo modules:

CPU settings , Peripheral Clock settings and Motor settings

5.7 GUI Application
The GUI application installer is located here:

• src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/LABVIEW/FOC_Gui.msi

The USB driver is located here:

• src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-FOC/LABVIEW/usb_cdc.inf

 AVR32723

32126A-AVR32-06/09

5.8 CPU Cost and Memory Usage for Sensor Field Oriented Control algorithm.
All results are given using IAR Workbench 5.3 compiler revision 3.10A with speed
optimization level and Hmatrix optimization.

Criteria Result

CPU Occupation 35% with a tick
value of 100 us at
42MHz.

Code Size 17Kb

Data 13Kb

Const 3.5Kb

5.9 Limitation of the Sensor Field Oriented Control algorithm.

All the application has been implemented with a fixed point library written in a 32-bit
format (Q1.31)6.

The usage of this library allows accelerated computations but it generates some
limitations in the variation range of each variable.

For example, when computing current regulation, every ADC samples are scaled by a
variable named E. This variable matches a ratio of the bus voltage. In the current
implementation, this variable has been fixed to half of the nominal voltage of the
motor. In that case, the nominal speed is equal to 2000 rpm.

6 See the application note:

http://www.atmel.com/dyn/resources/prod_documents/doc32076.pdf for more details.

20 AVR32723
32126A-AVR32-06/09

5.10 Compiling the application
The following steps show you how to build the embedded firmware according to your
environment.

5.10.1 If you are using AVR32Studio

• Launch avr32Studio

• Create a new AVR32 C project («File» -> «new» -> «AVR32 C Project»).

• Fill-in the dialogue box with project name, set target MCU to UC3B0256 and
press finish.

• Choose Import archive file («File» -> «import»…), press the “next” button.

• Select the EVK1101-SENSOR-FIELD-ORIENTED-CONTROL-X.Y.Z.zip archive
file with the browse button. Select «into folder», check «Overwrite existing
resources without warning» and press the “finish” button.

• The project is now available in the given project name.

• Press the build button

• Load the Code: Please refer to the application note AVR32723: AVR32 Studio
getting started

5.10.2 If you are using GCC with the AVR32 GNU Toolchain

• Open a shell, go to the src/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/GCC/ directory and type:

make rebuild program run

5.10.3 If you are using IAR Embedded Workbench® for Atmel AVR32

• Open IAR and load the associated IAR project of this application (located in the
directorysrc/APPLICATIONS/EVK110x-MOTOR-CONTROL/BLDC-
FOC/EXAMPLE/IAR)

• Press the “Debug” button at the top right of the IAR interface.

• The project should compile. Then the generated binary file is downloaded to the
microcontroller to finally switch to the debug mode.

• Click on the “Go” button in the “Debug” menu or press F5.

 AVR32723

32126A-AVR32-06/09

5.11 Start the PC application
• Plug the EVK1101 to the PC through a USB Connection.

• The USB enumeration should start; a new serial port appeared in Windows.

• Power-up the power bridge.

5.11.1 Field Oriented Control GUI

Once the GUI is launched, the user can select a serial port number and connect the
application.

Figure 4-11. Field Oriented Control GUI

5.11.1.1 Increase Speed Value

When the speed reference increases with constant resistive torque value, the Iq
increases smoothly to target the new speed value. The Id remains at ‘0’.

Figure 4-12. Increase Speed Value Step

When the user want to increase speed value

Speed

Iq

Iq

Id

Speed

Serial port

22 AVR32723
32126A-AVR32-06/09

5.11.1.2 Increase Resistive Torque Value

The resistive torque value increases so the measured speed value decreases. To
compensate it, the FOC algorithm should increase the Iq reference and finally the
speed is regulated. The Id remains at ‘0’.

Figure 4-13. Increase Resistive Torque Value Step

Speed

Iq

 AVR32723

32126A-AVR32-06/09

6 Reference
[1] Commande vectorielle sans capteur de position d'une machine synchrone à
aimants permanents – Atmel Nantes & IREENA-

[2] NI LabWindows™/CVI http://www.ni.com/lwcvi/

24 AVR32723
32126A-AVR32-06/09

7 Appendix
Figure 14. Hardware Schematic.

 AVR32723

32126A-AVR32-06/09

32126A-AVR32-06/09

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
Avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio® and others, are the
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of
Microsoft Corporation in the U.S. and or other countries. Other terms and product names may be trademarks of others.

	Features
	1 Introduction
	2 Requirements
	3 Theory of Operation
	4 Motor Control Theory
	5 Source Code Architecture
	5.2 Package
	5.3 Documentation
	5.4 Projects/ Compiler
	5.5 Implementations Details
	5.5.1 Main()
	5.5.2 Motor Control Library
	5.5.3 HMI CDC Task
	5.5.4 AT32UC3B Drivers
	5.5.5 Board File Definition

	5.6 Project Configuration
	5.7 GUI Application
	5.8 CPU Cost and Memory Usage for Sensor Field Oriented Control algorithm.
	5.9 Limitation of the Sensor Field Oriented Control algorithm.
	5.10.1 If you are using AVR32Studio
	5.10.2 If you are using GCC with the AVR32 GNU Toolchain
	5.10.3 If you are using IAR Embedded Workbench® for Atmel AVR32

	6 Reference
	7 Appendix
	Disclaimer

