ENT-AN0155 Application Note Copper PHY Bring Up Guide

Contents

1	Revision History	1
	1.1 Revision 1.0	
_		_
2		
	2.1 References	2
	2.1.1 Vitesse Documents	2
	2.1.2 IEEE Standards	2
	2.1.3 External Documents	2
3	B Designing with SimpliPHY Devices	3
	3.1 Design Documentation	
4	First Steps for Bringing-up the PHY	4
	4.1 Board Inspection	
	4.2 First Power-Up	4
	4.3 Clock and Reset Inspection	
5	5 Troubleshooting	5
	5.1 DC Board Level Measurements	
	5.2 Oscilloscope Board Level Measurements	5
	5.3 Register Level Measurement	6
	5.3.1 RJ45 to the PHY Ingress Path	6
	5.3.2 PHY to RJ45 Egress Path	6
	5.3.3 PHY to MAC Pathways	6
	5.3.4 Miscellaneous Issues	6

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision **1.0**

Revision 1.0 was the first release of this document. It was published in January 2008.

2 Introduction

This document provides useful guidelines for hardware and software engineers bringing up a SimpliPHY gigabit copper PHY for the first time on their prototype board. It is geared towards speeding development to production.

2.1 References

2.1.1 Vitesse Documents

- Vitesse Copper PHY Datasheets
- Vitesse Copper PHY Design and Layout Guides

2.1.2 IEEE Standards

• IEEE-802.3, CSMA/CD Access Method and Physical Layer Specification

2.1.3 External Documents

High Speed Digital Design, Author: Howard Johnson, PH.D., ISBN 0-13-395724-1

3 Designing with SimpliPHY Devices

Vitesse wants to thank you for taking the opportunity to design with one of the most innovative Ethernet PHY devices in the market. At Cicada Semiconductor, which was acquired by Vitesse Semiconductor in 2004, the mission of the Gigabit Ethernet PHY design team is to continually innovate the industry with system integration of passive components, best energy efficiency practices to achieve the industry's lowest power PHYs in production, and provide innovative features for testability purposes. This document outlines the steps a hardware/software designer needs to take to bring a Vitesse copper PHY to full functionality.

3.1 Design Documentation

Vitesse recognizes that a designer can only achieve the best designs with the most recent available documentation. We make a practice of continually ensuring our online documentation is the most up-to-date with all the datasheets and application notes you need to design for first pass success. As a result, even if one has designed with a Vitesse copper PHY before, it is advisable to visit the Vitesse website (http://www.vitesse.com) and analyze the specific product page to ensure you have the latest documentation.

Two of the most important documents a designer needs are the datasheet and the design and layout guide. The datasheet will provide the most in-depth information, including the following.

- Functionality
- Register map
- Pin information
- Electrical specs

The Design and Layout Guide is an additional document that highlights commonly used design practices to achieve first pass success. It includes information such as the following.

- Grounding
- Power considerations
- Thermal considerations
- Copper/fiber interface
- MAC interface
- Other miscellaneous design information

These two documents provide information to help you with your design. In addition, Vitesse is more than willing to also review your schematic. When you are ready, contact your local Vitesse sales/distribution representative and arrange a schematic review for your design. While not required, to ensure an accurate review, make sure to provide the following.

- Device used (if not obvious in the schematic)
- If the PHY is being used in an a-typical manner, provide a block diagram/description to help us ensure we are correctly reviewing your innovative application.
- Magnetic part number. If the device is not found on the web, forward the datasheet along with the schematic
- If not obvious in the design, what the MAC interface of the PHY is connected to.
- The origination points of the JTAG, MDC/MDIO, and Clock inputs
- Resistor values (if not already listed)
- Do not install (DNI) list if not apparent in the design
- Power being applied to the power supply pins

The next section will describe the first steps to bringing-up the copper PHY device for the very first time.

4 First Steps for Bringing-up the PHY

Once you receive your completely assembled proto-type boards with a SimpliPHY device included, it is highly recommended one follows these first steps to avoid many headaches involved with bringing up a copper PHY device for the first time.

4.1 Board Inspection

The first step is to visually inspect the board to ensure that all components placed are correct, in the proper oriented location, and there are no cold or missing solder joints on both the PHY device and its associated devices (recognizing that this step is difficult with BGA devices).

4.2 First Power-Up

The next step is to power up the device. This involves powering up all power rails associated with the PHY. While all SimpliPHY devices to not have power sequencing, it is still advisable for reliability to power all supplies in a relatively simultaneous manner. At this stage, for the first power-up, it is advisable to measure the design's power network and ensure that all power supplies are correctly set to the correct voltage for all rails. The best place to measure is either at the pins of a QFP or at the decoupling capacitors underneath the BGA closest to its power pins.

Each Copper PHY has three supply rails: 3.3 V, 1.2 V, and 1.2 V filtered analog that connect to the power pins of the device. Note that the VSC8211/21 and VSC8224/44 have an additional 3.3 V filtered analog. This is an important step because inadequate power supplies cause the most common cause of link failures, auto-negotiation problems, and random system event such as CRC errors. At some point during full system data traffic testing, it is also advisable to check these power supplies again to ensure the local decoupling network is supplying a proper voltage to these pins at all times and is capable of filtering out the transient responses that occur during data traffic operation.

4.3 Clock and Reset Inspection

After the first power-up, the next step is to check the PHY input clock and reset. Power must be applied and the clock (either 25 MHz or 125 MHz) must send pulses at the correct frequency for the prescribed period of time in the datasheet before the reset pin (or pins in the case of devices with soft reset) is released. In the event of a power or clock loss, the reset must be re-applied in order to bring the device back to a known operational state. To ensure the device will properly respond to the clock, the PLLMODE and OSCEN pins must be set correctly based on the type of clock input. For example, a 25 MHz TTL input requires the PLLMODE = 0 (low) and OSCEN = 0 (low).

At this point, plugging in a cable with a working link partner on the other end should achieve a link-up. If this does not happen, go to the next section which describes a few trouble-shooting steps to help determine the problem.

5 Troubleshooting

The two types of basic bring-up issues are as follows.

- No link-up
- Link-up but no traffic passing or CRC errored traffic

The following sections help the user to locate the problems preventing normal operation. Contact your Vitesse technical support engineer to assist you with this process.

5.1 DC Board Level Measurements

While a Gigabit Copper PHY is a very complex device, a normal operating PHY will still have specific visible behaviors that can be observed with basic lab measurement tools. As an example, many of these can be measured with a DC volt-meter. Once power has been applied, reset is deasserted, and a clock is being provided to the device, examine the following.

The following can be seen if the power is up and stable.

- REF FILT pin = ~1.15 to ~1.25 V_{DC}
- REF REXT pin = ~0.98 to ~1.06 V_{DC}
- Copper Pair A and B = ~1.65 V_{DC}

Problems in this area are usually related to power and grounding issues. The voltages of copper pairs are set by halving the VDD33 voltage supply (3.3 V/2 = 1.65 V).

5.2 Oscilloscope Board Level Measurements

In addition, several areas of the device can be examined with a basic oscilloscope. When reset is deasserted and a clock is being provided to the device, the following can be seen.

- Copper Pair A and B = You should see link pulses and they should alternate between A and B (which
 is the Auto MDI/MDI-X operation happening)
- Copper Pair C and D = No link pulses present. In the absent of a link partner, this is normal as auto-negotiation only works on pairs A and B. During normal operation these pins are only used for 1000BASE-T and not used in 10/100BASE-T
- MDC/MDIO = One should see clear pulses if the host is trying to communicate with the PHY. Use the read command to see if the PHY responds after the Turnaround bit.
- CLKOUT = if enabled, you should have a 125 MHz output which means the internal PHY PLL is
 operational

Problems with any of these items can be related to several issues. The obvious one is a subtle power issue. Also, it is important to ground the JTAG TRST pin when in normal operation and releasing the PHY reset. The copper PHYs do not have an internal power-up reset circuit for the JTAG and as a result, this must be handled through the JTAG TRST in order to configure the boundary scan chain to a known state. This issue manifests itself as unreliable linkups after several resets (works sometimes, but not always after reset is deasserted). Problem related to MDC/MDIO could be improper impedance traces or improper board termination (the MDIO requires a pull- up at some point along the trace as this signal is open drain).

If designing with an RGMII interface, it is important to check to make sure that the proper delay line compensation is set correctly. Usually what can be done is to measure one side of the RGMII path's clock, the CTL pin and one of the data pins. If it is assumed the transmitter is providing the delay, then this should be seen through this measurement. If the delay is taken care of at the receiver, then the clock, data, and control pins should all line up. Any skew within this measurement could be the reason why CRCs or no data is being passed.

5.3 Register Level Measurement

If no data is being passed or CRC are present, it is important to isolate the problem. This can be done with register settings. First step is to discover the source of the problem. A general rule to consider is that a packet that traverses through a PHY can either be interpreted as a good packet, a bad (CRC) packet, or a dropped packet. Generally, MACs drop errored packets in the ingress side and egress errored packets are captured as CRC errors by test equipment and PHYs that can detect CRCs. This is not always the case, but can help guide you to discover the root of the pathway issues.

5.3.1 RJ45 to the PHY Ingress Path

To debug if this pathway is working, ensure that the link is up, the link partner is actually providing traffic, and read the local PHY's CRC counters and verify that the packets are being counted. If the link partner sends 100 packets, the local PHY's counter should increment the counter by 100. If not, see if any of these good packets are being interpreted as CRC packets through this counter. The PHY cannot drop a packet. If a fragment is being processed by the PHY, it will continue to pass this along and count it as a packet where as a MAC may just drop it.

5.3.2 PHY to RJ45 Egress Path

There are several ways to determine if this path is valid. First, is to have the MAC transmit a set number of packets and count them at the link partner. If this is not possible, the Copper PHY has a packet generator. This can be enabled and the link partner can be used to determine if the packets were actually transmitted. Combining this pathway to the previous one, the far-end loopback can be used and one could have the link partner transmit packets and the link partner then captures the incoming packets to determine if they actually made it to the PHY and returned.

5.3.3 PHY to MAC Pathways

Among the most common problems of pathway issues, the majority occurs between the PHY and the MAC due to impedance or timing skew issues. The steps in the previous two sections can be used here as well to help isolate the problem. For example, a packet generated by the link partner, to the PHY, and bound for the MAC, counted by its counter. If this packet is errored, it will likely be dropped. In certain cases, it may make sense to use the near-end loopback to help isolate issues. In some cases, customers may have gotten the TX and RX backwards or even the + and – signals for SGMII in the wrong orientation.

5.3.4 Miscellaneous Issues

Other issues that one can troubleshoot are to ensure that all relevant advertisements in registers 0, 4, and 9 are set properly. Also, the operating mode in Register 23 is configured correctly for a particular media interface. Auto MDI/MDI-X should be properly configured, as well. Some PHYs require an initialization script for normal operation. See the Associated Device Datasheet and Design and Layout Guide for more information.

Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2007 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www microsemi.com.

VPPD-02058