AT91 USB Integrated Circuit(s) Cards Interface
Devices (CCID) Driver Implementation

1. Introduction

The Integrated Circuit(s) Cards Interface Devices (CCID) class extends the USB
specification in order to provide a standard means of handling Integrated Circuit(s)
Card (ICC) devices such as Smart Cards conforming to ISO/IEC 7816 specifications.

This application note describes how to implement a CCID driver with the AT91 USB
Framework provided by Atmel® for use with its AT91 ARM® Thumb® based
microcontrollers.

* First, generic information about CCID-specific definitions and requirements is
given.

* This document then details how to use the CCID class to communicate with a
Smart Card.

2. Related Documents
1. CCID Device Class: Smart Card, specification for Integrated Circuit(s) Cards
Interface Devices, revision 1.1, April 22, 2005.

2. ldentification cards, Integrated circuits cards, part 3: Cards with contacts:
electrical interface and transmission protocols, Version 2.1¢c2, 2005-06-3.
ISO/IEC FDIS 7816-3: 2005(E)

3. Identification cards, Integrated circuits cards, part 4: Organization, security
and commands for interchange, 2004-10-14. ISO/IEC FDIS 7816-4: 2004(E)

4. Atmel Corp., AT91 USB Framework, 2006, lit ° 6263
5. USB specification 2.0: http://www.usb.org

6. Software ISO 7816 1/0O Line Implementation, Atmel Application Note, lit°
1154

7. DWG Smart-Card Integrated Circuit(s) Card Interface Devices
http://www.usb.org

ATMEL

Y ()

AT91 ARM
Thumb
Microcontrollers

Application
Note

6348A-ATARM-06-Jul-09

http://www.usb.org/developers/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf
http://www.iso.org/iso/home.htm
http://www.iso.org/iso/home.htm
http://www.atmel.com/dyn/general/advanced_search_results.asp?device=1&tools=1&faqs=1&datasheets=1&appNotes=1&userGuides=1&software=1&press=1&articles=1&flyers=1&checkAll=1&checkAllReference=1&target=doc6263
http://www.usb.org/home
http://www.atmel.com/dyn/general/advanced_search_results.asp?device=1&tools=1&faqs=1&datasheets=1&appNotes=1&userGuides=1&software=1&press=1&articles=1&flyers=1&checkAll=1&checkAllReference=1&target=doc1154
http://www.atmel.com/dyn/general/advanced_search_results.asp?device=1&tools=1&faqs=1&datasheets=1&appNotes=1&userGuides=1&software=1&press=1&articles=1&flyers=1&checkAll=1&checkAllReference=1&target=doc1154
http://www.usb.org/home

3. Abbreviations and Terms

APDU

ATR

CccCIiD

Cold RESET
ICC

ICCD

Interface Device

Lc

Le

P1, P2
P3
RFU
TPDU

UsB-ICC

Warm RESET

4. CCID Device Class

This section gives generic details on the CCID class, including its purpose, architecture and how
it is supported by various operating systems.

4.1

4.2

4.21

4.2.2

Purpose

Architecture

Interfaces

Endpoints

ATMEL

Application Protocol Data Unit

Answer to Reset

Integrated Circuit(s) Cards Interface Devices

The sequence starts with the ICC powered off.

Integrated Circuit(s) Card (Used interchangeably with Smart Card)

Integrated Circuit(s) Card Devices conforming to this specification.Used
interchangeably with USB-ICC.

Terminal communication device or machine to which the ICC is electrically
connected during operation [ISO/IEC 7816-3].

Optional part of the body of a command APDU. Its size is 0, 1 or 3 bytes. The
maximum number of bytes present in this body.

Optional part of the body of a command APDU. Its size is 0, 1, 2, or 3 bytes.
The maximum number of bytes expected in the data field of the response
APDU.

INS parameter of a command header.

INS parameter of a command header. P3 contains Lc or Le
Reserved for Future Use

Transport Protocol Data Unit

USB Integrated Circuit(s) Card. An ICC providing a USB interface [ISO/IEC
7816-12]. Used interchangeably with ICCD.

The sequence starts with the ICC already powered

The CCID class has been specifically designed for Smart Card Devices.

A CCID device only needs one interface descriptor. It should have the CCID interface class code
in its binterfaceClass field. There are special subclass and protocol codes to specify.

The CCID requires three endpoints.

One endpoint BULK IN and one endpoint BULK OUT. They are mandatory and should always

be declared.

Application Note m—————————

6348A-ATARM-06-Jul-09

- ___ Application Note

The interrupt pipe is mandatory for a CCID that supports ICC insertion/removal. It is optional for
a CCID with ICCs that are always inserted and are not removable.

Endpoint 0 is used for class-specific requests. In addition, the host can also explicitly request or
send report data through this endpoint.

The Bulk IN and OUT endpoints are used for sending data to the host, and to receive
information.

The Interrupt endpoint is used for Insertion and Removal of the card, and in case of hardware
error.

Figure 4-1. CCID Class Driver Architecture

DEVICE

(Contro10) (BukIN) (Buk oUT) (nterrupt IN)

TPDU

4.2.3 Class-Specific Descriptors

The smart card device descriptor specifies certain device features or capabilities. Please refer to
the CCID specifications for more information.

4.2.3.1 CCID Descriptor

The CCID descriptor gives information about the CCID specification revision used, the country
for which a device is localized, and lists the number of class-specific descriptors, including their
length and type. The format is described in Table 4-1.

Table 4-1. CCID Descriptor Format

Field Size (bytes) Description

bLength 1 Total length of the CCID descriptor
bDescriptorType 1 CCID descriptor type (21h)

bedCCID 5 gg(l:li?nsarl)(?gi(f;%a;tifz?n:zlfase number in Binary Coded
bMaxSlotIndex 1 Index of the highest available slot.

bVoltageSupport 1 What voltages the CCID can supply to its slots
dwProtocols 4 Supported protocol types

6348 A-ATARM-06-Jul-09

424

4.2.4.1

4.3

ATMEL

Table 4-1. CCID Descriptor Format

Field Size (bytes) Description
dwDefaultClock 4 Default ICC clock frequency in KHz
dwMaximumClock 4 Maximum supported ICC clock frequency in KHz

Number of clock frequencies that are supported by the

bNumClockSupported | 4 ccib

Class-specific Requests

GetDescriptor

Host Drivers

While GET_DESCRIPTOR is a standard request (defined in the USB specification 2.0), new
descriptor type values have been added for the CCID class. They make it possible for the host to
request the CCID descriptor, ABORT descriptor, GET_CLOCK _FREQUENCY descriptor and
GET_DATA_RATES descriptor used by the device.

When requesting a CCID-specific descriptor, the windex field of the request must be set to the
CCID interface number. For standard requests, this field is either set to 0 or, for String descrip-
tors, to the index of the language ID used.

Microsoft® class CCID driver is used to drive the CCID without any vendor-specific software.
usbccid.sys can be found on the installation disk provided by Windows®, or can be downloaded
from the Windows Update web site during the new device installation procedure.

Specific software is used to send the APDU command to the Smart Card.

5. CCID Implementation

5.1

Architecture

This section describes how to implement a Smart Card device using the CCID class and the
AT91 USB framework. For more information about the framework, please refer to the AT91 USB
Framework application note; details about the USB and the CCID class can be found in the USB
specification 2.0 and the CCID specification documents, respectively.

The AT91 USB Framework offered by Atmel makes it easy to create USB class drivers. The
example software described in the current chapter is based on this framework. Figure 5-1 shows
the application architecture.

Application Note m—————————

6348A-ATARM-06-Jul-09

- ___ Application Note

Figure 5-1. Application Architecture Using the AT91 USB Framework

.

HID Class Driver
[Standard][Specific

N

—
=
[}
&

i
(o}
Q.
«
m
<
[}
3
=4
[74]

Hardware Layer

UDP controller

pmmmmmmmm =

5.2 Descriptors

5.21 Device Descriptor

The device descriptor of a CCID device is very basic, since the CCID class code is only specified
at the Interface level. Thus, it only contains standard values, as shown below:

static const USBDeviceDescriptor deviceDescriptor

sizeof (USBDeviceDescriptor),
USBGenericDescriptor DEVICE,
USBDeviceDescriptor USB2 00,

0,

0,

0,

BOARD USB ENDPOINTS MAXPACKETSIZE(O),
CCIDDriverDescriptors_VENDORID,
CCIDDriverDescriptors PRODUCTID,
CCIDDriverDescriptors RELEASE,

1, // Index of manufacturer description
2, // Index of product description

3, // Index of serial number description
1

// One possible configuration

bi

-

Note that the Vendor ID is a special value attributed by the USB-IF organization. The product ID

can be chosen freely by the vendor.

5.2.2 Configuration Descriptor

Since one interface is required by the CCID specification, this must be specified in the configura-

tion descriptor. There is no other value of interest to put here.

ATMEL

6348 A-ATARM-06-Jul-09

ATMEL

sizeof (USBConfigurationDescriptor),
USBGenericDescriptor CONFIGURATION,

sizeof (CCIDDriverConfigurationDescriptors),
1, // One interface in this configuration
1, // This is configuration #1

0, // No associated string descriptor
BOARD_USB_ BMATTRIBUTES,
USBConfigurationDescriptor POWER (100)

b

When the Configuration descriptor is requested by the host (by using the GET_DESCRIPTOR
command), the device must also send all the related descriptors, i.e. Interface, endpoint and
class-specific descriptors. It is convenient to create a single structure to hold all this data, for
sending everything in one chunk. In the example software, a CCIDDriverConfigurationDescrip-
tors structure has been declared for that purpose.

5.2.3 CCID Class Interface Descriptor

The interface descriptor is for the CCID Class Interface. It should specify the Smart Card Class
code (0Bh).

A CCID device needs to send and receive data from the host. This means the CCID needs bulk
IN, bulk OUT and Interrupt IN endpoints. So the bNumEndpoints field will have to be set to 3.
This interface also uses the default Control endpoint, but this is not taken into account here.

Here is the whole Interface descriptor:

{

sizeof (USBInterfaceDescriptor),

USBGenericDescriptor INTERFACE,

0, // Interface 0

0, // No alternate settings

3, // uses bulk-IN, bulk-OUT and interrupt-IN
SMART_CARD DEVICE_CLASS,

0, // Subclass code

0, // bulk transfers optional interrupt-IN

0 // No associated string descriptor

5.24 CCID Descriptor
An Interface descriptor is followed by the CCID descriptor. The CCID descriptor gives informa-
tion about the number and types of the other defined descriptors.

Example software for the Smart Card.

{

sizeof (CCIDDescriptor), // bLength: Size of this descriptor in bytes
CCID DECRIPTOR_TYPE, // bDescriptorType:Functional descriptor

6348A-ATARM-06-Jul-09

- ___ Application Note

CCID1_10, // bcdCCID: CCID version

0, // bMaxSlotIndex: Value 0 indicates that one slot
is supported

VOLTS 5 0, // bVoltageSupport

PROTOCOL_TO, // dwProtocols

3580, // dwbDefaultClock

3580, // dwMaxClock

0, // bNumClockSupported

9600, // dwDataRate : 9600 bauds

9600, // dwMaxDataRate : 9600 bauds

0, // bNumDataRatesSupported

oxfe, // dAwMaxIFSD

0, // dwSynchProtocols

0, // dwMechanical

//0x00010042, // dwFeatures: Short APDU level exchanges

CCID FEATURES AUTO PCONF | CCID FEATURES AUTO PNEGO |
CCID FEATURES EXC_TPDU,

0x0000010F, // dwMaxCCIDMessageLength: For extended APDU level
the value shall be between 261 + 10

0xFF, // bClassGetResponse: Echoes the class of the APDU

OxFF, // bClassEnvelope: Echoes the class of the APDU

0, // wLcdLayout: no LCD

0, // bPINSupport: No PIN

1 // bMaxCCIDBusySlot

5.2.5 Physical Descriptor

A physical descriptor is useless for a CCID device, so there will not be any defined in this
example.

5.2.6 Endpoint Descriptor

6348 A-ATARM-06-Jul-09

Since it has been specified that the CCID interface uses 3 endpoints, corresponding endpoint
descriptors must now be defined. As mentioned previously, there are bulk OUT, bulk IN and
Interrupt IN endpoints.

Addresses 00h and 03h are already taken by the default Control endpoint O and the Interrupt IN
notification endpoint (respectively), the bulk OUT and bulk IN endpoints will take addresses 01h
and 02h.

Additionally, an Interrupt endpoint maximum packet size should be as small as possible. The
host must reserve a minimum amount of bandwidth which depends on this value. Defining a
small value minimizes the loss of bandwidth, but is only possible when the data size is known. In
this case, it will always be 3 bytes, so wMaxPacketSize can be set accordingly.

Finally, since a CCID device response latency is not extremely critical, it can be safely set to a
high value. In this example, the endpoint is polled every 16 ms.

// Bulk-OUT endpoint descriptor

{

sizeof (USBEndpointDescriptor),

ATMEL v

ATMEL

USBGenericDescriptor ENDPOINT,

USBEndpointDescriptor ADDRESS (USBEndpointDescriptor OUT,
CCID _EPT DATA OUT),

USBEndpointDescriptor BULK,
MIN (BOARD USB_ ENDPOINTS MAXPACKETSIZE (CCID EPT DATA OUT),
USBEndpointDescriptor MAXBULKSIZE FS),
0x00 // Does not apply to Bulk endpoints
b
// Bulk-IN endpoint descriptor
{
sizeof (USBEndpointDescriptor),
USBGenericDescriptor ENDPOINT,

USBEndpointDescriptor ADDRESS (USBEndpointDescriptor IN,
CCID_EPT DATA IN),

USBEndpointDescriptor BULK,
MIN (BOARD USB ENDPOINTS MAXPACKETSIZE (CCID_ EPT DATA IN),
USBEndpointDescriptor MAXBULKSIZE FS),

0x00 // Does not apply to Bulk endpoints
b
// Notification endpoint descriptor
{

sizeof (USBEndpointDescriptor),

USBGenericDescriptor ENDPOINT,

USBEndpointDescriptor ADDRESS (USBEndpointDescriptor IN,
CCID_EPT NOTIFICATION),

USBEndpointDescriptor INTERRUPT,

MIN (BOARD USB_ENDPOINTS MAXPACKETSIZE (CCID EPT NOTIFICATION),
USBEndpointDescriptor MAXINTERRUPTSIZE FS),

0x10

5.2.7 String Descriptors
Several descriptors can be commented with a string descriptor. The latter is completely optional
and does not influence the detection of the device by the operating system. Whether or not to
include them is entirely up to the programmer.

5.3 Class-Specific Requests

A number of CCID-only requests are defined in the corresponding specification. They have
already been described in Section 4.2.4 on page 4. This section details their implementation
regarding the current example of a CCID device.

A driver request handler should first differentiate between class-specific and standard requests
using the corresponding bits in the bmRequestType field. In most cases, standard requests can
be immediately forwarded to the standard request handler method; class-specific methods must
be decoded and treated by the custom handler.

8 Application Note m—————————
6348A—ATARM-06-Jul-09

- ___ Application Note

5.3.1 Get Descriptor

5.3.2 Set Descriptor

54 1SO7816

Three values have been added by the CCID specification for the GET_DESCRIPTOR request.
The high byte of the wValue field contains the type of the requested descriptor; in addition to the
standard types, the CCID specification adds the ABORT (01h), GET_CLOCK_FREQUENCY
(02h) and GET_DATA_RATES (03h) types.

A slight complexity of the GET_DESCRIPTOR and SET_DESCRIPTOR requests is that those
are standard requests, but the standard request handler (USBDDriver_RequestHandler) must
not always be called to treat them (since they may refer to CCID descriptors). The solution is to
first identify GET/SET_DESCRIPTOR requests, treat the CCID-specific cases and, finally, for-
ward any other request to the standard handler.

In this case, a GET_DESCRIPTOR request for the physical descriptor is first forwarded to the
standard handler, and STALLed there because it is not recognized. This is done because the
device does not have any physical descriptors, and thus, does not need to handle the associ-
ated request.

This request is optional and is never issued by most hosts. It is not implemented in this example.

The ISO7816 software provided in this example is used to transform APDU commands to TPDU
commands for the smart card.

The 1SO7816 implemented is for the protocol T = 0 only.
The send and the receive of a character is made under polling.

In the ISO7816_Init file 3 pins of the card are defined. The user must change these pins accord-
ing to the specific environment.

See paragraph “ISO7816 Mode Overview” in the corresponding Atmel product datasheet.

3 or 4 PIO pins are used, see Section 6.1 for the Pin connections:
PIN_ISO7816_RSTMC: for 7816_RST
PINS_ISO7816: which defines USART pin, CLOCK pin and the RSTMC pin
PIN_SMARTCARD_CONNECT: Smartcard detection pin (if present)

The driver is compliant with cases 1, 2, 3 of the ISO7816-4 specification.

5.41 USART Configuration

6348 A-ATARM-06-Jul-09

First, configure the USART in mode 7816, mode T=0, 1 stop bit, 8 chars, parity even.

Refer to the corresponding Atmel product datasheet, paragraph “Baud Rate in ISO7816 Mode” for
more explanations.

The 1SO7816 specification defines the bit rate with the following formula:
B=(Di/Fi)xf
where:

* B is the bit rate
* Di is the bit-rate adjustment factor

ATMEL ;

5.4.2

10

Cold Reset

ATMEL

* Fi is the clock frequency division factor
* fis the ISO7816 clock frequency (Hz)
We use the most common: (Fi = 372, Di = 1).

The USART is programmed to operate in synchronous mode, so the selected clock is simply
divided by the field CD in US_BRGR.

BaudRate = SelectedClock / CD

So, CD = SelectedClock / BaudRate

and BaudRate = FiDi x Baud= 372 x 9600 (in our case)

CD =48MHz / (372 x 9600) = 13, to be programmed in US_BRGR

We use a transmitter timeguard of 5.

Activation by cold reset (see Reference [2]: ISO7816-3) needs a timer. For the cold reset, the
device must wait a minimum of 400 smart card clock cycles.

It is needed to receive the ATR. See Reference [2]: ISO7816-3 paragraph 5.4.2.

The programmer needs to program the correct value in the US_BRGR (Baud Rate Generator
Register) and US_FIDI (FI_DI_Ratio Register). The timeguard register is the US_TTGR (Trans-
mitter Time-guard Register).

In order to initiate an interaction with a mechanically connected card, the interface device acti-
vates the electrical circuits according to a class of operating conditions. See: Reference [2]:
ISO7816-3 paragraph 5.2.1 and 5.2.2 for more details.

Figure 5-2. Cold Reset

VCC

CLK

Tb

RST

Ta Tc

undefined

I/0

ANSWER

Ta=200/f

Tb =400/f

400/f<Tc<40000/f

There are two different modes for the smart card after a cold receive or a warm reset.

After a Cold Reset, the Smart Card answers by the “Answer to Reset”, and then goes in a spe-
cific mode or a negotiable mode. The only way to leave theses modes is to make a Warm Reset.

Application Note m—————————

6348A-ATARM-06-Jul-09

- ___ Application Note

5.4.3

5.4.3.1

5.4.3.2

5.4.4

6348 A-ATARM-06-Jul-09

More details can be found in the ISO7816-3 specification.
Send and Receive Character

Send a character to the Smart Card
The function ISO7816_SendChar is used to send a character to the Smart Card.
The function waits for the USART to be ready to transmit and then transmits the character on the
USART.

Receive a char from the Smart Card
The function ISO7816_GetCharis used for receive a character from the Smart Card.
The function waits for the USART to be ready to receive, and then reads the character from the

USART.

Answer To Reset
The card answers to any reset and the information exchange begins with the answer to the cold
reset.

Figure 5-3. Answer To Reset (ATR):

TO Format Character TO (mandatory) (encode Y1 and K)
TALl TA1 (encodes Fl and DI)
TB1
TC1 TC1 (encode N)
TD1 TDi (encode Yiand T)
TA2
TCK Check character TCK (conditional)

ATMEL :

5.4.5

5.4.6

5.4.6.1

12

ATMEL

Useful bits:
K : encode the number of historical bytes,

Y1: each bit set to 1 indicates the presence of a further interface byte

TA1 encodes:
« Fl, the reference to a clock rate conversion factor over bits 8 to 5
* DI, the reference to a baud rate adjustment factor over bits 4 to 1

Useful for read and change the clock and the baud rate of the device according to the smart card
possibility.

TC1 encodes N, the reference to compute the extra guard time over the eight bits.

TD1: If TDiis present, then TAi+1, TBi+1, TCi+1 and TDi+1 are also present.

TCK: Check byte TCK. If only T=0 is indicated, possibly by default, then TCK is absent

APDU Commands

The APDU protocol, as specified in ISO 7816-4, is an application-level protocol between a smart
card and a host application.

There are four structures of APDU commands:

* A command APDU in case 1 consists of one field: a header.
« A command APDU in case 2 consists of two consecutive fields: a header and a Le field.

+ A command APDU in case 3 consists of three consecutive fields: a header, a Lcfield and a
data field.

» A command APDU in case 4 consists of four consecutive fields: a header, a Lcfield, a data
field and a Lefield. A case 4 is a case 3 followed by a case 2.

APDU and TPDU Commands

Case 1:

APDU: Application Protocol Data Units
TPDU: Transmission Protocol Data Units

APDU are transmitted by the next-level protocol (the transport protocol) defined in ISO 7816-3.
The data structures exchanged by a host and a card using the transport protocol are called
transport protocol data units (TPDU).

The two transport protocols that are in primary use in smart card systems are the T=0 protocol
and the T=1 protocol. The T=0 protocol is byte-oriented, which means that the smallest unit pro-
cessed and transmitted by the protocol is a single byte. In this exemple, only T=0 protocol is
used.

The different cases that follow correspond to different APDU and TPDU commands.

No data is transferred to or from the card
Command APDU: CLA INS P1 P2

Command TPDU: CLA INS P1 P2 {P3 set to '00'}
Response TPDU: SW1 SwW2

Application Note m—————————

6348A-ATARM-06-Jul-09

- ___ Application Note

5.4.6.3

5.5

5.6

5.6.1

5.6.2

5.7

Case 2

Case 3

No data is transferred to the card, but data is returned from the card
Command APDU: CLA INS P1 P2 {Le field = C(5)}

Command TPDU: CLA INS P1 P2 {P3 = C(5)}

Response: TPDU: Na data bytes SW1 SW2

Data is transferred to the card, but no data is returned from the card as a result of processing the
command

Command APDU: CLA INS P1 P2 {Lcfield = C(5)} Nc data bytes

Command TPDU: CLA INS P1 P2 {P3 = C(5)} Nc data bytes

Response TPDU: SW1 SW2

More explanation can be found in the specification of the ISO 7816-3.

All cases are treated in ISO7816_XfrBlockTPDU_TO function.

Main Application

The main function of the application has to perform two actions: Enumeration and the APDU
transfer command.

Example Software Usage

File Architecture

Compilation

The software example associated with this application note is divided into six files:

* cciddriver.c: source file for the CCIDdriver

» cciddriver.h: header file with generic CCID definitions

+ cciddriverdescriptors.h: header file for the CCID device descriptor
* Iso7816_4.h: header file for the ISO 816-4

* Iso7816_4.c: source file for the ISO7816 commands

The software is provided with a Makefile to build it. It requires the GNU make utility, which is
available on www.GNU.org. Refer to the Atmel AT91 USB Device Framework application note
for more information on general options and parameters of the Makefile.

To build the USB CCID example just run “make” in directory usb-device-ccid-project, and two
parameters may be assigned in command line, the CHIP= and BOARD=, the default value of
these parameters are “at91sam7se512” and “at91sam7se-ek”:

make CHIP=at9lsam7se512 BOARD=at9lsam7se-ek

In this case, the resulting binary will be named usb-device-ccid-project-at91sam7se-ek-
at91sam7seb512-flash.bin and will be located in the usb-device-ccid-project/bin directory.

Host-side Application

6348 A-ATARM-06-Jul-09

This section explains how to program a PC application to communicate with the custom CCID
device driver described previously. This example is targeted at a Microsoft Windows platform.

ATMEL 1

http://www.gnu.org/software/make/

ATMEL

On Microsoft Windows, the standard USB CCID driver is named usbccid.sys.

5.71 Using the Driver
When a new device is plugged in for the first time, Windows looks for an appropriate specific or
generic driver to use. If it does not find one, the user is asked what to do.
In this application the device is enumerated as a Smart Card Device implementing CCID class.
The host uses the CCID device driver (usbccid.sys) as the functionnal driver.

5.7.2 Smart Access
Smart Access is software made by Atmel. (Contact an Atmel sales representative to find out
more about this product.

SMART ACCESS

Smart Card ICs

[c) 2007 ATHMEL - ¥v2.0

14 Application Note m—————
6348A—ATARM-06-Jul-09

http://www.atmel.com/contacts/

ﬂ Smart Access : Cjcbhusb USB_Framework_v54Test_APDU_Endurance.v¥as = |EI|1|

Scripts Edit Wiew Execution Trace Configuration Tools Help

Script Execution follow-up |

Fieal time trace |Alias | Events Logl

[] Reset sc:nptl [m] Trace into | [=] Stop | [*] Fun | @ Instant |nstruc:t|0n|

_(J Power E_l,lc:lel E:J:- Reset | G Power OFF | ID‘I -PCSC Driver [Gemplus USE Smart Card Reader Dj

KT — |
| | | |Trace off [&ae= =] v

+ Software Environment to Execute Smart Card 1SO7816 Command Script Through Any
Reader

* PC/SC or Transparent Readers Supported

» Meta-instructions Interpreter to Write Complex Validation Scripts
» Ergonomic Environment with Real-time

» Trace Window

» External Software Modules for More Flexibility

6. Hardware Requirement

On some Atmel boards, the Smart Card reader is not implemented. The user must use the
RS232 in ISO mode and connect the card reader to it. The Smart Card has useful pins.

6.1 Pin Connection:

When the card is inserted into the reader, the contacts in the reader sit on the plates. According
to 1ISO7816 standards the PIN connections are shown below:

ATMEL 1

6348 A-ATARM-06-Jul-09

C1: Vce: 7816_3V5V C5:Gnd C4 : RFU
C2: Reset: 7816_RST C6 : Vpp C8:RFU
C3: Clock: 7816_CLK C7:7816_10

Another pin must be connected on the card reader for detecting insertion and removal:
7816_IRQ.

On Atmel’s boards, all these pins can be easily connected with jumpers.
7816_RST is on PIO PIN_ISO7816_RSTMC

7816_CLK is on PIO PIN_USART0_SCK

7816_10 is on PIO PIN_USARTO0_TXD

7816_IRQ is on PIO PIN_SMARTCARD_CONNECT

16 Application Note m——————

6348A-ATARM-06-Jul-09

- ___ Application Note

Revision History

Doc. Rev | Date Comments Change Request Ref.

6348A 02-Jul-09 First issue

ATMEL L

6348 A-ATARM-06-Jul-09

AIMEL

Y (5

Headquarters

International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F

BEA Tower, Millennium City 5

418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong

Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud
BP 309

78054 Saint-Quentin-en-
Yvelines Cedex

France

Tel: (33) 1-30-60-70-00

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Fax: (33) 1-30-60-71-11

Product Contact

Sales Contacts
www.atmel.com/contacts/

Web Site Technical Support
www.atmel.com AT91SAM Support
www.atmel.com/AT91SAM Atmel techincal support

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. ARM® and Thumb® are registered trademarks of ARM Ltd. Windows® and others are registered
trademarks or trademarks of Microsoft Corporation in U.S. and/or other countries. Other terms and product names may be trademarks of others.

6348A-ATARM-06-Jul-09

http://www.atmel.com/
www.atmel.com
http://www.atmel.com/products/AT91CAP/
http://www.atmel.com/products/AT91/
http://www.atmel.com/dyn/products/ip_blocks.asp?family_id=615
http://www.atmel.com/products/PowerManage/
http://www.atmel.com/products/Dream/
http://www.atmel.com/products/Dream/
http://support.atmel.no/bin/customer
http://support.atmel.no/bin/customer
mailto:info@dream.fr <info@dream.fr>
mailto:asic@atmel.com <asic@atmel.com>
http://www.atmel.com/dyn/products/support.asp
http://www.atmel.com/contacts/
http://www.atmel.com/contacts/

	1. Introduction
	2. Related Documents
	3. Abbreviations and Terms
	4. CCID Device Class
	4.1 Purpose
	4.2 Architecture
	4.2.1 Interfaces
	4.2.2 Endpoints
	4.2.3 Class-Specific Descriptors
	4.2.3.1 CCID Descriptor

	4.2.4 Class-specific Requests
	4.2.4.1 GetDescriptor

	4.3 Host Drivers

	5. CCID Implementation
	5.1 Architecture
	5.2 Descriptors
	5.2.1 Device Descriptor
	5.2.2 Configuration Descriptor
	5.2.3 CCID Class Interface Descriptor
	5.2.4 CCID Descriptor
	5.2.5 Physical Descriptor
	5.2.6 Endpoint Descriptor
	5.2.7 String Descriptors

	5.3 Class-Specific Requests
	5.3.1 Get Descriptor
	5.3.2 Set Descriptor

	5.4 ISO7816
	5.4.1 USART Configuration
	5.4.2 Cold Reset
	5.4.3 Send and Receive Character
	5.4.3.1 Send a character to the Smart Card
	5.4.3.2 Receive a char from the Smart Card

	5.4.4 Answer To Reset
	5.4.5 APDU Commands
	5.4.6 APDU and TPDU Commands
	5.4.6.1 Case 1:
	5.4.6.2 Case 2
	5.4.6.3 Case 3

	5.5 Main Application
	5.6 Example Software Usage
	5.6.1 File Architecture
	5.6.2 Compilation

	5.7 Host-side Application
	5.7.1 Using the Driver
	5.7.2 Smart Access

	6. Hardware Requirement
	6.1 Pin Connection:

	Revision History

