
AC390
Application Note

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM,
and DDR/SDR SDRAM Memories

51900390. 10.0 6/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Microsemi Proprietary AC390 Revision 10.0 iii

Contents

1 Revision History . 1
1.1 Revision 10.0 . 1
1.2 Revision 9.0 . 1
1.3 Revision 8.0 . 1
1.4 Revision 7.0 . 1
1.5 Revision 6.0 . 1
1.6 Revision 5.0 . 1
1.7 Revision 4.0 . 1
1.8 Revision 3.0 . 1
1.9 Revision 2.0 . 1
1.10 Revision 1.0 . 2

2 Purpose . 3

3 SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories . 4
3.1 Introduction . 4

3.1.1 SmartFusion2 Booting and Address Space Overview . 4
3.1.2 SmartFusion2 SoC FPGA: Cortex-M3 Processor Code Space Details 5

3.2 References . 6
3.3 Design Requirements . 6
3.4 Prerequisites . 7
3.5 Design Description . 7
3.6 Hardware Implementation . 7
3.7 Software Implementation . 11

3.7.1 Remapping eNVM Address Space to Cortex-M3 Processor Code Space 12
3.7.2 Remapping eNVM to Soft Core Processor Memory Map . 15
3.7.3 Remapping eSRAM to Cortex-M3 Processor Code Space . 15
3.7.4 Remapping External RAM (DDR/SDR SDRAM Interface) to Cortex-M3 Processor Code Space

18
3.8 Setting Up the Demo Design . 20

3.8.1 Board Setup . 21
3.8.2 Programming the Device . 21
3.8.3 Running the Design . 21

3.9 Conclusion . 22

4 Appendix 1: Programming the Device Using FlashPro Express 23

5 Appendix 2: SmartFusion2 Advanced Development Kit Board 26

Microsemi Proprietary AC390 Revision 10.0 iv

Figures

Figure 1 Cortex-M3 Processor Execution Flow from Reset . 5
Figure 2 Top-Level SmartDesign . 7
Figure 3 Select MDDR . 8
Figure 4 MDDR Configurator . 8
Figure 5 Memory Device Configuration . 9
Figure 6 Clock Configuration . 10
Figure 7 Cortex-M3 Processor Memory Map in SmartFusion2 . 11
Figure 8 Example Scenario of Multiple Executable Images in eNVM . 12
Figure 9 Logic for Moving Execution Control to New Image in eNVM without Remapping 13
Figure 10 Logic for Moving Execution Control to New Image in eNVM with Remapping 14
Figure 11 Example Scenario of Multiple Executable Images in eSRAM . 15
Figure 12 Logic for Moving Execution Control to New Image in eSRAM without Remapping 16
Figure 13 Logic for Moving Execution Control to New Image in eSRAM with Remapping 17
Figure 14 Example Scenario of Multiple Executable Images in DDR/SDR SDRAM . 18
Figure 15 Logic for Moving the Execution Control to New Image in DDR/SDR SDRAM with Remapping . . . 19
Figure 16 Device Manager . 20
Figure 17 Device Manager - FlashPro5 Properties . 21
Figure 18 Main Menu of Re-Mapping Application Note . 22
Figure 19 Re-Mapped Image is Running . 22
Figure 20 FlashPro Express Job Project . 23
Figure 21 New Job Project from FlashPro Express Job . 24
Figure 22 Programming the Device . 24
Figure 23 FlashPro Express—RUN PASSED . 25
Figure 24 SmartFusion2 Advanced Development Kit Board . 26

Microsemi Proprietary AC390 Revision 10.0 v

Tables

Table 1 Design Requirements . 6
Table 2 eNVM Remap Register . 15
Table 3 eNVM Remap Register to Fabric SoftCore Processor Address Space . 15
Table 4 Registers Required to eSRAM Remapping . 18
Table 5 Registers Required to DDR/SDR SDRAM Remapping . 19
Table 6 SmartFusion2 FPGA Advanced Development Kit Jumper Settings . 21

Revision History

Microsemi Proprietary AC390 Revision 10.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 10.0
The following is a summary of the changes made in this revision.

• Updated the document for Libero SoC v2021.1.
• Removed the references to Libero version numbers.

1.2 Revision 9.0
Updated the document for Libero SoC v11.7 software release (SAR 76553).

1.3 Revision 8.0
Updated the document for Libero SoC v11.6 software release (SAR 71546).

1.4 Revision 7.0
Updated the document for Libero SoC v11.5 software release (SAR 64108).

1.5 Revision 6.0
The following is a summary of the changes made in this revision.

• Updated the document for Libero SoC v11.4 software release (SAR 60315).
• Updated the document for Advanced Development Kit Board details (SAR 60315).

1.6 Revision 5.0
The following is a summary of the changes made in this revision.

• Figure 2 is changed (SAR 57912).
• Added Figure 3 (SAR 57912).
• Added Figure 4 (SAR 57912).
• Added Figure 5 (SAR 57912).
• Updated the document for Libero SoC v11.3 software release (SAR 57912).

1.7 Revision 4.0
The following is a summary of the changes made in this revision.

• Figure 6 is changed.
• Figure 3 is changed.

1.8 Revision 3.0
Updated the document for Libero SoC v11.0 software release (SAR 47617).

1.9 Revision 2.0
Updated the document for Libero SoC v11.0 beta SP1 software release (SAR 45398).

Revision History

Microsemi Proprietary AC390 Revision 10.0 2

1.10 Revision 1.0
The following is a summary of the changes made in this revision.

• Updated Remapping eNVM Address Space to Cortex-M3 Processor Code Space, page 12 (SAR
42911).

• Updated Remapping eSRAM to Cortex-M3 Processor Code Space, page 15 (SAR 42911).
• Updated Remapping External RAM (DDR/SDR SDRAM Interface) to Cortex-M3 Processor Code

Space, page 18 section (SAR 42911).
• Updated Setting Up the Demo Design, page 20 (SAR 42911).
• Updated Appendix 2: Design Files, page 29 (SAR 42911).

Purpose

Microsemi Proprietary AC390 Revision 10.0 3

2 Purpose

This application note describes the remapping of the following memories to the ARM® Cortex®-M3
processor code region and explains how to execute the program code built with absolute addresses
without remapping.

• embedded Non-Volatile Memory (eNVM)
• embedded Static Random Access Memory (eSRAM)
• Double Data Rate (DDR)/Single Data Rate (SDR) Synchronous Dynamic Random Access Memory

(SDRAM)

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 4

3 SmartFusion2 SoC FPGA – Remapping
eNVM, eSRAM, and DDR/SDR SDRAM
Memories

3.1 Introduction
The SmartFusion®2 System-on-Chip (SoC) Field Programmable Gate Array (FPGA) devices integrate
Cortex-M3 processor, up to 512 KB of eNVM, 64 KB of eSRAM, and memory interfaces for DDR/SDR
SDRAM for program code and data.

The Cortex-M3 processor has a predefined memory map for code space, data space, and system space
with dedicated bus interfaces. The desired memory regions of the SmartFusion2 SoC FPGA can be
mapped to the Cortex-M3 processor code space for the application program execution. It also explains
how to execute the program code built with absolute addresses without remapping.

3.1.1 SmartFusion2 Booting and Address Space Overview
This application note describes the SmartFusion2 SoC FPGA boot sequence, and how to remap the
various memory regions to the Cortex-M3 processor code region and an optional softcore processor
located in the FPGA fabric.

The Cortex-M3 processor is based on ARM architecture v-7M that includes a Nested Vectored Interrupt
Controller (NVIC) for handling the interrupts and includes a non-maskable interrupt. The NVIC contains
the addresses of the initial stack pointer, exception handlers, and Interrupt Service Routines (ISRs). The
first entry in the NVIC must be the initial stack pointer and the second entry must be the address of the
reset exception handler. The Cortex-M3 processor eliminates the need for setting up the initial C runtime
environment using assembly code. Developers can code entirely in the C language. After reset, the
Cortex-M3 processor reads two words from memory:

• At the address location 0×00000000 for the initial stack pointer
• At the address location 0×00000004 for the address of the reset handler exception
The reset handler performs the basic initialization and execution control, which is given to the main
application code. Figure 1 shows the execution flow.

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 5

Figure 1 • Cortex-M3 Processor Execution Flow from Reset

3.1.2 SmartFusion2 SoC FPGA: Cortex-M3 Processor Code Space
Details
The address range from 0×00000000 to 0×1FFFFFFF (0.5 GB space) is code space for the
Cortex-M3 processor. Following are the SmartFusion2 SoC FPGA memory maps for the code/data
space:

• On-chip eNVM (from 0×60000000 to 0×6007FFFF) of 512 KB for code and constant data regions
• On-chip eSRAM (from 0×20000000 to 0×2000FFFF) of 64 KB with SECDED for both code and data

regions
• On-chip FPGA fabric RAM (FPGA Fabric FIC Region 0). This can be mapped via fabric interface

controllers (FIC): FIC 0 or FIC 1. This region can be accessed by the system bus for instructions and
data

• External RAM interfaced through DDR or SDR interface (from 0×A0000000 to 0×DFFFFFFF) of 1
GB for both code and data regions

Any of the preceding memory regions with any offset from its base address can be mapped to the
Cortex-M3 processor code region space. On power-on, the eNVM region 0×60000000 is automatically
remapped to the Cortex-M3 processor executable region start address (0×00000000). Therefore, for
every power-on reset, the Cortex-M3 processor fetches the initial stack pointer from 0×00000000 (eNVM
address 0×60000000) and the address of the reset handler from 0×00000004 (eNVM address
0×60000004). Once the execution control goes to the default reset handler, the boot up sequence
executes and execution control jumps to the user boot code.

The user boot code can be at the following locations based on the execution environment:

• In Release mode: It must be in the Read-Only Memory (ROM) region. The SmartFusion2 SoC
FPGA after reset is initialized and remaps the eNVM address 0×60000000 to 0×00000000 of the
Cortex-M3 processor address space.

Reset

Space for Stack and Heap

Space for Global Data

Reset Handler

Application Code and
Constant Data

64 KBOther Vectors

ROM (Code Space)

RAM

Fetch Initial
SP Value

Address =
0X00000000

Address =
0X00000004

0X000BFFFF

0X2000FFFF

0X00000100

0X000001000X00000004

0X00000000

Address =
Reset Vector

Fetch Reset
Vector

Instruction
Fetch

Time

0X20000000

N
V

IC

H
E

A
P

S
TA

C
K

0x2000FFFF

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 6

• In Debug mode: It can be either in ROM or RAM. Options are in the debugger command window to
choose from where to debug (remap to 0×00000000) and in case of Debug mode, the SmartFusion2
SoC FPGA after reset is initialized through the flash bits and remaps the user boot code as follows:
• eNVM address 0×60000000 to 0×00000000 of the Cortex-M3 processor address space, or
• eSRAM address 0×20000000 to 0×00000000 of the Cortex-M3 processor address space

From the user boot code, there can be multiple independent executable images in various parts of
memories. The eNVM address locations can be remapped with any offset, eSRAM address locations
with any offset, FPGA fabric RAM, or memory through DDR/SDRAM interface with any offset to the base
address 0×00000000 of the Cortex-M3 processor code region.

3.2 References
The following are the reference documents:

• UG0446: SmartFusion2 and IGLOO2 FPGA High Speed DDR Interfaces User Guide
• SmartFusion2 MSS ARM Cortex-M3 Configuration Guide
• AC372: SmartFusion cSoC- Basic Bootloader and Field Upgrade eNVM Through IAP Interface App

Note
• UG0451: IGLOO2 and SmartFusion2 Programming User Guide
• UG0450: SmartFusion2 SoC and IGLOO2 FPGA System Controller User Guide
• UG0331: SmartFusion2 Microcontroller Subsystem User Guide
• Configuring Serial Terminal Emulation Programs

3.3 Design Requirements
Table 1 lists the hardware and software design requirements for running this demo design.

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only.
Open the Libero design to see the latest updates.

Table 1 • Design Requirements

Requirement Version
Operating System 64 bit Windows 7 and 10

Hardware
SmartFusion2 Advanced Development Kit:
• FlashPro5 programmer
• USB A to Mini-B cable
• 12 V Adapter

Rev A or later

Host PC or Laptop

Software
FlashPro Express Refer to the readme.txt file provided in the design files

for the software versions used with this reference design.Libero® System-on-Chip (SoC)

SoftConsole

USB to UART drivers –

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132040
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135147
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129823
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132014
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 7

3.4 Prerequisites
Before you begin:

1. Download and install Libero SoC (as indicated in the website for this design) on the host PC from the
following location:
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc

2. For demo design files download link:
http://soc.microsemi.com/download/rsc/?f=m2s_ac390_df

3.5 Design Description
The design examples in this application note use MMUART_0, GPIO, eSRAM, DDR, and eNVM memory
controllers. In the design examples, the System Builder Clock section is configured as shown in Figure 6,
page 10 to run the M3_CLK at 111 MHz, which drives the clock to the Cortex-M3 processor. The
independent executable images are created with the required memory map. These executable images
can be remapped to the starting address of the Cortex-M3 processor code space or can be made
executable for the Cortex-M3 processor. The implementation details are explained in the hardware and
software implementation sections.

3.6 Hardware Implementation
The hardware implementation involves configuring the Microcontroller Subsystem (MSS), fabric, clocks,
and oscillator using System Builder. Figure 2 shows the top-level SmartDesign of the application.

Figure 2 • Top-Level SmartDesign

The MDDR is configured for DDR3 at 333 MHz speed. Figure 3, page 8 and Figure 4, page 8 show the
MSS MDDR configuration settings. For DDR configuration file, refer to Prerequisites, page 7 (design
files).

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc
https://www.microchip.com/en-us/application-notes/ac390

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 8

Figure 3 • Select MDDR

Figure 4 • MDDR Configurator

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 9

Add the eNVM user clients in ENVM configurator, as shown in Figure 5.

Figure 5 • Memory Device Configuration

The MMUART_0 is routed through FPGA fabric to communicate with the serial terminal program. The
MSS_CCC clock is sourced from the FCCC via the CLK_BASE port. The FCCC is configured to provide
the 100 MHz clock using GL0.

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 10

Figure 6 shows the system clocks configurations for the M3_CLK, MDDR_CLK, and
APB_0_CLK/APB_1_CLK.

Figure 6 • Clock Configuration

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 11

3.7 Software Implementation
The following sections describe how to remap the various memory regions of the SmartFusion2 SoC
FPGA to the Cortex-M3 processor code space. Figure 7 describes the memory map for the Cortex-M3
processor.

Figure 7 • Cortex-M3 Processor Memory Map in SmartFusion2

Memory Map of
Cortex-M3

Memory Map of System
Controller, FPGA Fabric Master, Ethernet

MAC, Peripheral DMA

 FPGA Fabric FIC Region5 FPGA Fabric FIC Region5 0xF0000000 - 0xFFFFFFFF
 0xE0000000 - 0xEFFFFFFF
 DDR_0 Space 3 DDR_0 Space 3 0xD0000000 - 0xDFFFFFFF
 DDR_0 Space 2 DDR_0 Space 2 0xC0000000 - 0xCFFFFFFF
 DDR_0 Space 1 DDR_0 Space 1 0xB0000000 - 0xBFFFFFFF
 DDR_0 Space 0 DDR_0 Space 0 0xA0000000 - 0xAFFFFFFF
 FPGA Fabric FIC Region4 FPGA Fabric FIC Region4 0x90000000 - 0x9FFFFFFF
 FPGA Fabric FIC Region3 FPGA Fabric FIC Region3 0x80000000 - 0x8FFFFFFF
 FPGA Fabric FIC Region2 FPGA Fabric FIC Region2 0x70000000 - 0x7FFFFFFF
 0x60100000 - 0x6FFFFFFF
 AHB-to-eNVM_1 Registers AHB-to-eNVM_1 Registers 0x600C0000 - 0x600FFFFF
 AHB-to-eNVM_0 Registers AHB-to-eNVM_0 Registers 0x60080000 - 0x600BFFFF
 eNVM_1 eNVM_1 0x60040000 - 0x6007FFFF
 eNVM_0 eNVM_0 0x60000000 - 0x6003FFFF
 FPGA Fabric FIC Region1 FPGA Fabric FIC Region1 0x50000000 - 0x5FFFFFFF

Peripheral Bit-band
alias region of

Cortex-M3

 0x44000000 - 0x4FFFFFFF
Peripherals(BB View) 0x42000000 - 0x43FFFFFF

 0x40410000 - 0x41FFFFFF
 Cache Back door 0x40400000 - 0x4040FFFF
 0x40044000 - 0x403FFFFF
 USB USB 0x40043000 - 0x40043FFF
 0x40042000 - 0x40042FFF
 Ethernet MAC Control Ethernet MAC Control 0x40041000 - 0x40041FFF
 0x40039000 - 0x40040FFF
 SYSREG SYSREG 0x40038000 - 0x40038FFF
 0x40030000 - 0x40037FFF
 Config DDR_1, PCIe_0, PCIe_1 etc Config DDR_1, PCIe_0, PCIe_1 etc 0x40020400 - 0x4002FFFF (63K space alloca�on for

devices outside MSS) Config DDR_0 Config DDR_0 0x40020000 - 0x400203FF
 0x40018000 - 0x4001FFFF
 RTC RTC 0x40017000 - 0x40017FFF
 COMBLK COMBLK 0x40016000 - 0x40016FFF
 CAN CAN 0x40015000 - 0x40015FFF
 High Performance DMA High Performance DMA 0x40014000 - 0x40014FFF
 MSS GPIO MSS GPIO 0x40013000 - 0x40013FFF
 I2C_1 I2C_1 0x40012000 - 0x40012FFF
 SPI_1 SPI_1 0x40011000 - 0x40011FFF
 UART_1 UART_1 0x40010000 - 0x40010FFF
 0x40007000 - 0x4000FFFF
 Fabric Interface Interrupt Controller Fabric Interface Interrupt Controller 0x40006000 - 0x40006FFF
 Watchdog Watchdog 0x40005000 - 0x40005FFF
 Timer Timer 0x40004000 - 0x40004FFF
 Peripheral DMA Control Peripheral DMA Control 0x40003000 - 0x40003FFF
 I2C_0 I2C_0 0x40002000 - 0x40002FFF
 SPI_0 SPI_0 0x40001000 - 0x40001FFF
 UART_0 UART_0 0x40000000 - 0x40000FFF
 FPGA Fabric FIC Region0 FPGA Fabric FIC Region0 0x30000000 - 0x3FFFFFFF
SRAM Bit-band alias
region of Cortex-M3

 0x24000000 - 0x2FFFFFFF
eSRAM_0/eSRAM_1(BB View) 0x22000000 - 0x23FFFFFF

 0x20014000 - 0x21FFFFFF
 ECC eSRAM_1 ECC eSRAM_1 0x20012000 - 0x20013FFF
 ECC eSRAM_0 ECC eSRAM_0 0x20010000 - 0x20011FFF

Cortex M3 Processor
System Region

eSRAM_1 eSRAM_1 0x20008000 - 0x2000FFFF
eSRAM_0 eSRAM_0 0x20000000 - 0x20007FFF

 0x00080000 - 0x1FFFFFFF

Cortex M3 Processor
Code Region

eNVM (Cortex-M3)
Virtual View

eNVM (Fabric)
Virtual View

0x0007FFFF Visible only to FPGA
Fabric Master 0x00000000

Processor

Processor

Processor

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 12

3.7.1 Remapping eNVM Address Space to Cortex-M3 Processor Code
Space
Figure 8 shows an example scenario with multiple executable images in the eNVM regions.

Figure 8 • Example Scenario of Multiple Executable Images in eNVM

In the example scenario (as shown in Figure 8), there are three images, which can be remapped to the
starting address of the Cortex-M3 processor code space or can be made executable for the Cortex-M3
processor. To create the independent executable images with the required memory map, it is required to
create the linker scripts with the required memory map. Once the executable images are created for the
required memory map in Production mode, these images are added to the programming file using the
eNVM clients in the Libero SoC hardware (HW) creation flow.

If the executable images are built with an absolute address, it is required to allow the execution control
without using the remapping to the starting address of the code space (0×00000000). In such cases,
without remapping approach has to be used, which is explained as follows.

The execution control must be allowed to the desired image by using the following two approaches:

• Without Remapping: By default, the eNVM base address 0×60000000 is remapped to the starting
address of the code space of the Cortex-M3 processor. The vector table address of the desired
image can be set by using the vector table offset register in the system registers, and pointing the
Stack Pointer (SP) and program counter to the reset handler address of the desired image. This
allows the Cortex-M3 processor to execute the new image. The eNVM offset address must be used
in the linker script generation for the executable images in this approach. This approach is explained
in the flow chart shown in Figure 9.

Space for Data, stack, and heap

0x60000000

0x60010000

64KB

0x20000000

0x2000 FFFF

0x20008000Space for Image1

0x60020000

eNVM

0x6003 FFFF

64KB

128KB

Space for Image2

Space for Image 3

Space for Data, stack, and heap

eSRAM

32KB

32KB

0x6007 FFFF

256KB Free Space

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 13

Figure 9 • Logic for Moving Execution Control to New Image in eNVM without Remapping

For example, for the memory map of the different images explained in Figure 8, page 12, the images are
built with the base address as shown in Figure 8, page 12. To run Image 2, while Image 1 is running, use
the following steps, as shown in Figure 9:

1. Set the vector table offset address register is set to 0×60010000
2. Initialize the stack pointer with the content of 0×60010000
3. Change the program counter to the reset handler of Image 2, that is, PC = (0×60010004 -1)
With the all preceding 3 steps, Image 2 starts executing from 0×60010000.

• With Remapping: In this approach, the new image address can be remapped to the starting
address of the code region of the Cortex-M3 processor by using the ENVM_CR,
ENVM_REMAPSIZE, and ENVM_REMAP_BASR_CR registers. As the new image address is
remapped to the bottom (0×0000_0000) of the Cortex-M3 processor code region, the linker scripts
take care of building the images from the bottom (0×0000_0000) code region. The eNVM offset
address must not be used in this approach. This approach is explained in the flow chart shown in
Figure 10.

Start

Stop

1. Set the Vector Table Offset address
to desired Image start address

2. Initialize the stack pointer with the
desired Image start address

3. Set the Program Counter (address
of reset handler -1) Start

Stop

New Image starts executing from its
original address

Power Off

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 14

Figure 10 • Logic for Moving Execution Control to New Image in eNVM with Remapping

For example, for the memory map of the different images explained in Figure 8, page 12, the images are
built with 0×00000000 as a base address. To run Image 2, while Image 1 is running, use the following
steps (explained in Figure 10):

1. Set the ENVM_CR register to 64KB as remap image size
2. Set the ENVM_REMAP_BASE_CR register with 0×00010000
3. Set the Stack Pointer to 0×00000000
4. Set the PC to 0×00000004 - 1

Note: To set the ENVM_CR register to 16/32/64/128/256/512 KB as remap image size, refer to the eNVM
Controller Chapter in UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

With all the preceding steps, the new Image 2 starts executing from 0×00000000, which is mapped to
0×60010000.

The reference design is provided with this application note with remapping and without remapping. For
design files, refer to Prerequisites, page 7 and follow the steps explained in Setting Up the Demo Design,
page 20 for executing the reference design.

Start

Stop

1. ENVM_CR register is set with
remap size field for 16/32/64/128/256/
512 KB sizes

2. ENVM_REMAP_BASE_CR register
is set with offset address and remap
enable bit set

3. Stack pointer and vector table offset
registers are set to 0x00000000

4. Program Counter is set to
(0x00000004 -1)

Start

Stop

New Image starts executing from its
remapped address 0x00000000

Power Off

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 15

Table 2 describes the registers, which are required to be set for the eNVM remapping to the bottom
(0×0000_0000) of the Cortex-M3 processor. The SYSREG block is located at address 0×40038000 in
the Cortex-M3 processor address space.

3.7.2 Remapping eNVM to Soft Core Processor Memory Map
The SoftCore processor implemented in SmartFusion2 SoC FPGA fabric can access the eNVM for code
execution purposes. For this use case, the fabric interface controller (FIC _0 or FIC_ 1) and the eNVM
AHB controller need to be set properly. The eNVM partitioning between the Cortex-M3 and SoftCore
processor needs to be taken care of in such a way that these two partitions are mutually exclusive. The
remapping of the eNVM offset address to the SoftCore processor bottom (0×0000_0000) address map is
very similar to the remapping of the eNVM address to the Cortex-M3 processor.
ENVM_REMAP_FAB_CR register has to be used instead of ENVM_REMAP_BASE_CR register. The
SYSREG block is located at address 0×40038000 in the Cortex-M3 processor address space.

Table 3 lists the eNVM remap register to fabric SoftCore processor address space.

3.7.3 Remapping eSRAM to Cortex-M3 Processor Code Space
Figure 11 shows the example scenario of the executable images in eSRAM regions.

Figure 11 • Example Scenario of Multiple Executable Images in eSRAM

Table 2 • eNVM Remap Register

Register Name
Address
Offset

Register
Type

Flash
Write
Protect

Reset
Source Description

ENVM_CR 0×C RW-P Register sysreset_n eNVM Configuration register

ENVM_REMAP_BASE_CR 0×10 RW-P Register sysreset_n eNVM remap configuration register for
the Cortex-M3 processor.

Table 3 • eNVM Remap Register to Fabric SoftCore Processor Address Space

Register Name
Address
Offset

Register
Type

Flash
Write
Protect

Reset
Source Description

ENVM_REMAP_FAB_CR 0×14 RW-P Register sysreset_n NVM remap configuration register for
the soft processor in the FPGA

IMAGE2: Space for Code Data, stack, and
heap

0x20000000

0x2000FFFF

0x20008000

IMAGE1: Space for Code, Data, stack, and
heap

eSRAM

32 KB

32 KB

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 16

The scenario shown in Figure 11, page 15, describes two images, which can be remapped to the bottom
(0×0000_0000) of the Cortex-M3 processor or can be made executable for the Cortex-M3 processor. To
create the independent executable images with the required memory map, the linker scripts need to be
created with the required memory map. After creating the images required for memory map in Production
mode, copy the images to an external memory such as SPI Flash, eNVM, and so on; and are code
shadowed by the bootloader to the eSRAM whenever it is required to execute the new images.

After copying the images to eSRAM by bootloader, the execution control can be allowed to the desired
image by using any of the following two approaches:

If the executable images are built with an absolute address, the execution control needs to be allowed
without using the remapping to the starting address of the code space (0×00000000). In such cases,
without remapping approach, which is explained as follows (Point 1), has to be used.

If the executable images are built with the address 0×00000000, the execution control needs to be
allowed by using remapping to starting address of the code space (0×00000000). In such cases, the
remapping approach, which is explained as follows (Point 2), has to be used.

• Without Remapping: Using the vector table offset register in the system registers, the vector table
address of the desired image can be set for execution, and point the Stack Pointer (SP) and the
program counter to the reset handler of the desired image. This allows the Cortex-M3 processor to
execute the new image. The eSRAM address must be used in the linker script generation for the
executable images in this approach. This approach is explained in the flow chart shown in Figure 12.

Figure 12 • Logic for Moving Execution Control to New Image in eSRAM without Remapping

Start

Stop

1. Bootloader copies or loads the
Image from external SPI Flash/
eNVM to eSRAM

2. Vector Table Offset address is set
to new Image start address

3 Initialize the stack pointer with the
content of Image start address

4. Program Counter is set to
(address -1) of reset handler

Start

Stop

New Image starts executing from its
original address

Power Off

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 17

• With Remapping: In this approach, the new image address can be remapped to the bottom
(0×0000_0000) of the Cortex-M3 processor by using the ESRAM_CR registers. As the new image
address is remapped to the bottom (0×0000_0000) of the Cortex-M3 processor code region, the
linker scripts take care of building the images from the bottom (0×0000_0000) code region. The
eSRAM address must not be used. Instead, an offset address from zero has to be used in the linker
scripts for this approach. This approach is explained in the flow chart shown in Figure 13.

Figure 13 • Logic for Moving Execution Control to New Image in eSRAM with Remapping

For example, for the memory map of the different images explained in Figure 11, page 15, the images
are built with 0×00000000 as a base address. If it is required to jump from Image 2 to Image 1, use the
following steps (as explained in Figure 13).

1. Copy the image1 from Flash to eSRAM starting address 0×20008000
2. Set the ESRAM_CR register to enable the eSRAM remapping to 0×00000000
3. Set the Stack Pointer to 0×00008000 and Vector Table offset register to 0×00008000
4. Set the PC to 0×00008004 -1
With all the preceding steps, the new Image1 starts executing from 0×00008000, which is then mapped
to address 0×20008000.

The reference design is provided with this application note with remapping and without remapping. For
design files, refer to Prerequisites, page 7 and follow the steps explained in Setting Up the Demo Design,
page 20 for executing the reference design.

Start

Stop

Start

Stop

Power Off

1. Bootloader copies or loads the
 Image from external SPI Flash
 to eSRAM
2. ESRAM_CR register is set for the
 enabling the eSRAM remap
3. Stack pointer and vector table offset
 registers are set to 0x00000000
4. Program Counter is set to
 (0x00000004 -1)

New Image starts executing from its
remapped address 0x00000000

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 18

Table 4 lists the registers that are required to be set for the eSRAM remapping. The SYSREG block is
located at address 0×40038000 in the Cortex-M3 processor address space.

3.7.4 Remapping External RAM (DDR/SDR SDRAM Interface) to
Cortex-M3 Processor Code Space
Figure 14 shows the scenario of the multiple executable images in DDR/SDRAM interface memory
regions.

Figure 14 • Example Scenario of Multiple Executable Images in DDR/SDR SDRAM

In this scenario, there are two images which can be remapped to the bottom (0×0000_0000) of the
Cortex-M3 processor or can be made executable for the Cortex-M3 processor.

To create the independent executable images with the required memory map, the linker scripts need to
be created with the required memory map. After creating the required images for the memory map in
Production mode, these images are to be copied to an external memory such as SPI Flash, and code
shadowed by the bootloader to DDR memory or SDRAM whenever the execution of the new images is
required.

After copying the image to the DDR memory and SDRAM by the bootloader, the execution control can be
allowed to the desired image by using the following approach.

The new image address can be remapped by using the DDR_CR register to the bottom (0×0000_0000)
of the Cortex-M3 processor code region. As the new image start address is re-mapped to the Cortex-M3
processor code region 0×0000_0000, the linker scripts take care of building the images from the code
region 0×0000_0000. The DDR memory or SDRAM addresses (0×A000_0000) must not be used.
Instead, the offset address from zero has to be used in the linker scripts for this approach.

As the DDR memory or SDRAM memory address range cannot be used in the Vector table offset
register, so it is required to remap these memories to start the address of the Cortex-M3 processor code
space for the execution from these memories. This approach is explained in the flow chart shown in
Figure 15.

Table 4 • Registers Required to eSRAM Remapping

Register Name
Address
Offset

Register
Type

Flash
Write
Protect

Reset
Source Description

ESRAM_CR 0×0 RW-P Register sysreset_n Controls address mapping of the eSRAMs

IMAGE2: Space for Code Data, stack, and
heap

0xA 0000000

0xBFFFFFFF

0xB 0000000

IMAGE1: Space for Code, Data, stack, and
heap

DDR Memory/SDRAM

512 MB

521 MB

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 19

Figure 15 • Logic for Moving the Execution Control to New Image in DDR/SDR SDRAM with Remapping

The reference design is provided with this application note with remapping. For design files, refer to
Prerequisites, page 7 and follow the steps explained in Setting Up the Demo Design, page 20 for
executing the reference design.

Table 5 lists the registers required to be set for the DDR/SDR SDRAM remapping. The SYSREG block is
located at address 0×40038000 in the Cortex-M3 processor address space.

3.7.4.1 Firmware Drivers
The following firmware drivers are used in this application:

• MSS MMUART driver
• To communicate with serial terminal program on the Host PC

• MSS GPIO driver
• To drive onboard LEDs

Table 5 • Registers Required to DDR/SDR SDRAM Remapping

Register Name
Address
Offset

Register
Type

Flash
Write
Protect

Reset
Source Description

DDR_CR 0×8 RW-P Register sysreset_n DDR control Register. Configures DDR Space.

Start

Stop

Start

Stop

Power Off

New Image starts executing from its
remapped address 0x00000000

1. In Case of DDR memory configure
 the DDR memory
2. Boot loader loads the new Image
 from SPI Flash/ eNVM device to DDR/
 SDRAM memory
3. DDR_CR register is set for the
 enabling the DDR memory address
 remap to Cortex M3 bottom address space
4. Stack pointer and vector table offset
 registers are set to 0x00000000
5. Program Counter is set to
 (0x00000004 -1)

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 20

3.8 Setting Up the Demo Design
The following steps describe how to set up the demo for the SmartFusion2 Advanced Development Kit
board:

1. Connect the Host PC to the J33 Connector using the USB A to mini-B cable. The USB to UART
bridge drivers are automatically detected. Download and install the drivers from
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip, if the drivers are not
installed or detected automatically. Verify, if the detection is made in the device manager, as shown
in Figure 16.

Figure 16 • Device Manager

2. Select one of the four COM ports with Location as on USB FP5 Serial Converter C. Figure 17,
page 21 shows the Device Manager window and its properties that display the USB Serial Port
details. The COM port number is required to run the demo design.

www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 21

Figure 17 • Device Manager - FlashPro5 Properties

3. Connect the jumpers on the SmartFusion2 Advanced Dev Kit board, as shown in Table 6.
CAUTION: The power supply switch SW7 on the board should be in OFF position, while making the
jumper connections.

4. Connect the power supply to the J42 connector on the SmartFusion2 Advanced Development Kit
board.

3.8.1 Board Setup
Snapshots of the SmartFusion2 Advanced Development Kit board with the complete set up is given in
the Appendix 2: SmartFusion2 Advanced Development Kit Board, page 26.

3.8.2 Programming the Device
Program the SmartFusion2 Advanced Development Kit board with the job file provided as part of the
design files using FlashPro Express software, refer to Appendix 1: Programming the Device Using
FlashPro Express, page 23.

3.8.3 Running the Design
The following steps describe how to run the design.

1. Press SW9 switch to reset the board after successful programming.
Figure 18 shows the TeraTerm window.

Table 6 • SmartFusion2 FPGA Advanced Development Kit Jumper Settings

Jumper Pin (From) Pin (To) Comments
J116, J353, J354, J54 1 2 These are the default jumper settings of the Advanced Dev

Kit board. Ensure these jumpers are set accordingly.J123 2 3

J124, J121, J32 1 2 JTAG programming via FTDI

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

Microsemi Proprietary AC390 Revision 10.0 22

Figure 18 • Main Menu of Re-Mapping Application Note

2. Based on the selection made, the pre-built image stored in eNVM is copied to the appropriate
locations (DDR, eSRAM0, or eSRAM1) and re-mapping is applied.

3. Once the re-mapping is completed, the new Image starts booting and the following messages are
shown on the serial terminal and LED starts blinking on the SmartFusion2 Advanced Development
Kit.

Note: Reset the SmartFusion2 Advanced Development Kit board to switch among the application images.

Figure 19 • Re-Mapped Image is Running

For booting multiple images without remapping, refer to the AC372: SmartFusion SoC: Basic Bootloader
and Field Upgrade eNVM Through IAP Interface application note.

3.9 Conclusion
This application note explains the remapping of the eNVM, eSRAM, and DDR/SDR SDRAM memories to
the Cortex-M3 processor code region. It also explains how to execute the program code, which is built
with absolute addresses without remapping in case of eNVM and eSRAM.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129823
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129823

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC390 Revision 10.0 23

4 Appendix 1: Programming the Device Using
FlashPro Express

This section describes how to program the SmartFusion2 device with the programming job file using
FlashPro Express.

To program the device, perform the following steps:

1. Ensure that the jumper settings on the board are the same as those listed in Table 6, page 21.
Note: The power supply switch must be switched off while making the jumper connections.

2. Connect the power supply cable to the J42 connector on the board.
3. Power ON the power supply switch SW7.
4. On the host PC, launch the FlashPro Express software.
5. Click New or select New Job Project from FlashPro Express Job from Project menu to create a

new job project, as shown in Figure 20.
Figure 20 • FlashPro Express Job Project

6. Enter the following in the New Job Project from FlashPro Express Job dialog box:
• Programming job file: Click Browse, and navigate to the location where the .job file is located and

select the file. The default location is:
<download_folder>\m2s_ac390_df\Programming_Job

• FlashPro Express job project name: Click Browse and navigate to the location where you want to
save the project.

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC390 Revision 10.0 24

Figure 21 • New Job Project from FlashPro Express Job

7. Click OK. The required programming file is selected and ready to be programmed in the device.
8. The FlashPro Express window appears, as shown in Figure 22. Confirm that a programmer number

appears in the Programmer field. If it does not, confirm the board connections and click
Refresh/Rescan Programmers.

Figure 22 • Programming the Device

9. Click RUN. When the device is programmed successfully, a RUN PASSED status is displayed as
shown in Figure 23.

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC390 Revision 10.0 25

Figure 23 • FlashPro Express—RUN PASSED

10. Close FlashPro Express or in the Project tab, click Exit.

Appendix 2: SmartFusion2 Advanced Development Kit Board

Microsemi Proprietary AC390 Revision 10.0 26

5 Appendix 2: SmartFusion2 Advanced
Development Kit Board

Figure 24 shows the SmartFusion2 Advanced Development Kit board.

Figure 24 • SmartFusion2 Advanced Development Kit Board

	1 Revision History
	1.1 Revision 10.0
	1.2 Revision 9.0
	1.3 Revision 8.0
	1.4 Revision 7.0
	1.5 Revision 6.0
	1.6 Revision 5.0
	1.7 Revision 4.0
	1.8 Revision 3.0
	1.9 Revision 2.0
	1.10 Revision 1.0

	2 Purpose
	3 SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
	3.1 Introduction
	3.1.1 SmartFusion2 Booting and Address Space Overview
	3.1.2 SmartFusion2 SoC FPGA: Cortex-M3 Processor Code Space Details

	3.2 References
	3.3 Design Requirements
	3.4 Prerequisites
	3.5 Design Description
	3.6 Hardware Implementation
	3.7 Software Implementation
	3.7.1 Remapping eNVM Address Space to Cortex-M3 Processor Code Space
	3.7.2 Remapping eNVM to Soft Core Processor Memory Map
	3.7.3 Remapping eSRAM to Cortex-M3 Processor Code Space
	3.7.4 Remapping External RAM (DDR/SDR SDRAM Interface) to Cortex-M3 Processor Code Space
	3.7.4.1 Firmware Drivers

	3.8 Setting Up the Demo Design
	3.8.1 Board Setup
	3.8.2 Programming the Device
	3.8.3 Running the Design

	3.9 Conclusion

	4 Appendix 1: Programming the Device Using FlashPro Express
	5 Appendix 2: SmartFusion2 Advanced Development Kit Board

