AC390

Application Note

SmartFusion2 SoC FPGA - Remapping eNVM, eSRAM,
and DDR/SDR SDRAM Memories

& Microsemi

a A8\ MicrocHIP company

& Microsemi

a G\MICHOCHIP company

Microsemi Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
Www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

51900390. 10.0 6/21

mailto:sales.support@microsemi.com
http://www.microsemi.com

& Microsemi

a @MI:HGCHIP company

Contents
1 Revision History e 1
1.1 ReviSion 10.0 1
1.2 ReVISION 0.0 e e e 1
1.3 ReVISION 8.0 . ..o 1
14 ReVISION 7.0 . .o e 1
15 ReVISION 6.0 e 1
1.6 ReVISION 5.0 e 1
1.7 ReVISION 4.0 . .. 1
1.8 ReVISION 3.0 . ..o e e 1
1.9 ReVISION 2.0o 1
1.10 ReVISION 1.0 . .o e 2
2 PUIPOSE . . 3
3 SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM
MEMOKIES 4
3.1 IntrodUCtion . . . o 4
3.11 SmartFusion2 Booting and Address Space Overview, 4
3.1.2 SmartFusion2 SoC FPGA: Cortex-M3 Processor Code Space Details 5
3.2 REfErENCES oo 6
3.3 Design Requirements e 6
34 PrereqUISIEES . . . 7
3.5 Design DesCriptionot 7
3.6 Hardware Implementation 7
3.7 Software Implementation e 11
3.71 Remapping eNVM Address Space to Cortex-M3 Processor Code Space 12
3.7.2 Remapping eNVM to Soft Core Processor Memory Map 15
3.7.3 Remapping eSRAM to Cortex-M3 Processor Code Spaceooon.. 15
3.74 Remapping External RAM (DDR/SDR SDRAM Interface) to Cortex-M3 Processor Code Space
18
3.8 Setting Upthe Demo Design oo 20
3.8.1 Board Setup 21
3.8.2 Programming the Device i 21
3.8.3 Running the Design 21
3.9 CONCIUSION . e 22
4 Appendix 1: Programming the Device Using FlashPro Express 23
5 Appendix 2: SmartFusion2 Advanced DevelopmentKitBoard 26

Microsemi Proprietary AC390 Revision 10.0 iii

Figures

& Microsemi

a A8\ MicrocHiP company

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Cortex-M3 Processor Execution Flow fromReset 5
Top-Level SmartDesign e 7
Select MDDR 8
MDDR Configurator 8
Memory Device Configuration 9
Clock Configuration e 10
Cortex-M3 Processor Memory Map in SmartFusion2 11
Example Scenario of Multiple Executable ImagesineNVM 12
Logic for Moving Execution Control to New Image in eNVM without Remapping 13
Logic for Moving Execution Control to New Image in eNVM with Remapping 14
Example Scenario of Multiple Executable ImagesineSRAM 15
Logic for Moving Execution Control to New Image in eSRAM without Remapping 16
Logic for Moving Execution Control to New Image in eSRAM with Remapping 17
Example Scenario of Multiple Executable Images in DDR/SDRSDRAM 18
Logic for Moving the Execution Control to New Image in DDR/SDR SDRAM with Remapping . .. 19
Device Manager 20
Device Manager - FlashPro5 Properties 21
Main Menu of Re-Mapping Application Note 22
Re-Mapped Image is RUNNING 22
FlashPro Express Job Project 23
New Job Project from FlashPro Express Job 24
Programming the Device 24
FlashPro Express—RUN PASSED i e i 25
SmartFusion2 Advanced DevelopmentKitBoard 26

Microsemi Proprietary AC390 Revision 10.0 iv

Tables

& Microsemi

a AS\MicrocHip company

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6

Design Requirements e 6
eNVM Remap Register 15
eNVM Remap Register to Fabric SoftCore Processor Address Space 15
Registers Required to eSRAM Remappingt 18
Registers Required to DDR/SDR SDRAM Remappingo, 19
SmartFusion2 FPGA Advanced Development Kit Jumper Settings 21

Microsemi Proprietary AC390 Revision 10.0 v

Revision History

& Microsemi

a @MI:HGCHIP company

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 10.0

The following is a summary of the changes made in this revision.

* Updated the document for Libero SoC v2021.1.
. Removed the references to Libero version numbers.

1.2 Revision 9.0

Updated the document for Libero SoC v11.7 software release (SAR 76553).

1.3 Revision 8.0

Updated the document for Libero SoC v11.6 software release (SAR 71546).

1.4 Revision 7.0

Updated the document for Libero SoC v11.5 software release (SAR 64108).

1.5 Revision 6.0

The following is a summary of the changes made in this revision.

* Updated the document for Libero SoC v11.4 software release (SAR 60315).
* Updated the document for Advanced Development Kit Board details (SAR 60315).

1.6 Revision 5.0

The following is a summary of the changes made in this revision.

» Figure 2 is changed (SAR 57912).

* Added Figure 3 (SAR 57912).

* Added Figure 4 (SAR 57912).

* Added Figure 5 (SAR 57912).

* Updated the document for Libero SoC v11.3 software release (SAR 57912).

1.7 Revision 4.0

The following is a summary of the changes made in this revision.

« Figure 6 is changed.
» Figure 3 is changed.

1.8 Revision 3.0

Updated the document for Libero SoC v11.0 software release (SAR 47617).

1.9 Revision 2.0

Updated the document for Libero SoC v11.0 beta SP1 software release (SAR 45398).

Microsemi Proprietary AC390 Revision 10.0 1

Revision History O M. em’.

a AS\MicrocHip company

1.10 Revision 1.0

The following is a summary of the changes made in this revision.

* Updated Remapping eNVM Address Space to Cortex-M3 Processor Code Space, page 12 (SAR
42911).

* Updated Remapping eSRAM to Cortex-M3 Processor Code Space, page 15 (SAR 42911).

* Updated Remapping External RAM (DDR/SDR SDRAM Interface) to Cortex-M3 Processor Code
Space, page 18 section (SAR 42911).

* Updated Setting Up the Demo Design, page 20 (SAR 42911).

* Updated Appendix 2: Design Files, page 29 (SAR 42911).

Microsemi Proprietary AC390 Revision 10.0 2

Purpose

2

& Microsemi

a AS\MicrocHip company

Purpose

This application note describes the remapping of the following memories to the ARM® Cortex®-M3
processor code region and explains how to execute the program code built with absolute addresses
without remapping.

+ embedded Non-Volatile Memory (eNVM)
+ embedded Static Random Access Memory (eSRAM)
* Double Data Rate (DDR)/Single Data Rate (SDR) Synchronous Dynamic Random Access Memory

(SDRAM)

Microsemi Proprietary AC390 Revision 10.0 3

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories O MI'CI'Osemi

a AS\MicrocHip company

3 SmartFusion2 SoC FPGA — Remapping
eNVM, eSRAM, and DDR/SDR SDRAM
Memories

3.1 Introduction

The SmartFusion®2 System-on-Chip (SoC) Field Programmable Gate Array (FPGA) devices integrate
Cortex-M3 processor, up to 512 KB of eNVM, 64 KB of eSRAM, and memory interfaces for DDR/SDR
SDRAM for program code and data.

The Cortex-M3 processor has a predefined memory map for code space, data space, and system space
with dedicated bus interfaces. The desired memory regions of the SmartFusion2 SoC FPGA can be
mapped to the Cortex-M3 processor code space for the application program execution. It also explains
how to execute the program code built with absolute addresses without remapping.

311 SmartFusion2 Booting and Address Space Overview

This application note describes the SmartFusion2 SoC FPGA boot sequence, and how to remap the
various memory regions to the Cortex-M3 processor code region and an optional softcore processor
located in the FPGA fabric.

The Cortex-M3 processor is based on ARM architecture v-7M that includes a Nested Vectored Interrupt
Controller (NVIC) for handling the interrupts and includes a non-maskable interrupt. The NVIC contains
the addresses of the initial stack pointer, exception handlers, and Interrupt Service Routines (ISRs). The
first entry in the NVIC must be the initial stack pointer and the second entry must be the address of the
reset exception handler. The Cortex-M3 processor eliminates the need for setting up the initial C runtime
environment using assembly code. Developers can code entirely in the C language. After reset, the
Cortex-M3 processor reads two words from memory:

» At the address location 0x00000000 for the initial stack pointer
* At the address location 0x00000004 for the address of the reset handler exception

The reset handler performs the basic initialization and execution control, which is given to the main
application code. Figure 1 shows the execution flow.

Microsemi Proprietary AC390 Revision 10.0 4

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories

Figure 1«

& Microsemi

a AS\MicrocHip company

Cortex-M3 Processor Execution Flow from Reset

Fetch Initial Fetch Reset Instruction
SP Value Vector Fetch
Address = Address = Address = H 1
0X00000000 | 0X00000004 Reset Vector : 1
Time

ROM (Code Space)

0X000BFFFF
Application Code and
Constant Data
RAM
0X2000FFFF |
<
0X00000100 Reset Handler 2
' T H & Space for Stack and Heap
E Other Vectors] 64kB| A
N | o
|—0X00000004 z 0X00000100 g
l 0x2000FFFF Space for Global Data
0X00000000 0X20000000

3.1.2

SmartFusion2 SoC FPGA: Cortex-M3 Processor Code Space
Details

The address range from 0x00000000 to 0x1FFFFFFF (0.5 GB space) is code space for the
Cortex-M3 processor. Following are the SmartFusion2 SoC FPGA memory maps for the code/data
space:

* On-chip eNVM (from 0x60000000 to 0x6007FFFF) of 512 KB for code and constant data regions

* On-chip eSRAM (from 0x20000000 to 0x2000FFFF) of 64 KB with SECDED for both code and data
regions

* On-chip FPGA fabric RAM (FPGA Fabric FIC Region 0). This can be mapped via fabric interface
controllers (FIC): FIC 0 or FIC 1. This region can be accessed by the system bus for instructions and
data

+ External RAM interfaced through DDR or SDR interface (from 0xA0000000 to 0xDFFFFFFF) of 1
GB for both code and data regions

Any of the preceding memory regions with any offset from its base address can be mapped to the
Cortex-M3 processor code region space. On power-on, the eNVM region 0x60000000 is automatically
remapped to the Cortex-M3 processor executable region start address (0x00000000). Therefore, for
every power-on reset, the Cortex-M3 processor fetches the initial stack pointer from 0x00000000 (eNVM
address 0x60000000) and the address of the reset handler from 0x00000004 (eNVM address
0x60000004). Once the execution control goes to the default reset handler, the boot up sequence
executes and execution control jumps to the user boot code.

The user boot code can be at the following locations based on the execution environment:

* In Release mode: It must be in the Read-Only Memory (ROM) region. The SmartFusion2 SoC
FPGA after reset is initialized and remaps the eNVM address 0x60000000 to 0x00000000 of the
Cortex-M3 processor address space.

Microsemi Proprietary AC390 Revision 10.0 5

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories

& Microsemi

a AS\MicrocHip company

In Debug mode: It can be either in ROM or RAM. Options are in the debugger command window to
choose from where to debug (remap to 0x00000000) and in case of Debug mode, the SmartFusion2
SoC FPGA after reset is initialized through the flash bits and remaps the user boot code as follows:
+ eNVM address 0x60000000 to 0x00000000 of the Cortex-M3 processor address space, or

+ eSRAM address 0x20000000 to 0x00000000 of the Cortex-M3 processor address space

From the user boot code, there can be multiple independent executable images in various parts of
memories. The eNVM address locations can be remapped with any offset, eSRAM address locations
with any offset, FPGA fabric RAM, or memory through DDR/SDRAM interface with any offset to the base
address 0x00000000 of the Cortex-M3 processor code region.

3.2 References

The following are the reference documents:

UG0446: SmartFusion2 and IGLOO2 FPGA High Speed DDR Interfaces User Guide
SmartFusion2 MSS ARM Cortex-M3 Configuration Guide

AC372: SmartFusion cSoC- Basic Bootloader and Field Upgrade eNVM Through IAP Interface App
Note

UG0451: IGLOO2 and SmartFusion2 Programming User Guide

UG0450: SmartFusion2 SoC and IGLOO2 FPGA System Controller User Guide

UG0331: SmartFusion2 Microcontroller Subsystem User Guide

Configuring Serial Terminal Emulation Programs

3.3 Design Requirements

Table 1 lists the hardware and software design requirements for running this demo design.

Table 1 ¢

Design Requirements

Requirement

Version

Operating System 64 bit Windows 7 and 10

Hardware

SmartFusion2 Advanced Development Kit: Rev A or later
* FlashPro5 programmer

+ USB Ato Mini-B cable

* 12V Adapter

Host PC or Laptop

Software

FlashPro Express Refer to the readme. txt file provided in the design files

Libero® System-on-Chip (SoC)

for the software versions used with this reference design.

SoftConsole

USB to UART drivers -

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only.
Open the Libero design to see the latest updates.

Microsemi Proprietary AC390 Revision 10.0 6

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132040
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135147
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129823
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132014
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories C MI'CI'Osemi

a AS\MicrocHip company

3.4 Prerequisites

Before you begin:

1. Download and install Libero SoC (as indicated in the website for this design) on the host PC from the
following location:
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc

2. For demo design files download link:
http://soc.microsemi.com/download/rsc/?f=m2s_ac390 df

3.5 Design Description

The design examples in this application note use MMUART_0, GPIO, eSRAM, DDR, and eNVM memory
controllers. In the design examples, the System Builder Clock section is configured as shown in Figure 6,
page 10 to run the M3_CLK at 111 MHz, which drives the clock to the Cortex-M3 processor. The
independent executable images are created with the required memory map. These executable images
can be remapped to the starting address of the Cortex-M3 processor code space or can be made
executable for the Cortex-M3 processor. The implementation details are explained in the hardware and
software implementation sections.

3.6 Hardware Implementation

The hardware implementation involves configuring the Microcontroller Subsystem (MSS), fabric, clocks,
and oscillator using System Builder. Figure 2 shows the top-level SmartDesign of the application.

Figure 2+ Top-Level SmartDesign

Remapping_Appnote_0

4D FAB_RESET_ N POWER ON_RESET NIPX

[(DEVRST N@®—— & DEVRST_N DDR_READY D X

MSS_READY X
GPIO_0_M2F
GPIO_1_M2F
GPIO_2_M2F
GPIO_3_M2F
GPIO_4_M2F
GPIO_5_M2F
GPIO_6_M2F
GPIO_7_M2F
FAB_CCC PINSE

INIT_PINSE@

MMUART_0_FABRICEH@--------- ENMMUART 0_FABRIC

VDDR_FADSEH@------=--

18 el e el el e gel el

(e]w] (e (@] (@] (@] =] (=]

(ey] (o] (o) (o] ey (en] 9] [ep]
~llon|enfe |eafral = o

The MDDR is configured for DDR3 at 333 MHz speed. Figure 3, page 8 and Figure 4, page 8 show the
MSS MDDR configuration settings. For DDR configuration file, refer to Prerequisites, page 7 (design
files).

Microsemi Proprietary AC390 Revision 10.0 7

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc
https://www.microchip.com/en-us/application-notes/ac390

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories c Micmsemi

a A\ MicrocHIR company

Figure 3+ Select MDDR

e s e [B e |
> Device Features » 7 Memories » 7 Peripherals ») Clocks » > Microcontroller > > SECDED »» Security »» Interrupts » > Memory Map »

Select the SmartFusion2 features you will be using in your design

Memory

MSS External Memary

P

(©) SoftMemary Controller (SMC)

M55 On-chip Flash Memory { elvM)

E
2

=

RESET CTAL

Fabric External DDR Memary { FDDR)

High Speed Serial Interfaces
SERDESIF_0
SERDESIF_1

|
|
|
|
|
i
|
|
|
|
|
|
|
Micracontroller Optians ! Fas-cec E ; g H
| 1
7] Watchdon Tmer ! A E !
I “
[Peripheral DMA ! ,, ; g
A3
Real Time Counter | L
0 ! J FOCR:
! ‘ AL AVE
} 423 3 PCLKC %
f ; sre g rreszin [
! .
|
l ! ! 3 |
! w
i SDR £ [2e] "s #
RAN 5 CCRESDR s
= [iy
|
|
I

3
£z
b

Figure 4+ MDDR Configurator

T
2 System Builder - Memories [E=En——

> Device Features » » Memories » » Peripherals » ; Clocks » » Microcontroller » > SECDED > » Security > Interrupts » > Memory Map »

Configure your external and embedded memories

/ MDDR\/ENv)

DDR memory settiing time (us): 200

General ‘ Memaory Initialization | Memary Timing

Memary Settings 7
Memory Type [DDP_". X]
Data Width 3 -]

SECDED Enabled ECC [[]

Aubitration Scheme [Type-D -

Highest Priority D0 |

Address Mapping | frowBANK, COLUMN} -
Row Bank Column
Address Width (bits) 14 BIE [0 -]
10 Drive Strength 3

(@ Half Drive Strength () Full Drive Strenath

< [} b

Register Description

DDRC_MODE_CR.REG_DDRC_DATA_BUS_WIDTH:

00: Full DQ bus width to DRAM.

01: Half DQ bus width to DRAM.

10: Quarter DQ bus width to DRAM.

11: Reserved.

Note that the Half bus width modes are only supported when the DRAM bus width is a multiple of 16.

=) (o]

Microsemi Proprietary AC390 Revision 10.0 8

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

& Microsemi

Memories
a A\ MicrocHIR company
Add the eNVM user clients in ENVM configurator, as shown in Figure 5.
Figure 5+ Memory Device Configuration
CEmDEES . o . s
> Device Features > > Memories » » Peripherals » > Clocks Microcontroller > > SECDED > Security > Interrupts » > Memory Map »
Configure your external and embedded memories
MDDR ENVM

MR User Clients in eNVM

Data Storage

Serialization | Client Type Client Name DepthxWidth Start Address(Hex) Page Start Page End Initialization Order Lock 5tz

1 |0 Data Storage Main_App 4076 %8 0 0 38 N/A

Add to System...

Usage Statistics
Available Pages: 4032
Used Pages: 421

2 B Data Storage

WAM_REMAP_IMAGE

B} Data Storage] ULR=EER TS

24336 x 8

8000 256

N{A

Free Pages: 3611
4 m 3
B UsedSpace
B FreeSpace
] o
] (ot

The MMUART_O is routed through FPGA fabric to communicate with the serial terminal program. The
MSS_CCC clock is sourced from the FCCC via the CLK_BASE port. The FCCC is configured to provide
the 100 MHz clock using GLO.

Microsemi Proprietary AC390 Revision 10.0

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories

& Microsemi

a A\ MicrocHIR company

Figure 6 shows the system clocks configurations for the M3_CLK, MDDR_CLK, and
APB_0_CLK/APB_1_CLK.

Figure 6 = Clock Configuration

=¥ System Builder - Clocks.

> Y Clods > > Mierorontroller > 5 SECDED

> Security

Configure clock requirements

> Interrupts » > Memory Map »

Clock | FabricCCC | Chip Osdlators
System Clock
[on-chip 25/50 Mz RC Oscilator -
Cortex-M3 and MSS Main Clock
M3_CLK & 111 MHz 111,000 i
MDDR Clocks i
MDOR_CLK =M3_ClK * D} 333.000 i
DDR/SMC_FIC_CLK =MODR_CLK/ |1 - i
MSS APB_D/1 Clocks i
APB_0_CLK =M3_CLK/ 111,000 i
APB_1_CLK =M3_CLK/ 111,000 i
Fabric Interface Clocks i
FIC_0_CLK =M3_CLK/ 111,000 i ;
[[] AHBLite Bypass Mode i [coor | i
FIC_1_CLK =Mzok/ |1 | i '
[] AHBLite Bypass Mode : ;
Fabric DDR Clocks i
1
FDDR_CLK = 100 MHz ! T
FDDR_SUBSYSTEM_CLK =FDDR_CLK / [1 | i i
| ‘

[

=

Microsemi Proprietary AC390 Revision 10.0

10

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM
Memories

& Microsemi

a A8\ MicrocHiP company

3.7 Software Implementation

The following sections describe how to remap the various memory regions of the SmartFusion2 SoC
FPGA to the Cortex-M3 processor code space. Figure 7 describes the memory map for the Cortex-M3

processor.

Figure 7 »

alias region of
Cortex-M3
Processor

Peripheral Bit—band{

SRAM Bit-band alias
region of Cortex-M3
Processor

Cortex M3 Processor
System Region

Cortex M3 Processor
Code Region

Memory Map of
Cortex-M3
Processor

Cortex-M3 Processor Memory Map in SmartFusion2

Memory Map of System

" Controller, FPGA Fabric Master, Ethernet

MAC, Peripheral DMA

FPGA Fabric FIC Region5

FPGA Fabric FIC Region5

DDR_0 Space 3

DDR_0 Space 3

DDR_0 Space 2

DDR_0 Space 2

DDR_0 Space 1

DDR_0 Space 1

DDR_0 Space 0

DDR_0 Space 0

FPGA Fabric FIC Region4

FPGA Fabric FIC Region4

FPGA Fabric FIC Region3

FPGA Fabric FIC Region3

FPGA Fabric FIC Region2

FPGA Fabric FIC Region2

AHB-to-eNVM_1 Registers

AHB-to-eNVM_1 Registers

AHB-to-eNVM_0 Registers

AHB-to-eNVM_0 Registers

eNVM_1

eNVM_1

eNVM_0

eNVM_0

FPGA Fabric FIC Region1

FPGA Fabric FIC Regionl

Peripherals(BB View)

Cache Back door

USB

USB

Ethernet MAC Control

Ethernet MAC Control

SYSREG

SYSREG

Config DDR_1, PCle_0, PCle_1 etc

Config DDR_1, PCle_0, PCle_1 etc

Config DDR_0 Config DDR_0

RTC RTC

COMBLK COMBLK
CAN CAN

High Performance DMA High Performance DMA

MSS GPIO MSS GPIO
12C_1 12C_1
SPI_1 SPI_1

UART_1 UART_1

Fabric Interface Interrupt Controller

Fabric Interface Interrupt Controller

Watchdog Watchdog
Timer Timer
Peripheral DMA Control Peripheral DMA Control
12C_0 12C_0
SPI_O SPI_O
UART_0 UART_0

FPGA Fabric FIC Region0

FPGA Fabric FIC Region0

eSRAM_0/eSRAM_1(BB View)

ECC eSRAM_1 ECC eSRAM_1
ECC eSRAM_O ECC eSRAM_0O
eSRAM_1 eSRAM_1
eSRAM_0 eSRAM_0
eNVM (Cortex-M3) eNVM (Fabric)
Virtual View Virtual View

0xFO000000 - OxFFFFFFFF
0xEO000000 - OXEFFFFFFF
0xD0000000 - OXDFFFFFFF
0xC0000000 - OXCFFFFFFF
0xB0000000 - OXBFFFFFFF
0xA0000000 - OXAFFFFFFF
0x90000000 - OXSFFFFFFF
0x80000000 - Ox8FFFFFFF
0x70000000 - OX7FFFFFFF
0x60100000 - Ox6FFFFFFF
0x600C0000 - Ox600FFFFF
0x60080000 - 0x600BFFFF
0x60040000 - 0x6007FFFF
0x60000000 - 0x6003FFFF
0x50000000 - OXSFFFFFFF
0x44000000 - OX4FFFFFFF
0x42000000 - Ox43FFFFFF
0x40410000 - Ox41FFFFFF
0x40400000 - 0x4040FFFF
0x40044000 - Ox403FFFFF
0x40043000 - 0x40043FFF
0x40042000 - 0x40042FFF
0x40041000 - 0x40041FFF
0x40039000 - 0x40040FFF
0x40038000 - 0x40038FFF
0x40030000 - 0x40037FFF
0x40020400 - 0x4002FFFF
0x40020000 - 0x400203FF
0x40018000 - 0x4001FFFF
0x40017000 - 0x40017FFF
0x40016000 - 0x40016FFF
0x40015000 - 0x40015FFF
0x40014000 - 0x40014FFF
0x40013000 - 0x40013FFF
0x40012000 - 0x40012FFF
0x40011000 - 0x40011FFF
0x40010000 - 0x40010FFF
0x40007000 - 0x4000FFFF
0x40006000 - 0x40006FFF
0x40005000 - 0x40005FFF
0x40004000 - 0x40004FFF
0x40003000 - 0x40003FFF
0x40002000 - 0x40002FFF
0x40001000 - 0x40001FFF
0x40000000 - 0x40000FFF
0x30000000 - Ox3FFFFFFF
0x24000000 - OX2FFFFFFF
0x22000000 - 0x23FFFFFF
0x20014000 - Ox21FFFFFF
0x20012000 - 0x20013FFF
0x20010000 - 0x20011FFF
0x20008000 - 0x2000FFFF
0x20000000 - 0x20007FFF
0x00080000 - OX1FFFFFFF
0x0007FFFF

0x00000000

"(SSK space allocation for
devices outside MSS)

Visible only to FPGA
Fabric Master

Microsemi Proprietary AC390 Revision 10.0

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories C MiCI'OSGmi

a A8\ MicrocHiP company
3.71 Remapping eNVM Address Space to Cortex-M3 Processor Code
Space

Figure 8 shows an example scenario with multiple executable images in the eNVM regions.

Figure 8« Example Scenario of Multiple Executable Images in eNVM

eNVM
0x6007 FFFF
256KB Free Space
0x6003 FFFF
128KB Space for Image 3

0x60020000
64KB Space for Image2
eSRAM
0x60010000 0x2000 FFFF
30KB Space for Data, stack, and heap
Space for Image 1 0x20008000
64KB
32KB Space for Data, stack, and heap
0x60000000 0x20000000

In the example scenario (as shown in Figure 8), there are three images, which can be remapped to the
starting address of the Cortex-M3 processor code space or can be made executable for the Cortex-M3
processor. To create the independent executable images with the required memory map, it is required to
create the linker scripts with the required memory map. Once the executable images are created for the
required memory map in Production mode, these images are added to the programming file using the
eNVM clients in the Libero SoC hardware (HW) creation flow.

If the executable images are built with an absolute address, it is required to allow the execution control
without using the remapping to the starting address of the code space (0x00000000). In such cases,
without remapping approach has to be used, which is explained as follows.

The execution control must be allowed to the desired image by using the following two approaches:

+ Without Remapping: By default, the eNVM base address 0x60000000 is remapped to the starting
address of the code space of the Cortex-M3 processor. The vector table address of the desired
image can be set by using the vector table offset register in the system registers, and pointing the
Stack Pointer (SP) and program counter to the reset handler address of the desired image. This
allows the Cortex-M3 processor to execute the new image. The eNVM offset address must be used
in the linker script generation for the executable images in this approach. This approach is explained
in the flow chart shown in Figure 9.

Microsemi Proprietary AC390 Revision 10.0 12

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories Q MiCt'Osemi

a A8\ MicrocHiP company

Figure 9+ Logic for Moving Execution Control to New Image in eNVM without Remapping

Start

1. Set the Vector Table Offset address
to desired Image start address

2. Initialize the stack pointer with the
desired Image start address

3. Set the Program Counter (address
of reset handler-1) e Start

New Image starts executing from its
original address

Stop

Power Off

Y

Stop

For example, for the memory map of the different images explained in Figure 8, page 12, the images are
built with the base address as shown in Figure 8, page 12. To run Image 2, while Image 1 is running, use
the following steps, as shown in Figure 9:

1. Set the vector table offset address register is set to 0x60010000
2. Initialize the stack pointer with the content of 0x60010000
3. Change the program counter to the reset handler of Image 2, that is, PC = (0x60010004 -1)

With the all preceding 3 steps, Image 2 starts executing from 0x60010000.

* With Remapping: In this approach, the new image address can be remapped to the starting
address of the code region of the Cortex-M3 processor by using the ENVM_CR,
ENVM_REMAPSIZE, and ENVM_REMAP_BASR_CR registers. As the new image address is
remapped to the bottom (0x0000_0000) of the Cortex-M3 processor code region, the linker scripts
take care of building the images from the bottom (0x0000_0000) code region. The eNVM offset
address must not be used in this approach. This approach is explained in the flow chart shown in
Figure 10.

Microsemi Proprietary AC390 Revision 10.0 13

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories

Figure 10

& Microsemi

a A8\ MicrocHiP company

Logic for Moving Execution Control to New Image in eNVM with Remapping

Start

Y

. ENVM_CR register is set with

. ENVM_REMAP_BASE_CR register

. Stack pointer and vector table offset

. Program Counter is set to

remap size field for 16/32/64/128/256/
512 KB sizes

is set with offset address and remap
enable bit set

registers are set to 000000000 {_______________ Start

(0x00000004 -1)

Note:

New Image starts executing from its
Stop remapped address 0x00000000

Power Off

A

Stop

For example, for the memory map of the different images explained in Figure 8, page 12, the images are
built with 000000000 as a base address. To run Image 2, while Image 1 is running, use the following
steps (explained in Figure 10):

1. Setthe ENVM_CR register to 64KB as remap image size

2. Setthe ENVM_REMAP_BASE_CR register with 0x00010000

3. Set the Stack Pointer to 0x00000000

4. Setthe PC to 000000004 - 1

To set the ENVM_CR register to 16/32/64/128/256/512 KB as remap image size, refer to the eNVM
Controller Chapter in UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

With all the preceding steps, the new Image 2 starts executing from 0x00000000, which is mapped to
0x60010000.

The reference design is provided with this application note with remapping and without remapping. For
design files, refer to Prerequisites, page 7 and follow the steps explained in Setting Up the Demo Design,
page 20 for executing the reference design.

Microsemi Proprietary AC390 Revision 10.0 14

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories C MiCI'OSGmi

a A8\ MicrocHiP company

Table 2 describes the registers, which are required to be set for the eNVM remapping to the bottom
(0x0000_0000) of the Cortex-M3 processor. The SYSREG block is located at address 0x40038000 in
the Cortex-M3 processor address space.

Table 2 « eNVM Remap Register

Flash
Address Register Write Reset
Register Name Offset Type Protect Source Description
ENVM_CR 0xC RW-P Register sysreset_n eNVM Configuration register

ENVM_REMAP_BASE_CR 0x10 RW-P Register sysreset_n eNVM remap configuration register for
the Cortex-M3 processor.

3.7.2 Remapping eNVM to Soft Core Processor Memory Map

The SoftCore processor implemented in SmartFusion2 SoC FPGA fabric can access the eNVM for code
execution purposes. For this use case, the fabric interface controller (FIC _0 or FIC_ 1) and the eNVM
AHB controller need to be set properly. The eNVM partitioning between the Cortex-M3 and SoftCore
processor needs to be taken care of in such a way that these two partitions are mutually exclusive. The
remapping of the eNVM offset address to the SoftCore processor bottom (0x0000_0000) address map is
very similar to the remapping of the eNVM address to the Cortex-M3 processor.
ENVM_REMAP_FAB_CR register has to be used instead of ENVM_REMAP_BASE_CR register. The
SYSREG block is located at address 0x40038000 in the Cortex-M3 processor address space.

Table 3 lists the eNVM remap register to fabric SoftCore processor address space.

Table 3 eNVM Remap Register to Fabric SoftCore Processor Address Space

Flash
Address Register Write Reset
Register Name Offset Type Protect Source Description
ENVM_REMAP_FAB_CR 0x14 RW-P Register sysreset_n NVM remap configuration register for

the soft processor in the FPGA

3.7.3 Remapping eSRAM to Cortex-M3 Processor Code Space
Figure 11 shows the example scenario of the executable images in eSRAM regions.

Figure 11 « Example Scenario of Multiple Executable Images in eSRAM

eSRAM
0x2000FFFF
IMAGE1: Space for Code, Data, stack, and
32KB heap
0x20008000
IMAGE2: Space for Code Data, stack, and
32KB heap
0x20000000

Microsemi Proprietary AC390 Revision 10.0 15

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories

Figure 12 «

& Microsemi

a A8\ MicrocHiP company

The scenario shown in Figure 11, page 15, describes two images, which can be remapped to the bottom
(0x0000_0000) of the Cortex-M3 processor or can be made executable for the Cortex-M3 processor. To
create the independent executable images with the required memory map, the linker scripts need to be
created with the required memory map. After creating the images required for memory map in Production
mode, copy the images to an external memory such as SPI Flash, eNVM, and so on; and are code
shadowed by the bootloader to the eSRAM whenever it is required to execute the new images.

After copying the images to eSRAM by bootloader, the execution control can be allowed to the desired
image by using any of the following two approaches:

If the executable images are built with an absolute address, the execution control needs to be allowed
without using the remapping to the starting address of the code space (0x00000000). In such cases,
without remapping approach, which is explained as follows (Point 1), has to be used.

If the executable images are built with the address 0x00000000, the execution control needs to be
allowed by using remapping to starting address of the code space (0x00000000). In such cases, the
remapping approach, which is explained as follows (Point 2), has to be used.

+ Without Remapping: Using the vector table offset register in the system registers, the vector table
address of the desired image can be set for execution, and point the Stack Pointer (SP) and the
program counter to the reset handler of the desired image. This allows the Cortex-M3 processor to
execute the new image. The eSRAM address must be used in the linker script generation for the
executable images in this approach. This approach is explained in the flow chart shown in Figure 12.

Logic for Moving Execution Control to New Image in eSRAM without Remapping

Start

Y

. Bootloader copies or loads the
Image from external SPI Flash/
eNVM to eSRAM

. Vector Table Offset address is set
to new Image start address
Initialize the stack pointer with the
content of Image start address

. Program Counteris setto =~ |jp-—-—-—————cc_ Start
of reset handler (address -1)

New Image starts executing from its
Stop original address

Power Off

Stop

Microsemi Proprietary AC390 Revision 10.0 16

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories

Figure 13 ¢

& Microsemi

a A8\ MicrocHiP company

+ With Remapping: In this approach, the new image address can be remapped to the bottom
(0x0000_0000) of the Cortex-M3 processor by using the ESRAM_CR registers. As the new image
address is remapped to the bottom (0x0000_0000) of the Cortex-M3 processor code region, the
linker scripts take care of building the images from the bottom (0x0000_0000) code region. The
eSRAM address must not be used. Instead, an offset address from zero has to be used in the linker
scripts for this approach. This approach is explained in the flow chart shown in Figure 13.

Logic for Moving Execution Control to New Image in eSRAM with Remapping

Start

\i

1. Bootloader copies or loads the
Image from external SPI Flash
to eSRAM

2. ESRAM_CR register is set for the
enabling the eSRAM remap

3. Stack pointer and vector table offset
registers are set to 0x00000000

4. Program Counteris setto [~ ~7""""—=--—--- Start
(0x00000004 -1)

New Image starts executing from its
A remapped address 0x00000000

Stop

Power Off

Stop

For example, for the memory map of the different images explained in Figure 11, page 15, the images
are built with 0x00000000 as a base address. If it is required to jump from Image 2 to Image 1, use the
following steps (as explained in Figure 13).

1. Copy the image1 from Flash to eSRAM starting address 0x20008000

2. Setthe ESRAM_CR register to enable the eSRAM remapping to 0x00000000

3. Set the Stack Pointer to 0x00008000 and Vector Table offset register to 0x00008000
4. Setthe PC to 000008004 -1

With all the preceding steps, the new Image1 starts executing from 000008000, which is then mapped
to address 0x20008000.

The reference design is provided with this application note with remapping and without remapping. For
design files, refer to Prerequisites, page 7 and follow the steps explained in Setting Up the Demo Design,
page 20 for executing the reference design.

Microsemi Proprietary AC390 Revision 10.0 17

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories C’ MiCI'OSGmi

a A8\ MicrocHiP company

Table 4 lists the registers that are required to be set for the eSRAM remapping. The SYSREG block is
located at address 0x40038000 in the Cortex-M3 processor address space.

Table 4 « Registers Required to eSRAM Remapping

Flash
Address Register Write Reset
Register Name Offset Type Protect Source Description
ESRAM_CR 0x0 RW-P Register sysreset_n Controls address mapping of the eSRAMs

3.7.4 Remapping External RAM (DDR/SDR SDRAM Interface) to
Cortex-M3 Processor Code Space

Figure 14 shows the scenario of the multiple executable images in DDR/SDRAM interface memory
regions.

Figure 14 »+ Example Scenario of Multiple Executable Images in DDR/SDR SDRAM

DDR Memory/SDRAM

0xBFFFFFFF
IMAGE1: Space for Code, Data, stack, and
512 MB heap
0xB 0000000
IMAGE2: Space for Code Data, stack, and
521 MB heap
0xA 0000000

In this scenario, there are two images which can be remapped to the bottom (0x0000_0000) of the
Cortex-M3 processor or can be made executable for the Cortex-M3 processor.

To create the independent executable images with the required memory map, the linker scripts need to
be created with the required memory map. After creating the required images for the memory map in
Production mode, these images are to be copied to an external memory such as SPI Flash, and code
shadowed by the bootloader to DDR memory or SDRAM whenever the execution of the new images is
required.

After copying the image to the DDR memory and SDRAM by the bootloader, the execution control can be
allowed to the desired image by using the following approach.

The new image address can be remapped by using the DDR_CR register to the bottom (0x0000_0000)
of the Cortex-M3 processor code region. As the new image start address is re-mapped to the Cortex-M3
processor code region 0x0000_0000, the linker scripts take care of building the images from the code
region 0x0000_0000. The DDR memory or SDRAM addresses (0xA000_0000) must not be used.
Instead, the offset address from zero has to be used in the linker scripts for this approach.

As the DDR memory or SDRAM memory address range cannot be used in the Vector table offset
register, so it is required to remap these memories to start the address of the Cortex-M3 processor code
space for the execution from these memories. This approach is explained in the flow chart shown in
Figure 15.

Microsemi Proprietary AC390 Revision 10.0 18

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories C’ MiCI'OSGmi

a A8\ MicrocHiP company

Figure 15 » Logic for Moving the Execution Control to New Image in DDR/SDR SDRAM with Remapping

Start

Y

1. In Case of DDR memory configure
the DDR memory

2. Boot loader loads the new Image
from SPI Flash/ eNVM device to DDR/
SDRAM memory

3. DDR_CR register is set for the
enabling the DDR memory address
remap to Cortex M3 bottom address space

4. Stack pointer and vector table offset
registers are set to 0x00000000

5. Program Counter is set to
(0x00000004 -1)

______________ Start

New Image starts executing from its
Y remapped address 0x00000000

Stop

Power Off

Stop

The reference design is provided with this application note with remapping. For design files, refer to
Prerequisites, page 7 and follow the steps explained in Setting Up the Demo Design, page 20 for
executing the reference design.

Table 5 lists the registers required to be set for the DDR/SDR SDRAM remapping. The SYSREG block is
located at address 040038000 in the Cortex-M3 processor address space.

Table 5 ¢ Registers Required to DDR/SDR SDRAM Remapping

Flash
Address Register Write Reset
Register Name Offset Type Protect Source Description
DDR_CR 0x8 RW-P Register sysreset n DDR control Register. Configures DDR Space.

3.741 Firmware Drivers
The following firmware drivers are used in this application:
+ MSS MMUART driver
* To communicate with serial terminal program on the Host PC

. MSS GPIO driver
. To drive onboard LEDs

Microsemi Proprietary AC390 Revision 10.0 19

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories O MI'CI'OSGMi

a @MI:HGCHIP company

3.8 Setting Up the Demo Design

The following steps describe how to set up the demo for the SmartFusion2 Advanced Development Kit
board:

1. Connect the Host PC to the J33 Connector using the USB A to mini-B cable. The USB to UART
bridge drivers are automatically detected. Download and install the drivers from
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_ Certified.zip, if the drivers are not
installed or detected automatically. Verify, if the detection is made in the device manager, as shown
in Figure 16.

Figure 16 « Device Manager

2 Device Manager e —— E=rrE= g

File Action View Help
= @|EH

4= wibd-edarap

| @ oS

> /M Computer

:» -y Disk drives

- B Display adapters

> ¢4 DVD/CD-ROM drives
,.’3\5 Human Interface Devices
b g IDE ATASATAPI controllers
b ¥ Jungo

b & Keyboards

b B Mice and other pointing devices
» B Monitors

b ¥ Metwork adapters

4 Y3 Ports (COM & LPT)

‘? Communications Port (COML)
7 FlashPro5 Port (COM31)

7 FlashPro5 Port (COM32)

"= FlashPro5 Port (COM33)

5 FlashPro5 Port (COM34)

b 2 Processors

b -% Sound, video and game controllers
b M System devices

b a Universal Serial Bus controllers

%

2. Select one of the four COM ports with Location as on USB FP5 Serial Converter C. Figure 17,
page 21 shows the Device Manager window and its properties that display the USB Serial Port
details. The COM port number is required to run the demo design.

Microsemi Proprietary AC390 Revision 10.0 20

www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories

& Microsemi

a @MI:HGCHIP company

Figure 17 » Device Manager - FlashPro5 Properties

=4 Device Manager == = \‘
File Action View Help . | .
pap el ML L | FlashPros Port (COM33) Properties (o]

457 wib4-edarap General | Port Settings I Driver I Detail5|
> {8 Computer
"y Disk rives . FashPro5 Port COM33)
» B, Display adapters -
> ¢4 DVD/CD-ROM drives
. 8% Human Interface Devices X .
b L: IDE ATA/ATAPI controllers Manfacturer: Microsemi
b & Jungo Location: on USB FP5 Serial Converter C
> i Keyboards
b B Mice and other pointing devices Device status
» I Monitors [This device is working propery. -
b ¥ Metwork adapters

T3 Ports (COM & LPT)

"? Communications Port (COML)

Y3 FlashProS5 Port (COM31)

Y3 FlashPro5 Port (COM32)

Y3 FlashProS5 Port (COM33)

Y3 FlashProS5 Port (COM34)

- J2¥ Processors

b -% Sound, video and game controllers

{8 System devices

Device type: Ports (COM & LPT)

[

. a Universal Serial Bus controllers

\ |

3. Connect the jumpers on the SmartFusion2 Advanced Dev Kit board, as shown in Table 6.

CAUTION: The power supply switch SW7 on the board should be in OFF position, while making the
jumper connections.

oK | [Cancel

Table 6 « SmartFusion2 FPGA Advanced Development Kit Jumper Settings

Jumper Pin (From) Pin (To) Comments

J116, J353, J354, J54 1 2 These are the default jumper settings of the Advanced Dev
1123 D 3 Kit board. Ensure these jumpers are set accordingly.

J124, 4121, J32 1 2 JTAG programming via FTDI

3.8.1

3.8.2

3.8.3

4. Connect the power supply to the J42 connector on the SmartFusion2 Advanced Development Kit
board.

Board Setup

Snapshots of the SmartFusion2 Advanced Development Kit board with the complete set up is given in
the Appendix 2: SmartFusion2 Advanced Development Kit Board, page 26.

Programming the Device

Program the SmartFusion2 Advanced Development Kit board with the job file provided as part of the

design files using FlashPro Express software, refer to Appendix 1: Programming the Device Using
FlashPro Express, page 23.

Running the Design
The following steps describe how to run the design.

1. Press SW9 switch to reset the board after successful programming.
Figure 18 shows the TeraTerm window.

Microsemi Proprietary AC390 Revision 10.0 21

SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM

Memories @ Micmsemi

Figure 18 « Main Menu of Re-Mapping Application Note

a A8\ MicrocHiP company

2 COM53:115200baud - Tera Term VT - 4 -—

File Edit Setup Control Window Help

fHHH Yelcome to SmartFusion2 #HHHE
Hitilt eNUM,. eSRAMB. eSRAML & DDR Re—mapping Example #itii

Please Select the Following option

1. for DDR ReMap & Boot

2. for eSRAM_B ReMap & Boot

3. for eSRAM_1 ReMap & Boot

i. for eMUM 12BKB offset ReMap & Boot

2. Based on the selection made, the pre-built image stored in eNVM is copied to the appropriate
locations (DDR, eSRAMO, or eSRAM1) and re-mapping is applied.
3. Once the re-mapping is completed, the new Image starts booting and the following messages are
shown on the serial terminal and LED starts blinking on the SmartFusion2 Advanced Development
Kit.
Note: Reset the SmartFusion2 Advanced Development Kit board to switch among the application images.

Figure 19 « Re-Mapped Image is Running

3.9

COMS53:115200baud - Tera Term VT [E=NEER

File Edit Setup Control Window Help

g Yelcome to SmartFusion2 #HHHE
Hitit eNUM,. eSRAMB. eSRAML & DDR Re—mapping Example #itii

Select the Following option
» DDR ReMap & Boot
» eSRAM_B ReMap & Boot
» eSRAM_1 ReMap & Boot
» eMUM 12BKB offset ReMap & Boot

DDR Remap
LEDz Blinking
LEDz Blinking

LEDz Blinking
LEDz Blinking
LEDz Blinking
LEDz Blinking
LEDz Blinking

For booting multiple images without remapping, refer to the AC372: SmartFusion SoC: Basic Bootloader
and Field Upgrade eNVM Through IAP Interface application note.

Conclusion

This application note explains the remapping of the eNVM, eSRAM, and DDR/SDR SDRAM memories to
the Cortex-M3 processor code region. It also explains how to execute the program code, which is built
with absolute addresses without remapping in case of eNVM and eSRAM.

Microsemi Proprietary AC390 Revision 10.0 22

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129823
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129823

Appendix 1: Programming the Device Using FlashPro Express

& Microsemi

a @Mlcno:mn company

4 Appendix 1: Programming the Device Using

FlashPro Express

This section describes how to program the SmartFusion2 device with the programming job file using

FlashPro Express.

To program the device, perform the following steps:

1. Ensure that the jumper settings on the board are the same as those listed in Table 6, page 21.
Note: The power supply switch must be switched off while making the jumper connections.

aohrwd

new job project, as shown in Figure 20.

Figure 20 » FlashPro Express Job Project

@ FlashPro Express

Project Edit View Programmer Help

Job Projects

New...
Open...

Recent Projects

or

Connect the power supply cable to the J42 connector on the board.
Power ON the power supply switch SW7.

On the host PC, launch the FlashPro Express software.
Click New or select New Job Project from FlashPro Express Job from Project menu to create a

[Z2 FlashPro Express

Project | Edit View

I = Open Job Project
¥ Close Job Project

I SaveJob Project

Set Log File

Export Log File
Preferences...

Execute Script
Export Script File...

Recent Projects

Exit

Mew Job Project from FlashPro Express Job

Programmer Help

Ctr+N
Ctrl+0

Ctrl+Shift+A

Ctri+U

Ctrl+Q

6. Enter the following in the New Job Project from FlashPro Express Job dialog box:

<download folder>\m2s_ac390 df\Programming Job
* FlashPro Express job project name: Click Browse and navigate to the location where you want to

save the project.

Programming job file: Click Browse, and navigate to the location where the .job file is located and
select the file. The default location is:

Microsemi Proprietary AC390 Revision 10.0

23

Appendix 1: Programming the Device Using FlashPro Express = .
& Microsemi

a @MI:HGCHIP company

Figure 21 » New Job Project from FlashPro Express Job

~

E lew Job Project from FlashPro Express Job X

IProgramming job file: I

Browse...
FlashPro Express job project name:
i
IFIashPro Express job project location: I
] Browse...

Help OK | Cancel]

Click OK. The required programming file is selected and ready to be programmed in the device.
The FlashPro Express window appears, as shown in Figure 22. Confirm that a programmer number
appears in the Programmer field. If it does not, confirm the board connections and click
Refresh/Rescan Programmers.

-

Figure 22 » Programming the Device

Project Edit View Programmer Help
Refresh/Rescan Programmers
© M26L010TS
Programmer
{3 TDO DI 2
j @ ¥ jo3sFiD | IDLE 1] IDLE
[PrROGRAM -

9.

Click RUN. When the device is programmed successfully, a RUN PASSED status is displayed as
shown in Figure 23.

Microsemi Proprietary AC390 Revision 10.0 24

Appendix 1: Programming the Device Using FlashPro Express c M. .
Icrosemi

a A\ MicrocHIR company

Figure 23 » FlashPro Express—RUN PASSED

Project Edit View Programmer Help

Refresh/Rescan Programmers

@ maGloloTs
Programmer

o fsrin (NSO IASHI

=

|PROGRAM |
o 1PROGRAMMERS)PASSED

Log g
[E] Messages @ Errors & Warnings @ Info

[programmer 'E2003SFJLD'
[programmer 'E2003SFJLD'

device 'M2GLO10TS® EXPORT DSN[128] = cl1f4a865c498c2bbab67c29e47f04eb :J

device 'M2GLO10TS'

[programmer 'E2003SFJLD' : device 'M2GL0O10TS' : Finished: Wed Sep 16 20:09:58 2020 (Elapsed time

00:00:27)

[programmer 'E2003SFJLD' : device 'M2GL0O10TS' : Executing action PROGRAM PASSED.

[programmer 'E2003SFJLD' : Chain programming PASSED.

Chain Programming Finished: Wed Sep 16 20:09:58 2020 (Elapsed time 00:00:27) hd

10. Close FlashPro Express or in the Project tab, click Exit.

Microsemi Proprietary AC390 Revision 10.0 25

Appendix 2: SmartFusion2 Advanced Development Kit Board c M. em’.

a AS\MicrocHip company

5 Appendix 2: SmartFusion2 Advanced
Development Kit Board

Figure 24 shows the SmartFusion2 Advanced Development Kit board.

Figure 24 » SmartFusion2 Advanced Development Kit Board

20 o,

2 o=

Microsemi Proprietary AC390 Revision 10.0 26

	1 Revision History
	1.1 Revision 10.0
	1.2 Revision 9.0
	1.3 Revision 8.0
	1.4 Revision 7.0
	1.5 Revision 6.0
	1.6 Revision 5.0
	1.7 Revision 4.0
	1.8 Revision 3.0
	1.9 Revision 2.0
	1.10 Revision 1.0

	2 Purpose
	3 SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
	3.1 Introduction
	3.1.1 SmartFusion2 Booting and Address Space Overview
	3.1.2 SmartFusion2 SoC FPGA: Cortex-M3 Processor Code Space Details

	3.2 References
	3.3 Design Requirements
	3.4 Prerequisites
	3.5 Design Description
	3.6 Hardware Implementation
	3.7 Software Implementation
	3.7.1 Remapping eNVM Address Space to Cortex-M3 Processor Code Space
	3.7.2 Remapping eNVM to Soft Core Processor Memory Map
	3.7.3 Remapping eSRAM to Cortex-M3 Processor Code Space
	3.7.4 Remapping External RAM (DDR/SDR SDRAM Interface) to Cortex-M3 Processor Code Space
	3.7.4.1 Firmware Drivers

	3.8 Setting Up the Demo Design
	3.8.1 Board Setup
	3.8.2 Programming the Device
	3.8.3 Running the Design

	3.9 Conclusion

	4 Appendix 1: Programming the Device Using FlashPro Express
	5 Appendix 2: SmartFusion2 Advanced Development Kit Board

