

AN1998

USB to I²C Bridging with Microchip USB 3.1 Gen 1 Hubs

Author: Andrew Rogers

Microchip Technology, Inc.

INTRODUCTION

The USB to I²C bridging feature gives system designers using Microchip hubs expanded system control and potential BOM reduction. The use of a separate USB to I²C device is no longer required and a downstream USB port is not lost as occurs when a standalone USB to I²C device is implemented. This feature is available on the Microchip USB5734 and USB58xx/USB59xx USB3.1 Gen 1 Hubs.

Commands may be sent from the USB Host to the internal Hub Feature Controller device in the Microchip hub to perform the following functions:

- Configure I²C Pass-Through Interface
- I²C Write
- I²C Read

SECTIONS

Section 1.0, General Information

Section 2.0, Part Number Specific Information

Section 3.0, Protouch2 DLL Implementation

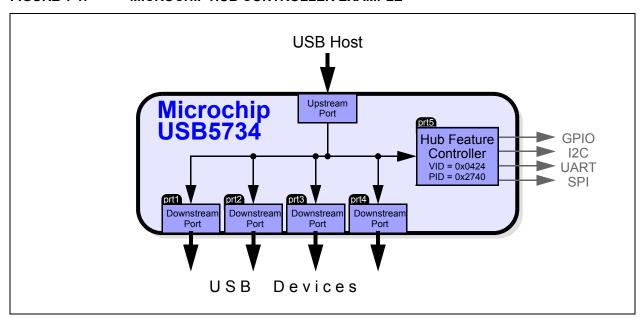
Section 4.0, Manual Implementation

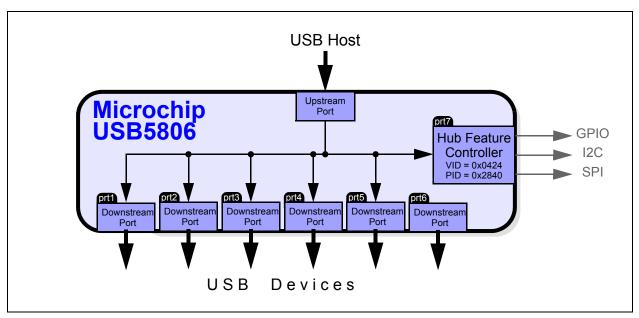
REFERENCES

Consult the following documents for details on the specific parts referred to in this document.

- · Microchip USB5734 Data Sheet
- · Microchip USB5806 Data Sheet
- Microchip USB5816 Data Sheet
- Microchip USB5826 Data Sheet
- Microchip USB5906 Data Sheet
- Microchip USB5916 Data Sheet
- · Microchip USB5926 Data Sheet
- Microchip AN1903 Configuration Options for the USB5734 and USB5744
- Microchip AN2316 Configuration Options for the USB58xx and USB59xx

1.0 GENERAL INFORMATION


Microchip hub USB Bridging features in Microchip hubs work via host commands sent to a Hub Feature Controller embedded within the hub located on an additional internal USB port. In order for the bridging features to work correctly, this internal Hub Feature Controller must be enabled by default. Table 1 provides details on default Hub Feature Controller setters by device.


TABLE 1: DEFAULT SETTINGS FOR THE HUB FEATURE CONTROLLER ENABLE

Part Number	Part Summary	Hub Feature Controller Default Setting
USB5734	4-Port USB3.1 Gen 1 Hub	Enabled by default
USB5806	6-Port USB3.1 Gen1 Hub	Enabled by default
USB5816	6-Port USB3.1 Gen1 Hub with Type-C™ Support on 1 Downstream Port	Enabled by default
USB5826	6-Port USB3.1 Gen1 Hub with Type-C Support on 2 Downstream Ports	Enabled by default
USB5906	6-Port USB3.1 Gen1 Hub with Type-C Support on the Upstream Port	Enabled by default
USB5916	6-Port USB3.1 Gen1 Hub with Type-C Support on the Upstream Port and 1 Downstream Port	Enabled by default
USB5926	6-Port USB3.1 Gen1 Hub with Type-C Support on the Upstream Port and 2 Downstream Ports	Enabled by default

The Hub Feature Controller is a USB2.0 WinUSB class device connected to an extra internal USB2.0 port in the hub. For example, in a four port hub, the Hub Controller is connected to port 5 of the USB2.0 portion of the hub. The Product ID (PID) for the Hub Controller is 0x2740. All bridging commands are addressed to the Hub Controller, not the Hub.

FIGURE 1-1: MICROCHIP HUB CONTROLLER EXAMPLE

FIGURE 1-2: MICROCHIP HUB CONTROLLER EXAMPLE

1.1 I²C Bridging Commands

The following I²C Functions are supported:

- · I2C Write
- I2C Read

1.1.1 I²C WRITE

The I^2C interface works as a complete pass-through. This means that the host must properly arrange data payloads in the appropriate I^2C compatible format and bit order, including the I^2C slave device address. Up to 255 Bytes of data payload may be sent per I^2C write command sequence.

1.1.2 I²C READ

The I^2C interface works as a complete pass-through. This means that the host must properly arrange data payloads in the appropriate I^2C compatible format and bit order, including the I^2C slave device address. Up to 255 Bytes of data payload may be sent per I^2C write command sequence.

1.2 I²C Interface Setup Requirements

1.2.1 USB5734

The I²C interface operates at 62.5kHz clock speed by default.

The USB5734 hub must be placed in either Modes 1, 2, 3, or 6 with the I2C_SLV_CFG[1:0] pins left unconnected (no pull-up/down resistors). Modes 4 and 5 do not support the I²C bridging interface.

When set in configuration modes 1, 2, 3, or 6, the PROG_FUNC4 pin becomes SMCLK, and the PROG_FUNC5 pin becomes SMDAT. Ensure that pull-up resistors are present on both SMCLK and SMDAT lines (10 k Ω is recommended).

1.2.2 USB58XX/USB59XX

The I²C interface operates at 62.5kHz clock speed by default.

The USB58xx/USB59xx hub must be placed in CONFIG1 mode via the CFG_STRAP pin. When set in configuration CONFIG1 mode, the SMCLK and SMDAT pins become the I²C interface for use with USB to I²C bridging.

2.0 PART NUMBER SPECIFIC INFORMATION

2.1 Part Summary

The following tables display the I^2C interface pins by part number.

2.2 USB5734

TABLE 2: USB5734 I2C INTERFACE PINS

Pin #	Name	Notes
1	CFG_STRAP	This pin is sampled at power on to enter one of the 6 modes of operation. The I ² C Bridge only operates with modes 1, 2, 3, and 6. The following pull-up/down resistor must be present to enter one of these modes:
		200 kΩ Pull-Down: Configuration 1 - Mixed Mode 200 kΩ Pull-Up: Configuration 2 - FlexConnect Mode 10 kΩ Pull-Down: Configuration 3 - Speed Indicator Mode 10 Ω Pull-Up: Configuration 6 - Full UART Mode
42	SPI_CLK/(I2C_SLV_CFG0)	I2C_SLV_CFG0 strap is sampled at power on and it must have no pull-up/down resistors detected at power on to enter I ² C Bridge mode.
43	SPI_DO/(I2C_SLV_CFG1)	I2C_SLV_CFG1 strap is sampled at power on and it must have no pull-up/down resistors detected at power on to enter I ² C Bridge mode.
46	PROG_FUNC4/(SMDAT)	Data pin of the I ² C Bridge. Must have an external pull-up resistor to 3.3V present.
47	PROG_FUNC5/(SMCLK)	Clock pin of the I ² C Bridge. Must have an external pull-up resistor to 3.3V present.

2.3 USB58xx/USB59xx

TABLE 3: USB58XX/USB59XX I2C INTERFACE PINS

Pin #	Name	Notes
20	CFG_STRAP	This pin is sampled at power on to enter one of the 6 modes of operation. The I ² C Bridge only operates with mode 1 (CONFIG1)
74	SMBDATA/GPIO6	Data pin of the I ² C Bridge. Must have an external pull-up resistor to 3.3V present.
75	SMBCLK/GPIO8	Clock pin of the I ² C Bridge. Must have an external pull-up resistor to 3.3V present.

3.0 PROTOUCH2 DLL IMPLEMENTATION

The simplest method for implementing the USB to I2C bridging functions is to use the publicly available ProTouch2 DLL library. The PT2 DLL library is available for Windows operating systems. Visit the product page for any of the hubs listed in this document on microchip.com to download the ProTouch2 package for the desired Operating System. Using the libraries available in the SDK, the bridging features can be implemented in C-code.

The DLL package contains the following:

- · Protouch2 DLL User Guide: Detailed description of how to use the DLL and call each function
- · Protouch2 Release notes:
- · Library Files:
 - For Windows: A ".dll" and a ".lib" file
- · Example code

3.1 Commands included in the SDK

- MchpUsbl2CSetConfig: Setup the I2C interface (such as clock speed).
- MchpUsbl2CRead: Read up to 255 Bytes of data from an I2C slave device.
- MchpUsbl2CWrite: Write up to 255 Bytes of data to an I2C slave device.
- MchpUsbl2CTransfer: Read and write from an I2C slave device.

For additional details on how to use the SDK to implement USB to I²C bridging, download the ProTouch2 package and read the User's Manual.

4.0 MANUAL IMPLEMENTATION

The USB to I²C bridging features may be implemented at the lowest level if you have the ability to build USB packets. This approach is required if you are not using a Windows host system and cannot use the ProTouch2 DLL.

The details of the I²C pass-through control packets are shown below. All USB to I²C bridging commands must be sent directly to Endpoint 0 of the Hub Feature Controller connected to the last downstream port of the Microchip hub (i.e.: located on port 5 of a 4 port hub).

4.1 I²C Control Flags

Both the Read and Write commands have a special control flag parameter which is defined below:

TABLE 4-1: USB SETUP COMMAND

Bits	Control	Usage
2-7	Reserved	n/a
2	SEND_NACK	If asserted, nack the last byte in the transfer
1	SEND_START	If asserted, send a START condition as the first step in the I ² C command.
0	SEND_STOP	If asserted, send a STOP condition as the last step of this command.

4.2 I²C Write Command

This command is used to send data to an I^2C peripheral connected to the USB hub. Both the I^2C control flags (defined in Section 4.1, "I2C Control Flags") and the I^2C slave address are bundled into the wValue field.

TABLE 4-2: USB SETUP COMMAND

Setup Parameter	Value	Description
bmRequestType	0x41	Vendor specific command, Host-to-device data transfer
bRequest	0x71	Register read command: CMD_I2C_WRITE
wValue	0xXXYY	MSB (XX): I ² C Control Flags (See Section 4.1, "I2C Control Flags") LSB (YY): I ² C Slave device address
wIndex	0x0000	Reserved
wLength	0xNN	N Bytes of data to be send in the data stage (in the OUT EP0 control transfer packets)

4.2.1 I²C WRITE USB TRANSACTION SEQUENCE

Command Phase: Hub Feature Controller receives the setup packet with the parameters specified above.

Data Phase: Host sends multiple EP0 OUT packets of 64 Bytes each with a total length of N Bytes.

Status Phase: If an IN-Zero Length Packet is sent from Hub Feature Controller, transfer was a success. If an IN-STALL packet is sent from Hub Feature Controller, there was an error during transfer, likely due to missing ACK from the I²C slave.

4.3 I²C Read Command

This command is used to read data from an I^2C peripheral connected to the USB hub. Both the I^2C control flags (defined in Section 4.1, "I2C Control Flags") and the I^2C slave address are bundled into the wValue field.

TABLE 4-3: USB SETUP COMMAND

Setup Parameter	Value	Description
bmRequestType	0x41	Vendor specific command, Host-to-device data transfer
bRequest	0x72	Register read command: CMD_I2C_READ
wValue	0xXXYY	MSB (XX): I ² C Control Flags (See Section 4.1, "I2C Control Flags") LSB (YY): I ² C Slave device address
wIndex	0x0000	Reserved

TABLE 4-3: USB SETUP COMMAND

Setup Parameter	Value	Description
wLength	0xNN	N Bytes of data to be send in the data stage
		(in the OUT EP0 control transfer packets)

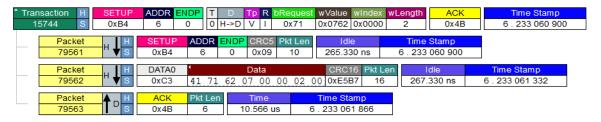
4.3.1 I²C READ USB TRANSACTION SEQUENCE

Command Phase: Hub Feature Controller receives the setup packet with the parameters specified above.

Data Phase: Hub Feature Controller sends Multiple EP0 IN packets of 64 Bytes each with a total length of N Bytes.

Status Phase: Host sends an OUT-Zero Length ACK packet to acknowledge receipt of data.

5.0 EXAMPLES


5.1 Send an I²C Write to an attached Device

 Command Phase (SETUP Transaction): Send the following SETUP Register Read Command to Endpoint 0 of the Hub Feature Controller to send an I²C Write command to the attached I²C device with the I²C Address as defined in the wValue field:

TABLE 5-1: I²C WRITE SETUP PACKET EXAMPLE

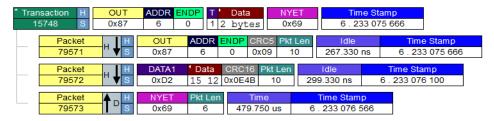

Field	Value	Note
bmRequestType	0x41	-
bRequest	0x71	-
wValue	0x0762	I ² C Control Flag 0x07, I ² C Address 0x62 (0110 0010b)
wIndex	0x0000	-
wLength	0x0002	2 Bytes of Data (Register Address + 1 Byte of Data)

FIGURE 5-1: I²C WRITE SETUP TRANSACTION EXAMPLE

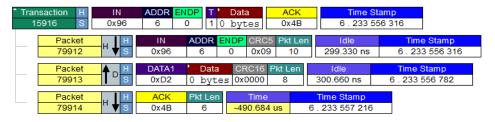

2. **Data Phase (OUT Transaction):** Host sends an OUT packet followed by the data bytes of length wLength starting from the specified address after receiving an IN packet. In this instance, register 0x12 is being written to register 0x15 (Data = 0x15, 0x12). Hub Feature Controller responds with a NYET after receiving the data.

FIGURE 5-2: I²C WRITE IN TRANSACTION EXAMPLE

3. **Status Phase (IN Transaction):** Host sends an IN packet to complete the USB Transfer. Hub Feature Controller responds with a zero length data packet. The host ACKs to complete the bridging command.

FIGURE 5-3: I²C WRITE OUT TRANSACTION EXAMPLE

5.2 Send an I²C Read to an Attached Device

1. **Command Phase 1 (SETUP Transaction 1):** Send the following SETUP Register Read Command to Endpoint 0 of the Hub Feature Controller to prepare the I²C device to return data.

TABLE 5-2: I²C READ SETUP COMMAND 1 EXAMPLE

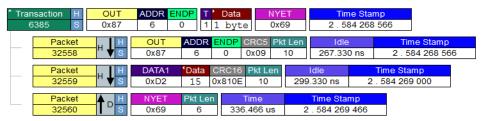

Setup Parameter	Value	Note
bmRequestType	0x41	-
bRequest	0x71	-
wValue	0x0762	Control Flag = 0x07, I ² C Address = 0x62 (01100010b)
wIndex	0x0000	-
wLength	0x0001	-

FIGURE 5-4: I²C READ SETUP TRANSACTION 1 EXAMPLE

* Transaction H 6382 S	SETUP 0xB4	ADDR E		Γ D) H->D	Tp R I	Request 0x71	wValue 0x0762		wLength 1	ACK 0x4B	Time Stamp 2 : 584 256 532
Packet 32550	H H S	SETUP 0xB4	ADDF	R ENDP 0	CRC5 0x09	Pkt Len 8	1dle 266.66			Stamp 256 532	
Packet 32551	H V S	DATA0 0xC3	41 7	1 62 0	Data 07 00	00 01 0	CRC1	6 Pkt Le		dle 000 ns	Time Stamp 2 . 584 256 932
Packet 32552	T D H	ACK 0x4B	Pkt Le		Time 7.800 us	s 2	Time Sta . 584 257				

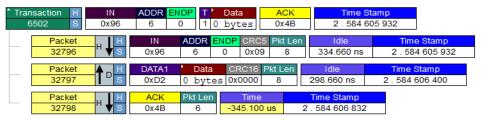
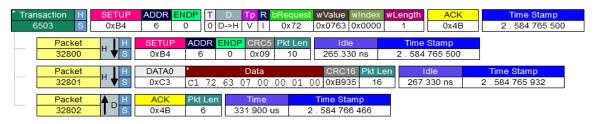

2. **Data Phase 1 (OUT Transaction 1):** Host sends an OUT packet followed by the data. The data in this instance is 0x15. Hub Feature Controller responds withe a NYET.

FIGURE 5-5: I²C READ OUT TRANSACTION 1 EXAMPLE

3. **Status Phase 1 (IN Transaction 1):** Host sends an IN packet to complete the USB Transfer. Hub Feature Controller responds with a zero length data packet. Host sends an ACK.

FIGURE 5-6: I²C READ IN TRANSACTION 1 EXAMPLE



4. **Command Phase 2 (SETUP Transaction 2):** Send the following SETUP Register Read Command to Endpoint 0 of the Hub Feature Controller to retrieve the requested data.

TABLE 5-3: I²C READ SETUP COMMAND 2 EXAMPLE

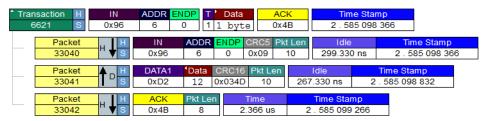

Setup Parameter	Value	Note
bmRequestType	0x41	-
bRequest	0x71	-
wValue	0x0762	Control Flag = 0x07, I ² C Address = 0x63 (01100011b)
wIndex	0x0000	-
wLength	0x0001	-

FIGURE 5-7: I²C READ SETUP TRANSACTION 2 EXAMPLE

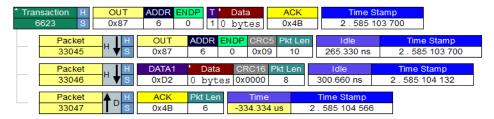

5. **Data Phase 2 (IN Transaction 2):** Host sends and IN packet, and Hub Feature Controller responds with the register contents (0x12). Host responds with an ACK.

FIGURE 5-8: I²C READ IN TRANSACTION 2 EXAMPLE

6. **Status Phase 2 (OUT Transaction 2):** Host sends an OUT packet followed by a zero data length packet. Hub Feature Controller responds with an ACK to complete the bridging command.

FIGURE 5-9: I²C READ OUT TRANSACTION 2 EXAMPLE

APPENDIX A: APPLICATION NOTE REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision Level & Date	Section/Figure/ Entry	Correction
DS00001998B (12-07-16)	All	Fixed references to AN2316 Configuration Options for the USB58xx and USB59xx throughout.
		Trademark and Sales Listing pages updated.
		Updated minor formatting and grammar issues throughout.
DS00001998A (09-10-15)	All	Initial release.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1170-3

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2393
China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820