

APPLICATION NOTE

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111

Atmel QTouch

Features

• Overview of the Atmel® AT42QT1110 and Atmel AT42QT1111

• Circuit Configuration with Host MCU

• SPI Communication

• Demonstration Program

Introduction

This application note explains the communication of Master SPI controller with
AT42QT1110 or AT42QT1111 as a slave device. It demonstrates configuring and
controlling various parameters of these devices.

The host code example provided has been developed for 8-bit Atmel megaAVR®
(Atmel ATmega2560) microcontroller but can be easily adapted for other platforms.

The example code is written in C and supports both GCC (Atmel Studio) and IAR™
(IAR Embedded Workbench®) compiler.

42040A−AVR−10/2012

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111 [APPLICATION NOTE]
42040A−AVR−10/2012

2

Table of Contents

1. Overview of the Atmel AT42QT1110 and AT42QT1111 3
1.1 Introduction ... 3
1.2 Host Interface .. 3

2. Circuit Configuration with Host microcontroller 3

3. SPI Communication ... 4
3.1 Specifications for the Atmel AT42QT1110 and AT42QT1111 4
3.2 SPI Driver implementation .. 5
3.3 SPI Command types for the Atmel AT42QT1110 and AT42QT1111 5

4. Demonstration Program ... 6
4.1 Program Flow .. 6
4.2 Files 7
4.3 Functions .. 8

5. Porting code to other platforms .. 9
5.1 Change Pin ... 9
5.2 Reset Pin .. 9
5.3 SPI Driver .. 10

5.3.1 Pins for SPI Communication ... 10
5.3.2 SPI Initialization .. 10
5.3.3 SPI data transfer ... 10

6. Revision History ... 11

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111 [APPLICATION NOTE]
42040A−AVR−10/2012

3

1. Overview of the Atmel AT42QT1110 and AT42QT1111

1.1 Introduction
The AT42QT1110 and AT42QT1111 are devices based on the Atmel QTouch® technology designed for capacitive
touch key applications. Both the devices are designed to work in two configurations:

• 7 – Key Mode

The device can support up to seven keys and drive matching Detect Outputs to a user configurable PWM.

• 11 – Key Mode

The device can support up to 11 keys and can send key status information over SPI interface to a host
microcontroller.

1.2 Host Interface
The AT42QT1110 and AT42QT1111 communicate with the host microcontroller using SPI interface. This bus protocol
takes care of all addressing functions and bidirectional data transfer.

In addition, the devices features a CHANGE pin, which can be used either to wake the host (useful in a battery

powered application) or as an interrupt signal to inform the host when the QT™ device has detected a touch.

The CHANGE pin can be left unconnected in systems where the QT device is polled on a regular basis.

2. Circuit Configuration with Host microcontroller
Following are the connections used in the demonstration program.

Table 2-1. Connection between Host microcontroller and QT device.

Atmel ATmega2560 AT42QT1110 and AT42QT1111

PD0 (Pin 43) CHANGE

PD1 (Pin 44) RESET

PB0 (Pin 19) SS

PB1 (Pin 20) SCK

PB2 (Pin 21) MOSI

PB3 (Pin 22) MISO

The hardware SPI module of the ATmega2560 is used in this demonstration. The SPI module of ATmega2560 is
available in the corresponding pins mentioned in the Table 2-1.

External pull-up resistors of 10KΩ on the RESET and the CHANGE lines are needed.

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111 [APPLICATION NOTE]
42040A−AVR−10/2012

4

Figure 2-1. Circuit configuration with Host microcontroller.

The demonstration program provides the visual feedback of the key touch status using LEDs. In the provided code, the
PORT C of the Host microcontroller has been configured for this purpose.

3. SPI Communication

3.1 Specifications for the Atmel AT42QT1110 and AT42QT1111
The host communicates with the AT42QT1110 and AT42QT1111 over SPI using master-slave relationship, with QT
devices acting in slave mode. There are a few specifications with regards to communication. These are mentioned
below.

• The AT42QT1110 SPI Interface can operate at speed of up to 1.5MHz

• The AT42QT1111 SPI Interface can operate at speed of up to 750kHz

• The most significant bit (MSB) is the first byte in a byte of transmitted data

• Both master and slave set up data on the leading edge and read on the trailing edge

• The AT42QT1110 and AT42QT1111 require that the clock idles “high”

• In AT42QT1110 a minimum delay of 150μS is required between transmissions of each byte in case of multi-
byte communication

• In AT42QT1111 a minimum delay of 300μS is required between transmissions of each byte in case of multi-
byte communication

• If there is a delay of more than 100ms between two bytes in a multi-byte communication, then such a
transmission is discarded

Note: Refer to respective device datasheets for other timing specifications.

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111 [APPLICATION NOTE]
42040A−AVR−10/2012

5

3.2 SPI Driver implementation
The SPI driver in this demonstration program is developed for the Atmel ATmega2560. SPI Peripheral for this device is
available in PORTB. Refer to Table 2-1 and Figure 2-1 for details.

Following are the functions used to implement the SPI driver:

Function Description
void SPI_MasterInit
(uint8_t sck_fosc_div)

Initializes the SPI module of the Host microcontroller

Input sck_fosc_div - Division Factor to generate SCK Frequency.
The following macros are the allowable inputs as arguments
SCK_FOSC_DIV_2
SCK_FOSC_DIV_4
SCK_FOSC_DIV_8
SCK_FOSC_DIV_16
SCK_FOSC_DIV_32
SCK_FOSC_DIV_64
SCK_FOSC_DIV_128

Output NA

uint8_t SPI_TransferByte
(uint8_t DataOut)

Simultaneously transmits and receives an 8-bit data

 Input DataOut - Data to be transmitted by master (unsigned 8-bit)

Output DataIn - Data received from slave (unsigned 8-bit)

3.3 SPI Command types for the Atmel AT42QT1110 and AT42QT1111
There are three types of communication commands between Host microcontroller and AT42QT1110 and AT42QT1111.
Please refer to the device datasheet Section 4.1.4 for details of these commands.

• Control Commands
A control command is an instruction sent to the QT devices that controls the operations of the device and for
which no response is required.
All control commands, without CRC enabled, require a single byte exchange.
“Send Setups” (0x01) is an exception although, and needs to transmit 42 bytes of data for the setup block. In the
demonstration program function ReadSetupBlock(void) is written separately for this special instruction.

• Report Requests
A report request is an instruction sent to the QT devices to return status information.
All report request commands are multi-byte exchanges. Each command has its own expected number of return
bytes. “Null” command (0x00) has to be transmitted by the host device to receive data.

• Setup commands
These commands are used to access and modify single bytes in the register map of the QT devices.
• Set Instruction
• Get Instruction

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111 [APPLICATION NOTE]
42040A−AVR−10/2012

6

4. Demonstration Program
The demonstration program shows how to use the host interface to read real time touch information from QT devices. It
also demonstrates the procedure to read and write the setup block which helps to tune the operating parameters of the
device.

The source code has flexible implementation of the CRC based communications feature. The CRC feature can be
enabled by ENABLE_CRC macro available in the configuration.h file.

4.1 Program Flow

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111 [APPLICATION NOTE]
42040A−AVR−10/2012

7

4.2 Files
The folder structure for the demonstration program is shown below.

The source code consists of the following files:

File name Description

main.c Application code to be written here

configuration.h Device selection settings to be done here

QT1110.c Application interfaces to be used to drive the QT device

QT1110.h Setup Block structure and function prototypes

SPI_Master.c SPI driver code

SPI_Master.h Header file for the SPI driver

CRC_Calc.c Contains algorithm for 8-bit CRC checksum calculation

CRC_Calc.h Header file for CRC

LED.c Handling LED update based on touch key status

LED.h Header file for LED source file

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111 [APPLICATION NOTE]
42040A−AVR−10/2012

8

4.3 Functions
Function Description
void ResetQT(void) Performs a hardware reset of the QT device by pulling down the RESET pin

of the QT device

Input NA

Output NA

void InitQtInterface(void) Performs SPI Master initialization and configures a selected GPIO as input
to detect the state of CHANGE pin of the QT device

Input NA

Output NA

void GetCommsReady(void) Uses the SPI command to read the Device ID to ensure proper
communication

Input NA

Output NA

uint8_t ControlCommand
(uint8_t Command)

Sends Control Command instruction

Input Command - control command (unsigned 8-bit)

Output Returns TRUE if successful or FALSE otherwise

uint8_t ReportRequest
(uint8_t Command, uint8_t
NumBytes, uint8_t *DataAddr)

Sends Report Request instruction

Input Command - report request command (unsigned 8-bit)

NumBytes - number of bytes of return data (unsigned 8-bit)

*DataAddr - pointer to byte array for returned data

Output Returns TRUE if successful or FALSE otherwise

uint8_t SetInstruction(uint8_t
Command, uint8_t SetData)

Sends Set Command instruction

Input Command - set command (unsigned 8-bit)

SetData - data to be set (unsigned 8-bit)

Output Returns TRUE if successful or FALSE otherwise

uint8_t GetInstruction(uint8_t
Command, uint8_t *ReadPtr)

This function is used to send Get Command instruction to QT device

Input Command - Get command (unsigned 8-bit)

*ReadPtr - Pointer to byte for received data

Output Returns TRUE if successful or FALSE otherwise

uint8_t ReadSetupBlock(uint8_t
ReadLength, uint8_t *ReadPtr)

Reads the entire setup block

Input ReadLength - Length of the setup block. Only allowable input
is the macro SETUP_BLOCK_LENGTH
*ReadPtr - Pointer to byte array for read data

Output Returns TRUE if successful or FALSE otherwise

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111 [APPLICATION NOTE]
42040A−AVR−10/2012

9

uint8_t WriteSetupBlock(uint8_t
WriteLength, uint8_t *WritePtr)

Writes the entire setup block

Input ReadLength - Length of the setup block. Only allowable input
is the macro SETUP_BLOCK_LENGTH
*WritePtr - Pointer to byte array containing write data

Output Returns TRUE if successful or FALSE otherwise

uint8_t ReadKeyStatus(uint8_t
ReadLength, uint8_t *ReadPtr)

Read status of all keys

Input ReadLength - Number of bytes to read

*ReadPtr - Pointer to byte array for read data

Output Returns TRUE if successful or FALSE otherwise

void InitTouchStatusPorts(void)

Configure the PORTC pins 0 to 3 for displaying touch status

Input NA

Output NA

void UpdateLedStatus(uint8_t
*QtStatusPtr)

update touch key status through LED indications

Input QtStatusPtr : Pointer to byte array for Qtouch‐data

Output NA

5. Porting code to other platforms
This section discusses the parts of the demonstration program which needs modification while porting to other MCUs.

5.1 Change Pin
The CHANGE pin of the QT device must be connected to a MCU pin which can be configured as an input.

To assign any particular pin the following MACROs declared in configuration.h needs to be modified.

// CHANGE Status port and pin configuration
#define CHANGE_STATUS_PORT D // PORT
#define CHANGE_STATUS_PIN 0 // Pin Number

5.2 Reset Pin
The RESET pin of the QT device must be connected to a MCU pin which can be configured as an output. The

configuration of the MCU pin is done in the function ResetQT(void) in the QT1110.c file.

To assign any particular pin the following MACROs declared in configuration.h needs to be modified.

// RESET port and pin configuration
#define RESET_PORT D // PORT
#define RESET_PIN 1 // Pin Number

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111 [APPLICATION NOTE]
42040A−AVR−10/2012

10

5.3 SPI Driver
The device level drivers for SPI communication will be specific to the MCU platform used. The details of the SPI driver
implementation has been provided in Section 3.2.

5.3.1 Pins for SPI Communication
Pins for the SPI communication are configured in SPI_Master.h file. For porting to any other Atmel megaAVR or Atmel
tinyAVR® one can simply configure the SPI pins as per the device datasheet. In the current demonstration program the
following configuration has been made.

#define SPI_PORT PORTB
#define SPI_DDR DDRB

#define SPI_SS DDB0
#define SPI_SCK DDB1
#define SPI_MOSI DDB2
#define SPI_MISO DDB3

#define SS PB0

5.3.2 SPI Initialization
The initialization routine for SPI master module must be done in void SPI_MasterInit(uint_8 sck_fosc_div).

The implementation can be made for a fixed SCK frequency rather than a configurable one. The SCK frequency should
not exceed the maximum speed supported by the QT device.

5.3.3 SPI data transfer
The data transfer routine should be able to handle bidirectional data transfer. One byte of data (unsigned 8-bit) is
transmitted on MOSI and received in MISO line simultaneously. The data to be transmitted is passed as an argument to
the function and returns the received data.

Atmel AVR3003: Driving AT42QT1110 and AT42QT1111 [APPLICATION NOTE]
42040A−AVR−10/2012

11

6. Revision History
Doc. Rev. Date Comments

42040A 10/2012 Initial document release

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg.
1-6-4 Osaki, Shinagawa-ku
Tokyo 141-0032
JAPAN
Tel: (+81)(3) 6417-0300
Fax: (+81)(3) 6417-0370

© 2012 Atmel Corporation. All rights reserved. / Rev.: 42040A−AVR−10/2012

Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, megaAVR®, QTouch®, tinyAVR®, and others are registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Overview of the Atmel AT42QT1110 and AT42QT1111
	1.1 Introduction
	1.2 Host Interface

	2. Circuit Configuration with Host microcontroller
	3. SPI Communication
	3.1 Specifications for the Atmel AT42QT1110 and AT42QT1111
	3.2 SPI Driver implementation
	3.3 SPI Command types for the Atmel AT42QT1110 and AT42QT1111

	4. Demonstration Program
	4.1 Program Flow
	4.2 Files
	4.3 Functions

	5. Porting code to other platforms
	5.1 Change Pin
	5.2 Reset Pin
	5.3 SPI Driver
	5.3.1 Pins for SPI Communication
	5.3.2 SPI Initialization
	5.3.3 SPI data transfer

	6. Revision History

