AVR32739: AVR32 UC3 Low power software
design

Features

* Pin configurations

* Using sleep modes

» Using the power manager
Switching the main clock
Clock masking
Clock scaling

» Software considerations

1 Introduction

Reducing the power consumption of a microcontroller in a “Low Power Software
Design” demands an in-depth knowledge of the device and the application design.

This application shall give a developer an overview of available features on the
UC3A and UC3B devices that help to decrease power consumption. Most parts of
the application note are also applicable for other AVR®32 devices.

AIMEL

@

AIMEL

I 5

32-bit AVR

Microcontrollers

Application Note

Rev. 32093B-AVR32-05/08

ATmEL

2 Pin configurations

After a reset all multiplexed pins of the device are configured as inputs. Depending on
the design some pins are then configured as outputs, inputs with internal pull-up
enabled or dedicated to a peripheral function. This has an impact on the power
consumption of the device in the different power save modes.

To easily measure the power consumption due to the pin settings do following
measurements:

1. Set all pins to inputs, enable all internal pull-ups and measure the power
consumption.

2. Set the pins to the default configuration of the application and measure the
power consumption.

This measurement is especially meaningful if it is done in one of the power save
modes (sleep modes) because in these states also very low extra power consumption
is directly visible.

The set the device into the lowest possible power mode all pins should be configured
as inputs with pull-ups enabled followed by entering the “static’ mode. More
information about the different sleep modes is available in chapter 3.

2.1 Not connected pins

All pins that are not connected externally to pull-ups, pull-downs, ground or power
should be left as inputs but with the internal pull-up enabled. This ensures the lowest
possible power consumption.

3 Sleep modes

3.1 Introduction

In normal operation, all clock domains are active, allowing software execution and
peripheral operation. When the CPU is idle, it is possible to switch off the CPU clock
and optionally other clock domains to save power.

3.2 Functional description

3.2.1 Sleep mode instruction

A sleep mode is activated by the sleep instruction, which takes the sleep mode index
number as argument. This sleep instruction is defined in the AVR32 architecture
document as follows:

SLEEP - Set CPU Activity Mode
Architecture revision:

Architecture revision1 and higher.
Description

Sets the system in the sleep mode specified by the implementation defined
Op8 operand. The semantic of Op8 is IMPLEMENTATION DEFINED.

Operation:

2 AVR32739

32093B-AVR32-05/08

AVR32739

I. Set the system in the specified sleep mode.
Syntax:

I. sleep Op8
Operands:

I.Op8¢€{0,1, ..., 255}
Status Flags:

Q: Not affected

V: Not affected

N: Not affected

Z: Not affected

C: Not affected

Opcode:

31 29 28 25 24 20 19 16
1 1 1o 170 01" 170" "1 1[0 0 0o o]
15 8 7 0

op8]

Note: The sleep instruction is a privileged instruction, and will trigger a Privilege
Violation exception if executed in user mode.

The operand is device specific as not all devices may support the same sleep modes.
Take a look at the device datasheet for supported sleep modes and valid operand
values.

Entering sleep mode in C-code

The UC3 software framework provides a wrapper for the sleep instruction. Include the
power manager driver in you software design and enter a sleep mode with:

SLEEP(AVR32_PM_SMODE_IDLE);
Valid sleep mode macros are in the power manager driver header file.
The wrapper turns the above line into an inline assembly instruction.

__asm__ _ volatile__ ("sleep 0");

3.2.2 Entering and exiting sleep modes

32093B-AVR32-05/08

The sleep instruction will halt the CPU and all modules belonging to the stopped clock
domains. The modules will be halted regardless of the bit settings of the mask
registers (see chapter 4.2 for more details about clock masking).

Oscillators and PLLs can also be switched off to save power. Some of these modules
have a relatively long start-up time, and are only switched off when very low power
consumption is required.

The CPU and affected modules are restarted when the sleep mode is exited. This
occurs when an interrupt triggers. Note that even if an interrupt is enabled in sleep
mode, it may not trigger if the source module is not clocked.

AIMEL 3

L JO

3.2.2.1 Supported sleep modes

ATmEL

The behavior of the device upon entering a sleep mode is implementation defined.
Therefore a look into the datasheet of the device is necessary to obtain the correct
specification. Table 3-1 lists the available sleep modes of the UC3A series and may
serve as an overview for all other devices as their behavior is close to this.

Table 3-1 UC3A sleep modes

Sleep Mode | Description Wake-up source
The CPU is stopped, the rest of the chip is
Idle operating. Any interrupt
CPU and HSB modules are stopped, Any interrupt from PB
Frozen peripherals are operating. modules

All synchronous clocks are stopped, but
oscillators and PLLs are running, allowing
Standby quick wake-up to normal mode. RTC or external interrupt

As Standby, but Oscillator 0 and 1, and the
PLLs are stopped. 32 KHz (if enabled) and RC | RTC, external interrupt or
Stop oscillators and RTC/WDT still operate. external reset pin

All synchronous clocks, Oscillator 0 and 1 and
PLL 0 and 1 are stopped. 32 KHz oscillator

can run if enabled. RC oscillator still operates.
Bandgap voltage reference and BOD is turned | RTC, external interrupt or

DeepStop off. external reset pin
All oscillators, including 32 KHz and RC External interrupt in
oscillator are stopped. Bandgap voltage asynchronous mode or
Static reference BOD detector is turned off. external reset pin

3.2.2.2 Precautions when entering sleep mode

4 AVR32739

Modules communicating with external circuits should normally be disabled before
entering a sleep mode that will stop the module operation. This prevents erratic
behavior when entering or exiting sleep mode. Please refer to the relevant module
documentation for recommended actions.

Communication between the synchronous clock domains is disturbed when entering
and exiting sleep modes. This means that bus transactions are not allowed between
clock domains affected by the sleep mode. The system may hang if the bus clocks
are stopped in the middle of a bus transaction.

The CPU is automatically stopped in a safe state to ensure that all CPU bus
operations are complete when the sleep mode goes into effect. Thus, when entering
Idle mode, no further action is necessary.

When entering a sleep mode (except Idle mode), all HSB masters must be stopped
before entering the sleep mode. Also, if there is a chance that any PB write
operations are incomplete, the CPU should perform a read operation from any
register on the PB bus before executing the sleep instruction. This will stall the CPU
while waiting for any pending PB operations to complete.

32093B-AVR32-05/08

3.2.3 Wake-up examples

AVR32739

3.2.3.1 Wake-up by an internal interrupt

3.2.3.2 Wake-up with the RTC

Depending on the sleep mode an internal interrupt can force the device to leave the
sleep mode. This is very useful for the USB module. This module has various
interrupts that can be used to wake-up the device. It is possible to wake-up when data
is transferred on the USB bus or when device is plugged into the USB connector.

The RTC has an additional wake-up feature that makes it possible to leave sleep
modes where the internal interrupt controller is disabled. The RTC wake-up needs
therefore no ISR and after a wake-up the code is executed right after the sleep
instruction. By using the RTC a dedicated sleep time is possible. The example
application “rtc_wakeup_example” included with this application note shows the
usage of the RTC wake-up. More information is available in the source code
documentation.

3.2.3.3 Wake-up from Static sleep mode

3.2.4 Conclusion

4 Power manager

A wake-up of the device from Static sleep mode is only possible by an asynchronous
interrupt on the external interrupt controller or by a reset. The example application in
DRIVERS/EIC/EXAMPLE1 in the software framework shows how this can be
implemented with an external interrupt. More information is available in the source
code documentation.

Using sleep modes instead of polling or endless loops is very effective in reducing
power consumption. The different wake-up methods provide a broad spectrum from
that a developer can choose a method that fits his design best.

The power manger is an important part in the goal of reducing the power
consumption. The use of this module is therefore recommended to gain of several
power saving features. The power manager handles among other things the sleeping
mechanism described in chapter 2. A driver and some examples for this module is
available in the software framework in the directory DRIVERS/PM.

4.1 Switching the main system clock

4.1.1 Introduction

32093B-AVR32-05/08

The synchronous clock generator can be clocked from one of three sources as
described in Figure 4-1 and this clock is named “main clock”.

AIMEL 5

L JO

4.1.2 Functional description

4.1.2.1 Cautionary note

ATmEL

Figure 4-1 Input sources for the synchronous clocks

- Synchronous
RCOSC | Synchronous clocks
" | Clock Generator CPU, HSB,
- PBA, PBB
Oscillator 0 o
»| PLLO
Oscillator 1 »| PLLI1
- .
Generic Clock)
—=Generic clockss

Generator

Yy

These sources are the internal RC-Oscillator, the internal PLLO and the external
Oscillator 0. By default, the main clock will be connected to the internal RC-Oscillator.
It is possible to switch the input source of the synchronous clock generator on-the-fly.
This feature makes it possible to adjust the system performance according to the
current requirements by switching the input clock. This advance is also a power
saving feature.

The input clock for the synchronous clock generator is selectable in the Main Clock
Control (MCCTRL) register in the MCSEL bit-field. This must only be done after that
clock source has been enabled, otherwise a deadlock will occur. Care should also be
taken that the new frequency of the synchronous clocks does not exceed the
maximum frequency for each clock domain. This data is available in the “Electrical
Characteristics” chapter of the datasheet.

Be advised that switching the main clock has also an impact on all modules
connected to the peripheral bus. The baud rate of the USART module, for instance,
needs to be recalculated upon switching of the bus clock.

When switching to high frequency clocks a wait state for the Flash is needed. The
maximum operating frequency for each wait state setting is available in the datasheet
in the “Electrical Characteristics” chapter. The software framework provides an
example application in the directory DRIVERS/PM/EXAMPLE?2 that sets up a PLL
and configures a wait state for Flash access.

4.1.3 Using the clock switching feature

6 AVR32739

The example application in DRIVERS/PM/EXAMPLE1 in the software framework
shows how the main clock can be switched. In the example the device starts up with
the internal RC oscillator and switches then to the external oscillator. In addition an
output is generated from a generic clock that is fed from the same external oscillator.

32093B-AVR32-05/08

4.1.4 Conclusion

AVR32739

Another example for clock switching is available in DRIVERS/PM/EXAMPLE2. In this
example the system switches first to the external oscillator, then sets up a PLL and
switches to it.

Take a look at the source code documentation for more information about the
example application.

Switching the main clock of the system is quickly done and but needs extra caution
for modules that use this clock to generate a fixed frequency or data rate. Depending
on the developers system design it may be better to scale the clock instead of
switching it. Clock scaling is described in chapter 4.3.

4.2 Peripheral clock masking

4.2.1 Introduction

4.2.2 Functional description

4.2.2.1 Cautionary note

By default, the clocks for all modules are enabled, regardless of which modules are
actually being used. Because of that it is essential to disable a module clock if it is not
used in order to reduce power consumption. A list of current consumption for each
module is available in the “Electrical Characteristics” chapter under the title “Power
Consumption” in the device datasheet. The table in that chapter describes the power
consumption of a peripheral in active mode on a per MHz basis. This data can be
used in power consumption estimations.

It is possible to disable the clock for a module in the CPU, HSB, PBA, or PBB clock
domain by writing the corresponding bit in the Clock Mask register
(CPU/HSB/PBA/PBB) to 0. The register content is implementation defined because
its content depends on the available on-chip modules. When a module is not clocked,
it will cease operation, and its registers cannot be read or written. The module can be
re-enabled later by writing the corresponding mask bit to 1. A module may be
connected to several clock domains, in which case it will have several mask bits. A
good overview over which module is clocked from which clock domain (or in other
words, which module is connected to which bus) is available in the device block
diagram in the datasheet.

Note that clocks should only be switched off if it is certain that the module will not be
used. Switching off the clock for the internal RAM will cause a problem if the stack is
mapped there. Switching off the clock to the Power Manager (PM), which contains the
mask registers, or the corresponding PBx bridge, will make it impossible to write the
mask registers again. In this case, they can only be re-enabled by a system reset.

4.2.2.2 Clock synchronization delay

32093B-AVR32-05/08

Due to synchronization in the clock generator, there is a slight delay from a mask
register is written until the new mask setting goes into effect. When clearing mask
bits, this delay can usually be ignored. However, when setting mask bits, the registers
in the corresponding module must not be written until the clock has actually be re-
enabled. The status flag MSKRDY in ISR provides the required mask status
information. When writing either mask register with any value, this bit is cleared. The
bit is set when the clocks have been enabled and disabled according to the new mask

AIMEL 7

L JO

ATmEL

setting. Optionally, the Power Manager interrupt can be enabled by writing the
MSKRDY bit in IER.

4.2.3 Using the clock masking feature

4.2.4 Conclusion

8 AVR32739

The clock masks for the different clock domains on the AVR32 UC3A devices look as
described in Table 4-1. For other devices the modules listed in their according clock
masks may vary depending on the available on-chip modules. Some modules are
connected to two clock domains. This is visible in Table 4-1 for the USBB module.
Therefore two clocks must be disable to disable the module completely. For a
detailed description about the different clocks take a look at the module specific
chapter in the datasheet.

Table 4-1 Maskable module clocks in the AT32UC3A

Bit CPUMASK HSBMASK PBAMASK PBBMASK
0 OCD Clock FLASHC INTC HMATRIX
1 OCD PBA bridge GPIO USBB

2 - PBB bridge PDCA FLASHC
3 - USBB PM/RTC/EIC MACB

4 - MACB ADC SMC

5 - PDCA SPI0 SDRAMC
6 - EBI SPI1 -

7 - - USARTO -

8 - - USART1 -

9 - - USART2 -

10 - - USART3 -

11 - - PWM -

12 - - SSC -

13 - - TC -

31:15 | - - - -

In order to disable a module the according clock mask bit in the register
CPU/HSB/PBA/PBBMASK must be cleared. To disable USARTO, for instance, the bit
USARTO has to be cleared in the register PBAMASK. The on-chip debug system can
be disabled to reduce power consumption if the need for debugging the device is not
necessary any more. This is the case when a product is ready for production.

The example application “clock_masking_example” included with this application note
shows the use of the clock masking feature on the EVK1100 board. Use the tree
buttons on the board to enable/disable module clocks. A detailed description is
included in the source code documentation.

The clock masking is a powerful feature to reduce power consumption. The developer
should consider disabling all on-chip modules that are not being used in an
application. This may be done in advance to disable modules that are not used at all
or during runtime to disable a module in periods where it is not needed. Modules can
also be disabled by the sleep instruction regardless of the mask settings. This is
described in chapter 2.

32093B-AVR32-05/08

4.3 Clock scaling

4.3.1 Introduction

4.3.2 Functional description

32093B-AVR32-05/08

AVR32739

Modules on the peripheral busses may not need their bus to run at the maximum
speed. This is the case when a low data bandwidth is expected on the bus or some
peripherals connected to the bus are not used at all. This depends of course on the
design the developer has in mind with the device. If the bus bandwidth utilization is
low it is possible to decrease the bus clock and thus saving power.

In contradiction to the above mentioned circumstances it is often the case that
peripherals do a lot of data transfers without much CPU intervention or processing.
An example for such a case is when peripherals make use of the DMA controller. As
the CPU does not need to do much work it is possible to decrease its clock speed
and thus reduces the power consumption.

Adjusting clock speeds and thus the bandwidth of the busses or the performance of
the CPU is possible in the power manager. In the register CLKSEL a prescaler is
configurable for each of the four synchronous clocks CPU, HSB, PBA and PBB.
Actually only three of them are configurable because the HSB clock is coupled to the
CPU clock on the UC3 series. By default, the synchronous clocks run on the
undivided main clock.

The main clock can be divided by an 8-bit prescaler, and each of these four
synchronous clocks can run from any tapping of this prescaler, or the undivided main
clock, as long as fcpy 2 fegap,. Figure 4-2 shows an overview of the synchronous
clock generator.

Figure 4-2 Synchronous clock generation

Sieep Sleep
instruction Controller

__________ o |

L

I

Mask — = I CPU clocks—®
\—|=-Hssc|ocks—b
PBAclocks™ ™
PBB clocks ™

—Slow clack:
——0s¢0 clock =
—PLLO clock L=l

Prescaler

|
I

CPUMASK |1
||
|
I
I

—_—— e — ——— =

CKSEL can be written without halting or disabling peripheral modules. Writing CKSEL
allows a new clock setting to be written to all synchronous clocks at the same time. It
is possible to keep one or more clocks unchanged by writing the same value a before
to the xxxDIV and xxxSEL bitfields. This way, it is possible to e.g. scale CPU and

AIMEL 0

L JO

4.3.2.1 Clock ready delay

4.3.3 Using the clock scaling

4.3.4 Conclusion

ATmEL

HSB speed according to the required performance, while keeping the PBA and PBB
frequency constant.

There is a slight delay from the moment CKSEL is written and the new clock setting
becomes effective. During this interval, the Clock Ready (CKRDY) flag in ISR will
read as 0. If IER:CKRDY is written to 1, the Power Manager interrupt can be triggered
when the new clock setting is effective. CKSEL must not be re-written while CKRDY
is 0, or the system may become unstable or hang.

The example application “cpu_frequ_scaling_example” included with this application
note shows the usage of the clock scaling. It adjusts the CPU clock (and HSB clock
as it is coupled to the CPU clock) according to the buttons the user presses. More
detailed information is available in the source code documentation of the example
application.

As described in the previous chapters, the clock scaling may be used to adjust
performance to the system requirements. The needed scaling can be configured as a
static setup or on-the-fly to follow changing performance needs. Thus a system that is
using this feature consumes only that much energy as it really needs.

5 Software considerations

5.1 Introduction

Power saving features of a device are useless, or even the cause of malfunctions,
unless the user makes proper use of them. It makes a big difference in the achieved
power savings when a developer implements the right power saving features at the
appropriate places in his software design.

5.2 Using sleep modes: Tips & Tricks

10

AVR32739

Listed below are some tips and tricks regarding the usage of sleep modes in an
application. Take a look at them and reconsider where they could be useful in your
application.

e In order to make use of the sleep modes the development system must be event
driven. Basically this means do not use polling wherever this is possible because it
prevents you from going to sleep. Use interrupts instead of polling to be able to
sleep until an event occurs.

e The easiest way to go to sleep (easy because no additional actions to the sleep
instruction have to be taken) is to use the Idle sleep mode. This will only turn off
the CPU but lets the rest of the system running. Use this sleep mode extensively
whenever your application is idle and has to wait for an event. After a wake-up
from an event the according interrupt service routine is executed(if available for
the event as it is possible for external interrupts to wake-up the application without
running a ISR) and after that the code after the sleep instruction is executed.

e Often it is the case that developers use some kind of counting loop to delay code
execution. Instead of using such a loop the use of the sleep instruction in

32093B-AVR32-05/08

5.3 Interrupts

AVR32739

combination with a timer would it make possible to let the CPU sleep instead of
counting.

o Entering the other sleep modes takes more caution because the system busses
are affected and it needs to be made sure that no current data transfer is ongoing
or will occur during the sleep mode. The benefit of the “deeper” sleep modes is of
course a lower power consumption and makes this effort worth while. A save way
to enter a sleep mode “below” the Idle mode can be done as follows:

1. Stop all HSB masters to avoid data transfers during sleep on the bus

2. Read out any register on the PB bus to make sure that no write operation is
ongoing on the bus because the CPU will stall while waiting for any pending
PB operations to complete.

3. When disabling clocks for modules that communicate with external circuits,
the module itself should be disabled first. This prevents erratic behavior when
entering or exiting sleep mode.

After these steps it is save to enter the other sleep modes. These sleep modes
are adequate for “longer periods” of sleeping.

Keeping interrupts as short as possible results in shorter times intervals in which the
system is awake. Only the most important things should be implemented in an
interrupt service routine and all other processing should be done in the main code.
Data processing that needs to be done after an interrupt service routine has occurred
can be done at a later time point and maybe also at another CPU speed.

5.4 Adjusting system performance

6 References

32093B-AVR32-05/08

As described in chapter 4.3 the system performance can be adjusted to the current
needs. This can be done either from start, according to performance estimations, or
on-the-fly on a running system to adjust the performance to the current condition.

The clock speed of the peripheral busses should be estimated during prototyping by
calculating the needed bandwidth and testing the settings on the hardware. The
adjustment of the PB on-the-fly is not recommended as all clock settings for the
modules on the bus need to be re-calculated. For instance the SPI and USART
modules derive their communication speed from the PB clock und will therefore not
work upon a bus clock change without a new configuration.

The CPU and the HSB are better candidates for on-the-fly clock adjustments to meet
the current performance needs. Use this feature when sleeping is not an option and
not the full performance is needed either.

UC3A datasheet:
http://www.atmel.com/dyn/resources/prod documents/doc32058.pdf
UC3B datasheet:

http://www.atmel.com/dyn/resources/prod documents/doc32059.pdf

AVR32 architecture manual:

http://www.atmel.com/dyn/resources/prod documents/doc32000.pdf

AIMEL 1

L JO

http://www.atmel.com/dyn/resources/prod_documents/doc32058.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc32059.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf

ATTEL

12 AVR32739

32093B-AVR32-05/08

AIMEL

Y ()

Headquarters

International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia

Room 1219

Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Product Contact

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud
BP 309

78054 Saint-Quentin-en-
Yvelines Cedex

France

Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Web Site
www.atmel.com

Technical Support
Avr32 @atmel.com

Sales Contact
www.atmel.com/contacts

Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

32093B-AVR32-05/08

	1 Introduction
	2 Pin configurations
	2.1 Not connected pins

	3 Sleep modes
	3.1 Introduction
	3.2 Functional description
	3.2.1 Sleep mode instruction
	3.2.2 Entering and exiting sleep modes
	3.2.2.1 Supported sleep modes
	3.2.2.2 Precautions when entering sleep mode

	3.2.3 Wake-up examples
	3.2.3.1 Wake-up by an internal interrupt
	3.2.3.2 Wake-up with the RTC
	3.2.3.3 Wake-up from Static sleep mode

	3.2.4 Conclusion

	4 Power manager
	4.1 Switching the main system clock
	4.1.1 Introduction
	4.1.2 Functional description
	4.1.2.1 Cautionary note

	4.1.3 Using the clock switching feature
	4.1.4 Conclusion

	4.2 Peripheral clock masking
	4.2.1 Introduction
	4.2.2 Functional description
	4.2.2.1 Cautionary note
	4.2.2.2 Clock synchronization delay

	4.2.3 Using the clock masking feature
	4.2.4 Conclusion

	4.3 Clock scaling
	4.3.1 Introduction
	4.3.2 Functional description
	4.3.2.1 Clock ready delay

	4.3.3 Using the clock scaling
	4.3.4 Conclusion

	5 Software considerations
	5.1 Introduction
	5.2 Using sleep modes: Tips & Tricks
	5.3 Interrupts
	5.4 Adjusting system performance

	6 References

