
 SMART ARM-based Microcontrollers

 AT10931: SAM D21/DA1/L/C Read While Write
EEPROM (RWW EEPROM) Emulator Service

 APPLICATION NOTE

Introduction

This driver for Atmel® | SMART ARM®-based microcontrollers provides an
RWW emulated EEPROM memory area, for the storage and retrieval of
user-application configuration data into and out of non-volatile memory. The
main array can therefore run code while EEPROM data is written.

The following peripheral is used by this module:
• NVM (Non-Volatile Memory Controller)

The following devices can use this module:
• Atmel | SMART SAM L21/L22
• Atmel | SMART SAM D21
• Atmel | SMART SAM C20/C21
• Atmel | SMART SAM DA1

The outline of this documentation is as follows:
• Prerequisites
• Module Overview
• Special Considerations
• Extra Information
• Examples
• API Overview

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

Table of Contents

Introduction..1

1. Software License... 4

2. Prerequisites..5

3. Module Overview...6
3.1. Implementation Details...6

3.1.1. Emulator Characteristics..6
3.1.2. Physical Memory... 6
3.1.3. Master Row..7
3.1.4. Spare Row... 7
3.1.5. Row Contents.. 7
3.1.6. Write Cache... 8

3.2. Memory Layout...8

4. Special Considerations.. 11
4.1. NVM Controller Configuration...11
4.2. Logical RWW EEPROM Page Size.. 11
4.3. Committing of the Write Cache...11
4.4. RWW EEPROM Page Checksum.. 11

5. Extra Information... 12

6. Examples...13

7. API Overview...14
7.1. Structure Definitions... 14

7.1.1. Struct rww_eeprom_emulator_parameters..14
7.2. Macro Definitions..14

7.2.1. RWW EEPROM Emulator Information...14
7.3. Function Definitions..15

7.3.1. Configuration and Initialization...15
7.3.2. Logical RWW EEPROM Page Reading/Writing...16
7.3.3. Buffer RWW EEPROM Reading/Writing..17

7.4. Enumeration Definitions... 19
7.4.1. Enum rwwee_logical_page_num_in_row.. 19

8. Extra Information... 20
8.1. Acronyms..20
8.2. Dependencies...20
8.3. Errata..20
8.4. Module History..20

9. Examples for Emulated RWW EEPROM Service..21
9.1. Quick Start Guide for the Emulated RWW EEPROM Module - Basic Use Case....................... 21

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

2

9.1.1. Setup... 21
9.1.2. Use Case... 22

10. Document Revision History... 24

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

3

1. Software License
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived from this software without
specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

4

2. Prerequisites
There are no prerequisites for this module.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

5

3. Module Overview
SAM devices embeds a separate read while write EEPROM emulation (RWWEE) array that can be
programmed while the main array is not blocked. To use RWWEE memory, data must be written as a
number of physical memory pages (of several bytes each) rather than being individually byte
addressable, and entire rows of RWWEE must be erased before new data may be stored. To help
abstract these characteristics away from the user application an emulation scheme is implemented to
present a more user-friendly API for data storage and retrieval.

This module provides an RWW EEPROM emulation layer on top of the device's internal NVM controller,
to provide a standard interface for the reading and writing of non-volatile configuration data. This data is
placed into the RWW EEPROM emulated section. Emulated EEPROM is exempt from the usual device
NVM region lock bits, so that it may be read from or written to at any point in the user application.

There are many different algorithms that may be employed for EEPROM emulation, to tune the write and
read latencies, RAM usage, wear levelling, and other characteristics. As a result, multiple different
emulator schemes may be implemented, so that the most appropriate scheme for a specific application's
requirements may be used.

3.1. Implementation Details
The following information is relevant for RWW EEPROM Emulator scheme 1, version 1.0.0, as
implemented by this module. Other revisions or emulation schemes may vary in their implementation
details and may have different wear-leveling, latency, and other characteristics.

3.1.1. Emulator Characteristics

This emulator is designed for best reliability, with a good balance of available storage and write-
cycle limits. It is designed to ensure that page data is updated by an atomic operation, so that in the
event of a failed update the previous data is not lost (when used correctly). With the exception of a
system reset with data cached to the internal write-cache buffer, at most only the latest write to physical
non-volatile memory will be lost in the event of a failed write.

This emulator scheme is tuned to give best write-cycle longevity when writes are confined to the same
logical RWW EEPROM page (where possible) and when writes across multiple logical RWW EEPROM
pages are made in a linear fashion through the entire emulated RWW EEPROM space.

3.1.2. Physical Memory

RWW EEPROM emulator is divided into a number of physical rows, each containing four identically sized
pages. Pages may be read or written to individually, however, pages must be erased before being
reprogrammed and the smallest granularity available for erasure is one single row.

This discrepancy results in the need for an emulator scheme that is able to handle the versioning and
moving of page data to different physical rows as needed, erasing old rows ready for re-use by future
page write operations.

Physically, the emulated RWW EEPROM segment is a dedicated space that are memory mapped, as
shown in Figure 3-1 Physical Memory.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

6

Figure 3-1. Physical Memory

End of RWW EEPROM Memory
RWW EEPROM

Start of RWW EEPROM Memory

Reserved

End of NVM Memory
Reserved EEPROM Section

Start of EEPROM Memory
End of Application Memory

Application Section

Start of Application Memory
End of Bootloader Memory

BOOT Section
Start of NVM Memory

3.1.3. Master Row

One physical row at the end of the emulated RWW EEPROM memory space is reserved for use by the
emulator to store configuration data. The master row is not user-accessible, and is reserved solely for
internal use by the emulator.

3.1.4. Spare Row

As data needs to be preserved between row erasures, a single row is kept unused to act as destination
for copied data when a write request is made to an already full row. When the write request is made, any
logical pages of data in the full row that need to be preserved are written to the spare row along with the
new (updated) logical page data, before the old row is erased and marked as the new spare.

3.1.5. Row Contents

Each physical row initially stores the contents of one or two logical RWW EEPROM memory pages (it
depends on application configuration file). This quarters or halves the available storage space for the
emulated RWW EEPROM but reduces the overall number of row erases that are required, by reserving
two or three pages within each row for updated versions of the logical page contents. See Figure 3-2 
Internal Layout of an Emulated RWW EEPROM Page for a visual layout of the RWW EEPROM Emulator
physical memory.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

7

As logical pages within a physical row are updated, the new data is filled into the remaining unused pages
in the row. Once the entire row is full, a new write request will copy the logical page not being written to in
the current row to the spare row with the new (updated) logical page data, before the old row is erased.

When it is configured, each physical row stores the contents of one logical RWW EEPROM memory
page. This system will allow for the same logical page to be updated up to four times into the physical
memory before a row erasure procedure is needed. In the case of multiple versions of the same logical
RWW EEPROM page being stored in the same physical row, the right-most (highest physical memory
page address) version is considered to be the most current.

3.1.6. Write Cache

As a typical EEPROM use case is to write to multiple sections of the same EEPROM page sequentially,
the emulator is optimized with a single logical RWW EEPROM page write cache to buffer writes before
they are written to the physical backing memory store. The cache is automatically committed when a new
write request to a different logical RWW EEPROM memory page is requested, or when the user manually
commits the write cache.

Without the write cache, each write request to an EEPROM memory page would require a full page write,
reducing the system performance and significantly reducing the lifespan of the non-volatile memory.

3.2. Memory Layout

A single logical RWW EEPROM page is physically stored as the page content and a header inside a
single physical page, as shown in Figure 3-2 Internal Layout of an Emulated RWW EEPROM Page.

Figure 3-2. Internal Layout of an Emulated RWW EEPROM Page

User Page DataHeader

NVMCTRL_PAGE_SIZE Bytes (64)

4 Bytes 60 Bytes

Note:  In the following memory layout example, each physical row stores the contents of one logical
RWW EEPROM page. Refer to "AT03265: SAM EEPROM Emulator Service (EEPROM)" for the example
of two logical EEPROM pages in one row.

Within the RWW EEPROM memory reservation section at the top of the NVM memory space, this
emulator will produce the layout as shown in Figure 3-3 Initial Physical Layout of the Emulated RWW
EEPROM Memory when initialized for the first time.

Figure 3-3. Initial Physical Layout of the Emulated RWW EEPROM Memory

MASTER ROW MASTER ROW MASTER ROW MASTER ROW

Logical Page 0 Revision 0

Logical Page 1 Revision 0

Logical Page 2 Revision 0

Logical Page 3 Revision 0

SPARE ROW SPARE ROW SPARE ROW SPARE ROW

End of RWW EEPROM

Start of RWW EEPROM

When an RWW EEPROM page needs to be committed to physical memory, the next free page in the
same row will be chosen. This makes recovery simple, as the right-most version of a logical page in a row

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

8

http://www.atmel.com/images/atmel-42125-sam-d20-eeprom-emulator-service-eeprom_application-note_at03265.pdf

is considered the most current. With four pages to a physical NVM row, this allows for up to four updates
to the same logical page to be made before an erase is needed. Figure 3-4 First Write to Logical RWW
EEPROM Page N-1 shows the result of the user writing an updated version of logical EEPROM page N-1
to the physical memory.

Figure 3-4. First Write to Logical RWW EEPROM Page N-1

MASTER ROW MASTER ROW MASTER ROW MASTER ROW

Logical Page 0 Revision 0 Logical Page 0 Revision 1

Logical Page 1 Revision 0

Logical Page 2 Revision 0

Logical Page 3 Revision 0

SPARE ROW SPARE ROW SPARE ROW SPARE ROW

End of RWW EEPROM

Start of RWW EEPROM

A second write of the same logical RWW EEPROM page results in the layout shown in Figure 3-5 
Second Write to Logical RWW EEPROM Page N-1.

Figure 3-5. Second Write to Logical RWW EEPROM Page N-1

MASTER ROW MASTER ROW MASTER ROW MASTER ROW

Logical Page 0 Revision 0 Logical Page 0 Revision 1 Logical Page 0 Revision 2

Logical Page 1 Revision 0

Logical Page 2 Revision 0

Logical Page 3 Revision 0

SPARE ROW SPARE ROW SPARE ROW SPARE ROW

End of RWW EEPROM

Start of RWW EEPROM

A third write of the same logical RWW EEPROM page results in the layout shown in Figure 3-6 Third
Write to Logical RWW EEPROM Page N-1.

Figure 3-6. Third Write to Logical RWW EEPROM Page N-1

MASTER ROW MASTER ROW MASTER ROW MASTER ROW

Logical Page 0 Revision 0 Logical Page 0 Revision 1 Logical Page 0 Revision 2 Logical Page 0 Revision 3

Logical Page 1 Revision 0

Logical Page 2 Revision 0

Logical Page 3 Revision 0

SPARE ROW SPARE ROW SPARE ROW SPARE ROW

End of RWW EEPROM

Start of RWW EEPROM

A fourth write of the same logical page requires that the RWW EEPROM emulator erase the row, as it has
become full. Prior to this, the content of the unmodified page in the same row as the page being updated
will be copied into the spare row, along with the new version of the page being updated. The old (full) row
is then erased, resulting in the layout shown in Figure 3-7 Third Write to Logical RWW EEPROM Page
N-1.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

9

Figure 3-7. Third Write to Logical RWW EEPROM Page N-1

MASTER ROW MASTER ROW MASTER ROW MASTER ROW

SPARE ROW SPARE ROW SPARE ROW SPARE ROW

Logical Page 1 Revision 0

Logical Page 2 Revision 0

Logical Page 3 Revision 0

Logical Page 0 Revision 4

End of RWW EEPROM

Start of RWW EEPROM

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

10

4. Special Considerations

4.1. NVM Controller Configuration
The RWW EEPROM Emulator service will initialize the NVM controller as part of its own initialization
routine; the NVM controller will be placed in Manual Write mode, so that explicit write commands must be
sent to the controller to commit a buffered page to physical memory. The manual write command must
thus be issued to the NVM controller whenever the user application wishes to write to a NVM page for its
own purposes.

4.2. Logical RWW EEPROM Page Size
As a small amount of information needs to be stored in a header before the content of a logical EEPROM
page in memory (for use by the emulation service), the available data in each RWW EEPROM page is
less than the total size of a single NVM memory page by several bytes.

4.3. Committing of the Write Cache
A single-page write cache is used internally to buffer data written to pages in order to reduce the number
of physical writes required to store the user data, and to preserve the physical memory lifespan. As a
result, it is important that the write cache is committed to physical memory as soon as possible after a
BOD low power condition, to ensure that enough power is available to guarantee a completed write so
that no data is lost.

The write cache must also be manually committed to physical memory if the user application is to perform
any NVM operations using the NVM controller directly.

4.4. RWW EEPROM Page Checksum
For each page, a checksum function is used to verify the integrity of the page data. When reading the
page data, using rww_eeprom_emulator_read_page(). When its checksum is not correct, an error can be
detected. This function can be enabled or disabled through the configuration file.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

11

5. Extra Information
For extra information, see Extra Information. This includes:

• Acronyms
• Dependencies
• Errata
• Module History

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

12

6. Examples
For a list of examples related to this driver, see Examples for Emulated RWW EEPROM Service.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

13

7. API Overview

7.1. Structure Definitions

7.1.1. Struct rww_eeprom_emulator_parameters

Structure containing the memory layout parameters of the EEPROM emulator module.

Table 7-1. Members

Type Name Description

uint16_t eeprom_number_of_pages Number of emulated pages of EEPROM

uint8_t page_size Number of bytes per emulated EEPROM page

7.2. Macro Definitions

7.2.1. RWW EEPROM Emulator Information

7.2.1.1. Macro RWW_EEPROM_EMULATOR_ID

#define RWW_EEPROM_EMULATOR_ID

Emulator scheme ID, identifying the scheme used to emulated EEPROM storage.

7.2.1.2. Macro RWW_EEPROM_MAJOR_VERSION

#define RWW_EEPROM_MAJOR_VERSION

Emulator major version number, identifying the emulator major version.

7.2.1.3. Macro RWW_EEPROM_MINOR_VERSION

#define RWW_EEPROM_MINOR_VERSION

Emulator minor version number, identifying the emulator minor version.

7.2.1.4. Macro RWW_EEPROM_REVISION

#define RWW_EEPROM_REVISION

Emulator revision version number, identifying the emulator revision.

7.2.1.5. Macro RWW_EEPROM_PAGE_SIZE

#define RWW_EEPROM_PAGE_SIZE

Size of the user data portion of each logical EEPROM page, in bytes.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

14

7.3. Function Definitions

7.3.1. Configuration and Initialization

7.3.1.1. Function rww_eeprom_emulator_init()

Initializes the RWW EEPROM Emulator service.

enum status_code rww_eeprom_emulator_init(void)

Initializes the emulated RWW EEPROM memory space. If the emulated RWW EEPROM memory has not
been previously initialized, it will need to be explicitly formatted via
rww_eeprom_emulator_erase_memory(). The RWW EEPROM memory space will not be automatically
erased by the initialization function. Partial data may be recovered by the user application manually if the
service is unable to initialize successfully.

Returns
Status code indicating the status of the operation.

Table 7-2. Return Values

Return value Description

STATUS_OK RWW EEPROM emulation service was successfully initialized

STATUS_ERR_BAD_FORMAT Emulated RWW EEPROM memory is corrupt or not formatted

STATUS_ERR_IO RWW EEPROM data is incompatible with this version or scheme of the
RWW EEPROM emulator

STATUS_ERR_INVALID_ARG Invalid logical page configuration

7.3.1.2. Function rww_eeprom_emulator_erase_memory()

Erases the entire emulated RWW EEPROM memory space.

void rww_eeprom_emulator_erase_memory(void)

Erases and re-initializes the emulated RWW EEPROM memory space, destroying any existing data.

7.3.1.3. Function rww_eeprom_emulator_get_parameters()

Retrieves the parameters of the RWW EEPROM Emulator memory layout.

enum status_code rww_eeprom_emulator_get_parameters(
 struct rww_eeprom_emulator_parameters *const parameters)

Retrieves the configuration parameters of the RWW EEPROM Emulator, after it has been initialized.

Table 7-3. Parameters

Data direction Parameter name Description

[out] parameters RWW EEPROM Emulator parameter struct to fill

Returns
Status of the operation.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

15

Table 7-4. Return Values

Return value Description

STATUS_OK If the emulator parameters were retrieved successfully

STATUS_ERR_NOT_INITIALIZED If the RWW EEPROM Emulator is not initialized

7.3.2. Logical RWW EEPROM Page Reading/Writing

7.3.2.1. Function rww_eeprom_emulator_commit_page_buffer()

Commits any cached data to physical non-volatile memory.

enum status_code rww_eeprom_emulator_commit_page_buffer(void)

Commits the internal SRAM caches to physical non-volatile memory, to ensure that any outstanding
cached data is preserved. This function should be called prior to a system reset or shutdown to prevent
data loss.

Note:  This should be the first function executed in a BOD33 Early Warning callback to ensure that any
outstanding cache data is fully written to prevent data loss.

Note:  This function should also be called before using the NVM controller directly in the user-application
for any other purposes to prevent data loss.

Returns
Status code indicating the status of the operation.

7.3.2.2. Function rww_eeprom_emulator_write_page()

Writes a page of data to an emulated RWW EEPROM memory page.

enum status_code rww_eeprom_emulator_write_page(
 const uint8_t logical_page,
 const uint8_t *const data)

Writes an emulated RWW EEPROM page of data to the emulated RWW EEPROM memory space.

Note:  Data stored in pages may be cached in volatile RAM memory; to commit any cached data to
physical non-volatile memory, the rww_eeprom_emulator_commit_page_buffer() function should be
called.

Table 7-5. Parameters

Data direction Parameter name Description

[in] logical_page Logical RWW EEPROM page number to write to

[in] data Pointer to the data buffer containing source data to write

Returns
Status code indicating the status of the operation.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

16

Table 7-6. Return Values

Return value Description

STATUS_OK If the page was successfully read

STATUS_ERR_NOT_INITIALIZED If the RWW EEPROM emulator is not initialized

STATUS_ERR_BAD_ADDRESS If an address outside the valid emulated RWW EEPROM memory
space was supplied

7.3.2.3. Function rww_eeprom_emulator_read_page()

Reads a page of data from an emulated RWW EEPROM memory page.

enum status_code rww_eeprom_emulator_read_page(
 const uint8_t logical_page,
 uint8_t *const data)

Reads an emulated RWW EEPROM page of data from the emulated RWW EEPROM memory space.

Table 7-7. Parameters

Data direction Parameter name Description

[in] logical_page Logical RWW EEPROM page number to read from

[out] data Pointer to the destination data buffer to fill

Returns
Status code indicating the status of the operation.

Table 7-8. Return Values

Return value Description

STATUS_OK If the page was successfully read

STATUS_ERR_NOT_INITIALIZED If the RWW EEPROM emulator is not initialized

STATUS_ERR_BAD_ADDRESS If an address outside the valid emulated RWW EEPROM memory
space was supplied

STATUS_ERR_BAD_FORMAT Page data checksum is not correct, maybe data is damaged

7.3.3. Buffer RWW EEPROM Reading/Writing

7.3.3.1. Function rww_eeprom_emulator_write_buffer()

Writes a buffer of data to the emulated RWW EEPROM memory space.

enum status_code rww_eeprom_emulator_write_buffer(
 const uint16_t offset,
 const uint8_t *const data,
 const uint16_t length)

Writes a buffer of data to a section of emulated RWW EEPROM memory space. The source buffer may
be of any size, and the destination may lie outside of an emulated RWW EEPROM page boundary.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

17

Note:  Data stored in pages may be cached in volatile RAM memory; to commit any cached data to
physical non-volatile memory, the rww_eeprom_emulator_commit_page_buffer() function should be
called.

Table 7-9. Parameters

Data direction Parameter name Description

[in] offset Starting byte offset to write to, in emulated RWW EEPROM memory
space

[in] data Pointer to the data buffer containing source data to write

[in] length Length of the data to write, in bytes

Returns
Status code indicating the status of the operation.

Table 7-10. Return Values

Return value Description

STATUS_OK If the page was successfully read

STATUS_ERR_NOT_INITIALIZED If the RWW EEPROM emulator is not initialized

STATUS_ERR_BAD_ADDRESS If an address outside the valid emulated RWW EEPROM memory
space was supplied

7.3.3.2. Function rww_eeprom_emulator_read_buffer()

Reads a buffer of data from the emulated RWW EEPROM memory space.

enum status_code rww_eeprom_emulator_read_buffer(
 const uint16_t offset,
 uint8_t *const data,
 const uint16_t length)

Reads a buffer of data from a section of emulated RWW EEPROM memory space. The destination buffer
may be of any size, and the source may lie outside of an emulated RWW EEPROM page boundary.

Table 7-11. Parameters

Data direction Parameter name Description

[in] offset Starting byte offset to read from, in emulated RWW EEPROM
memory space

[out] data Pointer to the data buffer containing source data to read

[in] length Length of the data to read, in bytes

Returns
Status code indicating the status of the operation.

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

18

Table 7-12. Return Values

Return value Description

STATUS_OK If the page was successfully read

STATUS_ERR_NOT_INITIALIZED If the RWW EEPROM emulator is not initialized

STATUS_ERR_BAD_ADDRESS If an address outside the valid emulated RWW EEPROM memory
space was supplied

7.4. Enumeration Definitions

7.4.1. Enum rwwee_logical_page_num_in_row

Enum for the possible logical pages that are stored in each physical row.

Table 7-13. Members

Enum value Description

RWWEE_LOGICAL_PAGE_NUM_1 One logical page stored in a physical row

RWWEE_LOGICAL_PAGE_NUM_2 Two logical pages stored in a physical row

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

19

8. Extra Information

8.1. Acronyms

Acronym Description

EEPROM Electronically Erasable Read-Only Memory

RWWEE Read While Write EEPROM

RWW Read While Write

NVM Non-Volatile Memory

8.2. Dependencies
This driver has the following dependencies:

• Non-Volatile Memory Controller Driver

8.3. Errata
There are no errata related to this driver.

8.4. Module History
An overview of the module history is presented in the table below, with details on the enhancements and
fixes made to the module since its first release. The current version of this corresponds to the newest
version in the table.

Changelog

Initial Release

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

20

9. Examples for Emulated RWW EEPROM Service
This is a list of the available Quick Start guides (QSGs) and example applications for SAM Read While
Write EEPROM (RWW EEPROM) Emulator Service. QSGs are simple examples with step-by-step
instructions to configure and use this driver in a selection of use cases. Note that a QSG can be compiled
as a standalone application or be added to the user application.

• Quick Start Guide for the Emulated RWW EEPROM Module - Basic Use Case

9.1. Quick Start Guide for the Emulated RWW EEPROM Module - Basic Use Case
In this use case, the RWW EEPROM emulator module is configured, and a sample page is read and
written. The first byte of the first RWW EEPROM page is toggled, and a LED is turned ON or OFF to
reflect the new state. Each time the device is reset, the LED should toggle to a different state to indicate
correct non-volatile storage and retrieval.

9.1.1. Setup

9.1.1.1. Prerequisites

There are no special setup requirements for this use-case.

9.1.1.2. Code

Copy-paste the following setup code to your user application:
void configure_eeprom(void)
{
 /* Setup EEPROM emulator service */
 enum status_code error_code = rww_eeprom_emulator_init();
 if (error_code == STATUS_ERR_NO_MEMORY) {
 while (true) {
 /* No EEPROM section has been set in the device's fuses */
 }
 }
 else if (error_code != STATUS_OK) {
 /* Erase the emulated EEPROM memory (assume it is unformatted or
 * irrecoverably corrupt) */
 rww_eeprom_emulator_erase_memory();
 rww_eeprom_emulator_init();
 }
}

#if (SAMD21) || (SAMDA1)
void SYSCTRL_Handler(void)
{
 if (SYSCTRL->INTFLAG.reg & SYSCTRL_INTFLAG_BOD33DET) {
 SYSCTRL->INTFLAG.reg |= SYSCTRL_INTFLAG_BOD33DET;
 rww_eeprom_emulator_commit_page_buffer();
 }
}
#endif
static void configure_bod(void)
{
#if (SAMD21) || (SAMDA1)
 struct bod_config config_bod33;
 bod_get_config_defaults(&config_bod33);
 config_bod33.action = BOD_ACTION_INTERRUPT;

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

21

 /* BOD33 threshold level is about 3.2V */
 config_bod33.level = 48;
 bod_set_config(BOD_BOD33, &config_bod33);
 bod_enable(BOD_BOD33);

 SYSCTRL->INTENSET.reg |= SYSCTRL_INTENCLR_BOD33DET;
 system_interrupt_enable(SYSTEM_INTERRUPT_MODULE_SYSCTRL);
#endif

}

Add to user application initialization (typically the start of main()):

configure_eeprom();

9.1.1.3. Workflow

1. Attempt to initialize the RWW EEPROM emulator service, storing the error code from the
initialization function into a temporary variable.
enum status_code error_code = rww_eeprom_emulator_init();

2. Check if the emulator service failed to initialize for any other reason; if so, assume the emulator
physical memory is unformatted or corrupt and erase/re-try initialization.
else if (error_code != STATUS_OK) {
 /* Erase the emulated EEPROM memory (assume it is unformatted or
 * irrecoverably corrupt) */
 rww_eeprom_emulator_erase_memory();
 rww_eeprom_emulator_init();
}

Config BOD to give an early warning to prevent data loss.
configure_bod();

9.1.2. Use Case

9.1.2.1. Code

Copy-paste the following code to your user application:
uint8_t page_data[RWW_EEPROM_PAGE_SIZE];
rww_eeprom_emulator_read_page(0, page_data);
page_data[0] = !page_data[0];
port_pin_set_output_level(LED_0_PIN, page_data[0]);
rww_eeprom_emulator_write_page(0, page_data);
rww_eeprom_emulator_commit_page_buffer();
page_data[1]=0x1;
rww_eeprom_emulator_write_page(0, page_data);

while (true) {

}

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

22

9.1.2.2. Workflow

1. Create a buffer to hold a single emulated RWW EEPROM page of memory, and read out logical
RWW EEPROM page zero into it.
uint8_t page_data[RWW_EEPROM_PAGE_SIZE];
rww_eeprom_emulator_read_page(0, page_data);

2. Toggle the first byte of the read page.
page_data[0] = !page_data[0];

3. Output the toggled LED state onto the board LED.
port_pin_set_output_level(LED_0_PIN, page_data[0]);

4. Write the modified page back to logical RWW EEPROM page zero, flushing the internal emulator
write cache afterwards to ensure it is immediately written to physical non-volatile memory.
rww_eeprom_emulator_write_page(0, page_data);
rww_eeprom_emulator_commit_page_buffer();

5. Modify data and write back to logical EEPROM page zero. The data is not committed and should
call rww_eeprom_emulator_commit_page_buffer to ensure that any outstanding cache data
is fully written to prevent data loss when detecting a BOD early warning.
page_data[1]=0x1;
rww_eeprom_emulator_write_page(0, page_data);

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

23

10. Document Revision History
Doc. Rev. Date Comments

42447B 02/2016 Added support for SAM L22, SAM DA1, and SAM C20/C21

42447A 06/2015 Initial release

Atmel AT10931: SAM D21/DA1/L/C Read While Write EEPROM (RWW EEPROM) Emulator Service
[APPLICATION NOTE]

Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

24

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42447B-SAM-Read-While-Write-EEPROM-RWW-EEPROM-Emulator-Service_AT10931_Application Note-03/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Software License
	2. Prerequisites
	3. Module Overview
	3.1. Implementation Details
	3.1.1. Emulator Characteristics
	3.1.2. Physical Memory
	3.1.3. Master Row
	3.1.4. Spare Row
	3.1.5. Row Contents
	3.1.6. Write Cache

	3.2. Memory Layout

	4. Special Considerations
	4.1. NVM Controller Configuration
	4.2. Logical RWW EEPROM Page Size
	4.3. Committing of the Write Cache
	4.4. RWW EEPROM Page Checksum

	5. Extra Information
	6. Examples
	7. API Overview
	7.1. Structure Definitions
	7.1.1. Struct rww_eeprom_emulator_parameters

	7.2. Macro Definitions
	7.2.1. RWW EEPROM Emulator Information
	7.2.1.1. Macro RWW_EEPROM_EMULATOR_ID
	7.2.1.2. Macro RWW_EEPROM_MAJOR_VERSION
	7.2.1.3. Macro RWW_EEPROM_MINOR_VERSION
	7.2.1.4. Macro RWW_EEPROM_REVISION
	7.2.1.5. Macro RWW_EEPROM_PAGE_SIZE

	7.3. Function Definitions
	7.3.1. Configuration and Initialization
	7.3.1.1. Function rww_eeprom_emulator_init()
	7.3.1.2. Function rww_eeprom_emulator_erase_memory()
	7.3.1.3. Function rww_eeprom_emulator_get_parameters()

	7.3.2. Logical RWW EEPROM Page Reading/Writing
	7.3.2.1. Function rww_eeprom_emulator_commit_page_buffer()
	7.3.2.2. Function rww_eeprom_emulator_write_page()
	7.3.2.3. Function rww_eeprom_emulator_read_page()

	7.3.3. Buffer RWW EEPROM Reading/Writing
	7.3.3.1. Function rww_eeprom_emulator_write_buffer()
	7.3.3.2. Function rww_eeprom_emulator_read_buffer()

	7.4. Enumeration Definitions
	7.4.1. Enum rwwee_logical_page_num_in_row

	8. Extra Information
	8.1. Acronyms
	8.2. Dependencies
	8.3. Errata
	8.4. Module History

	9. Examples for Emulated RWW EEPROM Service
	9.1. Quick Start Guide for the Emulated RWW EEPROM Module - Basic Use Case
	9.1.1. Setup
	9.1.1.1. Prerequisites
	9.1.1.2. Code
	9.1.1.3. Workflow

	9.1.2. Use Case
	9.1.2.1. Code
	9.1.2.2. Workflow

	10. Document Revision History

