

25LC080C/25LC080D/25LC160C/ 25LC160D/25LC320A/25LC640A/ 25LC128/25LC256

8-Kbit to 256-Kbit SPI Serial EEPROM High-Temp Family Data Sheet

Features

· Maximum Clock: 5 MHz

• Low-Power CMOS Technology:

- Write current: 5 mA at 5.5V (maximum)

- Read current: 5 mA at 5.5V, 5 MHz

- Standby current: 10 μA at 5.5V

1,024 x 8 through 32,768 x 8-bit Organization

· Byte and Page-Level Write Operations

 Self-Timed Erase and Write Cycles (6 ms maximum)

· Block Write Protection:

- Protect none, 1/4, 1/2 or all of array

· Built-in Write Protection:

- Power-on/off data protection circuitry

- Write enable latch

- Write-protect pin

· Sequential Read

· High Reliability:

- Endurance: > 1M erase/write cycles

- Data retention: > 200 years

- ESD protection: > 4000V

· Temperature Range Supported:

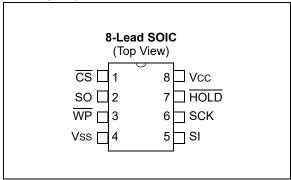
- Extended (H): -40°C to +150°C

· RoHS Compliant

· AEC-Q100 Automotive Qualified

Description

Microchip Technology Inc. 25LCXXX⁽¹⁾ devices are mid-density 8-Kbit through 256-Kbit Serial Electrically Erasable PROMs (EEPROMs). The devices are organized in blocks of x8-bit memory and support the Serial Peripheral Interface (SPI) compatible serial bus architecture. Byte-level and page-level functions are supported. The bus signals required are a clock input (SCK) plus separate data in (SI) and data out (SO) lines. Access to the device is controlled through a Chip Select (\overline{CS}) input.


Communication to the device can be paused via the hold pin (HOLD). While the device is paused, transitions on its inputs will be ignored, with the exception of Chip Select, allowing the host to service higher priority interrupts.

Note 1: 25LCXXX is used in this document as a generic part number for the 25LC080C/25LC080D/25LC160C/25LC 160D/25LC320A/25LC640A/25LC128/2 5LC256 devices.

Packages

8-Lead SOIC

Package Types (not to scale)

Pin Function Table

Name	Function			
CS	Chip Select Input			
SO	Serial Data Output			
WP	Write-Protect			
Vss	Ground			
SI	Serial Data Input			
SCK	Serial Clock Input			
HOLD	Hold Input			
Vcc	Supply Voltage			

25LC080C/25LC080D/25LC160C/25LC160D/25LC320A/25LC640A/ 25LC128/25LC256

DEVICE SELECTION TABLE

Part Number	Density (bits)	Organization	Vcc Range	Max. Speed (MHz)	Page Size (Bytes)	Temp. Range	Package
25LC080C	8K	1,024 x 8	2.5V-5.5V	5	16	Н	SN
25LC080D	8K	1,024 x 8	2.5V-5.5V	5	32	Н	SN
25LC160C	16K	2,048 x 8	2.5V-5.5V	5	16	Н	SN
25LC160D	16K	2,048 x 8	2.5V-5.5V	5	32	Н	SN
25LC320A	32K	4,096 x 8	2.5V-5.5V	5	32	Н	SN
25LC640A	64K	8,192 x 8	2.5V-5.5V	5	32	Н	SN
25LC128	128K	16,384 x 8	2.5V-5.5V	5	64	Н	SN
25LC256	256K	32,768 x 8	2.5V-5.5V	5	64	Н	SN

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings(†)

Vcc	6.5V
All inputs and outputs w.r.t. Vss	0.6V to Vcc +1.0V
Storage temperature	65°C to +155°C
Ambient temperature under bias	-40°C to +150°C ⁽¹⁾
ESD protection on all pins	4 kV

Note 1: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time between +125°C and +150°C will be greater than 1,000 hours is not ensured without prior written approval from Microchip Technology Inc.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

DC CHARACTERISTICS			Electrical Characteristics: Extended (H): TA = -40°C to +150°C Vcc = 2.5V to 5.5V			
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Test Conditions
D001	VIH1	High-Level Input Voltage	0.7 Vcc	Vcc + 1	V	
D002	VIL1	Low-Level Input Voltage	-0.3	0.3Vcc	V	Vcc ≥ 2.7V
D003	VIL2	Low-Level Input Voltage	-0.3	0.2Vcc	V	Vcc < 2.7V
D004	VOL1	Low Lovel Output Voltage	_	0.4	V	IOL = 2.1 mA
D005	VOL2	Low-Level Output Voltage	_	0.2	V	IOL = 1.0 mA
D006	Vон	High-Level Output Voltage	Vcc - 0.5	_	V	IOH = -400 μA
D007	ILI	Input Leakage Current	_	±2	μA	CS = Vcc, Vin = Vss or Vcc
D008	ILO	Output Leakage Current	_	±2	μA	CS = Vcc, Vout = Vss or Vcc
D009	CINT	Internal Capacitance (all inputs and outputs)	_	7	pF	TA = +25°C, CLK = 1.0 MHz, VCC = 5.0V (Note 1)
D010	Icc	Operating Current	_	5	mA	Vcc = 5.5V; FcLK = 5.0 MHz; SO = Open
D010	Read	Operating Current	_	2.5	mA	Vcc = 2.5V; Fclk = 3.0 MHz; SO = Open
D011	Icc	Operating Current		5	mA	Vcc = 5.5V
ווטם	Write	Operating Current	_	3	mA	Vcc = 2.5V
D012	Iccs	Standby Current	_	10	μA	CS = Vcc = 5.5V, Inputs tied to Vcc or Vss, +150°C

Note 1: This parameter is periodically sampled and not 100% tested.

25LC080C/25LC080D/25LC160C/25LC160D/25LC320A/25LC640A/25LC128/25LC256

TABLE 1-2: AC CHARACTERISTICS

AC CHARACTERISTICS			Electrical Extended			o +150°C Vcc = 2.5V to 5.5V
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Test Conditions
1	FCLK	Clock Frequency	_	5	MHz	4.5V ≤ Vcc ≤ 5.5V
•	T CER	Clock i requeriey	_	3	MHz	2.5V ≤ Vcc < 4.5V
2	Tcss	CS Setup Time	100	_	ns	4.5V ≤ Vcc ≤ 5.5V
	1033	Co Setup Time	150	_	ns	2.5V ≤ Vcc < 4.5V
3	ТСЅН	CS Hold Time	200	_	ns	4.5V ≤ Vcc ≤ 5.5V
3	TCSH	CS Hold Tillle	250	_	ns	2.5V ≤ Vcc < 4.5V
4	TCSD	CS Disable Time	50	_	ns	
5	Tsu	Data Setup Time	20	_	ns	4.5V ≤ Vcc ≤ 5.5V
5	150	Data Setup Time	30	_	ns	2.5V ≤ Vcc < 4.5V
6	Tup	Data Hold Time	40	_	ns	4.5V ≤ Vcc ≤ 5.5V
6	THD	Data Hold Time	50	_	ns	2.5V ≤ Vcc < 4.5V
7	Tr	CLK Rise Time	_	2	μs	Note 1
8	TF	CLK Fall Time	_	2	μs	Note 1
0		Clock High Time	100	_	ns	4.5V ≤ Vcc ≤ 5.5V
9	Тні		150	_	ns	2.5V ≤ Vcc < 4.5V
40	T. 0	Ola ala Lavo Tina a	100	_	ns	4.5V ≤ Vcc ≤ 5.5V
10	TLO	Clock Low Time	150	_	ns	2.5V ≤ Vcc < 4.5V
11	TCLD	Clock Delay Time	50	_	ns	
12	TCLE	Clock Enable Time	50	_	ns	
40	T. /	0.4	_	100	ns	4.5V ≤ Vcc ≤ 5.5V
13	T∨	Output Valid from Clock Low	_	160	ns	2.5V ≤ Vcc < 4.5V
14	Тно	Output Hold Time	0	_	ns	Note 1
45	Tolo	Outrout Disable Times	_	80	ns	4.5V ≤ Vcc ≤ 5.5V (Note 1)
15	TDIS	Output Disable Time	_	160	ns	2.5V ≤ Vcc < 4.5V (Note 1)
16	Tuo	HOLD Cotup Time	40	_	ns	4.5V ≤ Vcc ≤ 5.5V
16	THS	HOLD Setup Time	80	_	ns	2.5V ≤ Vcc < 4.5V
47	T	HOLD Hold Time	40	_	ns	4.5V ≤ Vcc ≤ 5.5V
17	Тнн	HOLD Hold Time	80	_	ns	2.5V ≤ Vcc < 4.5V
10	T	HOLD Lawster Control of Library 7	_	60	ns	4.5V ≤ Vcc ≤ 5.5V (Note 1)
18	THZ	HOLD Low to Output High-Z	_	160	ns	2.5V ≤ Vcc < 4.5V (Note 1)
10	Ting	HOLD High to Output Valid	_	60	ns	4.5V ≤ Vcc ≤ 5.5V
19	Th∨	HOLD High to Output Valid	_	160	ns	2.5V ≤ Vcc < 4.5V
20	Twc	Internal Write Cycle Time	_	6	ms	Note 2
21	TI :	Endurance	1M	_	E/W Cycles	Page mode, +25°C, Vcc = 5.5V (Note 3)

Note 1: This parameter is periodically sampled and not 100% tested.

^{2:} Two begins on the rising edge of $\overline{\text{CS}}$ after a valid write sequence and ends when the internal write cycle is complete.

^{3:} This parameter is not tested but is ensured by characterization.

TABLE 1-3: AC TEST CONDITIONS

AC Waveform					
VLO = 0.2V					
VHI = VCC - 0.2V	Note 1				
VHI = 4.0V	Note 2				
CL = 50 pF					
Timing Measurement Reference Level					
Input	0.5 Vcc				
Output	0.5 Vcc				

Note 1: For VCC ≤ 4.0V **2:** For VCC > 4.0V

FIGURE 1-1: HOLD TIMING

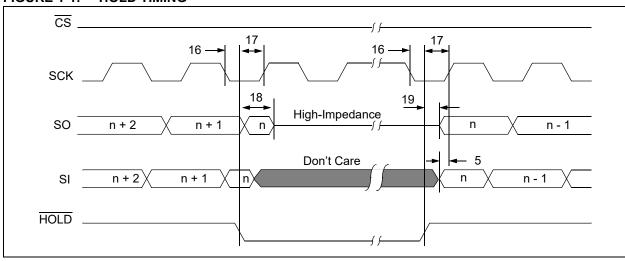


FIGURE 1-2: SERIAL INPUT TIMING

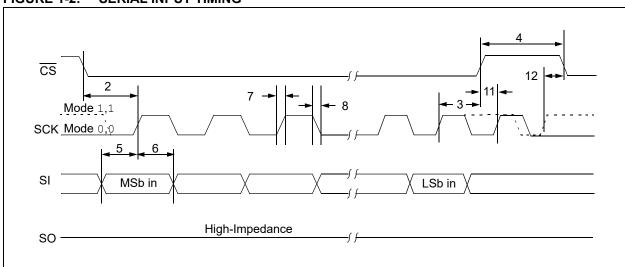
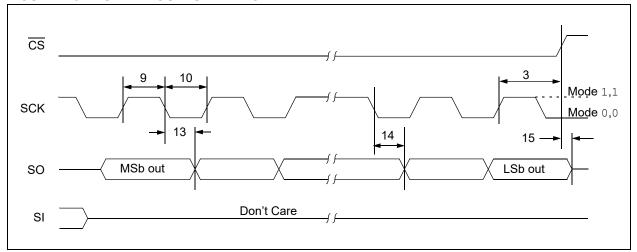



FIGURE 1-3: SERIAL OUTPUT TIMING

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Name	SOIC	Function			
CS	1	Chip Select Input			
SO	2	Serial Data Output			
WP	3	Write-Protect Pin			
Vss	4	Ground			
SI	5	Serial Data Input			
SCK	6	Serial Clock Input			
HOLD	7	Hold Input			
Vcc	8	Supply Voltage			

2.1 Chip Select (CS)

A low level on this pin selects the device. A high level deselects the device and forces it into Standby mode. However, a programming cycle that is already initiated or in progress will be completed, regardless of the $\overline{\text{CS}}$ input signal. If $\overline{\text{CS}}$ is brought high during a program cycle, the device will go into Standby mode as soon as the programming cycle is complete. When the device is deselected, SO goes to the high-impedance state, allowing multiple parts to share the same SPI bus. A low-to-high transition on $\overline{\text{CS}}$ after a valid write sequence initiates an internal write cycle. After power-up, a low level on $\overline{\text{CS}}$ is required prior to any sequence being initiated.

2.2 Serial Output (SO)

The SO pin is used to transfer data out of the 25LCXXX. During a read cycle, data are shifted out on this pin after the falling edge of the serial clock.

2.3 Write-Protect (WP)

This pin is used in conjunction with the WPEN bit in the STATUS register to prohibit writes to the nonvolatile bits in the STATUS register. When \overline{WP} is low and WPEN is high, writing to the nonvolatile bits in the STATUS register is disabled. All other operations function normally. When \overline{WP} is high, all functions, including writes to the nonvolatile bits in the STATUS register, operate normally. If the WPEN bit is set, \overline{WP} being low during a STATUS register write sequence will disable writing to the STATUS register. If an internal write cycle has already begun, \overline{WP} going low will have no effect on the write.

The $\overline{\text{WP}}$ pin function is blocked when the WPEN bit in the STATUS register is low. This allows the user to install the 25LCXXX in a system with $\overline{\text{WP}}$ pin grounded and still be able to write to the STATUS register. The $\overline{\text{WP}}$ pin functions will be enabled when the WPEN bit is set high.

2.4 Serial Input (SI)

The SI pin is used to transfer data into the device. It receives instructions, addresses and data. Data are latched on the rising edge of the serial clock.

2.5 Serial Clock (SCK)

The SCK is used to synchronize the communication between a host and the 25LCXXX. Instructions, addresses or data present on the SI pin are latched on the rising edge of the clock input, while data on the SO pin are updated after the falling edge of the clock input.

2.6 Hold (HOLD)

The HOLD pin is used to suspend transmission to the 25LCXXX while in the middle of a serial sequence without having to retransmit the entire sequence. It must be held high any time this function is not being used. Once the device is selected and a serial sequence is underway, the HOLD pin may be pulled low to pause further serial communication without resetting the serial sequence.

The HOLD pin must be brought low while SCK is low; otherwise, the HOLD function will not be invoked until the next SCK high-to-low transition. The 25LCXXX must remain selected during this sequence. The SI and SCK levels are "don't cares" during the time the device is paused, and any transitions on these pins will be ignored. To resume serial communication, HOLD must be brought high while the SCK pin is low; otherwise, serial communication will not be resumed until the next SCK high-to-low transition.

The SO line will tri-state immediately upon a high-to-low transition of the HOLD pin and will begin outputting again immediately upon a subsequent low-to-high transition of the HOLD pin, independent of the state of SCK.

3.0 FUNCTIONAL DESCRIPTION

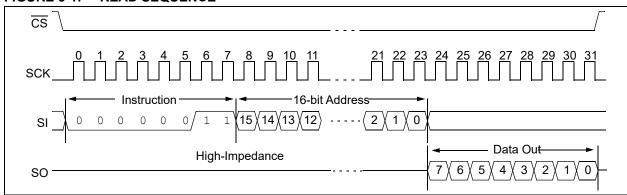
3.1 Principles of Operation

The 25LCXXX devices are mid-density Serial EEPROMs designed to interface directly with the Serial Peripheral Interface (SPI) port of many of today's popular microcontroller families, including Microchip's PIC[®] microcontrollers. The 25LCXXX devices may also interface with microcontrollers that do not have a built-in SPI port by using discrete I/O lines programmed properly in firmware to match the SPI protocol.

The 25LCXXX devices contain an 8-bit instruction register. The device is accessed via the SI pin, with data being clocked in on the rising edge of SCK. The CS pin must be low and the HOLD pin must be high for the entire operation.

Table 3-1 contains a list of the possible instruction bytes and format for device operation. All instructions, addresses and data are transferred Most Significant bit (MSb) first, Least Significant bit (LSb) last.

Data $\underline{(SI)}$ are sampled on the first rising edge of SCK after CS goes low. If the clock line is shared with other peripheral devices on the SPI bus, the user can assert the HOLD input and place the 25LCXXX in 'HOLD' mode. After releasing the HOLD pin, operation will resume from the point when the HOLD was asserted.


TABLE 3-1: INSTRUCTION SET

Instruction Name	Instruction Format	Description
READ	0000 0011	Read data from memory array beginning at selected address
WRITE	0000 0010	Write data to memory array beginning at selected address
WRDI	0000 0100	Reset the write enable latch (disable write operations)
WREN	0000 0110	Set the write enable latch (enable write operations)
RDSR	0000 0101	Read STATUS register
WRSR	0000 0001	Write STATUS register

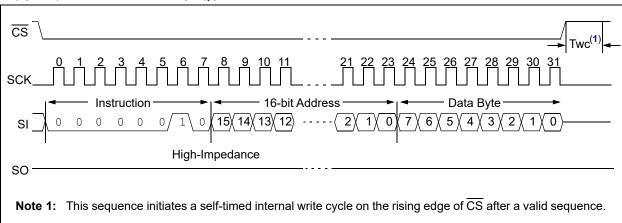
3.2 Read Sequence

The device is selected by pulling $\overline{\text{CS}}$ low. The 8-bit READ instruction is transmitted to the 25LCXXX followed by the 16-bit address. After the correct READ instruction and address are sent, the data stored in the memory at the selected address are shifted out on the SO pin. The data stored in the memory at the next address can be read sequentially by continuing to provide clock pulses. The internal Address Pointer is automatically incremented to the next higher address after each byte of data is shifted out. When the highest address is reached, the address counter rolls over to address 0000h allowing the read cycle to be continued indefinitely. The read operation is terminated by raising the $\overline{\text{CS}}$ pin (Figure 3-1).

FIGURE 3-1: READ SEQUENCE

Note:

3.3 Write Sequence


Prior to any attempt to write data to the 25LCXXX, the write enable latch must be set by issuing the $\underline{\mathtt{WREN}}$ instruction (Figure 3-4). This is done by setting \overline{CS} low and then clocking out the proper instruction into the 25LCXXX. After all eight bits of the instruction are transmitted, the \overline{CS} must be brought high to set the write enable latch. If the write operation is initiated immediately after the \mathtt{WREN} instruction without \overline{CS} being brought high, the data will not be written to the array because the write enable latch will not have been properly set.

Once the write enable <u>latch</u> is set, the user may proceed by setting the \overline{CS} low, issuing a WRITE instruction, followed by the 16-bit address, and then the data to be written. Depending upon the density, a page of data that ranges from 16 bytes to 64 bytes can be sent to the device before a write cycle is necessary. The only restriction is that all of the bytes must reside in the same page.

Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page size') and end at addresses that are integer multiples of page size – 1. If a Page Write command attempts to write across a physical page boundary, the result is that the data wrap around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is, therefore, necessary for the application software to prevent page write operations that would attempt to cross a page boundary.

For the data to be actually written to the array, the $\overline{\text{CS}}$ must be brought high after the Least Significant bit (D0) of the n^{th} data byte has been clocked in. If $\overline{\text{CS}}$ is brought high at any other time, the write operation will not be completed. Refer to Figure 3-2 and Figure 3-3 for more detailed illustrations on the byte write sequence and the page write sequence, respectively. While the write is in progress, the STATUS register may be read to check the status of the WPEN, WIP, WEL, BP1 and BP0 bits (Figure 3-6). A read attempt of a memory array location will not be possible during a write cycle. When the write cycle is completed, the write enable latch is reset.

FIGURE 3-2: BYTE WRITE SEQUENCE

Note 1: This sequence initiates a self-timed internal write cycle on the rising edge of $\overline{\text{CS}}$ after a valid sequence.

3.4 Write Enable (WREN) and Write Disable (WRDI)

The 25LCXXX contains a write enable latch. See Table 3-5 for the Write-Protect Functionality Matrix. This latch must be set before any write operation will be completed internally. The WREN instruction will set the latch, and the WRDI will reset the latch.

The following is a list of conditions under which the write enable latch will be reset:

- · Power-up
- WRDI instruction successfully executed
- WRSR instruction successfully executed
- · WRITE instruction successfully executed

FIGURE 3-4: WRITE ENABLE SEQUENCE (WREN)

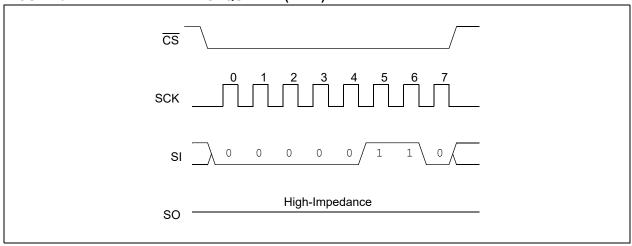
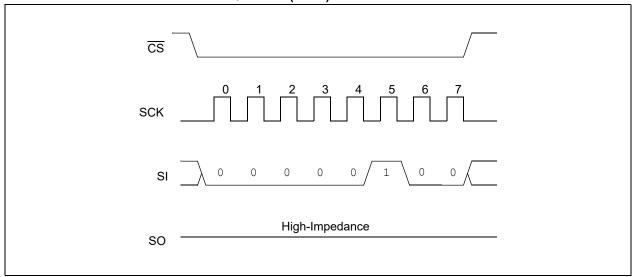



FIGURE 3-5: WRITE DISABLE SEQUENCE (WRDI)

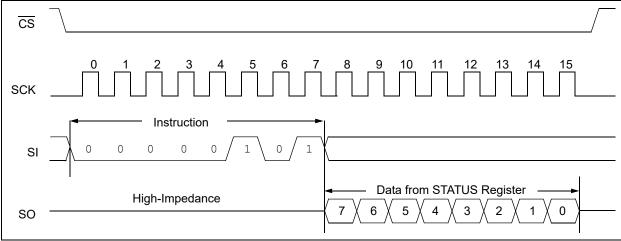
3.5 Read Status Register Instruction (RDSR)

The Read Status Register instruction (RDSR) provides access to the STATUS register. The STATUS register may be read at any time, even during a write cycle. The STATUS register is formatted as seen in Table 3-2.

TABLE 3-2: STATUS REGISTER

7	6	5	4	3	2	1	0
W/R	_	_	_	W/R	W/R	R	R
WPEN	Х	Χ	Χ	BP1	BP0	WEL	WIP

Note 1: W/R = writable/readable. R = read-only.


The **Write-In-Process (WIP)** bit indicates whether the 25LCXXX is busy with a write operation. When set to '1', a write is in progress, when set to '0', no write is in progress. This bit is read-only.

The Write Enable Latch (WEL) bit indicates the status of the write enable latch and is read-only. When set to '1', the latch allows writes to the array, when set to '0', the latch prohibits writes to the array. The state of this bit can always be updated via the WREN or WRDI commands regardless of the state of write protection on the STATUS register. These commands are shown in Figure 3-4 and Figure 3-5.

The **Block Protection (BP0 and BP1)** bits indicate which blocks are currently write-protected. These bits are set by the user issuing the WRSR instruction. These bits are nonvolatile and are shown in Table 3-3.

See Figure 3-6 for the RDSR timing sequence.

3.6 Write Status Register Instruction (WRSR)

The Write Status Register instruction (WRSR) allows the user to write to the nonvolatile bits in the STATUS register, as shown in Table 3-2. The user is able to select one of four levels of protection for the array by writing to the appropriate bits in the STATUS register. The array is divided up into four segments. The user has the ability to write-protect none, one, two or all four of the segments of the array. The partitioning is controlled as shown in Table 3-3.

The Write-Protect Enable (WPEN) bit is a nonvolatile bit that is available as an enable bit for the $\overline{\text{WP}}$ pin. The Write-Protect ($\overline{\text{WP}}$) pin and the Write-Protect Enable (WPEN) bit in the STATUS register control the programmable hardware write-protect feature. Hardware write protection is enabled when $\overline{\text{WP}}$ pin is low and the WPEN bit is high. Hardware write protection is disabled when either the $\overline{\text{WP}}$ pin is high or the WPEN bit is low. When the chip is hardware write-protected, only writes to nonvolatile bits in the STATUS register are disabled. See Table 3-5 for a matrix of functionality on the WPEN bit.

See Figure 3-7 for the WRSR timing sequence.

TABLE 3-3: ARRAY PROTECTION

BP1	BP0	Array Addresses Write-Protected	Array Addresses Unprotected
0	0	None	All
0	1	Upper 1/4	Lower 3/4
1	0	Upper 1/2	Lower 1/2
1	1	All	None

TABLE 3-4: ARRAY PROTECTED ADDRESS LOCATIONS

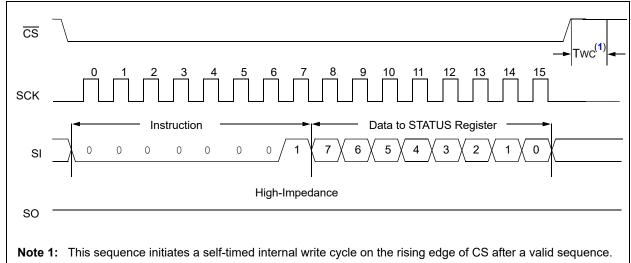

Density	Upper 1/4 Upper 1/2		All
8K	300h-3FFh	200h-3FFh	000h-3FFh
16K	600h-7FFh 400h-7FFh		000h-7FFh
32K	C00h-FFFh	800h-FFFh	000h-FFFh
64K	1800h-1FFFh	1000h-1FFFh	0000h-1FFFh
128K	3000h-3FFFh	2000h-3FFFh	0000h-3FFFh
256K	6000h-7FFFh	4000h-7FFFh	0000h-7FFFh

TABLE 3-5: WRITE-PROTECT FUNCTIONALITY MATRIX

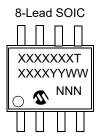
WEL (SR bit 1)	WPEN (SR bit 7)	WP (pin 3)	Protected Blocks	Unprotected Blocks	STATUS Register
0	Х	Х	Protected	Protected	Protected
1	0	х	Protected	Writable	Writable
1	1	0 (low)	Protected	Writable	Protected
1	1	1 (high)	Protected	Writable	Writable

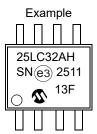
Note 1: x = don't care

4.0 DATA PROTECTION

The following protection has been implemented to prevent inadvertent writes to the array:

- · The write enable latch is reset on power-up
- A write enable instruction must be issued to set the write enable latch
- After a byte write, page write or STATUS register write, the write enable latch is reset
- CS must be set high after the proper number of clock cycles to start an internal write cycle
- Access to the array during an internal write cycle is ignored and programming is continued


5.0 POWER-ON STATE


The 25LCXXX powers on in the following state:

- The device is in low-power Standby mode (CS = 1)
- The write enable latch is reset
- SO is in a high-impedance state

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

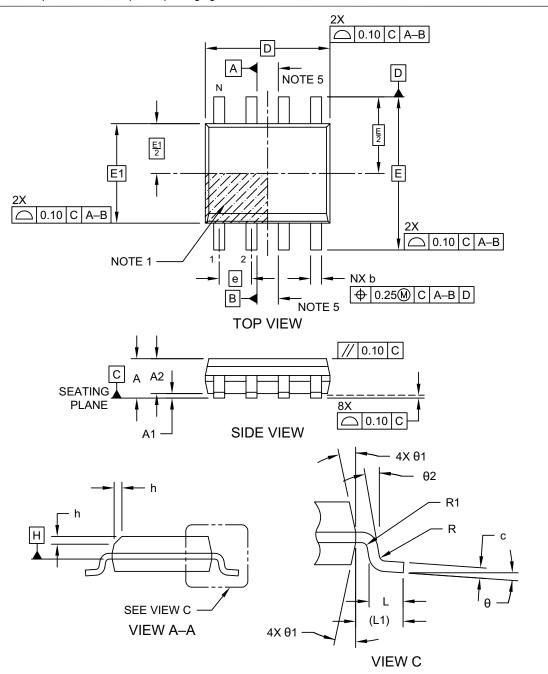
1 st Line Marking Codes						
Device	SOIC					
25LC080C	25LC08CT					
25LC080D	25LC08DT					
25LC160C	25LC16CT					
25LC160D	25LC16DT					
25LC320A	25LC32AT/25LC320AT					
25LC640A	25L640AT					
25LC128	25LC128T					
25LC256	25LC256T					

Note 1: T = Temperature Grade (H).

Legend: XX...X Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

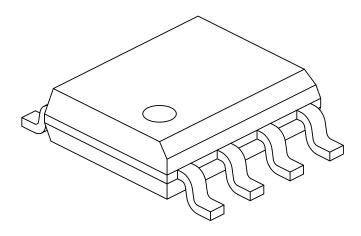
NNN Alphanumeric traceability code


(e3) RoHS compliant JEDEC designator for Matte Tin (Sn)

Note: For very small packages with no room for the RoHS compliant JEDEC designator (e3), the marking will only appear on the outer carton or reel label.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

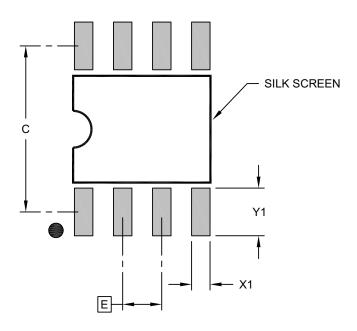

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Number of Pins	N	8					
Pitch	е		1.27 BSC				
Overall Height	Α	-	-	1.75			
Molded Package Thickness	A2	1.25	-	ı			
Standoff §	A1	0.10	-	0.25			
Overall Width	Е	6.00 BSC					
Molded Package Width	E1		3.90 BSC				
Overall Length	D	4.90 BSC					
Chamfer (Optional)	h	0.25	-	0.50			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.04 REF					
Lead Thickness	С	0.17	-	0.25			
Lead Width	b	0.31	-	0.51			
Lead Bend Radius	R	0.07	-	1			
Lead Bend Radius	R1	0.07	-	1			
Foot Angle	θ	0°	_	8°			
Mold Draft Angle	θ1	5°	_	15°			
Lead Angle	θ2	0°	_	_			


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	C		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

Note:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-SN Rev K

25LC080C/25LC080D/25LC160C/25LC160D/25LC320A/25LC640A/ 25LC128/25LC256

APPENDIX A: REVISION HISTORY

Revision F (04/2025)

Updated first line package marking; Minor editorial updates throughout the document.

Revision E (08/2021)

Added Product Identification System section for Automotive; Updated SOIC package drawings; Replaced terminology "Master" and "Slave" with "Host" and "Client", respectively; Reformatted some sections for better readability.

Added Product Identification System section for Automotive; Updated SOIC package drawings; Replaced terminology "Master" and "Slave" with "Host" and "Client", respectively; Reformatted some sections for better readability.

Revision D (09/2018)

Removed Preliminary status; Minor typographical corrections.

Revision C (06/2009)

Revised Features: Endurance and Package; Revised Table 1-2, Para. 21.

Revision B (04/2009)

Revised part number from 25XX to 25LCXXX; Added Note 1 to Electrical Characteristics.

Revision A (01/2009)

Initial release of this document.

PRODUCT IDENTIFICATION SYSTEM (NON-AUTOMOTIVE)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO	<u>).</u>	[X] ⁽¹⁾	<u>-</u> X	/XX	Examples:	
Device		e and Reel Option	Temperature Range	Package	a) 25LC080CT-H/SN	= 8-Kbit, 2.5V Serial EEPROM, 16-Byte Page, Tape and Reel,
Device:	25LC080D	= 8-Kbit, 2.5V	, SPI Serial EEPR	COM, 16-Byte Page COM, 32-Byte Page ROM, 16-Byte Page	b) 25LC080D-H/SN	H-Temp., SOIC Package. = 8-Kbit, 2.5V Serial EEPROM, 32-Byte Page, H-Temp., SOIC Package.
	25LC160D 25LC320A	= 16-Kbit, 2.5 = 32-Kbit, 2.5		ROM, 32-Byte Page ROM	c) 25LC160CT-H/SN	= 16-Kbit, 2.5V Serial EEPROM, 16-Byte Page, Tape and Reel, H-Temp., SOIC package.
	25LC128 25LC256	= 128-Kbit, 2	2.5V, SPI Serial EER 2.5V, SPI Serial EER	PROM	d) 25LC160D-H/SN	
Tape and Reel Option:	Blank T	= Standard pa = Tape and R	ackaging (tube or tr leel ⁽¹⁾	ray)	e) 25LC320AT-H/SN	1 0
					f) 25LC640A-H/SN	= 64-Kbit, 2.5V Serial EEPROM, H-Temp., SOIC Package.
Temperature Range:	Н	= -40°C to +1	50°C		g) 25LC128T-H/SN	= 128-Kbit, 2.5V Serial EEPROM, Tape and Reel, H-Temp., SOIC Package.
Package:	SN	= 8-Lead Plas Body SOIC	stic Small Outline –	Narrow, 3.90 mm	h) 25LC256-H/SN	= 256-Kbit, 2.5V Serial EEPROM, H-Temp., SOIC package.
					catalog is used to on the Microchi	nd Reel identifier only appears in the part number description. This identifier for ordering purposes and is not printed device package. Check with your ip Sales Office for package availability Tape and Reel option.

PRODUCT IDENTIFICATION SYSTEM (AUTOMOTIVE)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>ixi</u> (1)	-X	/XX	XX	<u>(2,3)</u>	Example	es:	
Device	Tape and Option		Temperature Range	Package	Varia	nt	•		H/SNVAO = 8-Kbit, 2.5V Serial EEPROM, 16-Byte Page, Automotive
Device:	25LC080C 25LC080D 25LC160C 25LC160D 25LC320A 25LC640A 25LC128 25LC128	= 8-Kbi = 16-Kl = 16-Kl = 32-Kl = 64-Kl = 128-l	t, 2.5V, SPI Serial E t, 2.5V, SPI Serial E bit, 2.5V, SPI Serial bit, 2.5V, SPI Serial bit, 2.5V, SPI Serial bit, 2.5V, SPI Serial (bit, 2.5V, SPI Seria (bit, 2.5V, SPI Seria	EEPROM, 32- EEPROM, 16 EEPROM, 32 EEPROM EEPROM al EEPROM	Byte P 3-Byte I	age Page	c)25LC16	60CT	Grade 0, SOIC package. 1-H/SNVAO = 8-Kbit, 2.5V Serial EEPROM, 16-Byte Page, Tape and Reel, Automotive Grade 0, SOIC package. 1-H/SN16KVAO = 16-Kbit, 2.5V Serial EEPROM, 16-Byte Page, Tape and Reel, Automotive Grade 0, SOIC package. 1-H/SN16KVAO = 32-Kbit, 2.5V Serial EEPROM,
Tape and Reel Option:	Blank T	= Tape a	ard packaging (tube and Reel ⁽¹⁾	,			e) 25LC3	20A7	Automotive Grade 0, SOIC package. 7-H/SN16KVAO = 32-Kbit, 2.5V Serial EEPROM, Tape and Reel, Automotive Grade 0, SOIC
Temperature Range: Package:	H SN		to +150°C (AEC-Q d Plastic Small Outl SOIC	,		nm	Note	1:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Variant: ^(2,3)	16KVAO 16KVXX		lard Automotive, 16 omer-Specific Auton		rocess			2: 3:	The VAO/VXX automotive variants have been designed, manufactured, tested and qualified in accordance with AEC-Q100 requirements for automotive applications. For customers requesting a PPAP, a customer-specific part number will be generated and provided. A PPAP is not provided for VAO part numbers

MICROCHIP INFORMATION

Trademarks

The "Microchip" name and logo, the "M" logo, and other names, logos, and brands are registered and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or subsidiaries in the United States and/or other countries ("Microchip Trademarks"). Information regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-information/microchip-trademarks.

ISBN: 979-8-3371-1029-5

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.