AVR32136: AVR32 UC3 NAND flash GPIO driver

Features

Open NAND flash interface (ONFi).

Fully configurable GPIO and timing settings.

Uses the CPU local bus for high speed I/0O access.
Supports both 8-bit and 16-bit NAND flash devices.
Supports a general NAND flash command interface.
Optional Hamming ECC algorithm implemented in software.

1 Introduction

This application note describes how to connect a NAND flash device to an AVR®32
UC3 family device and communicate using only GPIO lines.

How to configure the driver to match the target hardware is also covered by this
application note.

Most new NAND flash devices share the same electrical interface, separated
between 8-bit and 16-bit devices. The command interface (open NAND flash
interface) is the same for both 8-bit and 16-bit devices, which makes it feasible to
have a generic driver for all NAND flash devices.

The optional Hamming ECC algorithm implemented in software is a part of the
Software Framework and can be enabled seamless with the generic NAND flash
interface described in this application note.

ATMEL

I

AIMEL

Y ()

32-bit AVR

Microcontrollers

Application Note

Rev. 32110A-AVR32-12/08

AIMEL

@

2 NAND flash interface

2.1 Open NAND flash interface

This example application and driver are using the open NAND flash interface (ONFi)
to communicate with the NAND flash device from the UC3 microcontroller.

For more information about ONFi see the website http://www.onfi.org/

2.2 NAND flash command interface

The driver implemented for UC3 devices does not support the full command set, but
the most vital part to identify, read, erase and program the flash device. See Table 2-
1 for a list of supported commands.

Table 2-1. NAND flash command interface supported by driver

Name Command Supported by driver

Read 0x00 0x30 Yes

Copyback read 0x00 0x35

Change read column 0x05 OxEO Yes

Read cache enhanced | 0x00 Ox31

Read cache 0x31

Read cache end O0x3F

Block erase 0x60 0xDO Yes
Interleaved 0xD1

Read status 0x70 Yes

Read status enhanced 0x78

Page program 0x80 0x10 Yes

Interleaved Ox11

Page cache program 0x80 0x15

Copyback program 0x85 0x10
Interleaved 0x85 0x11
Change write column 0x85
Read id 0x90 Yes
Read parameter page OXEC Yes
Read unique ID OXED
Get features OXEE
Set features OXEF
Reset Oxff Yes

These NAND flash commands are used through the driver interface. See chapter 4
on page 5 for more details.

2 AVR32136

32110A-AVR32-12/08

3 Electrical wiring

3.1 Command signals

AVR32136

The open NAND flash interface (ONFi) also defines the hardware interface, packages
and pin out. This makes it easy to swap out NAND flash devices to another size
and/or brand.

This chapter will describe how the NAND flash interface should be connected to the
UC3 microcontroller.

3.1.1 Command latch enable (CLE)

The command latch enable signal (CLE) is active high and used to tell the NAND
flash device that the data on the 1/O lines are a command which should be latched
into the command register. This signal is used in combination with the write enable
(WE) signal.

3.1.2 Address latch enable (ALE)

3.1.3 Chip enable (CE)

3.1.4 Read enable (RE)

3.1.5 Write enable (WE)

3.1.6 Write protect (WP)

32110A-AVR32-12/08

The address latch enable signal (ALE) is active high and used to tell the NAND flash
device that the data on the I/O lines are an address which should be latched into the
address register. This signal is used in combination with the write enable (WE) signal.

The chip enable signal (CE) is used to select and enable the device, and is active
low. This enables the design to have multiple NAND flash devices, each connected to
a separate chip enable signal.

The read enable signal (RE) controls the reading of data from the NAND flash device,
and is active low. The internal address register is incremented by one for each read.
The auto increased address enables the possibility to fast and easy transfer data from
the NAND flash device.

The NAND flash device will need a read page command, or other read commands,
before data transfer is activated. Most NAND flash devices starts up in read mode on
the first page of data, which can be used to easy read out a bootloader.

The write enable signal (WE) controls writing commands and data to the NAND flash
device, and is active low. When writing data the internal address register is
incremented by one for each write. The auto increased address enables the
possibility to fast and easy transfer data to the NAND flash device.

NAND flash also uses the write enable signal when writing commands and addresses
to the device.

The write protect signal (WP) is used to enable and disable write and erase protection
for the entire device, and is active low.

AIMEL 3

@

3.1.7 Read/busy output (R/B)

3.2 1/0 signals

4 AVR32136

AIMEL

@

The ready/busy signal (R/B) is used to tell if the NAND flash device is ready for new
tasks or busy doing a task, the signal is busy low and ready high. A task can be read,
erase, program, etc.

The 1/O signals are used to transfer data to the NAND flash device. The interface is
either 8-bit or 16-bit and is a bidirectional serial bus. It is called serial due to the fact
that addresses are sent to the NAND flash device in one byte at a time.

The signals must be routed to a single GPIO port on the AVR32 UC3 device, with all
the signals in a successive order.

The lowest numbered GPIO line on the I/O lines chosen on the AVR32 UC3 device
must be routed to 1/0 0 on the NAND flash device. The other I/O lines must be routed
to the following GPIO lines on that port in successive order.

For an example of how to connect a NAND flash device see Table 3-1.
Table 3-1. GPIO lines connected to an 8-bit NAND flash 1/O lines example

UC3 GPIO port | UC3 GPIO line NAND flash I/O line | 8-bit interface 16-bit interface
Port B 0 /00 X X
Port B 1 /01 X X
Port B 2 /0 2 X X
Port B 3 /03 X X
Port B 4 /0 4 X X
Port B 5 /105 X X
Port B 6 /0 6 X X
Port B 7 /107 X X
Port B 8 /08 X
Port B 9 /109 X
Port B 10 1/0 10 X
Port B 11 110 11 X
Port B 12 110 12 X
Port B 13 1/0 13 X
Port B 14 1/0 14 X
Port B 15 1/0 15 X

32110A-AVR32-12/08

AVR32136

3.3 Block diagram of wiring

Figure 3-1. Example wiring of 16-bit NAND flash connected to an AVR32 MCU

VCC
O
GPIONN M CLE vCC J: 100nF
GPIOnn N ALE
GPIOnNn T CE
GPIONNn N RE
GPIONn) WE
AVR32 GPIONNn 4 WP NAND
GPIOnn ﬁ 10k ohm 14 flash
— R/B
GPIOX[15] GPIOX[0] 1100 11015
GPIOX[14] GPIOX[1] 1101 11014
——— GPIOX[13] GPIOX[2] 1102 11013 ——|
GPIOX[12] GPIOX[3] 1103 11012
GPIOxX[11] GPIOX[4] 1104 /011
GPIOX[10] GPIOX[5] 1105 11010
GPIOX[9] GPIOX[6] 1106 1109
I —— GPIOX([8] GPIOX[7] I/07 GND 1/08 ———
N
GND

On 8-bit NAND flash devices the upper byte of the 1/O lines are not present. Hence it
is neither needed nor possible to route these signals to the AVR32 device. When
interfacing 8-bit NAND flash only eight GPIO lines are needed on the AVR32 device.

4 NAND flash GPIO driver interface

4.1 Setup the struct nand_driver_data

The driver needs a struct which contains the entire configuration for the NAND flash
driver. This struct is called nand_driver_data and is defined in the nand.h file.

4.1.1 nand_info

This struct nand_info will be filled by the driver when initializing, must be left
unaltered.

4.1.2 bad_table

This struct nand_bad_table must be initialized after the driver has been initialized, for
more information see chapter 4.3 on page 7.

4.1.3 gpio_ce

This integer representing the NAND flash chip enable signal (CE) must be set to a
GPIO line number.

AIMEL 5

@

32110A-AVR32-12/08

4.1.4 gpio_rb

4.1.5 gpio_we

4.1.6 gpio_wp

4.1.7 gpio_ale

4.1.8 gpio_cle

4.1.9 gpio_io_port

4.1.10 gpio_io_mask

4.1.11 gpio_io_adress

4.1.12 gpio_io_offset

6 AVR32136

AIMEL

@

This integer representing the NAND flash read/busy signal (R/B) must be set to a
GPIO line number.

This integer representing the NAND flash write enable signal (WE) must be set to a
GPIO line number.

This integer representing the NAND flash write protect signal (WP) can be set to a
GPIO line number. If set to a negative value, the write protect feature will be assumed
controlled by external pull-up.

This integer representing the NAND flash address latch enable signal (ALE) must be
set to a GPIO line number.

This integer representing the NAND flash command latch enable signal (CLE) must
be set to a GPIO line number.

This integer representing which port on the CPU local bus the I/O lines to the NAND
flash are connected to.

This bit field represents the mask the I/O lines represent on the CPU local bus. I.e. for
an 8-bit interface with offset 8 on the CPU local bus this mask would be 0x0000FFQ0.

This address must be set to the base address on the CPU local bus for the given
GPIO port which is used for 1/0.

This can be automatically given with the following C code:

nfd.gpio_io_address = (unsigned long *)
(AVR32_GP10_LOCAL_ADDRESS + (0x100 * nfd.gpio_io_port));

The variable nand_data is the struct nand_driver_data.

This integer is the offset from GPIO line 0 on the GPIO port used for the I/O interface.
I.e. using bit 8 to bit 15 on a GPIO port would give an offset 8.

32110A-AVR32-12/08

AVR32136

4.1.13 gpio_io_size

This integer represents the number of GPIO lines used for the 1/O interface. It must
be identical to the bus width for the NAND flash device, i.e. 8 for 8-bit devices and 16
for 16-bit devices.

4.2 Initialize the GPIO lines and read out the NAND flash ID

After all vital information has been filled into the struct nand_driver_data, the GPIO
lines and NAND flash device is ready to be initialized. This is done with the function:

nand_init(struct nand_driver_data *nfd);

The function will setup all the GPIO lines, reset the NAND flash device and read out
the NAND flash ID.

4 .3 Initialize the bad block table and scan for bad blocks

Since NAND flash is by nature not 100 % error free the NAND flash driver needs to
have a table of which blocks are bad. Since there can be different number of blocks in
NAND flash devices, the size of the bad block table must be calculated after the
NAND flash ID has been read.

It is possible to get the number of blocks from the driver by looking in the nand_info
struct within the nand_driver_data struct after initialization. There is an integer
num_blocks which holds the information about number of blocks.

The bad_table struct within the nand_driver_data struct must be initialized with a
memory area large enough to hold this information.

This can be done with the following C code:

unsigned char *block_status;

block_status = malloc(nfd.nand_info.num_blocks);
it (!block_status)

return;
nfd.bad_table.block_status = block_status;

The bad block table can now be generated with the function:

nand_create_badblocks_table(struct nand_driver_data *nfd);

This function will examine the entire flash, locate the bad blocks and make a note of
where they are in the bad blocks table. This will protect the user later when erasing,
programming and reading data from the NAND flash device.

The user should check the return value from nand_create_badblocks_table() for
errors.
4.4 Erase a NAND flash block

The driver can erase the entire content of a given NAND flash block; this will
effectively set the value of all bytes in that block to OxFF. This will not erase the spare
area in the block. To erase a block use the following function:

AIMEL 7

@

32110A-AVR32-12/08

AIMEL

@

nand_erase(struct nand_driver_data *nfd,
const unsigned long block);
Example:

nand_erase(&nfd, 42);

The example above will erase block 42 in the NAND flash.

The user should check the return value from nand_erase() for errors.

4.5 Program a NAND flash page

The driver can program the contents of a given page within a block. The pages must
usually be programmed from offset 0 and upwards. This function will not program the
spare area in the block. To program data to a page use the following function:
int nand_write(struct nand_driver_data *nfd,
const unsigned long block, const unsigned long offset,
const unsigned char *buf, const unsigned short count);

Example:
unsigned char buffer[5];
buffer[0] = “A”;
buffer[1] = “V~;
buffer[2] = “R”;
buffer[3] = “37;
buffer[4] = “27;

nand_write(&nfd, 42, 0, buffer, 5);

The example above will program the 5 byte large array into offset O of block 42 in the
NAND flash.

The user should check the return value from nand_write() for errors.

4.6 Read a NAND flash page

The driver can read the contents of a given page within a block. This function will not
read the spare area in the block. To read data from a page use the following function:

int nand_read(struct nand_driver_data *nfd,
const unsigned long block, const unsigned long offset,
unsigned char *buf, const unsigned short count);
Example:
unsigned char buffer[5];
nand_read(&nfd, 42, 0, buffer, 5);

The example above will read 5 bytes from offset 0 of block 42 in the NAND flash and
store it into the buffer array.

The user should check the return value from nand_read() for errors.

& AVR32136

32110A-AVR32-12/08

AVR32136

5 Configuration of the NAND flash driver

To configure the NAND flash driver the nand.h header file must be altered to match
the system configuration.

The following defines must be set correctly before use:

¢ Define FCPU to correct CPU speed.
e Set NAND_BUS_TYPE to NAND_BUS_TYPE_GPIO to use GPIO interface.
e Set NAND_ECC_TYPE to NAND_ECC_NONE for no ECC algorithm.

5.1 Enabling Hamming ECC algorithm

6 Implementations

6.1 NAND flash driver files

To enable this interface the NAND_ECC_TYPE must be set to NAND_ECC_SW in
the nand.h header file for the software project.

After changing the value of NAND_ECC_TYPE the nand_write() and nand_read()
functions will automatically start to take advantage of the Hamming ECC algorithm. It
is therefore vital that return values from these functions are handled in the software
project.

Also note that all previous writes to the NAND flash without ECC will be invalid after
the ECC algorithm has been turned on.

The driver consists of four files; nand.c, nand.h, nand_gpio.c and nand_gpio.h. Where
nand.h and nand.c contains a generic NAND flash interface and nand_gpio.h
declares all functions and nand_gpio.c contains the source code specific for using
GPIO to interface NAND flash.

In the software framework the NAND flash GPIO driver is located in
COMPONENTS/MEMORY/NAND_FLASH/NAND_FLASH_GPIO and an example is
located in the EXAMPLE sub directory.

6.2 Hamming ECC algorithm files

The algorithm consists of three files; ecc.h, ecc-sw.c and ecc-sw.h. Where ecc.h
contains defines common for the ECC algorithm and ecc-sw.c and ecc-sw.h is the
implementation of the Hamming algorithm.

In the software framework the Hamming ECC algorithm is located in
SERVICES/MEMORY/ECC_HAMMING.

6.3 Doxygen documentation

32110A-AVR32-12/08

All source code is prepared for doxygen automatic documentation generation.

Doxygen is a tool for generating documentation from source code by analyzing the
source code and using known keywords. For more details see
http://www.stack.nl/~dimitri/doxygen/.

AIMEL 9

@

AIMEL

[0

Headquarters International

Atmel Corporation Atmel Asia Atmel Europe Atmel Japan

2325 Orchard Parkway Unit 1-5 & 16, 19/F Le Krebs 9F, Tonetsu Shinkawa Bldg.

San Jose, CA 95131 BEA Tower, Millennium City 5 8, Rue Jean-Pierre Timbaud 1-24-8 Shinkawa

USA 418 Kwun Tong Road BP 309 Chuo-ku, Tokyo 104-0033

Tel: 1(408) 441-0311 Kwun Tong, Kowloon 78054 Saint-Quentin-en- Japan

Fax: 1(408) 487-2600 Hong Kong’ Yvelines Cedex Tel: (81) 3-3523-3551
France Fax: (81) 3-3523-7581

Tel: (852) 2245-6100

Fax: (852) 2722-1369 Tel: (33) 1-30-60-70-00

Fax: (33) 1-30-60-71-11

Product Contact

Web Site Technical Support Sales Contact
www.atmel.com avr32@atmel.com www.atmel.com/contacts

Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

32110A-AVR32-12/08

	1. Introduction

	2. NAND flash interface

	2.1 Open NAND flash interface

	2.2 NAND flash command interface

	3. Electrical wiring

	3.1 Command signals

	3.2 I/O Signals

	3.3 Block diagram of wiring

	4. NAND flash GPIO driver interface
	4.1 Setup the struct nand_driver_data
	4.2 Initialize the GPIO lines and read out the NAND flash ID

	4.3 Initialize the bad block table and scan for bad blocks

	4.4 Erase a NAND flash block

	4.5 Program a NAND flash page

	4.6 Read a NAND flash page

	5.
Configuration of the NAND flash driver
	5.1 Enabling Hamming ECC algorithm

	6.
 Implementations
	6.1 NAND flash driver files
	6.2 Hamming ECC algorithm files

	6.3 Doxygen documentation

