
UG0443
User Guide

SmartFusion2 and IGLOO2 FPGA Security and Best
Practices

50200443. 13.0 9/24

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2024 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Contents

1 Revision History . 1
1.1 Revision 13.0 . 1
1.2 Revision 12.0 . 1
1.3 Revision 11.0 . 1
1.4 Revision 10.0 . 1
1.5 Revision 9.0 . 1
1.6 Revision 8.0 . 2
1.7 Revision 7.0 . 2
1.8 Revision 6.0 . 2
1.9 IGLOO2 Document List of Changes (Outdated) . 2
1.10 SmartFusion2 Document List of Changes (Outdated) . 2

2 Security Concerns in FPGAs . 4
2.1 Design Security . 4
2.2 Data Security . 4
2.3 Design Security Concerns . 5

2.3.1 Cloning . 5
2.3.2 Overbuilding . 5
2.3.3 Reverse Engineering . 5
2.3.4 Counterfeiting . 6

2.4 Data Security Concerns . 6
2.5 Design Security Impact on Data Security . 7

3 Security Features Overview . 8
3.1 Security Architecture . 8
3.2 SmartFusion2 Security Architecture . 8
3.3 IGLOO2 Security Architecture . 9
3.4 System Controller for Programming and Various Services . 10
3.5 Hardware Cryptographic Accelerators . 11
3.6 AES-128/256 Hardware Accelerator . 11
3.7 SHA-256 Hardware Accelerator . 12
3.8 Non-Deterministic Random Bit Generator (NRBG) . 12
3.9 Elliptic Curve Cryptography Hardware Accelerator (P-384 Curve) . 13
3.10 SRAM-PUF Secure Key Storage and Random Seed Generation Engine . 14
3.11 Design Security Features . 15
3.12 Cryptographic Design Security . 15

3.12.1 Bitstream Protection and Key Management . 15
3.12.2 FPGA Hardware Access Control . 15
3.12.3 Supply Chain Assurance . 16

3.13 Anti-Tamper Protection . 16
3.14 Data Security Features . 16
3.15 Cryptography Research Incorporated (CRI) DPA Patent Portfolio License . 17
3.16 Summary of SmartFusion2 and IGLOO2 FPGA Security Features . 17

4 Cryptographic Security Features . 20
4.1 SmartFusion2 and IGLOO2 FPGAs Programming Model . 20

4.1.1 Security Segment . 21
Microchip Proprietary iii

4.1.2 User Security Segment . 24
4.1.3 Fabric Configuration Segment . 25
4.1.4 FPGA Fabric . 25
4.1.5 eNVM Array . 25

4.2 Bitstream Security . 26
4.2.1 Bitstream Encryption Overview . 26
4.2.2 Bitstream Content . 27
4.2.3 Programming Modes . 28

4.3 Key Management . 28
4.3.1 Key Modes (Encryption/Authentication Key Selection) . 28
4.3.2 Default Key Mode . 29
4.3.3 Factory Key Mode & Associated Symmetric Key Databases . 29
4.3.4 Factory ECC Public Key Modes . 29
4.3.5 User Symmetric Key Modes . 30
4.3.6 User ECC Key Modes (KUP and KUPE) . 30

4.4 Authorization Code Component and Key Mode . 31
4.4.1 Use of the Authorization Code to Prevent Overbuilding . 31
4.4.2 Authorization Code Key Mode . 32
4.4.3 Authorization Code with ECC Key Modes . 32

4.5 Support for Configuration Variations . 32
4.6 Versioning (Bitstream Re-Play Protection) . 33
4.7 Key Confirmation/Verification Protocols . 34
4.8 Passcode Matching Protocols . 34

4.8.1 Plaintext Passcode Matching Protocol . 34
4.8.2 One-Time-Use Encrypted Passcode Matching Protocol . 34

4.9 FlashLock . 34
4.10 Permanent FlashLock (OTP Mode) . 35

5 FPGA Hardware Access Controls . 36
5.1 FlashLock Passcode Security (256-bit) . 36
5.2 FPGA Lock-bits . 36

5.2.1 Security Segment Lock-bits (Erase/Write/Verify) . 37
5.2.2 Passcode Locks (Permanent Locks) . 37
5.2.3 Fabric Programming Erase Verify Read Lock-bits . 38
5.2.4 Key-Mode Lock-bits . 39
5.2.5 Lock-bit to Require One-Time-Use Encrypted Passcodes

(Prohibit Plaintext Passcode Matching) 40
5.2.6 Programming Port Lock-bits . 40
5.2.7 Lock-bit to Deactivate Debugging Features . 41
5.2.8 Cryptographic Services Lock-bits . 42
5.2.9 Hardware Firewall Lock-bits . 42

5.3 Memory Access Controls . 42
5.4 Software MPU . 42

5.4.1 Software eNVM User Page-Write Locks . 43
5.4.2 Hardware eNVM Factory Page-Write Locks . 43
5.4.3 Hardware eNVM, eSRAM, and MDDR Data Security Access Controls 43

5.5 Factory-reserved eNVM . 47

6 Supply Chain Assurance . 48
6.1 Certificate-of-Conformance (C-of-C) . 48
6.2 Back-Tracking Prevention (Versioning) . 48
6.3 Exporting Public Information or Configuration Data . 49

6.3.1 Device Certificates (Anti-Counterfeiting) . 49
6.4 Information Services . 52

6.4.1 Device and Design Information System Service . 53
Microchip Proprietary iv

6.4.2 Serial Number Service . 54
6.4.3 USERCODE Service . 55
6.4.4 User Design Version Service . 55
6.4.5 Security Settings . 55
6.4.6 Exporting User SRAM-PUF Activation Codes . 55
6.4.7 Configuration Read Back in User Mode . 56
6.4.8 Configuration Read Back in Factory Test Mode . 56

7 Device Level Anti-Tamper Features . 59
7.1 SmartFusion2 and IGLOO2 FPGA Tamper Detection and Tamper Response 59

7.1.1 Tamper Detection Flags . 60
7.1.2 Tamper Response . 62
7.1.3 LOCKDOWN_ALL_N . 63
7.1.4 DISABLEIO_ALL_IOS_N . 63
7.1.5 RESET_N . 63
7.1.6 ZEROIZE_N . 63

7.2 Differential Power or Side-Channel Analysis Resistance . 67
7.3 CRI Pass-Through DPA Patent License . 67
7.4 Fabric Configuration and eNVM Integrity Tests . 68

7.4.1 Legacy Verification Method – Resubmitting Bitstream . 68
7.4.2 Digest-Based Verification Method . 68
7.4.3 Automatic Integrity Check (Power-up Digest Check) . 69
7.4.4 Exporting Digests (Externally) . 70
7.4.5 On-Demand Integrity Check . 70

8 Data Security Through System Services . 73
8.1 SmartFusion2 and IGLOO2 System Services . 74
8.2 Non-Deterministic Random Bit Generator Service . 78

8.2.1 SmartFusion2 and IGLOO2 NRBG Implementation . 79
8.2.2 Self Test Service . 81
8.2.3 Instantiate Service . 82
8.2.4 Generate Service . 84
8.2.5 Reseed Service . 86
8.2.6 Uninstantiate Service . 88
8.2.7 DRBG Reset Service . 89

8.3 AES-128/256 Service (ECB, OFB, CTR, CBC modes) . 90
8.4 SHA-256 Service . 93
8.5 HMAC-SHA-256 Service . 95
8.6 Key Tree System Service . 97
8.7 PUF Emulation (Pseudo-PUF) Service . 100
8.8 SRAM-PUF Services . 102

8.8.1 Create User AC or Delete User AC Service . 103
8.8.2 Create Delete Export Import User Key Code . 105
8.8.3 Fetch a User PUF Key . 110
8.8.4 Fetch a PUF ECC Public Key . 112
8.8.5 Get a PUF Seed . 114

8.9 Elliptic Curve Cryptography (ECC) Services . 116
8.9.1 ECC Point Multiplication Service . 117

8.10 Elliptic Curve Cryptography (ECC) Point-Addition Service . 119
8.11 Summary of Expected DPA-Resistance of Cryptographic Services . 121

9 Using System Services Driver . 124

10 Reverse Engineering Protection . 125
10.1 Configuration Port Security . 126
Microchip Proprietary v

10.2 User JTAG (UJTAG) Security Considerations . 126
10.3 Programming Port Monitor . 127
10.4 Intrusion Detection and Protection . 128
10.5 Side Channel Analysis (SCA), Passive & Active, Non- and Semi-Invasive . 128

11 Internal Security Features . 130
11.1 Single Event Upset Robustness . 130

11.1.1 FPGA Fabric Configuration Memory . 130
11.1.2 Security Non-Volatile Memory (NVM) . 131
11.1.3 Embedded NVM Array . 131
11.1.4 MSS embedded SRAM (eSRAM) . 131
11.1.5 Miscellaneous SRAM Blocks Throughout the MSS . 131
11.1.6 DDR Memory Controllers . 131
11.1.7 FPGA Fabric SRAM Blocks . 132
11.1.8 System Controller SRAM Buffers . 132
11.1.9 FPGA Fabric User Flip-Flops . 133

11.2 Environmental Monitoring . 133
11.3 Partial Reconfiguration Security . 133
11.4 User Test and Debug Modes . 133

11.4.1 FPGA Fabric Real-Time Probes and Probe Read/Write Features . 134
11.4.2 System IP Interface (SII) Bus Test Modes . 134
11.4.3 Cortex - M3 Debugging Modes . 134
11.4.4 MSS Debug Features . 135
11.4.5 Activating and Deactivating Debugging Features . 135

11.5 Flash*Freeze Service . 136
11.6 System Controller Suspend Mode . 136

12 Security Glossary . 137
12.1 A . 137

12.1.1 Advanced Encryption Standard (AES) . 137
12.1.2 AES . 137
12.1.3 ANSI . 137
12.1.4 Authentication . 137
12.1.5 Authorization . 137

12.2 B . 137
12.2.1 Block Cipher . 137

12.3 C . 138
12.3.1 CERT . 138
12.3.2 Checksum . 138
12.3.3 Cipher . 138
12.3.4 Code . 139
12.3.5 Cloning . 139
12.3.6 Configuration . 139
12.3.7 Corrupt Data . 139
12.3.8 CPLD . 139
12.3.9 CRC . 139
12.3.10 Cryptography . 139
12.3.11 Cyclic Redundancy Check (CRC) . 140

12.4 D . 140
12.4.1 Data Encryption . 140
12.4.2 Data Encryption Standard (DES) . 140
12.4.3 Decryption . 141
12.4.4 Denial of Service . 141
12.4.5 DES . 141
12.4.6 Differential Power Analysis (DPA) . 141
12.4.7 Diffie-Hellman Key Exchange . 141
Microchip Proprietary vi

12.4.8 Digital Signatures . 142
12.4.9 Disable . 142

12.5 E . 143
12.5.1 Electromagnetic Analysis (EMA) . 143
12.5.2 Elliptic Curve Cryptography (ECC) . 143
12.5.3 Encryption . 143
12.5.4 Entropy . 143

12.6 H . 143
12.6.1 Hacker . 143
12.6.2 Hash Function . 144
12.6.3 HEX / Hexadecimal . 144

12.7 I . 144
12.7.1 IAP . 144
12.7.2 In-Application Programming (IAP) . 144
12.7.3 In-System Programming (ISP) . 144
12.7.4 Intellectual Property (IP) . 144
12.7.5 Invasive Attack . 145
12.7.6 ISP . 145

12.8 M . 145
12.8.1 Malicious Code . 145
12.8.2 Message Authentication Code . 145
12.8.3 Message Digest . 145
12.8.4 Modes of Operation . 145

12.9 N . 145
12.9.1 National Institute of Standards and Technology (NIST) . 145
12.9.2 Nonce . 145
12.9.3 Noninvasive Attack . 146
12.9.4 Nonvolatile . 146

12.10 O . 146
12.10.1 Overbuilding . 146

12.11 P . 146
12.11.1 Power Analysis . 146
12.11.2 Public Key Cryptography . 146

12.12 R . 147
12.12.1 Random Numbers . 147
12.12.2 Reverse Engineering . 147

12.13 S . 147
12.13.1 Security Strength . 147
12.13.2 Semi-Invasive Attack . 148
12.13.3 Side-Channel Analysis . 148
12.13.4 Simple Power Analysis . 148
12.13.5 SRAM FPGA . 148

12.14 T . 149
12.14.1 Tamper Detection . 149
12.14.2 Tamper Resistant Packaging . 149

12.15 V . 149
12.15.1 Volatile . 149

12.16 Z . 149
12.16.1 Zeroization . 149
Microchip Proprietary vii

Figures

Figure 1 SmartFusion2 Device Security Architecture . 9
Figure 2 IGLOO2 Device Security Architecture . 10
Figure 3 Non-Deterministic Random Bit Generator (NRBG) Block Diagram . 12
Figure 4 Quiddikey SRAM-PUF in SmartFusion2 and IGLOO2 devices . 14
Figure 5 Trademark Logo of Cryptography Research, Inc., used under license . 16
Figure 6 SmartFusion2 and IGLOO2 FPGA Programming Model . 21
Figure 7 Various Key Modes . 28
Figure 8 Permanently Lock Settings via SPM in the Libero SoC . 37
Figure 9 Permanently Protect Factory Test Mode Settings via SPM in the Libero SoC 38
Figure 10 Fabric Update Protection via SPM in the Libero SoC . 39
Figure 11 UEK1 and UEK2 Programming Key Mode Lock via SPM in the Libero SoC 39
Figure 12 Programming Interfaces Lock via SPM in the Libero SoC . 40
Figure 13 Disabling JTAG Boundary Scan . 41
Figure 14 Setting Debug Locks via SPM in the Libero SoC . 41
Figure 15 Cortex -M3 Configurator . 43
Figure 16 MSS Security Policies Configurator-eSRAM0, eSRAM1, eNVM0, eNVM1 and DDR Bridge Lock 45
Figure 17 M2S090TS/M2GL090TS MSS Security Configurator showing eNVM Special Sectors 46
Figure 18 MSS Security Policies Configurator - Fabric master to MSS . 46
Figure 19 Back Level Protection Settings in the Security Policy Manager . 49
Figure 20 Digital Signature Processes . 50
Figure 21 Device Certificate System Service Flow . 51
Figure 22 Device and Design Information System Service Flow . 54
Figure 23 Layered Security Preventing Read-back of Design IP or User Data . 57
Figure 24 Built-in Tamper Detection Flags and Tamper Response Inputs . 59
Figure 25 Tamper Flags Waveform . 61
Figure 26 DETECT_CATEGORY Flags Waveform . 62
Figure 27 DETECT_FAIL Flags Waveform . 62
Figure 28 DPA Logo . 67
Figure 29 Message Digests Used for Integrity Checking of NVM . 69
Figure 30 Power up Digest Check Selection in Tamper Macro . 70
Figure 31 Integrity Check System Service Flow . 71
Figure 32 Interfacing of COMM_BLK with System Controller . 75
Figure 33 Generic System Service Flow Diagram Using the Cortex-M3 Processor . 76
Figure 34 Generic System Service Flow Diagram using an FPGA Fabric Master . 77
Figure 35 Generic System Service Flow Diagram . 78
Figure 36 NRBG Block in SmartFusion2 and IGLOO2 Devices . 79
Figure 37 DRBG Self Test Check System Service Flow . 81
Figure 38 DRBG Instantiate Check System Service Flow . 83
Figure 39 DRBG Generate System Service Flow . 85
Figure 40 DRBG Reseed System Service Flow . 87
Figure 41 DRBG Uninstantiate System Service Flow . 88
Figure 42 DRBG Reset System Service Flow . 89
Figure 43 Cryptographic Services Block in SmartFusion2 . 90
Figure 44 AES System Service Flow . 91
Figure 45 SmartFusion2 and IGLOO2 SHA-256 Operation . 93
Figure 46 SHA-256 System Service Flow . 94
Figure 47 HMAC-256 System Service Flow . 96
Figure 48 Key Tree System Service Flow . 98
Figure 49 Pseudo-PUF System Service Flow . 101
Figure 50 SRAM-PUF Block in SmartFusion2 and IGLOO2 Devices . 103
Figure 51 SRAM-PUF User AC System Service Flow . 104
Figure 52 SRAM-PUF Key Codes . 106
Figure 53 Create Delete Export Import User Key Code System Service Flow . 107
Figure 54 Fetching a User PUF Key System Service Flow . 111
Microchip Proprietary viii

Figure 55 Fetching a PUF ECC Public Key System Service Flow . 113
Figure 56 Get a PUF Seed System Service Flow . 115
Figure 57 ECC Point Multiplication System Service Flow . 118
Figure 58 ECC Point Addition System Service Flow . 120
Figure 59 System Service Firmware Driver Generation . 124
Figure 60 JTAG Controllers CBlock Diagram (Including UJTAG Data Registers) . 127
Figure 61 DPA Logo . 128
Microchip Proprietary ix

Tables

Table 1 SmartFusion2 and IGLOO2 Design Security Features through System Service 17
Table 2 SmartFusion2 and IGLOO2 Data Security Features through System Service 18
Table 3 eNVM Special Sector Address Ranges . 46
Table 4 Device Certificate System Service Request . 52
Table 5 Device Certificate System Service Response . 52
Table 6 Service Status . 52
Table 7 Public Information Accessible . 52
Table 8 Information System Services . 53
Table 9 Serial Number Service Request . 54
Table 10 Serial Number Service Response . 54
Table 11 Service Status . 54
Table 12 USERCODE Service Request . 55
Table 13 USERCODE Service Response . 55
Table 14 Design Version Service Request . 55
Table 15 Design Version Service Response . 55
Table 16 Tamper Macro Port Description . 60
Table 17 DETECT_CATEGORY Flag Description . 61
Table 18 Built-in Tamper Response Options . 62
Table 19 Zeroization Options . 63
Table 20 FPGA Components during the Zeroization . 65
Table 21 Security Segments during the Zeroization . 65
Table 22 Integrity Check Service Request . 71
Table 23 Integrity Check Service Response . 71
Table 24 Integrity Check Function . 72
Table 25 SmartFusion2 and IGLOO2 Data Security Features through System Service 73
Table 26 DRBG Self Test Check System Service Request . 82
Table 27 DRBG Self Test Check System Service Response . 82
Table 28 DRBG Service Response Status Codes . 82
Table 29 DRBG Instantiate Check System Service Request . 83
Table 30 DRBG Instantiate Check System Service Response . 84
Table 31 DRBGINSTANTIATE Data Descriptor Structure . 84
Table 32 DRBG Generate System Service Request . 85
Table 33 DRBG Generate System Service Response . 86
Table 34 DRBGGENERATE Data Descriptor Structure . 86
Table 35 DRBG Reseed System Service Request . 87
Table 36 DRBG Reseed System Service Response . 87
Table 37 DRBGRESEED Data Descriptor Structure . 88
Table 38 DRBG Uninstantiate System Service Request . 88
Table 39 DRBG Reset System Service Request . 89
Table 40 DRBG Reset System Service Response . 89
Table 41 DRBG Uninstantiate System Service Response . 89
Table 42 AES System Service Request . 91
Table 43 AES System Service Response . 92
Table 44 AES128 Data Descriptor . 92
Table 45 AES256 Data Descriptor . 92
Table 46 SHA-256 System Service Request . 94
Table 47 SHA-256 System Service Response . 95
Table 48 SHA256DATA Structure . 95
Table 49 HMAC System Service Request . 96
Table 50 HMAC System Service Response . 97
Table 51 HMACDATA Structure . 97
Table 52 KeyTree System Service Request . 99
Table 53 KeyTree System Service Response . 99
Table 54 KEYTREEDATA Structure . 99
Microchip Proprietary x

Table 55 Pseudo-PUF System Service Request . 101
Table 56 Pseudo-PUF System Service Response . 102
Table 57 PPUFCHRESP Structure . 102
Table 58 User Activation Code Create or Delete Service Request . 104
Table 59 User Activation Code Create or Delete Service Response . 105
Table 60 User SRAM-PUF Activation Code (PUFUSERAC) structure . 105
Table 61 Create Delete Export Import User Key Code System Service Request . 107
Table 62 Create Delete Export Import User Key Code System Service Response 108
Table 63 SRAM-PUF User Key Code (PUFUSERKC) Structure . 108
Table 64 PUFUSERACKCEXPORT Memory View . 109
Table 65 PUFUSERACKCIMPORT Memory View . 110
Table 66 Fetch a User PUF Key System Service Request . 112
Table 67 Fetch a User PUF Key System Service Response . 112
Table 68 Fetch a User PUF Key Response Status . 112
Table 69 Fetch a User PUF Key (PUFUSERKEY) Structure . 112
Table 70 Fetch a PUF ECC Public Key System Service Request . 113
Table 71 Fetch a PUF ECC Public key Descriptor Structure . 114
Table 72 Fetch a PUF ECC Public Key System Service Response . 114
Table 73 Fetch a PUF ECC Public key Status . 114
Table 74 Get a PUF Seed System Service Request . 115
Table 75 Get a PUF Seed System Service Response . 116
Table 76 Get a PUF Seed Response Status Codes . 116
Table 77 PUFSEEDPTR Structure . 116
Table 78 ECC Point Multiplication System Service Request . 118
Table 79 ECC Point Multiplication System Service Response . 119
Table 80 ECCPMULT Structure . 119
Table 81 ECC Point Addition System Service Request . 120
Table 82 ECC Point Addition System Service Response . 121
Table 83 ECCPADDRPTR Structure . 121
Table 84 DPA Protection on System Services . 121
Microchip Proprietary xi

Revision History
1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 13.0
Removed the Zeroization with “Recoverable” option related information throughout the document.

1.2 Revision 12.0
Updated Figure 24, page 59 for clarity.

1.3 Revision 11.0
• Added a new section Debug Pass Key, page 24.
• Replaced the base activation code to activation code throughout the document.
• Updated Figure 1, page 9 to indicate the JTAG disable between JTAG interface and the Main Tap

Controller.
• The following points summarize the updates made in section Tamper Detection Flags, page 60:

• Changed the description of JTAG_ACTIVE flag, see Table 16, page 60.
• Added the description of DETECT_CATEGORY, DETECT_ATTEMPT, and DETECT_FAIL

flags, see Table 16, page 60.
• Added a column to specify the source that generates the tamper flags, see Table 16, page 60.
• Updated the Figure 26, page 62 and Figure 27, page 62.
• Updated the note that describe the DETECT_CATEGORY flag after Figure 26, page 62.
• Added a note to specify the clear condition of tamper flags after Table 16, page 60.

• Renamed section 4.3.6 User ECC Public Key Modes to User ECC Key Modes (KUP and KUPE),
page 30. And, added the section KUP Key Mode, page 31 and KUPE Key Mode, page 31.

1.4 Revision 10.0
The following is a summary of changes made in this revision.

• Updated the document for Libero SoC v12.0.
• Updated the sections Passcode Locks (Permanent Locks), page 37 and Fabric Programming Erase

Verify Read Lock-bits, page 38.
• Added a note under Table 25, page 73 to include a programming workaround when cryptographic

system services are enabled in the design.
• Updated the section Using Zeroization to Decommission Devices, page 66.
• Added a footnote for Table 1, page 17.
• Added descriptions for DETECT_CATEGORY flag, see Table 17, page 61.
• Added information about how to disable JTAG boundary scan using Libero SoC, see Programming

Port Lock-bits, page 40.
• Updated Table 19, page 63 to clearly specify which information segment is retained and which

segment is destroyed when the Recoverable option is selected.

1.5 Revision 9.0
The following changes were made in this revision.

• Information about eNVM array was updated to include SRAM-PUF/ECC key storage information.
For more information, see eNVM Array, page 25.

• Throughout the document, figures were updated to show Libero SoC v11.8.
• Information about key mode lock bits was updated to include UEK3. For more information, see Key-

Mode Lock-bits, page 39.
• Throughout the document, KUS was replaced by UEK3.
Microchip Proprietary 1

Revision History
1.6 Revision 8.0
The following changes were made in this revision.

• Security Concerns in FPGAs, page 4, Reverse Engineering Protection, page 125, and Internal
Security Features, page 130 were added.

• “Error Detection and Correction Controllers” section was deleted.
• Security Features Overview, page 8, Cryptographic Security Features, page 20, FPGA Hardware

Access Controls, page 36, Supply Chain Assurance, page 48, Data Security Through System
Services, page 73, and Using System Services Driver, page 124 were updated.

• DISABLEIO_ALL_IOS_N, page 63 was updated (SAR 80923).

1.7 Revision 7.0
In revision 7.0 of this document, a note was updated in Programming Port Lock-bits, page 40 (SAR
78163).

1.8 Revision 6.0
The following changes were made in revision 6.0 of this document.

• IGLOO2 Security and Reliability User Guide and SmartFusion2 Security and Reliability User Guide
were merged into this user guide.

• This revision number continues for further updates. Refer to SmartFusion2 and IGLOO2 list of
changes tables provided below for earlier updates.

• Zeroization Procedure, page 63 was updated (SAR 56959).
• Fabric Configuration and eNVM Integrity Tests, page 68 was updated (SAR 67636).

1.9 IGLOO2 Document List of Changes (Outdated)

1.10 SmartFusion2 Document List of Changes (Outdated)

Revision Changes

Revision 4
(July 2015)

This user guide was restructured and rewritten (SAR 57510 and 68479).

Revision 3
(January 2015)

Removed all instances of and references to M2S100 device from Table 1, Table
2, Table 4, Table 16 and Table 25 (SAR 62858).
Replaced all instances of “S” version with “S” or “TS” version.

Revision 2
(June 2014)

User guide was restructured and rewritten (SAR 57510).

Revision 1
(September 2013)

Added “How to Use EDAC” section in Error Detection and Correction Controllers
chapter (SAR 50571)

Revision 0
(June 2013)

Initial release.

Revision Changes

Revision 5
(January 2015)

Removed all instances of and references to M2S100 device from Table 1, Table
2, Table 4, Table 16 and Table 25 (SAR 62858).
Replaced all instances of “S” version with “S” or “TS” version.

Revision 4
(May 2014)

This user guide was restructured and rewritten (SAR 57510).

Revision 3
(September 2013)

Updated the “SmartFusion2 Security Features Overview” chapter (SAR 42854).

Revision 2
(April 2013)

Restructured the Error Detection and Correction Controllers chapter
(SAR 46164).
Microchip Proprietary 2

Revision History
Revision 1
(November 2012)

Added the “SmartFusion2 Security Features Overview” Chapter.

Revision 0
(October 2012)

Initial release.

Revision Changes
Microchip Proprietary 3

Security Concerns in FPGAs
2 Security Concerns in FPGAs

As FPGA sizes have grown to exceed the million-gate mark, they are used for more complex and
valuable designs. These days FPGAs include millions of gates of logic, megabytes of memory, high-
speed transceivers, analog interfaces, and robust processors. Hence, applications such as
communications infrastructure, sensitive database access, critical industrial control, and high-
performance signal processing that run in the FPGAs, have more value and handle more data. This
brings a greater need to protect these applications and data. This chapter briefly describes the various
common security concerns in FPGAs designs.

Throughout this document, the FPGA security functions are referenced as “design security” features and
“data security” features. The following section describes the design security and data security features.

2.1 Design Security
Design security feature protects the design IP and other sensitive information such as cryptographic keys
that are used in the FPGA initial configuration. Design IP includes designer’s logic design, firmware
code, and security settings loaded in the design. Designer’s logic design is typically a register-transfer-
level (RTL) source code in a design language such as Verilog or VHDL. This source code is compiled
ultimately to a binary form that is used to configure the FPGA Fabric look-up tables (LUTs), routing
switches and other programmable elements that give the FPGA Fabric and I/Os their desired
functionality. Another aspect of design IP is firmware code (C language or assembly source code) that
can be complied to binary code and is normally loaded and stored in eNVM within the device for
execution by the Cortex-M3 -based microprocessor sub-system (MSS). Microchip SoC FPGAs such as
SmartFusion®2 also contain a hard ARM® Cortex™-M3 processor. The larger programs may require
external non-volatile memory as well, to hold them, but the security of this code must be managed by the
application that the user writes, not the built-in features of the device.

Static end-application data values, considered as part of the design IP, may also be stored in the on-chip
eNVM.

A third broad category of IP includes all the cryptographic keys and security settings loaded into a device
that configures the security properties, for example, whether upgrades are allowed, and what action to
take if tampering is detected, etc. In SmartFusion2 most of the security keys and settings are stored in a
specially designed flash-based security segment described later in the guide.

Common security goals of the design owner are to keep the design IP confidential, to control the number
of devices (and systems containing such devices) that are produced, and to prevent tampering with the
design either when initially programmed, or thereafter. If field updates are allowed, they should only
originate with the design owner, and must be installed only with the exact configuration the owner
intends. The systems configured should perform reliability as intended, without unwanted extra
functionality. This implies that the design owner wants to use only trusted devices with the expected
performance, environmental capabilities, and reliability characteristics.

2.2 Data Security
Data security feature protects the data that is processed by the end application. The asset being
protected is the data generated/computed, stored, or communicated by the run-time application. This
data is often dynamic and usually owned by the user. Very often, cryptographic techniques are used to
protect these assets. Data security is closely related to the terms— information assurance (IA) and
information security. For example, if the configured design is implementing the key management and
encryption portion of a secure military radio, data security can entail encrypting and authenticating the
radio traffic, and protect the associated application-level cryptographic keys.

All Smartfusion2 and IGLOO®2 devices incorporate enhanced design security which make them the
most secure programmable logic devices. SmartFusion2 and IGLOO2 devices also include an advanced
set of on-chip data security features that make designing secure information assurance applications
easier and better than before. Several of the largest family members have additional design and data
Microchip Proprietary 4

Security Concerns in FPGAs
security features not present in the smaller devices. The design and data security features are described
later in the document.

2.3 Design Security Concerns
In this section, few specific design security concerns are described:

2.3.1 Cloning
Cloning (with respect to FPGAs) refers to producing additional devices that are programmed identical to
legitimately produced ones. The concern arises as FPGAs are generally openly available on the market,
and anyone with valid binary configuration data (often referred to as a “bitstream” file) can obtain devices
and, without proper FPGA security, might be able to produce as many fully configured copies as they
wish. An understanding of how the design works is not necessarily a requirement to produce clones;
possessing the configuration data and blank devices may be all that is required.

2.3.2 Overbuilding
Overbuilding is a special case of cloning of whole systems where the legitimate design owner hires a
contract manufacturer (CM) to build a certain number of systems, but a dishonest CM (or perhaps his
rogue employees) produce more systems than that were authorized so they can sell the overage
themselves. Because of the CM's privileged and trusted insider position and possessing all the data
required to produce legitimate systems including, for example, the FPGA configuration files and perhaps
even the associated cryptographic keys, overbuilding by dishonest CMs or insiders is generally a bigger
threat than cloning from other types of adversaries that don’t have access to all the same data.

SmartFusion2 and IGLOO2 contain security features, described later, that allow the design owner to
control the number of FPGAs that are programmed with a given design, almost completely eliminating
the risk of cloned FPGAs, and thus also preventing overbuilding of systems containing FPGAs.

2.3.3 Reverse Engineering
Modern FPGAs can be configured with large and very complex functionality. Reverse engineering (RE)
by observing only the FPGA inputs and outputs is quite difficult. This can be a significant hurdle to those
attempting to steal the design IP. However, if an adversary can gain access to the binary FPGA Fabric or
CPU firmware configuration data in plaintext form, reverse engineering of the system is much easier,
since it becomes more of a “white-box” class of problem where some or all of the internal elements of the
design are visible.

The detailed knowledge and understanding of how the FPGA logic or CPU firmware in a design works,
can be very valuable IP, a high-value asset in its own right. For example, the IP could be an industrial or
national security secret. The adversary may wish to understand how the design works to find security
vulnerabilities that can be exploited in systems of the same or similar design. In some cases, just
publishing full or partial design secrets can be a major concern.

The cost of reverse engineering can be lower than the cost of designing a competitive system from
publicly available knowledge, giving the IP thief an unfair economic advantage versus the legitimate IP
owner. Such IP, once revealed, may be cloned, ported to other implementations, or even sometimes
enhanced. The useful lifetime of systems with known exploits may be reduced, which requires expensive
development of replacement systems.

Furthermore, if the workings of a design are known, it may also be possible for an adversary to insert
undesired functionality into it, such as a Trojan Horse that provides a back-door for extracting sensitive
run-time data, and then re-introduce the modified design, undetected into the otherwise legitimate
original system.

The main approach to prevent reverse engineering is to keep the design confidential. This confidentiality
can be lost if the FPGA configuration data (e.g., for the FPGA fabric, or the firmware for the MCU) is
captured in plaintext form or can be read-back from a device; or if an encrypted version of the
configuration data is known and the encryption keys are stolen or extracted from a device. SmartFusion2
and IGLOO2 have strong countermeasures to maintain the confidentiality of the design configuration and
associated secret keys. See Reverse Engineering Protection, page 125 to know more.
Microchip Proprietary 5

Security Concerns in FPGAs
2.3.4 Counterfeiting
Counterfeiting can refer to several types of fraud at either the component or system level. While there is
a remote possibility of an FPGA being copied and produced by an unauthorized manufacturer, the more
realistic threats are from devices originally produced by the FPGA’s original component manufacturer
(OCM) that are somehow obtained by, and then misrepresented and sold by the counterfeiter.

These devices can be used devices that are removed from old systems, refurbished, and resold as new;
or devices binned as lower-speed grade or requiring a more restricted operating temperature that are re-
marked and misrepresented as faster or having guaranteed performance over a wider temperature
range. Similarly, devices could be misrepresented as having been screened for higher reliability levels,
which actually are not screened, or which have failed screening tests. In many of the above cases the
devices may work at first, or in benign environments, but fail under conditions where the properly binned
or screened devices would have worked correctly. As these are “real” devices that work correctly (at least
initially) they can be very difficult to segregate from legitimate devices by performing an inspection or an
electrical test. It is a challenge for the legitimate suppliers of ICs to provide better marking and inspection
methods while the counterfeiters create higher fidelity fakes that are harder to detect.

Rogue insiders could possibly obtain devices that have failed some functional test, and fraudulently
introduce them into the supply chain as fully functional devices. In some cases, the devices in question
may be obtained by “buying low and selling high,” (after being re-marked with added features that aren’t
actually present) or they may be stolen from fabrication, test or assembly facilities, delivery trucks,
warehouses, or in stages further down the supply chain.

Microchip has instituted a number of very strong measures during the manufacturing process and in the
shipped devices which help in stopping counterfeiting and related fraud. These features, supported in the
Libero® design automation tool suite, detect counterfeit devices before being shipped in end-user
systems, no matter where they are introduced in the supply chain.

Counterfeiting at the system level usually means a clone, or a system that is designed to work similar to
the real system, but produced by a counterfeiter who fraudulently misrepresents it as coming from the
legitimate source. Counterfeit systems are often made using inferior components and processes in order
to produce them at the lowest possible cost. Any brand damage due to bad design, shoddy construction,
or poor reliability will unfortunately be directed to the legitimate brand owner while the counterfeiter can
stay safe with the illegal profits earned. In extreme cases, the legitimate manufacturer may find
counterfeit systems returned under warranty, or even worse, to the subject of liability or litigation.

Many of the other security concerns mentioned so far may also lead to counterfeiting at the system level.
For example, a counterfeit system may include a Trojan Horse. It could be a standard-grade offering
misrepresented as a premium grade, or modified to provide optional premium services with the premium
price going to the counterfeiter rather than the legitimate producer.

If good FPGA security makes cloning and reverse engineering difficult, it can be a useful deterrent to
several types of system-level fraud. Therefore, good FPGA security can be part of the solution to system-
level counterfeiting.

2.4 Data Security Concerns
Data security is potentially as broad a subject as there are possible end uses of an FPGA, since in the
broadest sense an FPGA is always used to process data, a concise but all-encompassing definition is
difficult. In order to concise the definition, the data considered is usually restricted to data that are
sensitive.

Data security very often uses cryptographic techniques, implementing various security services. Often
the services provided are amongst the five familiar information security services:

• Confidentiality – Keeping the data secret
• Integrity – Insuring the data hasn’t been altered
• Availability – Both available when needed, and denied to unauthorized uses (including unauthorized

privilege escalation)
• Authenticity – Data is genuine and from the correct source
• Non-repudiation – A completed transaction cannot be denied
Microchip Proprietary 6

Security Concerns in FPGAs
Listed below are some of the attacks that may be used to break the security services.

• Monitoring or snooping on communication traffic or stored data in motion, or data at rest)
• Tampering with or changing data (for example, a “replay attack”)
• Impersonating one of the legitimate actors (for example, man-in-the-middle attack)
• Exploiting weak protocols

• Freshness, oracle, type, binding, repudiation, or other flaws
• Exploiting other design security weaknesses

• Weakness discovered with reverse engineering
• Inserting a Trojan Horse into user’s system
• Re-introducing a weakness user had fixed with an update

2.5 Design Security Impact on Data Security
Without design/device security, it is virtually impossible to provide good data security. Most design
security threats, such as reverse engineering, insertion of a Trojan Horse, unauthorized field upgrades,
etc. can lead to serious data security vulnerabilities. Data Security, including features provided by
Microchip intended for use in data security applications, are discussed later in the document.
Microchip Proprietary 7

Security Features Overview
3 Security Features Overview

Microchip’s SmartFusion2 and IGLOO2 devices have built-in features that provide enhanced security
during all stages of the device life-cycle from user key injection and bitstream programming, to field
updates, and finally to device decommissioning, when necessary. This chapter gives an overview of
these security features.

3.1 Security Architecture
The following sections describe SmartFusion2 and IGLOO2 security model architecture

3.2 SmartFusion2 Security Architecture
The following figure shows SmartFusion2 device architecture from a security model point of view. The left
column shows the system controller and its major hardware cryptographic accelerators. The system
controller manages all programming, verification, design security key-management, and related
operations. Also, it manages the system services through various hardware cryptographic accelerators.
The right column shows the Microcontroller Subsystem (MSS) that has configurable access control
policies to prevent over-writing any elements of a design. The middle column shows the eNVM blocks
(two on -090 and -150 devices and one on other SmartFusion2 devices) identified in blue. The eNVM
pages can be designated as write-protected to make it easy to control sensitive data. Additionally, a
novel NVM integrity check mechanism can be used to check the reliability and security in a device
automatically upon power-up, or upon demand. The middle column also shows the six security segments
to store keys and user settings (identified in green) and shows the FPGA fabric configuration block
(shown in light blue). Microchip flash-based FPGA configuration memory cells are located within the
FPGA fabric and directly control the routing switches and look-up tables that are used to implement the
user's design. This means the bitstream is not exposed on every power up for SmartFusion2 devices as
is done by SRAM-based FPGAs.
Microchip Proprietary 8

Security Features Overview
Figure 1 • SmartFusion2 Device Security Architecture

The small circles with X’s in them (shown in the preceding figure) indicate some of the functions that can
be disabled through the setting of various security options—often referred to as Lock-bits. This user
guide is divided into various sections to cover each element of the diagram, and cover the various
capabilities of the SmartFusion2 device in a way that is easy to understand.

3.3 IGLOO2 Security Architecture
The following figure shows IGLOO2 device architecture from a security model point of view. The left
column shows the system controller and its major hardware cryptographic accelerators. The system
controller manages all programming, verification, design security key-management, and related
operations. It also manages the system services through various hardware cryptographic accelerators. It
is similar to SmartFusion2 except that the MSS is replaced by high performance memory Subsystem
(HPMS) block. The right column shows the HPMS that has configurable access control policies to
prevent over-writing any elements of a design. The middle column shows the eNVM blocks (two on larger
devices and one on smaller devices) identified in blue. The eNVM pages can be designated as write-
protected to make it easy to control sensitive data. Additionally, a novel NVM integrity check mechanism
can be used to check the reliability and security in a device automatically upon power-up, or upon
demand. The middle column also shows the six security segments to store keys and user setting
identified in green. The middle column also shows the FPGA fabric configuration block, shown in light
blue. Microchip flash-based FPGA configuration memory cells are located within the FPGA fabric and
directly control the routing switches and look-up tables used to implement the users design. This means
the bitstream is not exposed on every power up for IGLOO2 devices as is done by SRAM-based FPGAs

System Controller

MM-ROM

SRAM

AES-128/256

SHA-256

NRBG

Passcode and
Verify Matching

Sy
st

em
 I

P
In

te
rf

ac
e

(S
II

)
B
us

Sy
st

em
 C

on
tr

ol
le

r
Pr

iv
at

e
B
us

es

DDR

eSRAM_0

eSRAM_1

eNVM_0
Top
Bottom

*eNVM_1
Top
Bottom

MS6

MS0

MS1

MS2

MS3

Factory Parameters Segment

Factory Key Segment

User Key2 Segment

User Key1 Segment

User Lock Segment

Fabric Configuration Segment

FPGA Fabric Configuration incl.
Peripheral and I/O

Configuration Plus Row, Probe,
and SRAM lock-bits

SRAM DSP I/O FF

MM4

MS4

MM5

MS5/FIC

Or Slave64-bit AXI Master

FPGA User Design
(If implemented by user)

F-DDR

SII Bridge MM9

Main Tap
Controller

Factory Scan
Boundary Scan

JTAG

SPI

User R/W Locks
User Key1 R/W/verify Locks
User Key2 R/W/verify Locks
Factory R/W Locks
Factory R/W/verify Locks
Lock-bits matrix for 3
groups of bus-masters

ECC*

SRAM-PUF*

M
SS

 S
w

itc
h

M
at

ri
x

I-
C
ac

he

Cortex Tap
Controller ETM

Cortex-M3
MM0/1
MM1/D

MM2/S

Watchdog Timer

HPDMA

PDMA

MM3

MM7

PDMA
HPDMA
SysReg

Timer (2)
RTC

MMUART_0,1
SPI_0,1
I2C_0,1

CAN
GPIO

COM_BLK
BB-SRAM

USB
Ethernet

MS5

Ethernet

USB

MM6

MM8

* Only on target devices

Programming
Instruction

ETM

Cortex-M3 Debug

ISP FPGA Debug
Microchip Proprietary 9

Security Features Overview
Figure 2 • IGLOO2 Device Security Architecture

The small circles with X’s in them (shown in the preceding figure) indicate some of the functions that can
be disabled through the setting of various security options, often referred to as Lock-Bits.

3.4 System Controller for Programming and Various
Services
The system controller in SmartFusion2 and IGLOO2 devices manages all programming, verification,
design security key-management, and related operations. The system controller is a dedicated fixed-
function hardened processor reserved for these functions, and is not reconfigurable. Its programming
and runtime operations are determined by a dedicated immutable metal-mask ROM. During
programming, the system controller authenticates and decrypts incoming bitstreams, erases and writes
the target flash memory segments, and responds to other external programming-related protocols, such
as key verification. The system controller includes several cryptographic hardware accelerators for data
security applications. Refer to Data Security Through System Services, page 73.

The system controller also provides both internal and external information-related services, such as
reporting the Factory Serial Number, the JTAG USERCODE value, or exporting the Device Certificate.
Refer to Supply Chain Assurance, page 48. The availability of many of the services can be controlled by
user security lock-bit settings. The system controller can optionally be suspended after booting, refer to
System Controller Suspend Mode, page 136.

During factory test mode the system controller is used, along with other built-in hardware test features
such as scan chains and memory built-in self-test (BIST) to verify the correct manufacturing of each
device and to program factory-related data such as the factory keys and device calibration data (used to
account for normal manufacturing process variations). If user and factory security settings allow, it is
possible for the user and factory to collaborate, to supply the correct passcodes and keys required to re-

System Controller

MM-ROM

SRAM

AES-128/256

SHA-256

NRBG

Passcode and
Verify Matching

Sy
st

em
 I

P
In

te
rf

ac
e

(S
II

)
B
us

Sy
st

em
 c

on
tr

ol
le

r
Pr

iv
at

e
B
us

es

DDR

eSRAM_0

eSRAM_1

eNVM_0
Top
Bottom

*eNVM_1
Top
Bottom

MS6

MS0

MS1

MS2

MS3

Factory Parameters Segment

Factory Key Segment

User Key2 Segment

User Key1 Segment

User Lock Segment

Fabric Configuration Segment

FPGA Fabric Configuration incl.
Peripheral and I/O Config. Plus
Row, Probe, and SRAM lock-bits

SRAM DSP I/O FF

MM4

MS4

MM5

MS5/FIC

Or Slave64-bit AXI Master

FPGA User Design
(If implemented by user)

F-DDR

SII Bridge MM9

HPMS

SPI

PDMA

HPDMA

COM_BLK

SYSREG

Main Tap
Controller

Factory Scan
Boundary Scan

JTAG

SPI

User R/W Locks
User Key1 R/W/verify Locks
User Key2 R/W/verify Locks
Factory R/W/ Locks
Factory R/W/verify Locks
Lock-bits of bus-masters

* Only on target devices
Microchip Proprietary 10

Security Features Overview
enter factory test mode in order to perform failure analysis of a failed device. There are strong, layered,
protections in place to prevent an adversary (or just the user or factory) from being able to enter factory
test mode. In user-configured devices there are default mechanisms that lock-out the factory, including
several optional layered mechanisms whereby the user can permanently prevent the device from
entering the factory test mode. Of course, if any of these permanent lock options are used, failure
analysis becomes impossible. Depending on the exact mechanisms deployed, field updates or design
verification may also be permanently blocked.

3.5 Hardware Cryptographic Accelerators
The system controller and associated security hardware includes hardware-based security
countermeasures to protect it against a broad range of threats, and manages the hardware-based
security countermeasures throughout the rest of the device. This section describes the hardware
cryptographic accelerators. The cryptographic system services are only available in premium devices
denoted with an “S” (or “TS”) suffix in the model number immediately following the device capacity code.

The hardware accelerator includes the following:

• Cryptographic Services block:
• AES-128/256 Hardware Accelerator
• SHA-256 Hardware Accelerator

• Non-Deterministic Random Bit Generator (NRBG)
• Elliptic Curve Cryptography Hardware Accelerator (P-384 Curve)
• SRAM-PUF Secure Key Storage and Random Seed Generation Engine
These hardware accelerators have been certified in NIST's cryptographic algorithm validation program
(CAVP). Refer to the following sections for links to the appropriate certificates in the NIST algorithm
validation lists on the NIST website.

The use of the hardware accelerators in the SmartFusion2 and IGLOO2 design security protocols have
been assessed by an accredited independent third-party security laboratory for resistance to side
channel analysis and have been certified as defined by the Rambus Cryptography Research Differential
Power Analysis (DPA) Countermeasure Validation Program (CVP) scheme. The following design
security protocols and services were assessed and certified:

• Bitstream Loading Protocol, BSP
• Bitstream Authentication Service, BAS
• Key Verification Protocol, KVP
• Plaintext Passcode Matching & Privilege Escalation, PTP
• One-Time Passcode, OTP
• Device Certificate Service DCS
• Pseudo-PUF Challenge/Response Service, PPS
The underlying cryptographic primitives (AES, ECC, SHA), used in the context of these protocols are
included. These protocols and services are described later in this document.

3.6 AES-128/256 Hardware Accelerator
The system controller has a hardware accelerator for encrypting or decrypting 128-bit blocks of data as
defined by the Advanced Encryption Standard and Technology Federal Information Processing Standard
Publication 197 (NIST FIPS PUB 197). The AES accelerator supports 128 and 256 bit key sizes. It is
used for both design and data security. For example, it is used for bitstream decryption. While the AES
accelerator does not have strong DPA countermeasures built-in, for design security applications it is only
used in protocols that nevertheless effectively prevent successful DPA attacks. Primarily, this is done by
strictly limiting the number of uses of any given key.

The AES hardware accelerator can also be used for data security applications as a system service (“S”
and “TS” devices only), please refer to AES-128/256 Service (ECB, OFB, CTR, CBC modes), page 90.

The AES hardware accelerators used in SmartFusion2 and IGLOO2 FPGAs have been certified in
NIST's cryptographic algorithm validation program (CAVP) for several common AES modes of operation
and key sizes for encryption and decryption. Refer to the certificates on the NIST website: certificate
2908 (applicable to all -005, -010, -025 devices) and certificate 2935 (applicable to all -060, -090 and -
150 devices).
Microchip Proprietary 11

https://www.rambus.com/security/dpa-countermeasures/dpa-countermeasures-validation-program/
https://www.rambus.com/security/dpa-countermeasures/dpa-countermeasures-validation-program/
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#2908
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#2908
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#2908

Security Features Overview
3.7 SHA-256 Hardware Accelerator
The system controller has a hardware accelerator for computing the NIST Secure Hash function SHA-
256 as defined in NIST FIPS PUB 180-3. Like the AES accelerator, the SHA accelerator is used both for
design and data security uses. For example, the SHA-256 algorithm is used extensively in validating the
integrity and authenticity of an incoming bitstream. It is also used in many of the other design security
protocols, such as key verification, and for internal requirements such as the hashing of passcodes
before they are stored in flash. While the SHA accelerator does not have strong DPA countermeasures
built-in, for design security applications it is only used in protocols that effectively prevent successful DPA
attacks. Hashing is often used with public data, with no processed secrets. When used with a secret
value such as a key, the SmartFusion2 and IGLOO2 built-in design security protocols strictly limit the
number of uses of the secret in order to prevent the leakage via side channels.

For data security applications, the user can run various system services using accelerator SHA-256 in
“S” and “TS” devices only which primarily include the SHA-256 algorithm, HMAC-SHA-256 (as defined
by NIST FIPS PUB 198-1), a Key-Tree algorithm, and PUF emulation protocols based on either the
pseudo-PUF or the SRAM-PUF secret, refer to Data Security Through System Services, page 73. Some
of services, such as the Key-Tree algorithm and the PUF emulation protocols (which internally use the
Key-Tree algorithm) inherently limit the number of uses of the secret key and thus should be extremely
DPA resistant. The user should be careful when using others’ SHA-256 -based system services, such as
HMAC, which are not inherently safe from DPA attacks.

The SHA-256 hardware accelerators used in SmartFusion2 and IGLOO2 FPGAs have been certified in
NIST’s cryptographic algorithm validation program (CAVP) for several modes of operation including
messages of arbitrary bit length (that is, not just for byte-aligned messages). Refer to these certificates
on the NIST website: certificate 2447 (SHA) and certificate 1841 (HMAC) (applicable to all -005 -010 or -
025 devices) and certificate 2472 (SHA) and certificate 1860 (HMAC) (applicable to all -060, -090 and -
150 devices).

3.8 Non-Deterministic Random Bit Generator (NRBG)
All SmartFusion2 and IGLOO2 devices contain a non-deterministic Random Bit Generator (NRBG), also
sometimes called a True Random Number Generator (TRNG). It comprises of a true entropy source
followed by a deterministic random bit generator (DRBG), also sometimes called a Pseudo-Random
Number Generator (PRNG). The true entropy source generates random bits that are tested and
conditioned, and are used as the primary seed material for the deterministic portion.

Figure 3 • Non-Deterministic Random Bit Generator (NRBG) Block Diagram

NRBG Block

Based upon a noisy
ring oscillator,

measured against a
system clock

Raw Entropy
Source Conditioner

Health
Monitors

DRBG per NIST SP800-90

D
ER

IVATIO
N

FU

N
C
TIO

N AES-
256
CTR

DRBG

Entropy input

Nonce

(optional)
additional input

Health

COMM_BLK

SII Master

p/o system controller

Command
Status

Output
0-1024

NONCE
GENERATION

Additional Entropy
 256/512

Ring Oscillator

reset

Full entropy
conditioned

bits

MSS/HPMS Bus
Interfaces

384

384

384/640

256

0-1024
Microchip Proprietary 12

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=7498
http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html#1841
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=15785
http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html#1860

Security Features Overview
The NRBG is designed to meet U.S. NIST Special Publication SP800-90A (for which it is) and the
German Bundesamt für Sicherheit in der Informationstechnik (BSI) random bit generator standard AIS-
31. One of the primary selection criteria for the chosen NRBG is its certified heritage under both these
standards in prior implementations. The random bits produced by the NRBG (ahead of the deterministic
random bit generator, DRBG) are tested against the customary cryptographic statistical tests, for
randomness, such as the NIST Statistical Test Suite STS-22, giving result to all passed tests.

The NRBG is used for design security protocols and related internal device functions. For example, it is
used for generating certain random keys. It is also used extensively in on-line protocols to generate
random nonces that is numbers used just once, often in order to prevent replay attacks against those
protocols. Since each time the protocol is run, a fresh random number is used; the expected output
results are different each time, even if the rest of the input parameters are the same as in an earlier
execution. The random numbers are sufficiently long and the chance of generating the same number
more than once is minimal.

The NRBG can also be used (only in “S” and “TS” devices) to generate random bit strings for the user’s
data security applications. Refer to SmartFusion2 and IGLOO2 System Services, page 74 for detail.

The DRBG used in the SmartFusion2 and IGLOO2 FPGA’s NRBGs are certified in NIST’s cryptographic
algorithm validation program (CAVP) for a security strength of 256 bits using AES CTR mode, including
support for prediction resistance (Refer to U.S. NIST Special Publication SP800-90A). and certificates on
the NIST website: certificate 535 (applicable to all -005, -010, -025 devices) and certificate 542
(applicable to all -060, -090 and -150 devices).

3.9 Elliptic Curve Cryptography Hardware Accelerator (P-
384 Curve)
In larger SmartFusion2 and IGLOO2 devices (-060, -090 and -150), the system controller also has an
Elliptic Curve Cryptography (ECC) hardware accelerator. It can perform two mathematical functions,
based on the NIST-defined P-384 curve and its associated domain parameters: scalar point
multiplication, and point addition. The P-384 domain parameters are defined in NIST FIPS PUB 186-3
Appendix D.1.2.4. At present, this is the only elliptic curve approved for protecting classified information
up to and including the top secret in the NIST Suite B list of approved algorithms.

The system controller can use the ECC accelerator to compute ECC public keys when the private key
(as defined by NIST FIPS PUB 186-3 Appendix B.4) is provided, or to establish a shared secret with an
external entity (the “x” -coordinate of the resulting point), using the Elliptic Curve Cryptography Co-factor
Diffie-Hellman (ECC-CDH) protocol as specified in NIST SP800-56A. A shared 256-bit secret symmetric
key is derived from the shared secret using a proprietary one-way DPA-resistant key derivation
algorithm. The shared secret key can be used to authenticate the device by knowing the shared secret
key (and thus by extension, the private key of the ECC key pair) using a challenge-response key
verification protocol, or it can be used as an encryption key; to transport user key(s) into the device, for
example.

Besides these design security uses, in “S” and “TS” devices, the user may access the point-multiplication
and point addition capabilities of the ECC hardware accelerator as system services via the internal
CommBlk bus interface. Refer to the SmartFusion2 and IGLOO2 System Services, page 74 for detail.

The scalar point multiplication service of the ECC hardware accelerators used in SmartFusion2 and
IGLOO2 FPGAs are certified in NIST’s cryptographic algorithm validation program (CAVP) via the ECC
co-factor Diffie-Hellman (CDH) primitive. Refer to the certificate on the NIST website: certificate 335
(applicable to all -060, -090 and -150 devices). Note that the other devices in the family do not support
ECC.

Though the third-party DPA assessment technically only includes ECC scalar point multiplication in the
context of the seven design security protocols certified the DPA countermeasures used in this
implementation are equally effective in data security applications in preventing the (normally secret)
scalar leakage via power or electro-magnetic side channels.
Microchip Proprietary 13

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html#535
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html#542
http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html#335

Security Features Overview
3.10 SRAM-PUF Secure Key Storage and Random Seed
Generation Engine
The SRAM Physically Unclonable Function (SRAM-PUF) is a novel key storage mechanism called
Quiddikey™-Flex, licensed from Intrinsic-ID, B.V., having superior security attributes. It combines the
passive zeroization feature of volatile memory with tamper-resistant nonvolatile key storage, with no
requirement of batteries. It is available in larger SmartFusion2 IGLOO2 and IGLOO2 FPGAs (-060, -090
and -150). Quiddikey uses the random start-up behavior of a 16 Kbit 2 KB SRAM block to determine a
static secret unique to each device. This dedicated SRAM block is attached only to the Quiddikey core,
and is not in any other memory map or scan chain. In each unique device, the SRAM turn-on behavior is
essentially independent (even down to the single-bit level), but from turn-on to turn-on in a single device
there is sufficient repeatability to reconstruct the same intrinsic secret each time. This intrinsic secret and
the SRAM entropy are used to derive or protect cryptographic keys with 256 bit security strength:
Intrinsic keys are randomly generated by Quiddikey, while extrinsic keys are keys provided that is
imported by the user that are in turn protected by the intrinsic secret.

Figure 4 • Quiddikey SRAM-PUF in SmartFusion2 and IGLOO2 devices

When power is removed from the SRAM, the secret effectively disappears. There is no known
technology to detect the start-up behavior of an SRAM without actually powering it up since the start-up
behavior is determined by virtually undetectable atomic-scale manufacturing differences in each SRAM
transistor such as the thickness of the gate dielectric, the number of atoms diffused into the channel
region, and other random process-related factors. Since each unique device’s power-up state is
independent and unpredictable, with no two devices ever being the same, the function is deemed
unclonable, and is analogous in many ways to a biometric identifier such as human fingerprints or iris
patterns, which are also considered unclonable.

The first time the SRAM-PUF is used, a particular intrinsic secret is determined in a process called
enrollment. In order to be able to determine the exact same secret on each subsequent power-up cycle,
in spite of bit-level turn-on to turn-on noise, a activation code (effective parity data) is stored in a
dedicated read- and write-protected region of the eNVM block. During subsequent turn-on cycles
Quiddikey logic reads the SRAM start-up values and applies the activation code to regenerate the PUF
secret. In this scenario, there is a strong analogy to a human fingerprint. Each time a fingerprint is
scanned, the measurement is slightly different due to noise, but still close and unique enough to be able
to identify the person.

Each enrolled key generates a short key code which is required along with the activation code, to
regenerate that specific key. The activation code does not have to be kept confidential because the
secret is not revealed by it and the secret is primarily rooted in the start-up behavior of the SRAM block.
The key codes are protected by AES-based encryption. As an added security precaution in the
SmartFusion2 and IGLOO2 SRAM-PUF implementation of Quiddikey; the activation code and key code
components are stored in a private section of the eNVM. There is an option to export them via a system
service for potential storage off-chip, re-importing them only when necessary for key regeneration. When
the activation code and key code components are exported, the activation code is encrypted with a
random key generated just for this purpose, and it is decrypted when re-imported, such as when used to
regenerate a key.

In larger SmartFusion2 and IGLOO2 “S” devices (-060, -090 and -150), the user can use SRAM-PUF
features as system services, Refer to SRAM-PUF Services, page 102 for more details
Microchip Proprietary 14

Security Features Overview
3.11 Design Security Features
Design security is the assurance that the user design programmed into a device is secure and operates
as intended for the life of the product. In the context of FPGAs this implies a secure FPGA fabric, a
secure configuration bitstream (which can include eNVM content), secure update scheme for the
configuration bitstream, and a secure key storage system. Cryptographic design security provides
information security of the configuration data. Supply chain assurance provides protection against
counterfeiting, and anti-tamper protection provides physical security of the underlying data. The various
security mechanisms can be combined and layered to improve and build upon overall system level
security. Below is a list of the design security features available in SmartFusion2 and IGLOO2 devices.

• Cryptographic Design Security
• Bitstream protection and key management
• FPGA hardware access control

• FlashLock® (passcode) security against unauthorized changes
• FPGA lock-bits to enforce more granular protection
• Software memory protection unit (MPU) to provide fine grain memory control (only available

in SmartFusion2 devices)
• Memory hardware firewalls to protect the access to memories from the bus masters
• Version control

• Supply Chain Assurance
• Device certificates
• Back-tracking prevention
• Key confirmation verification protocols
• Certificate-of-Conformance (C of C)

• Device Level Anti-Tamper Features
• Resistance to differential/side-channel analysis
• Tamper detection and response
• Operational integrity verification

3.12 Cryptographic Design Security
Important attributes for a strong cryptographic FPGA design security solution are described in the
following sub-sections

3.12.1 Bitstream Protection and Key Management
All SmartFusion2 and IGLOO2 configuration bitstreams are protected with AES-256 bit encryption, and
authenticated with SHA-256. No options exist within the Libero SoC tool flow to generate plain text
bitstreams. A default bitstream key is used if no user keys are specified.

Key management is often the critical link in a secure system. The FPGA and configuration bitstreams are
protected by a cryptographic key. Key management includes secure generation, distribution, and storage
of keys. All SmartFusion2 and IGLOO2 devices contain factory provisioned key material that can be used
to authenticate a device and provide a starting point for enrolling private user keys. Secret device keys
(both factory provided and user enrolled) are stored encrypted in all members of the device family. The
larger SmartFusion2 and IGLOO2 devices (-060, -090 and -150 devices) contain an elliptic curve
cryptography (ECC) engine to support asymmetric cryptographic techniques for key establishment. For
key storage, these same devices contain the Quiddikey IP core, an SRAM Physically Unclonable
Function (SRAM-PUF) licensed from Intrinsic-ID. In all SmartFusion2 and IGLOO2 FPGAs having the
SRAM-PUF feature, Microchip enrolls one 384-bit Factory Private ECC PUF key (SKFP) during device
manufacturing. This is a completely random key unique per each device that is generated inside a
FIPS140-2 level 3 hardware security module (HSM) during the key provisioning steps of the device
manufacturing process, and is not recorded or re- constructible by Microchip. The various key
management features are described in Cryptographic Security Features, page 20.

3.12.2 FPGA Hardware Access Control
SmartFusion2 and IGLOO2 FPGAs incorporate a number of configurable access control policies to
prevent over-writing any elements of a design. This includes the FlashLock passcode, FPGA lock-bits,
and the software memory protection unit for the MSS to enforce more granular protection for both
Microchip Proprietary 15

Security Features Overview
general purpose memory and security segments. Refer to FPGA Hardware Access Controls, page 36 for
details.

3.12.3 Supply Chain Assurance
Supply chain assurance in the context of Microchip FPGAs implies that the device purchased is a
genuine Microchip FPGA component. This ensures that devices have not been counterfeited or
fraudulently marked with characteristics other than what the device contains (that is, speed grade,
revision number). All SmartFusion2 and IGLOO2 devices include an X.509 certificate that is digitally
signed with a Microchip private key. The certificate is bound to the serial and model numbers of the
device, grading info, and a unique per device secret factory key. The Device Certificates (Anti-
Counterfeiting), page 49 provides more details on SmartFusion2 and IGLOO2 X.509 certificate and its
uses. In addition, unique device keys enable exact controls over the customer manufacturing process to
prevent over-building of customer systems at third-party manufacturing facilities. Refer to the Supply
Chain Assurance, page 48 for details.

3.13 Anti-Tamper Protection
SmartFusion2 and IGLOO2 FPGAs are the first devices in the industry, incorporating differential power
analysis (DPA) countermeasures to protect the bitstream keys from discovery using side-channel
analysis.

Figure 5 • Trademark Logo of Cryptography Research, Inc., used under license

In addition to the DPA countermeasures, SmartFusion2 and IGLOO2 FPGAs have additional anti-tamper
countermeasures. As a tamper countermeasure, the device provides a zeroization function to clear and
verify the configuration array (including key material contained on the device.) Refer to Device Level Anti-
Tamper Features, page 59 chapter for detail.

3.14 Data Security Features
Data security is protecting the information the FPGA is storing, processing, or communicating in its role in
the end application. If, for example, the configured design implements the key management and
encryption portion of a secure military radio, data security could entail encrypting and authenticating the
radio traffic, and protecting the associated application-level cryptographic keys. SmartFusion2 and
IGLOO2 devices allow the users to use the hardware accelerator blocks for designing secure information
assurance applications. The hardware accelerator blocks are available to the user in the “S” or “TS”
version of the devices.

The hardware accelerators can be accessed by system services through the communication block
(COMM_BLK). In SmartFusion2 SOC FPGAs, system services are the system controller actions initiated
by asynchronous events from the ARM Cortex-M3 processor or a fabric master through the COMM_BLK.
In IGLOO2, the system services are system controller actions initiated by asynchronous events from a
fabric master through the COMM_BLK. The Data Security Through System Services, page 73 describes
each system service and explains how to access the hardware accelerator blocks. For architectural
details of the COMM_BLK, see the “Communication Block” section in SmartFusion2 Microcontroller
Subsystem User Guide.
Microchip Proprietary 16

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_microcontroller_subsystem_user_guide_ug0331_v15.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_microcontroller_subsystem_user_guide_ug0331_v15.pdf

Security Features Overview
3.15 Cryptography Research Incorporated (CRI) DPA Patent
Portfolio License
All data security “S” and “TS” devices come built in with a CRI DPA “pass through” license. Users do not
have to negotiate a separate license with Rambus for implementing the DPA safe designs utilizing any
CRI DPA patents in the FPGA fabric or from code execution on the ARM Cortex-M3 processor.

In certain Microchip-supplied secure boot applications where a SmartFusion2 or IGLOO2 “S” or “TS”
FPGA is used as the root of the trust in booting a third-party CPU or FPGA, the DPA patent license
extends to the secure boot code uploaded from the Microchip FPGA to the target device (but not to other
applications running on the target device).

Note: CRI is now a part of Rambus

3.16 Summary of SmartFusion2 and IGLOO2 FPGA Security
Features
The following table summarizes the SmartFusion2 and IGLOO2 FPGA design security features, and
Table 2, page 18 summarizes the SmartFusion2 and IGLOO2 data security features available through
system services. The larger devices (-060, -090 and -150 devices) members of the device family have
some additional hardware accelerators blocks and thus have some additional features. These features
are explained in detail in the rest of the document.

Table 1 • SmartFusion2 and IGLOO2 Design Security Features through System Service1

Design Security Features Security Features

M2S005 M2S010
M2S025 M2S050
M2GL005
M2GL010
M2GL025
M2GL050
Devices
(Includes “non-
S”, “S” and “TS”
devices)

M2S060 M2S090
M2S150
M2GL060
M2GL090
M2GL150
Devices
(Includes “non-
S”, “S” and “TS”
devices)

Cryptographic Design
Security

Encrypted/Authenticated Design Key Loading x x

Symmetric Key Design Security (256-bit) x x

Design Key Verification Protocol x x

Encrypted/Authenticated Configuration Loading x x

Multiple programming methods and interfaces x x

ECC Public Key Design Security (384-bit) x

Hardware Intrinsic Security Design Keys
(SRAM-PUF)

x

Support for Configuration Variations x x

FlashLock Passcode Security (256-bit) x x

Fine-Grain Access Controls (flexible security
settings using flash lock-bits)

x x
Microchip Proprietary 17

Security Features Overview
Supply Chain Assurance Device Certificates (Anti-Counterfeiting) x x

Overbuilding Prevention x x

Certificate-of-Conformance (C-of-C) x x

Back-Tracking Prevention (versioning) x x

Information Services (S/N, Cert., USERCODE,
and so on.)

x x

Anti-Tamper Protection Tamper Detection x x

Tamper Response (includes Zeroization) x x

Fabric Configuration NVM and eNVM Integrity
Tests

x x

Software Memory Protection Unit (MPU) (Only
available in SmartFusion2 SoC device)

x x

1. The zeroization feature is not supported for M2S050 and M2GL050, see SmartFusion2 M2S050 (T, TS) Errata and IGLOO2
M2GL050 (T,TS) Device Errata.

Table 2 • SmartFusion2 and IGLOO2 Data Security Features through System Service

Data Security Features

M2S005S
M2S010S/TS
M2S025TS
M2S050TS
M2GL005S
M2GL 010S/TS
M2GL 025TS
M2GL 050TS

M2S060TS
M2S090TS
M2S150TS
M2GL060TS
M2GL 090TS
M2GL 150TS

Non-Deterministic Random Bit Generator (NRBG) system service x x

AES-128/256 system service (ECB, OFB, CTR, CBC modes) x x

SHA-256 system service x x

HMAC-SHA-256 system service x x

Key Tree system service x x

PUF Emulation (Pseudo-PUF) system service x

Table 1 • SmartFusion2 and IGLOO2 Design Security Features through System Service1 (continued)

Design Security Features Security Features

M2S005 M2S010
M2S025 M2S050
M2GL005
M2GL010
M2GL025
M2GL050
Devices
(Includes “non-
S”, “S” and “TS”
devices)

M2S060 M2S090
M2S150
M2GL060
M2GL090
M2GL150
Devices
(Includes “non-
S”, “S” and “TS”
devices)
Microchip Proprietary 18

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/Errata/SmartFusion2_M2S050_T_TS_Errata_00004245.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_igloo2_m2gl050_device_errata_er0200_v1p3.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_igloo2_m2gl050_device_errata_er0200_v1p3.pdf

Security Features Overview
Note: “x” in the last two columns of the preceding tables denotes that the particular feature is supported in the
device. If the column is blank, it denotes that the particular feature is not supported in that device.

SRAM-PUF system services
• Create User Activation Code (AC) or Delete User Activation Code AC

Service
• Get Number of Key Code (KC) Service
• Create User KC for an Intrinsic Key Service
• Create User KC for an Extrinsic Key Service
• Export all KC Service
• Import all KC Service
• Delete User KC Service
• Fetch a User PUF Key Service
• Get a PUF Seed Service

x

Elliptic Curve Cryptography (ECC) system services
• ECC Point-Multiplication system service
• ECC Point-Addition system service

x

Table 2 • SmartFusion2 and IGLOO2 Data Security Features through System Service (continued)

Data Security Features

M2S005S
M2S010S/TS
M2S025TS
M2S050TS
M2GL005S
M2GL 010S/TS
M2GL 025TS
M2GL 050TS

M2S060TS
M2S090TS
M2S150TS
M2GL060TS
M2GL 090TS
M2GL 150TS
Microchip Proprietary 19

Cryptographic Security Features
4 Cryptographic Security Features

Cryptographic design security provides information security of the configuration data. It is the assurance
that the user design programmed into a device is secure and operates as intended for the life of the
product. SmartFusion2 and IGLOO2 devices have built-in features that provide enhanced security during
all stages of the device life cycle: from wafer probe and initial Microchip provisioning of factory keys and
certificates, to assurance that the supply chain has delivered genuine devices to the user, to user key
injection and bitstream programming, to field updates, and finally to device decommissioning.

This chapter describes SmartFusion2 and IGLOO2 FPGA cryptographic design security including
bitstream protection and key management. The FPGA programming model and various cryptographic
design security features offered by SmartFusion2 and IGLOO2 FPGAs are described. While the
description that follows is at a level of detail appropriate for a designer to implement the described
security services, more specific details about the modes of operation and the underlying transactions are
available upon request through a specific NDA.

4.1 SmartFusion2 and IGLOO2 FPGAs Programming Model
The following figure depicts the simplified programming model used in SmartFusion2 and IGLOO2
FPGAs. The microcontroller sub-system in SmartFusion2 SoC FPGAs is not displayed in the simplified
model. There are three main user programmable sub-blocks within the SmartFusion2 and IGLOO2
devices. The FPGA fabric contains configurable user logic and can be programmed independently of other
blocks. The eNVM block is user non-volatile flash memory and can also be programmed independently.
There are three separate groups of security segments that are tamper protected blocks used to safely
store factory and user security keys as well as configurable security settings. Various representative keys
and the device serial number (DSN) are depicted in the figure. All programming operations including
program, verify, and security key management are managed by the system controller. During
programming mode, the system controller authenticates and decrypts incoming bitstreams, erases and
writes the target programmable sub-blocks, and responds to other external programming-related
protocols such as key verification.

The system controller and associated security hardware includes hardware-based security
countermeasures to protect the device against a broad range of threats, and manages the hardware-
based security countermeasures throughout the rest of the device. The system controller subsystem
includes various hardware cryptographic accelerators such as AES and SHA, and also includes a non-
deterministic random bit generator (NRBG). The SRAM-PUF and the elliptic-curve cryptography
accelerator are only available in the -060, -090 and -150 devices. The SPI interface can be used to
attach an external SPI flash device that is used to hold the updated and “golden” configuration
bitstreams.
Microchip Proprietary 20

Cryptographic Security Features
Figure 6 • SmartFusion2 and IGLOO2 FPGA Programming Model

4.1.1 Security Segment
The following sections describe three main groups of security segments.

4.1.1.1 Factory Security Segments
The factory security segment holds factory parameters, factory keys and passcodes, the DSN, and other
factory-set data. The factory segments are written by Microchip before shipping devices. Factory data is
split between two segments, the factory parameters segment and the factory keys segment, that can be
erased individually, for instance during zeroization. Both segments are zeroized if the “unrecoverable”
option is activated, refer to Device Level Anti-Tamper Features, page 59 for details on zeroization

Microchip has invested heavily in its factory infrastructure to make sure that the secret Factory keys and
passcodes are injected in a secure manner. All such data is always encrypted when outside the device or
a hardware security boundary. Keys are generated inside FIPS140-2 level 3 certified hardware security
modules (or by the device itself) and encrypted for transport into the devices during wafer probe testing.
None of the stored keys or passcodes or any of the keys used in the transportation are ever exposed in
plaintext on the Microchip factory floor.

4.1.1.2 Factory Parameter Segment
The factory parameter segment holds the following parameters:

4.1.1.2.1 Factory Passcodes (PPK and FPK)
The factory parameter segment holds the unique-per-device factory passcode and the Factory Passcode
Passkey (FPK). The factory passcode and passcode passkey are required to put the device into factory
test mode. The 128-bit factory passcode passkey must be matched. If correct, it allows attempted
matching of the second (main) 256-bit factory passcode. If that is also matched, factory test mode is
entered. This allows in-depth testing of the device by Microchip for failure analysis purposes.

The 128-bit passcode is common to a relatively large population of devices. The main 256-bit factory
passcode is unique in every provided device and is stored in the factory key security NVM segment. All
passcodes are stored in hashed form. When a passcode is entered for attempted validation, the entered
passcode is also hashed, and the hashed versions are compared in the hardware.

FPGA Fabric Configuration eNVM Array

Default
Key

Factory
Key

ECC
Key

User Key1 User Key2 User Lock

Factory Security Segment

User Security Segment

Keys

Fabric Configuration

System Controller

ECC

PUF

SPI

NRBG

AES/SHA

Factory Parameters

DSN

Factory Keys

Fabric Configuration Segment

Security Segment

Pseudo
-PUF
Secret
Microchip Proprietary 21

Cryptographic Security Features
The user can protect or permanently block the factory test mode. A lock-bit disables factory passcode
matching. Once the user keys are programmed, the lock-bit is automatically set and the factory test
mode can only be entered if explicitly allowed by the user. The bit can be rolled-back (that is, unlocked)
by the user using the FlashLock passcode (UPK1). Another option is that the FlashLock passcode itself
can be permanently disabled, which permanently disables the factory passcode matching by preventing
such roll-back. If the FlashLock passcode is permanently disabled, all security settings are permanently
frozen and the failure analysis of that device is not possible.

In addition, there is another user lock-bit option that permanently prohibits factory passcode matching
(whether or not the FlashLock passcode is matched). In devices where this lock-bit is set; the device can
never again enter factory test mode, and failure analysis is impossible. “Microchip Factory Test Mode
Access Level” setting in Security Policy manager (SPM) in the Libero SoC software is used for
configuring these lock bits.

4.1.1.2.2 Device Serial Number Part1- Factory Serial Number (FSN)
The device serial number (DSN) is a 128-bit unique device ID. It comprises of two parts: the factory serial
number (FSN) and the serial number modifier (SNM). The first part, the 64-bit FSN uniquely identifies a
device and is located in the factory parameter segment.

4.1.1.2.3 Factory Parameters
Factory parameters contain calibration data used for programming and other device operations.

4.1.1.2.4 Factory Lock-Bits
Factory lock-bits are used to control access to device features and are typically only used by Microchip.

4.1.1.3 Factory Keys Segment
The factory keys segment holds followings keys:

4.1.1.3.1 Device Serial Number Part2- Serial Number Modifier (SNM)
The SNM is the second part of the DSN and is stored in the factory keys segment. The 64-bit SNM is
zeroized during the “unrecoverable” zeroization mode action (along with all the contents of the factory
keys segment).

4.1.1.3.2 Default Key-Loading Key (KLK)
The default key-loading key (KLK) is used to load user keys and security settings in situations where high
levels of security are not required. The default key is a pre-placed factory key used to encrypt any of the
flash configuration segments. This is a key that is same for a large number of devices, and should only
be used where high levels of security are not required. One such situation could be where programming
is done in a completely trusted secure facility with cleared personnel and stringent data handling and
protection processes in place. Another is where the design IP is not very valuable and security is not a
primary concern of the user. In this case, KLK can be selected as the root key for encryption and
authentication of the bitstream component used to load the user’s keys.

The 256 bit default Key-Loading Key is common to a relatively large population of devices of the same
type and vintage, and is frequented within the programming tool software. This makes it the easiest key
to use, but not as secure as the other options, having a “software” rather than a “hardware” level of
protection.

KLK provides protection against capturing of user keys with the trivial approach of snooping on them
when they are being transported into the device for programming. In the prior art PLDs, before
SmartFusion2 and IGLOO2 FPGAs, all user keys were loaded in plaintext or using algorithms that were
reversible with known plaintext data, making even this trivial attack fairly easy.

After the user’s security settings are loaded, the KLK is automatically disabled by a user lock-bit reserved
for this purpose, without any action required by the user. After this point, any programming updates
require use of the user keys. Typically the user security settings (user lock security segment) and the first
user key and the FlashLock passcode (in the user keys security segment) are loaded from the same
bitstream file.
Microchip Proprietary 22

Cryptographic Security Features
4.1.1.3.3 Factory Key (FK)
The factory key is a 256-bit key that has a unique value in every device produced by Microchip. In -005, -
010, -025, -050 devices this key is the preferred key to use for loading the user’s keys when security is
important. If used for loading the user’s keys, it is selected as the root key for encryption and
authentication of the bitstream component used to load the user’s keys. More accurately, it is used as the
encryption key for an authorization code bitstream component that permits loading of the remainder of
the encrypted user bitstream (containing the user’s keys and security settings) into the device. After the
user’s security settings are loaded, the factory key is automatically disabled for encryption purposes by a
user lock-bit without any action required by the user. It may still be used for key verification, which is
commonly done in conjunction with checking the validity of the device certificate, especially in the smaller
devices that don’t offer a public key alternative.

Since the factory key is a symmetric key, the programmer must know a derived/related key (for every
device) in order to prepare bitstreams that can be decrypted by the devices, or to verify that the device is
familiar with the factory key. The process is performed by installing encrypted key databases – distributed
by Microchip – into the Microchip-supplied Secure Production Programming Solution’s hardware security
module (HSM) and its server. Each key database distributed by Microchip is encrypted by a key unique
to the targeted HSM, and the contents are also unique, which prevents anyone else with a key database
and HSM from decrypting another user’s bitstream files. The security imperative is that no copies are
made of a key database (and the associated database encryption key that unlocks it) which could find a
way into an adversary’s hands.

Though this method is logistically more complex than using the default key (KLK), it is cryptographically
sound, with all the keys used in this system, for example., the Factory Keys, the derived keys in the key
databases, the database encryption keys and so on, never leaving the hardware security module (HSM)
or the FPGA’s boundaries except in encrypted form. In the Microchip Factory, the HSMs are FIPS140-2
level 3 certified, and the HSMs used by the user as part of the programming tool also have this
certification level. This approach using factory key, provides a “hardware” level of design security.

4.1.1.3.4 Factory Pseudo-PUF Secret (FPP)
The Pseudo-PUF Secret (FPP) is a unique 256-bit secret generated by the device’s own
nondeterministic random bit generator (NRBG) during the manufacturing of the device at Microchip,
during zeroization recovery, and is stored permanently in the factory keys security segment. It is used in
the PUF-emulation protocol in the devices that don’t have an SRAM-PUF, that is, -005, -010, -025, and -
050 SmartFusion2 and IGLOO2 devices.

4.1.1.3.5 Factory ECC Public Key Pair (SKFE and PKFE)
In the -060, -090 and -150 devices, those having the ECC hardware accelerator, a completely random
unique-per-device 384-bit private ECC key (SKFE) is stored in the Factory Keys security NVM segment
in encrypted form. From this private key, the associated 768-bit ECC public key (PKFE) is calculated, and
this public key is certified in the secondary Device Certificate which is stored in the part of the eNVM
array that is private to the system controller to prevent the certificate from being overwritten, as it is
considered public data, and can be exported on demand. The Device Certificate is X.509 compliant, so it
can be parsed using most third party tools. Some Microchip proprietary X.509 extensions, though are
legal may not be recognized by non-Microchip parsers.

The ECC key pair can be used by the FPGA for establishing a shared symmetric key with the
programmer tool and for using the Elliptic Curve Diffie-Hellman (ECDH) protocol followed by a key
derivation function. The 256-bit derived key becomes the root key which can then be used either for
encrypting/authenticating a bitstream (such as for injecting user keys and security settings in a new
device), or for authenticating the device using the key confirmation challenge-response protocol.

4.1.1.3.6 Factory SRAM-PUF ECC Key Pair (SKFP, PKFP)
In the larger devices (-060, -090 and -150 devices), that is, those having the Elliptic Curve Cryptography
(ECC) hardware accelerator and the Quiddikey SRAM-PUF, a completely random unique-per-device
384-bit private ECC key (SKFP) is enrolled by the SRAM-PUF. From the private key, the associated ECC
public key (PKFP) is calculated. This 768-bit public ECC key is certified in the primary Device Certificate.
This X.509 compliant public key certificate also contains standard and extension fields containing other
important device data such as the serial number, model number and date code which can be used to
help prevent counterfeit or fraudulently marked devices from being accepted into the supply chain. Since
Microchip Proprietary 23

Cryptographic Security Features
the security of the associated private key is rooted in the SRAM-PUF, which is analogous to a silicon
biometric, the user can prove with a very high assurance level that the device certificate and the device
itself go together. This process is implemented using the key confirmation protocol.

As with the ECC key stored in the security NVM (Refer to SKFE and PKFE, in the Factory ECC Public
Key Pair (SKFE and PKFE), page 23), this key pair can be used in an ECDH protocol followed by a key
derivation function to establish a 256-bit shared symmetric key which can then be used either as the root
key for encrypting or decrypting and authenticating a bitstream, or for assuring the authenticity of the
device by performing a key confirmation protocol. As with all the other Factory keys, this key is
automatically disabled for bitstream-loading purposes by a user lock-bit at the same time the user
security settings are loaded, without any action required by the user.

Using this key pair is the preferred method of injecting the encrypted user keys in new larger devices,
particularly those that don’t have the “TS” class features activated. In “TS” class devices, there is an
alternative user-enrolled PUF-protected key pair with similar advantages that can be used. Public key
cryptography has the advantages of not requiring a key database –unlike the symmetric Factory Key, FK,
which does – while still being completely cryptographically sound. It provides the highest level of
protection of the associated private key (using the SRAM-PUF); with biometrically-strong unclonable
binding to the device, providing the highest possible assurance that the device is a genuine Microchip
FPGA.

One minor disadvantage of this key mode is that a 384-bit ECC private key has security strength of
approx. 192 bits, whereas the main alternative, the 256-bit Factory Key, which is used in conjunction with
AES, has security strength of approx. 256 bits. But, since the P-384 ECC system has been approved for
use in Suite B up to and including top secret, the slightly lower cryptographic security strength is probably
not a very important factor in most cases, and is offset by the much greater convenience of public key
methods over symmetric ones and other offsetting security advantages.

4.1.2 User Security Segment
The user security segment group is comprised of three user security segments: “User Key1”, “User
Key2”, and the “User Lock-Bit” segment. All three user security segments are zeroized in all zeroization
modes.

4.1.2.1 User Key1 Segment
The User Key1 segment holds the User Encryption Key1 (UEK1). It can be the root key for encrypting
and decrypting bitstreams, and for authentication of bitstreams. This segment also holds the FlashLock
passcode, also known as the User Passcode1 (UPK1), which is used to unlock access to the three user
security segments, and unlocks many of the user lock-bits. Also in this segment is the Debug Passcode
(DPK). It unlocks just certain lock-bits related to FPGA fabric and Cortex-M3 debugging features (if
present), but does not unlock as many lock-bits as the FlashLock passcode does. It does not allow the
user to overwrite keys, passcodes, or security settings. It, stays in effect only until the device is reset.

The passcodes are never used for encryption, but used only for escalating the privileges during the
session when the passcode is matched successfully. This passcode is loaded along with the other user
keys and passcodes using an encrypted bitstream and stored (after being hashed) in the user key
security segment. When the FlashLock passcode is subsequently successfully matched using either the
plaintext or one-time-use encrypted passcode protocols, it unlocks many of the user-set security lock-
bits. This allows the contents of the three security segments to be erased and rewritten. Refer to
FlashLock Passcode Security (256-bit), page 36 for more information.

4.1.2.1.1 Debug Pass Key
The Debug Pass Key is used to disable the following:

• UJTAG access
• Cortex-M3/SoftConsole debug
• SmartDebug access
These debug security policies are configured using the Debug Policy option in the Security Policy
Manager. The DPK unlock only works if the MSS is reset after the DPK unlock operation has been
executed.
Microchip Proprietary 24

Cryptographic Security Features
Note: For more information on DPK unlocking, see the SmartFusion2 DPK unlocking section in SoftConsole
v6.0 release notes.

4.1.2.2 User Key2 Segment
The User Key2 segment stores a second bitstream User Encryption Key2 (UEK2). This can be used
interchangeably with UEK1. This segment has its own passcode, User Passcode2 (UPK2), which allows
overwriting of the UEK2 after the passcode is successfully matched (and before the device is reset).

This passcode does not unlock anything in the user key1 or user lock segments. Use of the UEK2
segment is strictly optional. Having a second user key can facilitate use models that would be difficult to
implement with just one user key. The secondary key can be used to program or update a subset or class
of products in the field.

4.1.2.3 User Lock-Bits
This segment holds the majority of lock-bits for setting security options. Many of the lock-bits are
overridden if the FlashLock passcode is matched. Refer to FPGA Lock-bits, page 36 for details.

Note: The lock-bit to permanently protect factory test mode access is located in the User Key2 Segment,
page 25.

4.1.2.4 JTAG USERCODE
This section holds the 32-bit JTAG USERCODE instruction response. The JTAG USERCODE is a 32-bit
value stored in the User Lock security NVM segment. It is read out of the device using the IEEE JTAG
1149.1 -defined optional instruction by the same name. The USERCODE value is public information, and
can be used by the user for any purpose. It is often used to identify the function of one FPGA design as
differentiated with other designs which may be loaded in the same or similar part number devices from
Microchip, in other words, the USERCODE is used to tell functionally different designs apart from each
other. It is loaded using an encrypted/authenticated bitstream along with the user’s security settings. It
can be changed if the FlashLock passcode is matched, and if other security settings allow it. It can also
be read internally using a system service.

4.1.3 Fabric Configuration Segment
The Fabric configuration segment is used as an extension of the FPGA fabric to store data used during
normal operation of the device. It is also used as storage for programming session information. For
example: it stores design version, version Back-Level, design ID, programming cycle count and so on. It
is updated whenever the FPGA Fabric is updated.

4.1.4 FPGA Fabric
The FPGA fabric contains configurable user logic and can be programmed independently. The FPGA
fabric is a single atomic unit, and is always erased or written in its entirety. If for any reason the FPGA
fabric is only partially programmed, the FPGA refuses to boot up when power is applied. The device may
attempt to take corrective action, such as retrying, or loading a “golden” image from local memory,
depending on user configuration settings.

4.1.5 eNVM Array
The eNVM block is user non-volatile flash memory and can also be programmed independently. The
smallest unit of the eNVM memory that can be erased or written at one time is a one K-bit page. A few
pages of the eNVM are reserved for factory use and for SRAM-PUF/ECC keys storage. One use of the
factory reserved pages is to hold the device certificate, which is loaded by Microchip before the devices
are shipped. In the -005, -010, -025, -050 devices the top eight 1024-bit pages are used by the system
controller. These pages are readable but not writable by the user. In the larger devices (-060, -090 and -
150) the top 64 pages are reserved by the system controller. These 64 pages are private to the system
controller; they are neither readable nor writable by the user. The reserve page also stores UEK3, which
can be enrolled by running system service using SRAM-PUF. For more information, see SRAM-PUF
Services, page 102.
Microchip Proprietary 25

https://ww1.microchip.com/downloads/aemdocuments/documents/fpga/ProductDocuments/ReleaseNotes/softconsole_v60_releasenotes.pdf
https://ww1.microchip.com/downloads/aemdocuments/documents/fpga/ProductDocuments/ReleaseNotes/softconsole_v60_releasenotes.pdf

Cryptographic Security Features
4.2 Bitstream Security
SmartFusion2 and IGLOO2 FPGAs have layered protections to ensure that the user’s intent is met.
These protections include the use of encryption to protect the confidentiality of the design IP and prevent
reverse engineering, and authentication to ensure that only legitimate bitstream files are loaded by
devices. Versioning is used to ensure that previously valid bitstreams are not reloaded in a replay attack
against fielded devices. Since every device is shipped from Microchip is already securely provisioned
with a number of secret keys and a public certificate (two in the -060, -090 and -150 devices), it is
possible to be assured that the devices are genuine Microchip devices of the correct type, and to strictly
control the number of devices configured with a given bitstream, thus preventing overbuilding, with no
requirement for expensive trusted facilities and cleared personnel, or the physical transfer of devices
between such a trusted facility and a more normal less-trusted manufacturing facility.

Due to the cryptographic protocols Microchip has implemented in these devices and associated software
programming tools all the device programming, including initial user key injection, can be securely
performed in an ordinary manufacturing environment without the fear of interference from rogue insiders.

The security mechanisms and the choices available to the user are described in the following sections.
While the cryptography may at first seem complicated, remember that Microchip has provided extensive
automation via the Libero™ SoC FPGA design tool set and the optional Secure Production Programming
Solution (SPPS) to make using the SmartFusion2 and IGLOO2 FPGA’s security features easy. In many
cases the user can just accept default settings. Most of the explanation below is just for informational
purposes, with enough background for expert users with special use model scenarios to be able to make
informed decisions where alternatives are offered.

4.2.1 Bitstream Encryption Overview
SmartFusion2 and IGLOO2 FPGAs are flash-based devices configured using a Microchip proprietary
and confidential format bitstream file. All bitstreams are encrypted with the Advanced Encryption
Standard (AES) block cipher using secret keys, and then an authentication tag is added using a type of
symmetric message authentication code (MAC) based on the Secure Hash SHA-256.

4.2.1.1 Bitstreams Encrypted
It is Microchip’s goal to maintain the confidentiality of the details of the SmartFusion2 and IGLOO2
bitstream formats that may assist an adversary in performing reverse engineering attacks on user
designs. History has shown that plaintext bitstream file formats are often reverse engineered by the
academic community; and the nation-state -level adversaries have either repeated or extended the
academic results. Combined with key recovery attacks such as differential power analysis (DPA), the
adversaries and bitstream reverse engineering can provide the main building blocks to reverse engineer
confidential user FPGA design.

To maintain bitstream format confidentiality, one of the measures taken by Microchip is that, unlike the
bitstream files for most (if not all) other PLDs, there is no plaintext bitstream format option. Microchip
tools only generate encrypted bitstreams for these fourth generation devices, and the devices only
accept properly encrypted and authenticated bitstream files. By eliminating the generation of plaintext
bitstream files, reverse engineering of the contents of bitstreams – for example, the detailed format for
the bits used in setting up look-up tables, configuring flip-flops, I/Os and SRAM blocks and DSP blocks,
and programming the routing of signals – may become much more difficult.

SmartFusion2 and IGLOO2 FPGAs architecture and bitstream format is sufficiently different from
previous generations, where plaintext bitstreams were offered as an option, and potential knowledge
about past generation bitstream formats does not inform the analyst about the fourth generation details.

Preparing bitstreams with known simple designs is often the first step towards reverse engineering the
bitstream format. The Microchip bitstream encryption is done in a way that prevents an adversary, posing
as a legitimate user, from decrypting the bitstreams they generate themselves, even if the value of the
user encryption key is known.

4.2.1.2 Differential Power Analysis (DPA) Resistant AES Mode
The bitstream format for SmartFusion2 and IGLOO2 devices uses the Advanced Encryption Standard
(AES), as defined by the NIST FIPS PUB 197, with 256-bit keys. AES encrypts 128-bit blocks of data at
Microchip Proprietary 26

Cryptographic Security Features
a time. In order to encrypt large amounts of data such as an FPGA bitstream, a “mode” such as Counter
(CTR) Mode or Cipher Block Chaining (CBC) Mode is commonly used; that defines how multiple AES
128-bit block encryptions are used to encrypt the larger total amount of plaintext.

In order to prevent differential power analysis and the related side channel attacks from succeeding in
extracting the bitstream key during bitstream decryption by a device, Microchip has, with the advice of
Rambus Cryptography Research, used a modified form of a common AES mode. The primary
modification is to update the frequently used AES key using non-linear mixing, so any one key cannot
leak enough information to allow its reconstruction. The rotation of AES keys, patented by Rambus
Cryptography Research and licensed for use on FPGAs by Microchip, provides one of the best DPA
countermeasures available since it does not rely on many difficulties to prove assumptions like those
required in signal-cancellation-by-matching countermeasures.

4.2.2 Bitstream Content
SmartFusion2 and IGLOO2 FPGAs are flash-based devices configured using a Microchip proprietary
and confidential format bitstream file. The SmartFusion2 and IGLOO2 devices are divided into three
main bitstream components that can be targeted during the configuration process: FPGA fabric, eNVM
Array, and security segments.

• FPGA Fabric: The FPGA fabric configuration holds the configuration bits that configure the routing
switches and look-up tables of the logic elements that define the user’s design, as well as the I/O
cells, embedded memories, and Math blocks.

• eNVM Array: The eNVM array is a general purpose flash memory, a portion of which is typically
used as a boot up ROM for the MSS in SmartFusion2 SoC FPGAs. Certain non-secret information
pertinent to device configuration, such as public keys and the device certificate, are also contained
in write-protected pages within the eNVM. In addition, hardware level write protection can be applied
to eNVM. Refer to the FPGA Hardware Access Controls, page 36 for details. In the larger devices,
the PUF Activation Code and encrypted Key Codes are stored in two 4 K-byte eNVM sectors (64
pages) that are private (in other words, read and write protected) and accessible only to the system
controller. A bitstream can contain any integer number of pages, from zero to the maximum of 4096
in the largest devices currently planned, or a little more than four million bits. Generally, all the pages
are loaded in the same bitstream component section, but this does not necessarily have to be the
case. For example, if one or a few pages contain variable data, these pages may be treated in a
component section separate from the rest. There are many scenarios where the payload in a field
update consists only of a portion of the eNVM. In the extreme case, a bitstream payload may consist
of just a single page of eNVM, to load a key or to activate a feature of the device

• Security Segments: The security segments hold cryptographic keys and passcodes required for
design security as well as device unique identifiers. All the keys are stored in encrypted form; all the
passcodes are stored only after cryptographically hashing them. Each of the five security segments
loaded using the KEYS component is an atomic unit. The two Factory segments are programmed by
Microchip before shipping the parts. The three user security segments are often programmed using
one KEYS component, but this is not a requirement. The three user segments are relatively small,
on the order of ten kilo-bits altogether. If one or more of the segments contain variable data (for
example unique user codes or user keys or passcodes, the variable and fixed security segments
may be placed in different bitstream components. Also, one of the reasons for segmenting the user
security data is to allow different segments to be programmed at different times or by different
actors, thus the security segments may end up not only in different component sections, but in
completely different bitstreams.

Special mandatory header and footer components (BITS and EOB) which along with other components,
program the FPGA Configuration security segment. A special component called an Authorization Code
(AUTH) is used to transport an encrypted ephemeral key into the device for use in decrypting one or
more of the later components. Refer to Authorization Code Component and Key Mode, page 31 for more
details.

The various payload and Authorization Code components are optional, and supplied by the programming
tools as needed to accomplish the user’s goals. However, whatever components the programming tool
assembles on behalf of the user are bound together cryptographically and authenticated as a whole.
Removal, insertion, re-arranging, or any other sort of tampering with any component sections is detected
and the programming session fails. If an authentication failure is detected before any data is committed,
Microchip Proprietary 27

Cryptographic Security Features
the detected part remains as previously programmed. Devices that are only partially programmed for any
reason, including due to a late authentication failure, that is, after NVM programming has begun, will not
boot until successful reprogramming.

4.2.3 Programming Modes
SmartFusion2 and IGLOO2 FPGAs support the following programming interfaces:

• JTAG port
• System control SPI port (SC_SPI)
• MSS/HPMS SPI_0 port.
These programming interfaces allow various programming modes, refer to the UG0451: SmartFusion2
and IGLOO2 Programming User Guide. The programming interfaces and programming modes provide
flexibility for both manufacturing environments as well as field upgrades. For example, JTAG can be used
for initial production programming and then the JTAG port can be disabled using “FPGA Lock-bits”. Use
the “Update Policy” setting under the Security Policy Manager in the Libero SoC software and set the
programming lock for various modes. Refer to Libero Security Policy manager on Libero Online Help for
details.

4.3 Key Management
All SmartFusion2 and IGLOO2 devices are shipped with a unique Factory key and a public certificate
(two certificates in the -060, -090 and -150 devices). The device unique secret key enables a strong key
management scheme and the public certificates provide assurance that devices are genuine Microchip
devices of the correct type. The Factory unique keys are necessary since they enable a manufacturing
process to authenticate a part and enable process controls over it, as necessary (for example, tying it
back to a signed Microchip Certificate, and allowing for overbuilding controls). In the -060, -090 and -150
devices, having the ECC hardware accelerator and the Quiddikey SRAM-PUF—Microchip injects two
additional random unique-per-device 384-bit private ECC keys, each of which is certified by Microchip. In
addition, the end users can also enroll their own security keys, thus providing complete independence
from using Microchip injected keys. Microchip offers programmer/hardware/tools called hardware
security modules (HSMs) for secure management of user bitstream keys. Refer to the Secure Production
Programming Solution (SPPS) User Guide for additional information.

4.3.1 Key Modes (Encryption/Authentication Key Selection)
A Key Mode is used to select which keys and algorithm to use in deriving the authentication and
encryption/decryption keys used for a bitstream component (Security segment, eNVM, or FPGA
configuration fabric). A summary of key modes available on the SmartFusion2 and IGLOO2 FPGAs is
illustrated in Figure 7, page 28

Figure 7 • Various Key Modes
Microchip Proprietary 28

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_igloo2_programming_user_guide_ug0451_v9.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_igloo2_programming_user_guide_ug0451_v9.pdf
https://onlinedocs.microchip.com/oxy/GUID-AFCB5DCC-964F-4BE7-AA46-C756FA87ED7B-en-US-12/index.html

Cryptographic Security Features
Note: Available only in -060, -090 and -150 devices.

Key Modes are used with certain other design security protocols. For example, in the one-time-use
passcode protocol, the Key Mode is used to select the key(s) and algorithm to compute the Root Key
used to authenticate and encrypt the selected passcode transferred into the device during the protocol.

To load the initial KEYS component containing user keys into a new device as shipped from Microchip,
one of the two available Key Modes for a Factory symmetric key must be used, or a Key Mode for a
public key method may be used in the larger devices; either directly for the KEYS component, or for an
AUTH component used to transport an ephemeral key for use with the KEYS component. (The complete
bitstream will have the mandatory BITS and EOB sections, too, at a minimum.) It is common to load user
security settings in the same KEYS component as the User keys.

Field updates are done using one of the user symmetric keys; again, either directly with the main
bitstream components or in conjunction with an Authorization Code (AUTH) component. Device
authentication can be done using most of the Key Modes, including the asymmetric ones in the larger
devices that are equipped with the ECC engine.

Key Modes are selected by the user using the Programmer tool at the time he prepares his files for
production. The most common use model scenarios are presented by the tool, and the user selects the
one that best fits his situation. All of the key modes used to initially load user keys, except the default key
mode using the default key-loading key (KLK), require use of the HSM-assisted Secure Production
Programming Solution (SPPS). Once user keys are loaded, the key modes relying on them can be used
for encrypting FPGA or eNVM updates. The same environment (with or without an HSM, respectively)
that was used to load the user keys initially can be used to encrypt the update bitstream.

4.3.2 Default Key Mode
In this Key Mode, a Default Key-Loading Key (KLK) is used to load user security settings in situations
where high levels of security are not required. In this case, KLK is used by default as the root key for
encryption and authentication of the bitstream component used to load the user’s keys. At a minimum, it
provides protection against capturing of user keys with the trivial approach of snooping on them when
they are being transported into the device for programming. The Libero SoC uses this key as a default
key even when no key mode is specified by the user.

Note: No HSM is required for this key mode. Default Key Mode can be performed by Libero with or without the aid
of the optional Secure Production Programming Solution.

4.3.3 Factory Key Mode & Associated Symmetric Key Databases
In the Factory Key Mode, a Derived Factory Key (DFK) is used as the Root Key. The Derived Factory
Key is a symmetric key computed in a DPA-resistant one-way algorithm from the Factory Key (FK) and
the database’s Unique User ID (UUID). As part of this Key Mode, the UUID value is transported into the
device. Since each device has a unique Factory Key, each device also computes the unique Derived
Factory Key from its own Factory Key, given the UUID value. The HSM-assisted programmer gets the
Diversified Factory Key already computed for each device, as identified by serial number, in a Factory
Key Database distributed by Microchip.

4.3.4 Factory ECC Public Key Modes
In the -060, -090 and -150 devices, there are two ECC key pairs: the Factory SRAM-PUF ECC key pair
(SKFP, PKFP), and the Factory ECC key pair (SKFE, PKFE). The public halves of these keys are
certified in X.509 -compliant public key certificates: called the Primary and Secondary Device
Certificates, respectively. These key pairs are intended for design security purposes, such as
establishing a Root Key that can be used for importing the user’s initial keys into a new device. As with
the symmetric-key Key Modes, the Root Key that is ultimately derived is a 256-bit symmetric key.

This Root Key can also be used in a number of other design security protocols, perhaps most notably the
key confirmation protocol, which proves the device “knows” the private key associated with the public key
used in the protocol. Since bitstreams are fully authenticated by a key derived from the Root Key, they
also effectively confirm that the device knows the private key; thus there is no need to perform the key
verification protocol if the key is also going to be used immediately to load a bitstream, unless one needs
Microchip Proprietary 29

Cryptographic Security Features
to differentiate a failure caused by not having the correct key from a failure caused by other types of
bitstream authentication errors such as a hash failing to match due to a message error.

For the asymmetric key methods there are two Key Mode algorithm options for use with each available
public key, which all rely ultimately on the Elliptic Curve Cryptography Co-factor Diffie-Hellman (ECC-
CDH) protocol as specified in NIST SP800-56A. Note that in the curve defined by the P-384 domain
parameters there is only one “co-factor,” so ECC-CDH reduces down to simple ECC-DH (a.k.a. ECDH).

In the first option, the device uses the selected (certified) ECC key pair, and the programmer uses an
ephemeral ECC key pair, generated just for this purpose using a fresh random number which is
discarded immediately after usage. As per the ECDH protocol, the device and programmer exchange
public keys and compute a shared secret; the device using its built-in ECC engine. The shared secret is
used in a DPA-resistant key derivation algorithm to reduce the result to the 256-bit Root Key. During the
overall process the programmer also checks that the public key is certified and the signature on the
public key certificate is valid.

In the second, preferred, option the device uses both the selected (certified) ECC key pair and a second
fresh ephemeral key pair generated using its on-chip true random bit generator and the ECC engine. As
with the first option, the programmer generates a fresh ephemeral key pair. In this option, the ECDH
protocol is run twice: once with the device’s certified key pair and the programmer’s ephemeral key pair;
and a second time using the device’s ephemeral key pair and the programmer’s ephemeral key pair
(used again). This results in two shared secrets. These are used in a DPA-resistant key derivation
algorithm to reduce the result down to a single 256-bit Root Key.

The advantage of the second option is the freshness the second (ephemeral) device key pair brings.
Even if the private half of the certified long-term key pair is compromised, at some time in the future, the
confidentiality of the data would still be protected against an adversary who had monitored and stored
the external communications of the device during a programming session. This property is often referred
to as “perfect forward secrecy.”

One of the disadvantages of the second option is that it is time consuming. The device has to perform
two additional ECC point multiplication operations and the programmer one more. Another disadvantage
is that the power has to remain applied to the device during the whole protocol as it does not save the
ephemeral key pair in non-volatile memory. This is not normally an issue, except if the communication
link to the programmer is very slow (like email). In this case, the first option lends itself better to batch
operations.

4.3.5 User Symmetric Key Modes
In all devices the user has the option of configuring two User keys (UEK1 and UEK2). In larger “data
security” -enabled devices -060, -090 and -150, the user can also enroll a symmetric design security key
(KUS), also known as UEK3, with the SRAM-PUF. Each of these three keys has an associated Key
Mode where the symmetric key is the primary key used to compute the 256-bit Root Key. User keys are
loaded into new devices using one of the factory key modes using a key pre-placed by Microchip, or
using one of the user ECC public key modes.

4.3.6 User ECC Key Modes (KUP and KUPE)
.There are two key modes which are based on user ECC key. These key modes are defined using the
device EC capabilities, which allow secure bitstream programming without requiring the user to have first
programmed any secret keys into the device.

The ECC key modes use ECDH to derive a shared secret between device and Microchip HSM which can
then be used as root key either for encrypting/authenticating a bitstream (such as for injecting User
symmetric keys and security settings in a new device), or for authenticating the device using the key
confirmation challenge-response protocol. After the user ECC key is used to load the User’s symmetric
keys it is automatically disabled for loading any further bitstreams without any action required of the User.

However, it can still be used for device authentication purposes using the key confirmation protocol.

PolarFire devices support JTAG and SPI instruction that can create and/or retrieve the user ECC public
key associated with the user EC private key (KUP). When the public key is exported, it is signed by the
private key (FEK) of the device's factory-certified ECC key pair. This provides a verifiable method of
creating a NIST ECC P-384 key pair and securely exporting the public key in a way that can avoid man-
Microchip Proprietary 30

Cryptographic Security Features
in-the-middle attacks on it. Thus, the device can be enrolled in a user public key infrastructure (PKI) by
having a certificate authority (CA) sign (certify) the exported public key. After it has been verified, the
device provides proof-of-possession (PoP) of the private key of the key pair, and any other steps deemed
necessary by the CA or local registration authority (LRA).

4.3.6.1 KUP Key Mode
KUP is the 384-bit NIST P-384 user private ECC key. It is protected by SRAM-PUF, never leaves the
device nor is it ever exported to the user of the FPGA internally. The key is randomly generated by the
device during initial key loading process using SPPS. This key can be used for secure initial loading of
User keys (such as UEK1 & 2) using SPPS. The corresponding public ECC key can be exported. When
the public key is exported, it is signed by the device's factory certified ECC private key. This provides a
verifiable method of creating a NIST ECC P-384 key pair and securely exporting the public key in a way
that can avoid man-in-the-middle attacks on it.

4.3.6.2 KUPE Key Mode
This key mode uses KUP and a device ephemeral key. Two ECDH shared secrets are generated from
these keys and a user/HSM supplied EC public keys. The shared secrets are then used to derive a
shared symmetric key which is used for secure loading of user keys using SPPS. This is more secure
than KUP key mode because of randomly generated ephemeral key. However, this key mode takes
longer because there are two ECDH operations and key generations.

4.4 Authorization Code Component and Key Mode
The authorization code (AUTH) bitstream component is a short special bitstream component that is used
only to transport another key into the device. In its usage with an authorization code, the Root Key is
sometimes referred to as the wrapper key. The 256-bit payload key, that is, the key that is transported
into the device, is a key referred to as the IP Key (KIP). After the device decrypts (that is unwraps) the
authorization code it temporarily holds KIP in volatile memory for use as a possible Root Key in
subsequent components. After it is used, KIP is permanently deleted from the device.

One authorization code component can be inserted in front of each other type of bitstream component,
thus different IP Keys can be used on different components within the same overall bitstream. The
authorization code component is cryptographically bound to the bitstream (or portion of a bitstream) that
it proceeds. It will not work with any other bitstream than the one to which it is bound. The bitstream will
not authenticate or load into any device without the authorization code, since the code supplies an
essential key.

4.4.1 Use of the Authorization Code to Prevent Overbuilding
The purpose of the authorization code is to translate from a key the device knows or can compute, that is
that is the wrapper key, to a key the device doesn’t know (until then): the payload key, called the IP Key
(KIP). This can be useful when a population of devices, all have a common key programmed in them, for
example if the user makes the User Key (UEK1) the same in all the devices used in a project. This
process is invaluable when the key known by the device is different in every device, like the Factory Key.
In that case, the authorization code is unique for every device. The code can then transport the same IP
Key (KIP) into all the devices in a project so a common bitstream file can be used for the bulky parts of
the data, like the FPGA and eNVM components. Since (in this scenario) each authorization code only
works with one specific device having a specific Factory Key, and the device can’t load the common
bitstream without the authorization code, it in effect “authorizes” that one device to load the subsequent
bit stream. The use of authorization codes to prevent overbuilding and provide a higher overall level of
key management is enabled by the optional Secure Protection Programming Solution (SPPS) offered by
Microchip.

Some key modes where the root key is unique per device include the (Diversified) Factory Key mode,
any ECC key mode (where every session is unique due to the fresh random keys), and the user key
modes when the user chooses to load a unique key in every device (vs. one key for the design). In all
these cases, the authorization code is used with the unique-per-device key as the root key to transport
KIP into the device so that all the devices individually authorized can accept a common bitstream with
KIP as the root encryption key, rather than requiring all the content of each bitstream to be encrypted
uniquely for each device.
Microchip Proprietary 31

Cryptographic Security Features
Authorization codes are generated by SPPS as directed by its FlashPro Express software client running
on a production workstation. The actual cryptography is managed by an HSM server, and is computed
inside the security boundary of the server’s attached hardware security module (HSM) in real time as the
devices are programmed. The SPPS, via the manufacturing HSM, keeps track of the number of
authorization codes generated, only creating as many as the legitimate user has authorized, thus
preventing overbuilding. In most cases, the SPPS configures the devices it is presented with on a first-
come basis. It reads the Device Certificates and Device Serial Numbers from the devices, and fetches
the matching Diversified Factory Key (DFK) from the key database to use as the wrapper key (assuming
the Factory Key Mode is being used).

To authorize specific serial numbers in advance, only authorization codes for those specific devices are
generated by the programming solution. This can be done either by binding the serial number into the
component, or by using a device-unique key such as the Factory Key (or both). A device won’t accept a
bitstream component with a specified serial number if it doesn’t match its own, and it can’t load a
component for which it has the wrong key. This serial number binding feature will be available in the
future version of SPPS software.

Besides generating and counting authorization codes, the manufacturing HSM securely monitors and
collects information on other aspects of the programming operation such as the Certificate-of-
Conformance generated by each device, and any devices that are securely removed from service, which
HSM returns to the user in the form of certified reports and log files.

4.4.2 Authorization Code Key Mode
There is a key mode where the IP Key, KIP, is the Root Key that can be used with any bitstream
components following the authorization code (for example, BITS, KEYS, FPGA, eNVM, or EOB). This is
often the preferred Key Mode for these components. It has the advantage that, at least on the device
(that is, decryption) side, KIP is ephemeral, as are the authorization codes that transported it into each
device. After a bitstream is loaded, the actual derived keys used to decrypt and authenticate the
bitstream and the Root Key (KIP) used to generate the derived keys, and the authorization code used to
transport KIP into the device, are all deleted. An adversary attempting to decrypt bitstream files
encrypted with KIP will not be able to find KIP stored in any devices, or ever in plaintext outside the
security boundary. KIP is usually only retained in an HSM located in the user’s trusted design
environment long enough to complete all the production runs using the bitstream encrypted under it.
After near-term production is complete, the KIP and the encrypted bitstream can be permanently deleted,
as the user has all the project source files and can always generate a new encrypted version of the
bitstream with a fresh IP Key if production were to resume at some point in the future.

The security risks associated with the IP Key, which is not stored in the device, are thus lower than for
keys that persist inside the FPGA such as the user keys. The IP Key can’t possibly be extracted from the
device because it isn’t stored there. It is only used for one purpose, the encryption of one version of one
bitstream. Unlike the other keys, the IP Key cannot be used to authenticate the device or any of the other
security services the device provides.

4.4.3 Authorization Code with ECC Key Modes
In the larger devices, ECC Key Modes are supported. The ECC Key Modes use the ECDH protocol to
establish a shared secret between the programmer and the device, from which a Root Key is derived.
This Root Key is unique every time the ECDH protocol is run because the programmer, and preferably
also the device, use fresh ECC key pairs each time.

The authorization code allows translation from the unique ephemeral ECC-derived Root Key (wrapper
key) to the key which is used to encrypt the common (shared) bitstream, the IP Key (KIP). As described
above, the programmer counts the number of authorization codes generated to prevent overbuilding.
This feature will be available in the future versions of SPPS software.

4.5 Support for Configuration Variations
“Variations” is a method where some parts of a bitstream can be different from device-to-device in a
project, while most parts of the bitstream are the same, or common. This method allows the bulk of a
bitstream (the common part) to be encrypted just once, as is customary for most projects considering the
Microchip Proprietary 32

Cryptographic Security Features
efficiency. Small parts such as a security segment or a few pages of the eNVM array can be unique for
each part (or a group of parts smaller than the whole project).

In SmartFusion2 and IGLOO2, variations are cryptographically bound to the main bitstream. Variations,
like the rest of the bitstream file, can be prepared well in advance of when they are used to configure
devices. Variations, which are just another instance of a bitstream component, for example, a second
eNVM component, can be produced so that the components are interchangeable with each other within
a group of variable data encrypted at the same time as the rest of the bitstream, or alternatively they can
be tied to specific serial number devices. In the former case, the programmer will assign one variation to
each device on a first-come basis. Variations are serialized within the group, and can be
cryptographically bound to individual devices by using a unique random key for encrypting each one.

Assignments of the serialized variations are securely logged by the programmer in certified files. As with
any other bitstream component, a bitstream will not authenticate properly when loaded into a device if a
variation component is left out. Likewise, the order of components, including the placement of the
variation component in relation to the fixed components, cannot be changed without an authentication
error.

The main uses anticipated for variations are:

• Load a different 32-bit JTAG USERCODE in every device, for use as a system-level serial number,
for example. Thus the user lock security segment is unique in every device

• Load a unique user key, for example, UEK2, derived from a base key, in each device. Thus the User
Key2 security segment is unique in every device

• Enroll a unique random user key, for example, UEK3, in each device’s SRAM-PUF. Thus, the portion
of the KEYS component that does PUF enrollment would be unique in every device

• Load some unique data into a few pages of eNVM into every device. Thus, there is a small second
eNVM bitstream component

• Other uses could include:
• Storing unique data security keys in eNVM
• Storing a unique public key certificate in eNVM
• Activating features uniquely per device using eNVM
• Storing a unique system-level serial number in eNVM

In future, Microchip plans to support some of such most common operations with aids built into the
programmer bitstream encryption tools:

• Generate random bit strings (for example, for keys) and insert them into a security segment key slot
or into eNVM pages as Variations

• Generate sequential serial numbers and insert them into a security segment or eNVM as Variations
• Convert a file formatted with images of eNVM pages into eNVM Variations
• Convert a file formatted with multiple keys into security segment Variations

4.6 Versioning (Bitstream Re-Play Protection)
In prior art FPGAs, an authenticated/encrypted bitstream remains valid as long as the device retains the
associated key. In some FPGAs, it is impossible to load a new key. Even in previous generation flash
FPGAs most users would not update the stored keys when they did field updates. The net result is that in
most cases the bitstream keys stayed the same and thus every valid bitstream stayed valid (from the
device point-of-view) more-or-less forever.

The problem arises when there are bitstream updates. The user generally wishes the devices to store
(or, in the case of SRAM FPGAs, load) only the latest version of the design. This design may have been
updated to remove various design bugs or known security vulnerabilities in earlier versions. However, if
the adversary has a copy of an earlier valid bitstream, he may be able to get the device to load it, instead,
thus reintroducing the bugs or security vulnerabilities that the updated version would have fixed.

SmartFusion2 and IGLOO2 FPGAs solve this problem with a very simple design versioning system. This
optional feature (activated or disabled by a lock-bit) requires that all new bitstreams loaded have a new
16-bit version that is strictly larger than the 16-bit back-level stored in the Fabric Configuration segment.
If the bitstream version is equal or less than the back-level, it is immediately rejected, before any on-chip
NVM is updated. A new bitstream with a high-enough version will be programmed into the device,
including the new version number and a new back-level value.
Microchip Proprietary 33

Cryptographic Security Features
If the user wants to allow repetitive design versions to be accepted, the back-level for each design can be
updated to be equal to the version number of that design. Refer to Back-Tracking Prevention
(Versioning), page 48 for detail.

If a “golden” bitstream is used to recover from failed configuration operations, either its version has to be
greater than the back-level recorded by the last loaded bitstream, or the versioning feature and the
golden bitstream recovery feature should not be used at the same time. The back-level loaded as part of
the golden bitstream could be set fairly low, to allow later versions to overwrite it. The use of the fall-back
mechanism can be enabled or disabled by a user lock-bit. The version number is included in the public
data that can be exported from the FPGA.

4.7 Key Confirmation/Verification Protocols
SmartFusion2 and IGLOO2 FPGAs have a built-in on-line challenge-response -type key confirmation
protocol. This can be used to have a device prove it “knows” a particular secret key, without exposing the
value of the key in the external communications used in the protocol.

Key confirmation is required in order to positively bind the Device Certificate(s) to a particular device with
a high assurance. It requires a device to prove; it knows a secret bound to the certificate, not just public
data that could more easily be copied.

All devices support the symmetric key version of the key confirmation protocol. The larger devices having
the ECC engine can also support the asymmetric version of the protocol. The key to be verified is
selected using the Key Mode mechanism described in Key Modes (Encryption/Authentication Key
Selection), page 28. The key verification can also be disabled with a lock-bit, refer to FPGA Lock-bits,
page 36.

4.8 Passcode Matching Protocols
4.8.1 Plaintext Passcode Matching Protocol

In this very traditional plaintext passcode matching protocol, the “prover” enters the passcode (in
plaintext). The device hashes it using the SHA-256 hardware accelerator, and compares the result to the
hashed value stored in NVM. Unless prohibited, this protocol can be used with any of the five passcodes:
User Passcode (also known as FlashLock Passcode, UPK1), User 2 Passcode (UPK2), Debug
Passcode (DPK), Factory Passcode (FPK), and Factory Passcode Passkey (PPK). The passcodes are
protected by being stored in hashed form on the device.

The plaintext protocol is deprecated in favor of the one-time-use encrypted passcode matching protocol
explained in the following section. One security issue with the plaintext passcode matching protocol is
that if it is monitored by an adversary (for example, a rogue insider), the plaintext passcode can be
recorded and replayed later in order to escalate the privileges associated with that particular passcode.

4.8.2 One-Time-Use Encrypted Passcode Matching Protocol
The one-time-use encrypted passcode matching protocol is a challenge-response type protocol in which
the user (or factory) proves to the device that they know the selected passcode and key. The device
generates a random nonce which is exported to the HSM-assisted Programmer tool (or Factory HSM).
The programmer also generates a nonce, and with a key the user selects it. This message is sent to the
device, which can authenticate it. If the authentication succeeds, the privileges associated with that
passcode are escalated.

The protocol has been designed to be DPA resistant. Nonces are used to prevent replay attacks. Only
the User Key (UEK1), User Key2 (UEK2), User symmetric PUF Key (UEK3) or the Diversified Factory
Key Modes can be selected for calculating the encryption/authentication Root Key; and the Diversified
Factory Key Mode is disabled automatically once the user keys are loaded.

4.9 FlashLock
“FlashLock” refers to a specific passcode, also known as the User Passcode (UPK1) that protects the
three security segments. It also refers to the locked state of the device, controlled by the FlashLock
passcode and the user lock-bits. The FlashLock passcode is programmed as part of the initial user key
injection procedure, and is stored in the user key security segment in hashed form. If it is re-entered and
Microchip Proprietary 34

Cryptographic Security Features
matched later, it will temporarily unlock the three user segments, allowing changes to the keys,
passcodes, and security settings (that is, lock-bits) stored in the segments. Refer to FlashLock Passcode
Security (256-bit), page 36 for detail.

4.10 Permanent FlashLock (OTP Mode)
While the Microchip Flash-based FPGAs’ ability to be reconfigured allows the FPGAs to be updated in
the lab or in the field with encrypted/authenticated bitstreams, they also have the capability to be one-
time-programmable as well to provide an even higher assurance that overloading the design by
unauthorized entities is impossible. This is beneficial for designs where single function ASICs are
traditionally used, but the design and development flow requires the ability to be reprogrammed through
development. Refer to Passcode Locks (Permanent Locks), page 37 for details
Microchip Proprietary 35

FPGA Hardware Access Controls
5 FPGA Hardware Access Controls

SmartFusion2 and IGLOO2 FPGAs implement following configurable access control policies to prevent
overwriting any elements of a design.

• FlashLock passcode security protects against unauthorized changes to security policies.
• FPGA lock-bits (configurable hardware flags) enforces more granular write-protections when

compared to FlashLock passcode security, for both general purpose memory and security segments.
• Memory hardware firewalls protect the access to memories from the unauthorized bus masters
• Software MPU(Memory Protection Unit) provides fine grain memory control, enabling applications to

utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task
basis.

The following sections describe these features in detail.

5.1 FlashLock Passcode Security (256-bit)
FlashLock refers to a specific passcode, also known as the User Passcode1(UPK1) that protects the
user security segments of SmartFusion2 and IGLOO2 devices. Flashlock is a 256-bit passcode that
SmartFusion2 and IGLOO2 devices use to allow security segments to be reprogrammed when the
passcode is correctly entered. The FlashLock passcode is stored in the device in hashed format.When
the passcode is re-entered and applied to the device, it is hashed and compared with the stored hashed
passcode. If the hashed value of the passcode is matched it temporarily allows changes to the user keys,
passcodes, and security settings including lock-bits.The device returns to normal locked state (as defined
by the non-volatile lock-bit settings) on the next device or JTAG reset, or power cycle.

The FlashLock passcode is the basic level of security. The higher levels of security may be obtained by
using the permanent lock feature of the devices or by setting additional individual lock-bits.

The user should be careful during the time a FlashLock passcode is matched and device is reset or
power cycle. During this time not only a new authenticated bitstream is loaded, but also the device can
be erased, and other lock-bits are temporarily unlocked. Usage of passcodes to unlock a device is not
recommended in untrusted locations. In a use model, where field updates are required in untrusted
locations, Microchip recommends to use bitstream authentication features to prevent overwriting. In this
scenario the lock-bit that prevents overwriting will not be used.

Use the Security Policy Manager in the Libero SoC software and apply the FlashLock passcode that can
be loaded using a, STAPL file. Microchip recommends allowing the Secure Production Programming
Solution (SPPS) with an HSM, when available, to select the Flashlock passcode rather than importing it
or generating it on a general-purpose workstation.

The HSM generates a high quality 256-bit true random bit string, and stores it securely in the hardware
security boundary. The random bit string, if is exported for storage, injection into the device, or for
unlocking the device, it is strongly encrypted.

 During debugging, it is recommended to use the one-time-use encrypted passcode protocol only (versus
the deprecated plain text passcode protocol). The HSM used in SPPS flow supports the one-time-use
passcode generation.The one-time-use passcode protocol can be used to match the FlashLock
passcode (without revealing its value outside the SPPS HSM), and as a result it allows bitstream updates
again, even if overwriting was disabled in the security policy.

5.2 FPGA Lock-bits
The SmartFusion2 and IGLOO2 devices security segment holds various lock-bits. The lock-bits act as
access control (read or write) bits to the security segment they are applied to. The factory lock-bits are
set and locked in the two factory security segments before shipping the parts. Some factory lock-bits
prohibit the same function as a user lock-bit. In this case, if either one is set, the function is disabled.

Many lock-bits can temporarily be unlocked using the appropriate passcode(s) assigned to that bit; some
bits can only be modified by erasing or overwriting the security segment to which they belong using an
encrypted/authenticated bitstream. If lock-bits are unlocked using a passcode, it is just temporary, until
Microchip Proprietary 36

FPGA Hardware Access Controls
the next device reset, JTAG reset, or power-down. Any permanent changes to the eNVM(Embedded
Non-Volatile Memory) security segments must come from a bitstream and take place after the reset, or at
the next power-up cycle.

The following sections describe various lock-bits according to the logical groupings. Although a lock-bit
may be referred to in the singular in this document, that is just a reference to its logical existence. All
lock-bits are actually stored with physical redundancy. For the most important lock-bits, from an anti-
tamper perspective, this physical redundancy occurs at multiple locations. These bits are monitored
continuously during run-time, and generate a tamper detection flag immediately if the redundancy is
violated. This process is independent of whether there is any programming or security-related operation
going on in the device. These lock-bits, and also less important bits, are monitored at the time they are
consumed. A redundancy violation at this time generates a tamper detection flag and also terminates the
security-related operation that caused the check to be performed.

Use the Security Policy Manager (SPM) in the Libero SoC software to apply these lock-bits. However,
some of the lock-bit settings are not available through the SPM now and may be released in future
versions of the software.

5.2.1 Security Segment Lock-bits (Erase/Write/Verify)
This group of locks prevents erasing and writing of the user security segments that include the User
Encryption Key1 (UEK1), User Encryption Key2 (UEK2), and the user lock security segments. These
locks can temporarily be overridden in the event of a FlashLock passcode match. Use the SPM in the
Libero SoC to apply the security segment lock. When user security segments locks are set, SPM locks
the user security segment against erasing, overwriting, and verifying after they are first programmed
without any action on the part of the user.

5.2.2 Passcode Locks (Permanent Locks)
The FlashLock Passcode (UPK1), the User Passcode2 (UPK2), and Factory Passcode (FPK) are
permanently locked out using these user-set lock-bits. The Security Policy Manager (SPM) in the Libero
SoC can be used to set the permanent locks of the passcodes and permanent locks in the bitstream. To
permanently lock the FlashLock Passcode (UPK1) and the User Passcode2 (UPK2), open the Security
Policy Manager in the Libero SoC and select “Permanently write-protect” option under “User keys
and Security policies protection”, refer to Figure 8, page 37.

Figure 8 • Permanently Lock Settings via SPM in the Libero SoC

To permanently lock the Factory passcode (FPK), open SPM in the Libero SoC and select “Permanently
protect factory test mode access” option under “Microchip Factory Test Mode Access Level” is
selected, as shown in the following figure.
Microchip Proprietary 37

FPGA Hardware Access Controls
Figure 9 • Permanently Protect Factory Test Mode Settings via SPM in the Libero SoC

If the user locks the factory passcode permanently by setting the “Permanently protect factory test
mode access”, there is no roll back for the security to enter factory test mode, and therefore, he cannot
perform failure analysis. This is a good trade-off in high-security applications and may not be so good
approach in applications where reliability and safety are more important than security.

The permanent FlashLock mode is considered quite secure as it disables most programming,
verification, and debug operations. However additional optional, layered, security settings (that is,
additional lock-bits) can provide higher levels of security when used in conjunction with permanent
FlashLock mode. These bundles of locks are referred to as permanent lock mode, or sometimes as One-
Time Programming (OTP) mode. Following are the additional locks that can be set with permanent
FlashLock mode:

• The factory test mode can be permanently disabled, where the matching of the factory passcodes is
prevented.

• The programming ports can be partially disabled:
• The JTAG boundary scan instructions can be disabled (EXTEST, SAMPLE/PRELOAD, CLAMP,

HIGHZ, and EXTEST2), refer to Programming Port Lock-bits, page 40.
• All SmartFusion2 and IGLOO2 JTAG and SPI programming instructions can be disabled so

they are ignored when parsed.
Permanently locking the user 2 passcode is a part of OTP mode. It can be used independently of OTP
mode either when the second user key segment is not required, or if it is certain that UEK2 will never be
updated. If UEK2 is not programmed, then the associated key mode is automatically locked by the
programming tools.

5.2.3 Fabric Programming Erase Verify Read Lock-bits
The FPGA fabric has lock-bits that prevent it from being erased and written with a new encrypted or
authenticated bitstream. This lock can be temporarily unlocked by a match of the FlashLock passcode. It
is automatically set when the permanent lock mode (Permanently write-protect option in SPM) is set.

The FPGA fabric has a verify lock-bit that can disable verification of the FPGA fabric. The FPGA array
can be verified in two ways. In the first method, the user submits the encrypted/authenticated FPGA
fabric bitstream for verification, the bitstream is read, authenticated, and decrypted and existing FPGA
fabric is compared to the incoming bitstream. A pass-fail indication is returned after the entire bitstream is
processed. In the second method, the user can use the FPGA fabric digest system service to verify the
configuration. These two methods of FPGA fabric verification can be locked using FPGA fabric verify
lock-bits. There is an overall lock-bit that disables reading of the FPGA fabric for digest calculation.
Therefore, if this lock-bit is set no verification by any method can be performed and any attempt to do so
will fail unless the FlashLock passcode is used first to unlock it.

Use the Security Policy Manager in the Libero SoC software and select “Fabric update protection >
Use FlashLock/UPK1 to unlock Erase/Write/Verify operations” under “Update Policy” to apply the
FPGA fabric lock-bits, as shown in the following figure.
Microchip Proprietary 38

FPGA Hardware Access Controls
Figure 10 • Fabric Update Protection via SPM in the Libero SoC

Note: SmartFusion2 and Igloo2 eNVM’s bitstream programming and verification is protected by UEK1/UEK2
when the security policy is programmed. To prevent reading from eNVM, the user must select to protect
SmartDebug with DPK in the Debug Policy of the SPM.

5.2.4 Key-Mode Lock-bits
Each key mode has a lock-bit, which disables it. Some of these are set automatically. In a new device,
any one of the factory keys may be used to load the user keys in encrypted form. After the user keys are
loaded, all the factory keys are automatically disabled, leaving only the user key modes in operation.
Thus, any subsequent bitstream updates must be done using the user keys. Keys that are not loaded are
also automatically disabled. The user may choose to disable any additional key modes. If all key modes
are disabled, this is effectively another layer of security to prevent bitstream updates. The key mode lock-
bits are not temporarily unlocked by the FlashLock passcode. It is required to match the FlashLock
passcode to allow the key mode lock-bits to be erased, after which they can be reprogrammed by a new
bitstream. Use the Security Policy Manager in the Libero SoC software and select “Programming Key
Mode Policy>Disable Key Mode” option under “Key Mode Policy” to apply key mode lock for UEK1,
UEK2, and for devices with data security enabled (-060, -090 and -150 devices), UEK3, as shown in the
following figure.

Figure 11 • UEK1 and UEK2 Programming Key Mode Lock via SPM in the Libero SoC

The two user keys (UEK1 and UEK2) and the User PUF symmetric design security key (UEK3) in larger
“TS” class devices have essentially identical capabilities. While individual key modes may be disabled
with lock-bits, and certain programming functions, such as field updates of the eNVM or the FPGA fabric
or both can be disabled, If a key is not disabled, it has access to all the same programming capabilities
as any other enabled key has access to. Key-mode enabling is an all-or-nothing affair, independent to
selection of which programming functions are enabled. So, if UEK1 can overwrite the eNVM with new
programming data, UEK2 can also overwrite too provided if it is enabled. Conversely, if overwriting of the
FPGA fabric is locked, it is locked for all possible keys.
Microchip Proprietary 39

FPGA Hardware Access Controls
5.2.5 Lock-bit to Require One-Time-Use Encrypted Passcodes
(Prohibit Plaintext Passcode Matching)
This lock-bit disables all plaintext passcode matching and forces the user to use the one-time-use
encrypted passcode protocol. It affects all five passcodes in the device:

• Factory Passcode (FPK)
• Factory Passcode Passkey (PPK)
• User Passcode (also known as the FlashLock Passcode, UPK1)
• User Passcode 2 (UPK2)
• Debug Passcode (DPK).
Transmitting any crypto-variable(CV) in plaintext is not safe. Microchip highly recommends the usage of
this lock-bit. The advantage of the one-time-use encrypted passcodes is that the communication with the
device when the passcodes are being transmitted into it may be monitored by an adversary (for example,
rogue insider) without exposing the passcode value. Also, additional keying material must be known by
the entity to ensure it knows the passcode, increasing the chances for a successful match. All CVs can
be protected inside hardware security boundaries, such as the HSMs associated with the Microchip
programming tools, and not exposed in plaintext on the wires going to the device. The main
disadvantage is that an on-line (that is, interactive) challenge-response -type protocol is required, rather
than a one-way communication. The SPPS HSM-assisted programmer tool is required to use this
feature. There is also a lock-bit to prevent use of the one-time passcode protocol. If both passcode
protocols are locked-out, the passcodes cannot be matched and the current device security policy and
key set is effectively frozen.

5.2.6 Programming Port Lock-bits
Several user lock-bits are available to block access to programming through specific programming ports.
These lock bits protect the following programming interfaces:

• Auto Programming
• IAP/ISP services
• JTAG (use FlashLock to/UPK1 to unlock)
• SPI Slave (use FlashLock/UPK1 to unlock)
Use the Security Policy Manager in the Libero SoC software and select the required programming
interface in “Update Policy>Disable access to the following programming interfaces” to apply the
FPGA fabric lock-bits, as shown in the following figure.

Figure 12 • Programming Interfaces Lock via SPM in the Libero SoC

Note: The IAP and ISP services are not available, if the fabric is locked with FlashLock/UPK1. The same
applies for auto update and auto programming mode. For more information about auto update and auto
programming, refer to the UG0451: IGLOO2 and SmartFusion2 Programming User Guide.
Microchip Proprietary 40

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_igloo2_programming_user_guide_ug0451_v9.pdf

FPGA Hardware Access Controls
The standard JTAG boundary scan instructions (EXTEST, SAMPLE/PRELOAD, CLAMP, and HIGHZ),
and a Microchip extension to the standard (EXTEST2) can be disabled with a lock-bit in Libero SoC
using the Security Policy Manager as shown in Figure 13, page 41.

Figure 13 • Disabling JTAG Boundary Scan

5.2.7 Lock-bit to Deactivate Debugging Features
Debugging features are deactivated using these user lock-bits. There is one debugging feature for read
operations, one for write operations, and one for ARM Cortex-M3 processor related debugging features.
The debug lock-bits (except the row locks) can be temporarily overridden by matching the Debug
Passcode (DPK). Configure Security Policy Manager>Debug Security Policy settings in the Libero
SoC allows the user to lock the debugging features, as shown in Figure 14, page 41. When the
debugging access is locked, the Debug Passcode (DPK) or the User Passcode (UPK1) FPGA fabric row
locks are used for blocking the probe-read and the live-probe real-time -monitoring debug capabilities.

Figure 14 • Setting Debug Locks via SPM in the Libero SoC

Microchip recommends to disable plaintext passcode matching (with another lock-bit as described
above) and use the one-time-use encrypted passcode protocol versus the plaintext passcode protocol.A
disadvantage in this method is, if the plaintext passcode is captured by monitoring its use once, the
Microchip Proprietary 41

FPGA Hardware Access Controls
plaintext passcode can be used thereafter to unlock the debugging features of the device (unless
subsequently locked-out).

5.2.8 Cryptographic Services Lock-bits
Each group of cryptographic system services such as AES and all its modes (ECB, CBC, CTR, OFB), or
SHA-256 (including HMAC-SHA-256), may be disabled by these user lock-bits. This may be done for
services that are not required in a given application. These lock-bits may be used if in some countries
with issues related to export of cryptographically enabled devices. This feature will be available in future
versions of Microchip programming software.

5.2.9 Hardware Firewall Lock-bits
Hardware firewalls protection block read or write operations from three groupings of bus masters to
memory. The hardware firewall lock-bits are the lock-bits that control access. Refer to Memory Access
Controls, page 42 for details.

5.3 Memory Access Controls
All SmartFusion2 and IGLOO2 devices contain some basic software and hardware memory access
control mechanisms.:

• Hardware protection refers to quasi-static access control bits that can only be changed by
reconfiguring the appropriate sections of the device with a new authenticated or encrypted
bitstream.

• Software protection refers to access control bits that can be dynamically changed by a bus master
attached to the AMBA®(Advanced Microcontroller Bus Architecture)system bus.

Consequently, the hardware access controls have a higher level of security than the software controls.
For example, hardware controls are protected against change by malware that may infect the Cortex-M3
processor in SmartFusion2 devices. The risk of malware infection is higher if the Cortex-M3 processor is
attached to a public network. If the access controls prohibit access by the Cortex-M3, then the affected
memory regions are more efficiently protected from the risk of malware.

Many of these memory access control mechanisms are layered. The access restrictions are cumulative,
that is, if read or write permissions are locked at any level, then that access is denied regardless of
whether it is locked at another level or not.

5.4 Software MPU
In SmartFusion2 devices, the ARM Cortex-M3 processor contains an ARM MPU. The MPU provides
more memory control, enables applications to utilize multiple privilege levels, separates and protects
code, data and stack on a task-by-task basis. These requirements are critical in several embedded
applications, like the automotive systems.

The Cortex-M3 processor in SmartFusion2 devices can be used to configure the access permissions for
up to eight potentially overlapping regions of the memory and background under software control. The
MPU divides the memory map into a number of regions, and defines the location, size, access
permissions, and memory attributes of each region. It supports:

• Independent attribute settings for each region
• Overlapping regions
• Export of memory attributes to the system
The MPU can be enabled using System Builder -> Microcontroller in the Libero SoC, as shown in the
following figure.
Microchip Proprietary 42

FPGA Hardware Access Controls
Figure 15 • Cortex -M3 Configurator

For more information about how to use MPU, refer to SmartFusion2 Microcontroller Subsystem User
Guide.

5.4.1 Software eNVM User Page-Write Locks
Each 1K-bit page of eNVM (with 1024 available user bits) contains some additional hidden data which is
managed by the memory controller hardware and/or the system controller, including a user page-level
write-protect bit. This bit can prevent accidental overwriting of marked eNVM pages since it executes an
additional operation on the part of the bus master to unlock the page before it can be written. The user
page-write lock bit can be set or cleared dynamically by any bus master that has access to the respective
page of memory. This gives these locks a software level of protection. Refer to “Embedded NVM (eNVM)
Controllers” chapter in SmartFusion2 Microcontroller Subsystem User Guide for more details on setting
these locks bits.

5.4.2 Hardware eNVM Factory Page-Write Locks
Each 1K-bit page of eNVM also contains a quasi-static factory page-level write-protect bit. These bits
prevent accidental or malicious overwriting of the marked pages. The system controller controls these
bits, which are not accessible by any other bus masters. These locks have a “hardware” level of security,
as defined earlier.

The system controller reserved pages in the eNVM are always write-protected using these factory page-
write locks. The factory page-write protect bits in the remaining (that is, user) eNVM pages are set (or
cleared) if and when the attached eNVM pages are programmed by an authenticated or encrypted user
bitstream. The user sets those regions of memory to write-protect. In effect, the user declares these
pages in the read-only memory (ROM) region, the Libero SoC “MSS Configuration - eNVM” tool allows
the user to create these ROM regions.

5.4.3 Hardware eNVM, eSRAM, and MDDR Data Security Access
Controls
The microcontroller subsystem (MSS) in SmartFusion2 and high-performance memory sub-system
(HPMS) in IGLOO2 SoC FPGAs has a multi-layer AMBA bus interconnection between the many bus
masters and slaves in the subsystem. The multi-layer bus acts like a cross-point switch, allowing any bus
master to communicate with any bus slave. For security reasons, such an open system is not desirable
Microchip Proprietary 43

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_microcontroller_subsystem_user_guide_ug0331_v15.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_microcontroller_subsystem_user_guide_ug0331_v15.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_microcontroller_subsystem_user_guide_ug0331_v15.pdf

FPGA Hardware Access Controls
sometimes. Therefore, the premium “S” or “TS” version of SmartFusion2 SoC and IGLOO2 devices have
the capability to block read or write operations from three groupings of the bus masters. The fourth bus
master group contains the system controller which always has access to the multi-layer bus. These lock-
bits control access to the eSRAM blocks, the eNVM block(s), and the MDDR memory controller slaves.
The lock bits block read or write traffic from a specific group of bus masters to a specific memory slave
(or portion thereof). In addition to the SmartFusion2 device, the user can control access to the MSS
memory region from the fabric master and also can block changing MSS configuration registers settings
using lock-bits.

The Libero SoC software allows setting up these lock-bits. For SmartFusion2 designs, the MSS Security
Policies configurator has three sets of lock-bits to control the hardware-firewall:

• Cortex-M3, Fabric Interface Controller (FIC), and DMA(Dynamic Memory Access) bus masters
access lock-bits

• Fabric master to MSS memory map access lock-bits
• MSS configuration registers lock-bits
In IGLOO2 designs, it is the System Builder- Security Configurator that sets the control access from the
various masters (FIC and DMA bus) in HPMS.

5.4.3.1 Cortex-M3, FIC and DMA Bus Masters Access Lock-Bits
The various bus master access lock-bits can be set in the Libero SoC. For SmartFusion2 designs, the
MSS Security Policies Configurator’s Master/Slave configuration tab defines how masters and slaves
communicate and whether it also has write access when a master has read access. User can define
AMBA bus interconnect locks and eNVM special sectors locks.

5.4.3.1.1 AMBA Bus Interconnect Locks
, shows the MSS Security Policies Configurator window in the Libero SoC that sets the control access
from these internal bus lock-bits. The access for eSRAM, eNVM, and the DDR bridge from various
masters (Cortex-M3, FIC, and DMA bus) in the MSS can be locked. The AHB bus matrix can be
configured to restrict these accesses.
Microchip Proprietary 44

FPGA Hardware Access Controls
Figure 16 • MSS Security Policies Configurator-eSRAM0, eSRAM1, eNVM0, eNVM1 and DDR Bridge Lock

The master/slave access is defined in the matrix as follows:

• –: No access is granted
• R: Only read access is available
• RW: Both read and write accesses are available.
To restrict a master or slave access, un-check the read or write field for a particular group of masters.
Whenever you restrict a master/slave access by un-checking the Read or Write access for a particular
group of masters(masters are organized in three groups with respect to access configuration), the actual
access is displayed in the matrix. When a specific lock is selected, the corresponding lock-bit is set in the
user security segment. These locks can be temporarily overridden in the event of a FlashLock passcode
match.

5.4.3.1.2 eNVM Special Sectors Locks
The eNVM blocks have special sectors that can be write protected. The following figure shows the MSS
Security Configurator window with eNVM Special Sectors lock option. The user can check the Use as
ROM checkbox option to write protect these eNVM regions. The number of special sectors depends on
the device selected. The size of each sector is 4 KB and the address range for each special sector is
listed in Table 3, page 46.
Microchip Proprietary 45

FPGA Hardware Access Controls
Figure 17 • M2S090TS/M2GL090TS MSS Security Configurator showing eNVM Special Sectors

5.4.3.2 Fabric Master to MSS Memory Map Access Lock-bits
In SmartFusion2 devices, user can block the fabric masters from accessing the MSS memory to control
access to the MSS memory region from the fabric master, as shown in the following figure. check “Restrict
Memory Access” checkbox and set the memory region in the MSS to activate the restriction.

Figure 18 • MSS Security Policies Configurator - Fabric master to MSS

5.4.3.3 Configure Register Lock Bits
For SmartFusion2 and IGLOO2 devices, user can block various masters from accessing the MSS,
serial/de-serializer (SerDes), and Fabric DDR (FDDR) configuration registers and prevents the registers
from being overwritten by masters who have access to these registers. These registers are described in
the SmartFusion2 Microcontroller Subsystem User Guide. The user can use the Register Lock Bits
Configuration tool to lock MSS, SerDes, and FDDR configuration registers. The register lock bits are set

Table 3 • eNVM Special Sector Address Ranges

Device
Number of Special
Sectors in eNVM0

Number of Special
Sectors in eNVM1

Address
Range in eNVM0

Address
Range in eNVM1

M2S/M2GL150TS,
M2S/M2GL090TS

1 3 0 x 0000-0 x 0fff 0 x 7b000-0 x 7bfff
0 x 7c000-0 x 7cfff
0 x 7d000-0 x 7dfff

M2S/M2GL050TS,
M2S/M2GL060TS

2 0 0 x 0000-0 x 0fff
0 x 3f000-0 x 3ffff

NA

M2S/M2GL025S/TS,
M2S/M2GL010S/TS,
M2S/M2GL005S

4 0 0 x 0000-0 x 0fff
0 x 3d000-0 x 3dfff
0 x 3e000-0 x 3efff
0 x 3f000-0 x 3ffff

NA
Microchip Proprietary 46

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_microcontroller_subsystem_user_guide_ug0331_v15.pdf

FPGA Hardware Access Controls
in a text file (*.txt) and imported into a SmartFusion2 or an IGLOO2 project. Refer to the Libero Online
Help for more information on setting these configuration registers lock-bits.

5.5 Factory-reserved eNVM
Microchip reserves the top pages of eNVM array for system controller. In -005, -010, -025, and -050
devices, 16 pages (2 KB, that is, the top one-half of the top sector) of the eNVM (eNVM0) are reserved
for the device certificate, and for storing the digest for the static user portion of the eNVM. These pages
are protected from overwriting by factory page write protect bits, but may still be readable by some bus
masters depending on how the hardware firewall lock-bits are set. In -090 and -150 devices the top 64
pages (8 KB that is, the top two sectors) are completely private to the system controller for both reading
and writing. These two sectors, which are in the second eNVM block (eNVM1) cannot be accessed by
any other bus master.
Microchip Proprietary 47

https://onlinedocs.microchip.com/oxy/GUID-AFCB5DCC-964F-4BE7-AA46-C756FA87ED7B-en-US-12/index.html
https://onlinedocs.microchip.com/oxy/GUID-AFCB5DCC-964F-4BE7-AA46-C756FA87ED7B-en-US-12/index.html

Supply Chain Assurance
6 Supply Chain Assurance

SmartFusion2 and IGLOO2 FPGAs implement features to protect the device during each stage of the
device life cycle; manufacturing, deployment, field upgrades, and decommissioning. Some of these
features may not be under direct OEM control, and therefore need to be executed securely. The
SmartFusion2 and IGLOO2 features to support this include:

• Certificate-of-Conformance (C-of-C)
• Back-Tracking Prevention (Versioning)
• Exporting Public Information or Configuration Data
• Information Services

6.1 Certificate-of-Conformance (C-of-C)
As the new devices can be programmed by whoever possesses them, either the devices have to be
initialized with user keys in a trusted facility with cleared personnel, or another method should be used to
ensure that the correct keys, security settings, and user-supplied design are programmed into the
devices. The best practice would be to bring the fully assembled and programmed systems to a trusted
facility where the programming could be verified, before they are put into any sensitive applications.
Either of these approaches, using a trusted facility to preload keys, or afterwards to verify programming,
requires extra time and expense, including the cost of maintaining such facilities and staff and the
inconvenience of not being able to put otherwise finished systems into service until additional steps have
been performed.

The SmartFusion2 and IGLOO2 FPGAs from Microchip offer an alternative approach that takes the
advantage of cryptographic techniques to provide assurance that they are programmed correctly, not
with some malicious entity’s keys instead of the user’s keys, or with the (intentionally) wrong security
settings, or with a different design than intended (perhaps containing a Trojan Horse). During
programming, the device can generate a short message called the Certificate-of-Conformance (C-of-C).
This includes keyed digests (like message authentication code tags) for each bitstream component that
is programmed. The pre-image data not only includes the data which is just programmed by that
bitstream component, but also includes the device serial number. This ensures that the C-of-C tags from
each device are different, even if the programmed data is the same. The key makes the tag un-forgeable.

The SPPS software can validate the returned C-of-C messages from each device, and report this in
secure log files. This is one aspect of keeping tight accounting control over the number and identity of the
parts produced, the scrapped parts, and so on.

The C-of-C proves that the each component is programmed with the expected data. Assuming the C-of-
C is read from a device that is in a relatively protected state, where it can’t be overwritten without the use
of secret passcodes or keys, C-of-C provides strong assurance that the device is programmed correctly.
The advantage of the C-of-C approach is that it provides this assurance minus the expense of shipping
parts or systems around the world between less-trusted assembly facilities and more-trusted facilities
where additional programming or verification steps have to be performed, and it may even eliminate the
need for the more expensive facilities. Programming can be performed in a less expensive facility without
the fear of undetected tampering with the programming data by insiders or others.

Generating and confirming the C-of-Cs is very efficient, and adds almost nothing to the programming
time. It is completely automated by the Microchip programming software tools and HSMs; the C-of-C
check only needs to be requested by the user, and is the default option for the HSM-assisted
programmer tool.

6.2 Back-Tracking Prevention (Versioning)
SmartFusion2 and IGLOO2 FPGAs allow an option of assigning a version number to each configuration
bitstream. This allows protection against a replay attack, where an adversary may reintroduce an earlier
form of a bitstream (one perhaps with security vulnerabilities) to gain information about a system.
Microchip Proprietary 48

Supply Chain Assurance
The user may set the design version number and also a back-level version by using the Security Policy
manager > Update Policy dialog box in the SoC tool, as shown in the following figure. The back- level
version is set at or before where the device rejects the next incoming file. The back level version value
limits the design versions, the device can update. So, only programming bitstreams with Design version
> Back Level version are allowed for programming. The back-level protection is secured by
FlashLock/UPK1. FlashLock/UPK1 can be used to bypass the back level protection.

Note: The entire bitstream configuration file, including the versioning and back level fields, is authenticated to
detect tampering with the versioning mechanism.

Figure 19 • Back Level Protection Settings in the Security Policy Manager

6.3 Exporting Public Information or Configuration Data
The following paragraphs discuss the type of information which can be exported from SmartFusion2 and
IGLOO2 devices using the built-in services. Also discussed are the protections applied to data that is not
intended to be exported, such as the user’s design IP or any cryptographic variables.

6.3.1 Device Certificates (Anti-Counterfeiting)
Counterfeiting in electronic parts can take various forms. Some examples are copying designs at the
transistor level, black-topping, and remarking devices to misrepresent used devices as new, changing
the date codes, improving the speed grade or the temperature grade, and increasing the alleged
screening level.

To prevent counterfeiting and fraud, SmartFusion2 and IGLOO2 FPGAs incorporate anX.509 compliant
digital certificate, stored in the device's eNVM. The digital certificate includes a digital signature, an
electronic analog of a written signature. The digital signature can be used to provide assurance that the
claimed signatory signed the information. In addition, a digital signature can be used to detect whether or
not the information is modified after it is signed. Figure 20, page 50 shows the standard digital signature
processes.
Microchip Proprietary 49

Supply Chain Assurance
Figure 20 • Digital Signature Processes

The digital certificate in SmartFusion2 and IGLOO2 devices cryptographically binds the device serial
number and date code, its model number, the device's secret factory key, and a digital signature from
Microchip in a way that can be validated internally by the device and externally by the user. Any
mismatch between how the device is represented by its shipping paperwork or the label printed on its
surface and the digital certificate indicates the possibility of counterfeiting fraud. The bigger devices (-
060, -090 and -150 devices) that have ECC support, the factory ECC public keys are also certified, as
they are included in the device certificates.

The device certificate can be retrieved using a system service. The device certificate system service
fetches the device certificate from the eNVM, validates it, and copies it to the memory locations the user
designates. The Device Certificate system service is available in-application, and can be retrieved using
the Cortex-M3 or a fabric master. The following figure shows the main steps for running the Device
Certificate system service. Refer to Device and Design Information System Service, page 53 for details
on running system services.In addition, the device certificate can be exported during programming.

Hash Function Hash Function

Signature Generation Signature Verification

Message Digest Message Digest

Signature Generation Signature Verification

Private Key
Public Key

Signature
Valid or Invalid

Message/Data Message/Data
Microchip Proprietary 50

Supply Chain Assurance
Figure 21 • Device Certificate System Service Flow

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master sends Device
Certificate system service command and

DEVICECERTPTR/SECONDECCCERTPTR pointer

System controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads Device
Certificate output from the pointer location
Microchip Proprietary 51

Supply Chain Assurance
The following tables show Device Certificate system service request, response, and status.

Table 4 • Device Certificate System Service Request

Table 5 • Device Certificate System Service Response

Table 6 • Service Status

The firmware catalog has the driver for exporting the device certificate so that the API can be used in
their system. In addition, CoreSysServices IP can be used to run the Device Certificate system service
using the RTL code. Refer to Using Device Certificate System Service in SmartFusion2 - Libero SoC
v11.7 Application Note for details.

6.4 Information Services
Some of the device data are considered public and may be exported internally using the system services
accessible through the COMM_BLK. The Information services return information about the device and
current user design. In addition, the device information can be exported from SmartFusion2 and IGLOO2
devices using an external interface, such as the JTAG or SPI-slave programming interfaces.The
following table summarizes the public data that can be exported using the system service and external
JTAG or SPI-slave programming interfaces.

Offset Length (bytes) Field Description

0 1 CMD = 0 or 30 Command
0: Primary device certificate (all “S” or “TS” devices)
30: Secondary device certificate (M2S060TS, M2S090TS,
M2S150TS, M2GL060TS, M2GL090TS, and M2GL150TS
devices only)

1 4 DDEVICECERTPTR/
SECONDECCCERTPTR

DEVICECERTPTR: Pointer to 768-byte buffer to receive the
primary device certificate
SECONDECCCERTPTR: Pointer to 640-byte buffer to receive
the secondary certificate

Offset Length (bytes) Field Description

0 1 CMD = 0or 30 Command

1 1 STATUS Service status (see the following table)

2 4 DEVICECERTPTR/
SECONDECCCERTPTR

Pointer to original buffer from request

Status Description

0 Success

127 MSS/HPMS memory access error (HRESP)

Table 7 • Public Information Accessible

Information

Internal
(System
Service)

External
(JTAG/SPI) Comment

Serial Number x x Unique-per-device, 128 bits

IDCODE x Std. IEEE 1149.1 JTAG IDCODE value, 32 bits

USERCODE x x Std. IEEE 1149.1 JTAG USERCODE value, 32
bits
Microchip Proprietary 52

https://ww1.microchip.com/downloads/aemdocuments/documents/fpga/ProductDocuments/SupportingCollateral/CoreSysServices_HB.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ApplicationNotes/ApplicationNotes/microsemi_smartfusion2_using_device_certificate_liberov11p7_application_note_ac436_v4.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ApplicationNotes/ApplicationNotes/microsemi_smartfusion2_using_device_certificate_liberov11p7_application_note_ac436_v4.pdf

Supply Chain Assurance
The programming information bears the information on the programming operation and is read by the
programmer, and then saved back into the NVM of the device. This data is intended for diagnostic
purposes and can be read by the programming software.

6.4.1 Device and Design Information System Service
The device and design information services return information about the device and the current user
design, as described below. The Device information system service can be run using the ARM Cortex-
M3 processor or a fabric master (refer to the following figure).The following table lists the various
information system services.

User Design ID x 256 bits, set by user (Normally the top level
component name)

Device Primary Certificate x x Returns 768 byte X.509 certificate (PKFP
certified)

Device Secondary Certificate x x Returns 640 byte X.509 certificate (PKFE
certified)

User Design Version x x 16 bits

Programming Information x 128 bits (includes unused bits)

Table 8 • Information System Services

System Service Service Name Command Value

Device and Design Information
Services

Serial Number Service 1

USERCODE Service 4

User Design Version Service 5

Table 7 • Public Information Accessible
Microchip Proprietary 53

Supply Chain Assurance
Figure 22 • Device and Design Information System Service Flow

6.4.2 Serial Number Service
This service fetches the 128-bit device serial number (DSN). The following tables show Serial Number
service request, response, and status

Table 9 • Serial Number Service Request

Offset Length (bytes) Field Description

0 1 CMD = 1 Command

1 4 DSNPTR Pointer to 16-byte buffer to receive the 128-bit serial number

Table 10 • Serial Number Service Response

Offset Length (bytes) Field Description

0 1 CMD = 1 Command

1 1 STATUS Command status (see the following table)

2 4 DSNPTR Pointer to original buffer from request

Table 11 • Service Status

Status Description

0 Success

127 MSS/HPMS memory access error (HRESP)

Cortex-M3/Fabric master sends Device
Information system service command and

corresponding data pointer

System controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads system service
output from the pointer location

Note: Cortex-M3 is only available in SmartFusion2
Microchip Proprietary 54

Supply Chain Assurance
6.4.3 USERCODE Service
This service fetches the 32-bit JTAG USERCODE programmed by the user. The following tables show
the USERCODE service request and service response.

6.4.4 User Design Version Service
This service fetches the 16-bit user design version. The following tables show the Design Version service
request and service response.

6.4.5 Security Settings
When security settings are exported they are reflective of the permanent settings stored in the user lock
security NVM segment, not the current state as it may be temporarily unlocked after a successful
passcode match. The programmer tool can interpret and display or print the security settings in a
readable format.

6.4.6 Exporting User SRAM-PUF Activation Codes
In larger “TS” Class devices, the user may enroll his own SRAM-PUF activation code and key codes after
receiving the devices. The first two keys, a 256-bit symmetric key and a 384-bit ECC private key, are
reserved for design security purposes. Additional data security keys of variable length may also be
enrolled. These data security keys can be reconstructed by Quiddikey and exported in plaintext form
from the system controller to the design running internally in the FPGA.

The user activation code and user key codes can be exported internally in their entirety in ciphertext form
by the system controller to the design running internally in the FPGA. From there, the user can choose to
export them off-chip, using any available interface, such as Ethernet for example, as a function of their
hardware or software design.

Once exported, the activation code and key codes must be re-imported in order to regenerate any of the
enrolled keys. There is an external programming command for importing the activation code and either of

Table 12 • USERCODE Service Request

Offset Length (bytes) Field Description

0 1 CMD = 4 Command

1 4 USERCODEPTR Pointer to 4-byte buffer to receive the 32-bit USERCODE

Table 13 • USERCODE Service Response

Offset Length (bytes) Field Description

0 1 CMD = 4 Command

1 1 STATUS Command status (see Table 11, page 54)

2 4 USERCODEPTR Pointer to original buffer from request

Table 14 • Design Version Service Request

Offset Length (bytes) Field Description

0 1 CMD = 5 Command

1 4 DESIGNVERPTR Pointer to 2-byte buffer to receive the 16-bit design version

Table 15 • Design Version Service Response

Offset Length (bytes) Field Description

0 1 CMD = 5 Command

1 1 STATUS Command status (see Table 11, page 54)

2 4 DESIGNVERPTR Pointer to original buffer from request
Microchip Proprietary 55

Supply Chain Assurance
the key codes associated with the two reserved design security keys. There is an internal system service
for importing the activation code and the key codes for the user’s data security keys so that the data
security keys can be regenerated.

 For more about the SRAM-PUF system services, see SRAM-PUF Services, page 102.

6.4.7 Configuration Read Back in User Mode
SmartFusion2 and IGLOO2 devices do not allow to read the FPGA fabric configuration in the user mode,
either internally or externally. Some public data elements stored in the security segments may be
exported either internally or externally as explained in the previous section. Some of these services, such
as exporting of the design digests externally, may be prohibited by user-set lock-bits. This mode has no
ability to read any crypto-variables such as keys or passcodes.

Unless prohibited by the user or factory page-level write-protect bits, or by the user hardware firewalls
(available in “S” class devices), the eNVM array can be read internally by any (internal) bus master. In
the larger devices (-060, -090, -150) the top 8KB of eNVM is private to the system controller, and cannot
be read by the user, though some of the data (for example, the device certificate) stored in the top of
eNVM may be accessible via internal system services or external JTAG/SPI commands.

6.4.8 Configuration Read Back in Factory Test Mode
Factory test mode used by Microchip during the manufacturing and provisioning process to ensure the
quality and reliability of the devices being provided has powerful capabilities. For instance, this mode
allows scan-based testing of much of the logic circuitry in the device, to help ensure with high probability
there are no “stuck-at” -type hardware faults in the logic being tested.

In SmartFusion2 and IGLOO2 FPGAs some of the production testing is done using the system controller,
which also has powerful capabilities. For security reasons, and to conserve on-chip memory, many of the
system controller test capabilities are not fully implemented inside the device and have to be downloaded
to the device while in factory test mode in order to complete the test capability. During the testing of the
devices, at both the wafer probe test stage and after the parts are assembled, multiple such downloads
are used to run different tests. This downloaded code is treated by Microchip as confidential and
sensitive information. The downloaded images are encrypted and authenticated in a DPA-resistant
manner similar to the way factory and user bitstreams are encrypted and authenticated, with the
encryption keys managed by Microchip owned NIST-certified HSMs. Access to the test programs is
restricted to a limited number of trusted Microchip test engineers.

Factory test mode is essential to ship working parts to customers, and acts as a great utility to an
adversary trying to subvert the security of a device. For example, it is at least theoretically possible that
the user’s design IP can be read out of the device while in factory test mode, if (hypothetically) the
properly encrypted and authenticated test programs are downloaded to the device. Of course, before
devices are shipped from Microchip the factory test mode is disabled using factory lock-bits and other
security features.

Unless disabled by the user, there is a method to roll-back the lock-bits and security so the device can be
put into the factory test mode again. This procedure is used when failure analysis needs to be performed.
This allows Microchip reliability engineers to understand the root cause of failures, and to take corrective
action. In security-critical applications the ability to perform failure analysis may not be as important as a
higher assurance that the device cannot be put into factory test mode. For these applications there are a
number of additional measures the user can take to permanently lock the device. When the locking is
done, the ability to perform failure analysis is permanently lost, but the security is increased.

Entering factory test mode requires the matching of two factory passcodes, called the Factory Passcode
(FPK) and the Factory Passcode Passkey (PPK). The matching of these two factory passcodes is always
locked by a user lock-bit that is automatically set when the user programs the keys, passcodes, and
security settings. In other words, once the user programs a device, the factory passcodes are
automatically disabled. In order to roll back this lock to re-enable the factory passcodes, the User
FlashLock Passcode (UPK1) must first be matched. The user also has the option to permanently prohibit
factory test mode with a different User-set lock-bit, in which case there is no mechanism to roll back
security to re-enter the factory test mode. In other words, there is a reversible lock set by default and also
a permanent (irreversible) lock the user can optionally set.
Microchip Proprietary 56

Supply Chain Assurance
The user can also use the so-called OTP or overall permanent lock mode, which prohibits escalation of
any user privileges. It prevents matching of the FlashLock (UPK2), Debug (DPK), and User 2 (UPK2)
passcodes as well as overwriting or verification of any NVM. If this group of locks is set, even the user
cannot change any security settings, or any other part of the configuration. Even if the factory passcode
permanent lock is not set by the user, the reversible lock cannot be unlocked since user’s access to it
has been permanently disabled by the OTP mode locks.

The following figure shows the layers of security used to protect the factory test mode.

Figure 23 • Layered Security Preventing Read-back of Design IP or User Data

Assuming that neither the factory test permanent lock, or the overall permanent lock (OTP Mode) have
been set, here are the steps that must be taken to re-enter factory test mode, in order to perform a failure
analysis, for example:

• The user must match the 256-bit user passcode (also known as the FlashLock Passcode, UPK1)
• This passcode is typically the same across one project, but can be unique per device if the user

chooses
• This passcode is not known by and can’t be bypassed by Microchip. If the user loses it, the

device is effectively permanently locked against any security setting changes
• If the user follows the Microchip recommendation and uses the HSM-assisted version of the

programmer and the one-time-use passcode protocol, this cryptograph variable is protected at
all times by a hardware security boundary, or by strong encryption

• Matching correctly allows the factory passcode matching mechanism to work, once again by
temporarily unlocking the reversible lock (until a device or JTAG reset)

• Microchip must then match the 128-bit Factory Passcode Passkey (PPK)
• It is managed by Microchip HSMs and is never exposed in plaintext
• Matching correctly allows the main factory passcode matching mechanism to temporarily be

activated
• Microchip must match the 256-bit main Factory Passcode (FPK)

• This passcode is unique in every device Microchip ships
• It is managed by Microchip HSMs and is never exposed in plaintext
• Matching correctly temporarily puts the device in factory test mode

Microchip must download properly encrypted and authenticated code to the system controller volatile
memory to perform the required test. It is managed by Microchip HSMs and is never exposed in plaintext.
Microchip Proprietary 57

Supply Chain Assurance
An additional recommended precaution can be taken which makes the passcode matching mechanism
even stronger. There is a user lock-bit option that prohibits matching of any of the passcodes in plaintext.
This effectively forces the use of the one-time-use encrypted passcode protocol to escalate User or
factory privileges. This protocol, only available in SPPS, requires not only the knowledge of the
passcode, but also another key, when selected using the appropriate key mode. Thus, in this case, a
minimum of 1152 bits of symmetric keying material, split between the user and the factory, must be used
to re-enter factory test mode and download test code to the device. A minimum of seven separate
authentication and passcode-matching tests have to be passed to enter into the factory test mode.
Microchip Proprietary 58

Device Level Anti-Tamper Features
7 Device Level Anti-Tamper Features

SmartFusion2 and IGLOO2 FPGAs have a number of built-in tamper detection and response capabilities
that can be used to enhance design and data security. These countermeasures are intended to address
various types of attacks including non-invasive, semi-invasive, and invasive attacks. For example, the
tamper detection flag can be monitored and can trigger one of the built-in tamper responses such as
zeroization, or take other actions that fit the application. The built-in tamper detection output flags and
tamper response inputs are available to FPGA fabric through the user services interface (USI). The USI
bus is an interface between the FPGA fabric and the system controller.

In addition to tamper detection and tamper response, all built-in uses of design security protocols in
SmartFusion2 and IGLOO2 FPGAs have protection against differential power analysis (DPA). These
include bitstream decryption, key confirmation, Certificate-of-Conformance generation, and some of the
cryptographic services used in data security applications in “S” or “TS” devices. Also, SmartFusion2 and
IGLOO2 devices have a novel integrity check mechanism that can optionally be used to check the
reliability and security of a device automatically upon power-up, or upon demand.

7.1 SmartFusion2 and IGLOO2 FPGA Tamper Detection and
Tamper Response
The built-in tamper detection output flags and tamper response inputs are available to FPGA fabric
through the USI bus. The tamper macro exposes the built-in tamper detection output flags and tamper
response inputs to the FPGA fabric, as shown in the following figure. In Libero SoC, the user needs to
instantiate the tamper macro in the design to expose the tamper detection output flags and tamper
response inputs to the FPGA fabric.

Figure 24 • Built-in Tamper Detection Flags and Tamper Response Inputs

SmartFusion2/IGLOO2

System Controller MSS/HPMS

FPGA Fabric

Tamper Macro

Tamper
Detection Flags

Tamper
Response

USI
Microchip Proprietary 59

Device Level Anti-Tamper Features
7.1.1 Tamper Detection Flags
The tamper detection flags inform the user about the tamper activity. The following table describes the
tamper detection output flags.

Note: Flags generated by Hardware can be cleared only if the original tamper condition has also been removed
and flags generated by Firmware are controlled by the system controller and are cleared after several
clock cycles.

The following figure shows the behavior of the tamper detection flags. These flags are generated relative
to the 50 MHz RC oscillator clock connected to the system controller. The TAMPER_CHANGE_STROBE
pulses in response to a state change of any tamper detection flags and assists the user when creating
detection logic in the FPGA fabric. The TAMPER_CHANGE_STROBE indicates the state changes of any
outputs signal on the tamper macro, and is a 1-cycle pulse and is generated on the next falling edge (half
cycle after the tamper flags change).

Table 16 • Tamper Macro Port Description

Flag Generated by Description
JTAG_ACTIVE Hardware This flag is asserted when the device is programmed using

JTAG. It is also asserted whenever the JTAG TAP controller
enters the Run-Test-Idle state.

LOCK_TAMPER_DETECT Hardware A parity error has been detected in the security segment where
access control configuration bits (Lock bits) are stored.

MESH_SHORT_ERROR Hardware An error has been detected in the metal mesh. This allows
protection against invasive attacks, like cutting and probing of
traces using focused ion beam (FIB) technology with an active
metal mesh on one of the higher metal layers.

CLK_ERROR Hardware A clock monitor that compares the frequency of the two on-chip
system controller clocks (1 MHz and 50/25 MHz). If the
discrepancy over a number of clock cycles is too great, this flag
is set (-60, -90 and -150 devices only).

DETECT_CATEGORY[3:0]
DETECT_ATTEMPT
DETECT_FAIL

Firmware Ability to detect the programming port activity. For more
information, refer to Table 17, page 61.
DETECT_CATEGORY: Indicates the category of detectable
crypto activity type.

DETECT_ATTEMPT: Indicates that an activity type in
DETECT_CATEGORY has been attempted.

DETECT_FAIL: Indicates that an activity type in
DETECT_CATEGORY has failed.

DIGEST_ERROR Firmware An user initiated digest request has detected an error.

POWERUP_DIGEST_ERROR Firmware An error has been detected during the power-up digest check.

SC_ ROM_DIGEST_ERROR Firmware An error has been detected in the system controller metal mask
ROM digest.

TAMPER_CHANGE_STROBE Firmware Active high strobe pulse to indicate state changes of any outputs
on the Tamper Macro.
Microchip Proprietary 60

Device Level Anti-Tamper Features
Figure 25 • Tamper Flags Waveform

The DETECT_CATEGORY flag allows detecting the programming port activity by showing the JTAG or
SPI instructions applied to those ports. The following table lists the DETECT_CATEGORY flags.

Table 17 • DETECT_CATEGORY Flag Description

DETECT_CATEGOR
Y[3:0] Value Name Description
0 Reserved

1 BUFFER_ACCESS The flag is asserted when
read/write access is performed to
system controller’s shared buffer
using JTAG/SPI interface. The
shared buffer holds the data
requested by JTAG/SPI
instructions

2 DEBUG This flag is asserted when debug
instruction executed

3 CHECK_DIGESTS This flag is asserted when an
external digest check has been
requested

4 ECC_SETUP_INSTRUCTION This flag is asserted when elliptic
curve slave instructions have
been used

5 RESERVED

6 KEY_VALIDATION This flag is asserted when key
validation protocol is requested

7 RESERVED

8 PASSCODE_MATCH This flag is asserted when an
attempt has made to match a
passcode

9 PASSCODE_SETUP_INSTRUCTION This flag is asserted when the one-
time-passcode protocol is
initiated

10 PROGRAMMING This flag is asserted when an
external programming instruction
has been used

11 PUBLIC_INFORMATION This flag is asserted when a
request for device public
information
is issued

12 PUF_KEY_MANAGEMENT The flag is asserted when the PUF
key management instructions are
executed

50 MHz_CLOCK

TAMPER_DETECTION_FLAG

TAMPER_CHANGE_STROBE
Microchip Proprietary 61

Device Level Anti-Tamper Features
The following figure shows the behavior of the DETECT_CATEGORY and DETECT_ATTEMPT flags.
The DETECT_CATEGORY flags are set first on the positive edge of 50 MHz RC oscillator clock based
on the JTAG or SPI port activity. The DETECT_ATTEMPT flag is set next on the positive edge of the 50
MHz RC oscillator clock. The DETECT_CATEGORY flag is valid at the time the DETECT_ATTEMPT is
asserted. After several cycles the DETECT_ATTEMPT flag is cleared. The
TAMPER_CHANGE_STROBE which indicates the state changes of the DETECT_CATEGORY or
DETECT_ATTEMPT flags is a 1-cycle pulse and is generated on the next falling edge after
DETECT_CATEGORY or DETECT_ATTEMPT flags are asserted (half cycle after the
DETECT_CATEGORY or DETECT_ATTEMPT flags change).

Figure 26 • DETECT_CATEGORY Flags Waveform

The following figure shows the behavior of the DETECT_FAIL flag. The DETECT_FAIL flag is set next on
the positives edge of the 50 MHz RC oscillator clock.

Note: The DETECT_CATEGORY flag is valid when the DETECT_ATTEMPT or DETECT_FAIL flags are
activated.

After several cycles the DETECT_FAIL flag is cleared. The TAMPER_CHANGE_STROBE which
indicates the state changes of the DETECT_FAIL flag is a 1-cycle pulse and is generated on the next
falling edge after DETECT_FAIL flag is asserted (half cycle after the DETECT_FAIL flag change).

Figure 27 • DETECT_FAIL Flags Waveform

7.1.2 Tamper Response
SmartFusion2 and IGLOO2 FPGAs have four built-in tamper responses that can be triggered through the
USI bus connected to the FPGA Fabric. Table 18, page 62 summarizes the built-in tamper responses.

Commanding tamper responses, such as zeroization, must always be done by the user design. There
are no built-in triggers that automatically command zeroization or any of the other built-in tamper
penalties. The built-in tamper flags should be as the inputs into the user logic or firmware that makes the
decision to zeroize or respond to the tamper activity. The user can include other tamper detectors as part

13 Reserved

14 Reserved

15 ZEROIZATION_RECOVERY This flag is asserted when a
zeroization recovery has been
attempted

Table 18 • Built-in Tamper Response Options

Response Polarity Description
LOCKDOWN_ALL_N Active low Activate all locking mechanisms

DISABLE_ALL_IOS_N Active low All I/Os are disabled and tri-state

RESET_N Active low Reset system controller

ZEROIZE _N Active low Destroy stored data as per security settings

Table 17 • DETECT_CATEGORY Flag Description

50 MHz_CLOCK

TAMPER_CHANGE_STROBE

DETECT_ATTEMPT

OLD NEWDETECT_CATEGORY [3:0]

50 MHz_RCOSC

TAMPER_CHANGE_STROBE

DETECT_FAIL

OLDDETECT_CATEGORY [3:0]
Microchip Proprietary 62

Device Level Anti-Tamper Features
of their hardware or software design. For example, the JTAG inputs can be monitored by a user design
via the UJTAG FPGA macro. It is expected that in many cases additional tamper detection inputs are
provided as external inputs to the FPGA from outside sources, such as detecting that a volume
protection scheme has been compromised or that the power supply voltage is likely being tampered with.

7.1.3 LOCKDOWN_ALL_N
The LOCKDOWN_ALL_N response causes all the user lock-bits to behave as if they are locked. This
signal is available through the tamper macro. As long as this signal is asserted, the device will not
respond to any programming command that can be blocked by a lock-bit, or perform any cryptographic
service. All erase, write, and verify programming operations are blocked. Also, it will prevent all eSRAM,
eNVM, and MDDR memory read or writes accesses. Refer to FlashLock Passcode Security (256-bit),
page 36 for details on the effect of setting the lock-bits.

To restart the device after lock down, the FPGA fabric design must de-assert LOCKDOWN_ALL_N and
this must be followed by resetting the MSS in SmartFusion2 or HPMS in IGLOO2.

Note: This lock down feature is incompatible with the zeroize feature, and must be de-asserted before zeroize
is triggered or zeroization does not take effect.

7.1.4 DISABLEIO_ALL_IOS_N
The DISABLEIO_ALL_IOS_N response causes all I/Os to be disabled and put in tri-state mode globally,
thus preventing any further communication. This includes not only FPGA I/Os, but also all the I/Os
associated with the MSS peripherals such as the SERDES, Ethernet, SPI, I2C, and so on.

7.1.5 RESET_N
The RESET_N response causes reset to the system controller.This allows assertion of a full reset to the
chip, similar to asserting DEVRSTn input.

7.1.6 ZEROIZE_N
SmartFusion2 and IGLOO2 FPGAs have a built-in easy to use tamper detection and response capability
that can zeroize (clear and verify) any or all configuration storage elements as per the user's option.
Zeroization is a high priority system service in SmartFusion2 and IGLOO2 FPGAs.

The following table lists the zeroization options. The user can monitor the tamper detection flag and then
decide to trigger one of the three types of built-in zeroization requests and zeroize the device. The users
need to enable zeroization and set the chosen zeroization option (using the Tamper macro) in the design
and then send a zeroization request from FPGA fabric to system controller through the USI. The users
can also send a zeroization request through the COMM_BLK from FPGA fabric (for both SmartFusion2
and IGLOO2) or Cortex-M3 (for SmartFusion2 only).

7.1.6.1 Zeroization Procedure
In SmartFusion2 and IGLOO2 FPGAs, zeroization includes several erase and programming operations
to reduce any data remnants in the flash array to undetectable levels (a process known as “scrubbing”).
This section describes the zeroization procedure in SmartFusion2 and IGLOO2 FPGAs. Additional
zeroization documentation is available under NDA.

After the activation of zeroization command or request, the system controller programs a set of non-
volatile bits that act as status flags during the zeroization process. These status bits get updated
throughout the zeroization process to maintain the current status. These status bits are internal to FPGA,
and are not available to the user. This is a robust procedure that cannot be bypassed once invoked. It is

Table 19 • Zeroization Options

Option What Stays Comments
Like New Factory Keys and Factory

Configuration Segments
The FPGA configuration is destroyed and the part
behaves similar to a new part from the factory

Unrecoverable Nothing stays All the configurations are destroyed and the device
is permanently disabled and unusable
Microchip Proprietary 63

Device Level Anti-Tamper Features
designed to be completed even in the event of intentional tampering. If the zeroization cycle is
interrupted prior to completion, the system controller resumes zeroization on the next power-up of the
device based on the state of the status bits. Concurrent with the programming of status bits, the system
controller initiates zeroization of the volatile memories of the FPGA first:

• ECC memory
• PUF and PUF key management memory
• Key buffers
• Frame buffers
• AES and SHA256 registers
• JTAG IO buffer
• MSS eSRAMs
• Fabric SRAMs
Then system controller performs verification by reading back these memories and computing a digest.

After the volatile memories of the FPGA are zeroized, the non-volatile memory segments are destroyed
starting with eNVM. Finally, the FPGA flash configuration array, user security segments, and factory
security segments (if applicable, depending on the zeroization option selected) are erased. After all
relevant memories are cleared and scrubbed; the system controller performs a read back operation on
the memory segments and calculates a digest for volatile memories, eNVM, security segments, and the
fabric configuration flash. After both the erase and verify portions of zeroization are complete, a secure
protocol confirms zeroization is completed successfully.

In SmartFusion2, the Cortex-M3 is held in reset during the entire zeroization process. The zeroization
system service does not zeroize the instruction cache as there is no physical path for the system
controller to do so. If it is desired to clear the Cortex-M3 instruction cache, this should be done by the
user from the Cortex-M3 before the zeroization command is asserted. In addition, if the user locks the
fabric access, the user is responsible for clearing the particular LSRAM or uSRAM.

Certain internal states of the system controller must remain active during the zeroization process, which
the system controller controls, and are not erased unless until the device power is removed. These state
variables do not contain any sensitive data such as crypto-variables.

After the internal zeroization process has completed and been verified by the device, a certificate
containing un-forgeable authenticated data that contains the device serial number and additional data
that proves the part is successfully zeroized can be generated. This data can optionally be read out of the
FPGA by the user’s system using the JTAG or SPI interface after zeroization is completed. (This
“certificate” is different from the X.509 device certificate.) Un-keyed portions of this certificate can be
examined to verify that zeroization is successful; i.e., all verified memories are in a known state such as
all zeroes or all ones. A cryptographic validation of this certificate can be performed by the user with the
Microchip-supplied HSM-assisted programmer (as part of the optional Secure Production Programming
Solution, SPPS), or by Microchip at their headquarters, that detects any replayed or otherwise forged
certificates.

7.1.6.2 “Like New” Zeroization Mode
The first zeroization option is Like New, which destroys all the user programmed configuration data (that
is, it erases the user design information). This mode erases the device into a new device state. In other
words, the device behaves the way it was when it was shipped from Microchip originally, with no user
design or user key information stored and is immediately ready for programming by the user. There is
almost no logistical impact beyond reprogramming the device to get it back into operation.

Selecting the Like New zeroization mode may not be advisable for some high security applications
because, like a new part, once zeroized the part can be reprogrammed by whoever has access to it.

The like new zeroization mode is useful when devices go through repeated zeroization, such as when an
information assurance device is being intentionally erased after a mission, for routine re-keying.

One consideration with frequent use of zeroization is the number of erase/write cycles being applied to
the configuration NVM. Because of the scrubbing process, each zeroization and subsequent
reprogramming uses several erase/write cycles. However, the device guaranteed reliability for 20 years
after the last programming cycle is valid only if the number of rated erase/write cycles is not exceeded,
please refer to IGLOO2 and SmartFusion2 Datasheet for the maximum programming cycles allowed. If
Microchip Proprietary 64

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/DataSheets/IGLOO-2-FPGA-And-SmartFusion-2-SoC-FPGA-Data-Sheet-DS00004750.pdf

Device Level Anti-Tamper Features
the programming cycles exceed, either the reliability at 20 years is degraded, or the rated reliability can
only be achieved for a fewer number of years based on the usage. In cases where the device is being
zeroized and reprogrammed frequently it may not be required for the device to retain a configuration for a
full 20 years, since it will be reprogrammed again before that time is up. Number of programming cycles
that are performed can be queried using one of the available device information services. The
information of number of programming cycles is available with the data that is erased during zeroization.
Thus, the user externally keeps track of the number of times a device is programmed.

7.1.6.3 “Unrecoverable” Zeroization Mode
When unrecoverable zeroization system services are activated, all the data in all NVMs in the device is
destroyed (excluding metal-mask ROMs). The eNVM data erased includes the factory parameters
segment, which is retained in the other two modes discussed above. The calibration data used to
program devices is erased, and then the device intentionally puts itself into an unrecoverable state where
it does not respond to any programming commands.

Note: The zeroization certification protocol is still active.

The following tables provide a summary of each block within the FPGA that is erased by zeroization,
along with, the zeroization option which initiates the erase and how it is cleared.

Note: The non-volatile memory segments are also destroyed during zeroization. The eNVM segments are
erased and scrubbed. As certain eNVM segments contain factory provisioned data (such as device
certificates and public keys), full erasure of eNVM sectors is executed according to the zeroization
options set by the user.

Table 20 • FPGA Components during the Zeroization

FPGA Component Erase Method Applicable Zeroization Options
System Controller Memory (incl. memories
associated with ECC + PUF)

Actively Cleared All Active Zeroization options

Programming Frame, Key, JTAG I/O Buffers Actively Cleared All Active Zeroization options

AES/SHA Accelerators – Registers and RAMs Actively Cleared All Active Zeroization options

MSS SRAM Actively Cleared All Active Zeroization options

Fabric SRAM Actively Cleared All Active Zeroization options

Fabric Registers Removal of Power All Active Zeroization options

Cortex M3 Cache N/A N/A

Fabric Configuration Flash Cells Erased + Scrubbed by
zeorization command

All Active Zeroization options

Table 21 • Security Segments during the Zeroization

FPGA Component Erase Method Applicable Zeroization Options
Security Segment – User Lock bits Actively Cleared +

Scrubbed
All Active Zeroization options
Microchip Proprietary 65

Device Level Anti-Tamper Features
For more information about how to use zeroization feature in SmartFusion2 and IGLOO2 FPGAs, refer to
Zeroization Procedure, page 63.

7.1.6.4 Using Zeroization to Decommission Devices
User may have a requirement to decommission the devices. One scenario would be a new system that is
not meeting all its specifications. Another scenario would be at the end of the useful life of the system.
Ideally, decommissioning reduces the already low risk of valuable intellectual property or secrets such as
cryptographic keys from being extracted to completely negligible values.

Zeroization can be used as part of a decommissioning process. Microchip can supply a special bitstream
for each type of device whose sole purpose is to zeroize the device using the “unrecoverable” zeroization
mode, on the next reset. Successful loading of the program can be proven by the C-o-C mechanism (if
the optional SPPS, is used). After that the device is reset or power-cycled, and it goes through the
zeroization process till it is used. Even if power is interrupted during the zeroization process, when the
power is reapplied the zeroization process restarts.

After zeroization is complete, the device can be queried for a “certificate” that proves that all the memories are in
a known safe state. It can be queried via JTAG/SPI-Slave using FETCH_ZEROIZATION_RESULT command or
DEVICE_INFO command that prints the information if the device is zeroized. This instruction returns a HASH
and a VALIDATOR. The HASH is an expected plaintext value that can be verified visually or by any tool. The
VALIDATOR part of the certificate is an un-forgeable keyed authentication tag that can be verified manually by
Microchip.

In some cases, where devices are partially or completely failed, the decommissioning process may fail.
In this case, the process used to decommission devices depends upon the level of certainty the
legitimate user’s requirements have. For instance, the user may require all such parts be physically
returned to him to for disposition. In an alternate scenario the user trusts his agents to dispose of a
number of failed devices, so long as the percentage of such devices is within the tolerable limits.

The goal of the automated decommissioning process is to reduce the number of devices requiring
special handling by offering an alternate low-cost high-assurance method to decommission and account
for most devices in a less-trusted environment such as a factory floor or a repair depot.

7.1.6.5 Zeroizing Only Crypto-Variables (CVs)
The Microchip built-in zeroization mode options are all designed to destroy the User’s user’s design
configuration, and design security keys and security settings.If the zeroization mode is desired to perform
a more surgical destruction of just the most sensitive data such as data security keys, without erasing the
user’s design or bitstream keys, then it is recommended that the user’s application be programmed to do
it. For example, SmartFusion2 and IGLOO2 have a feature called hardware firewalls that allow certain
regions of memory to be protected with hardware-level security. The hardware firewalls’ features are
ideal for setting up safer memory locations where crypto-variables can be stored. A user application can
be designed to zeroize just these portions of memory.

Security Segment – User Keys (UEK1&2,
Passkeys)

Actively Cleared +
Scrubbed

All Active Zeroization options

Security Segment - Factory Keys Actively Cleared +
Scrubbed

Unrecoverable Zeroization Option

Security Segment – Factory Parameter
Segment

Actively Cleared +
Scrubbed

Unrecoverable Zeroization Option

eNVM – Factory Data Actively Cleared +
Scrubbed

Unrecoverable Zeroization Option

Table 21 • Security Segments during the Zeroization (continued)
Microchip Proprietary 66

Device Level Anti-Tamper Features
Larger devices (-60, -090 and -150 devices) have the SRAM-PUF feature. This is the best possible key storage
mechanism in these devices, and holds good for any silicon device currently being produced. The system
controller provides a range of system services for managing these keys, including commands for deleting their
individual key codes, and also for deleting the activation code. When key codes or activation codes are erased,
the system service command verifies that the operation is successful by reading back the memory locations and
confirming they are all zero. If the values are not equal to zero, the command status shows failure, and the
user’s design may retry or take other corrective action. The activation code and key codes are not sensitive
cryptographic variables. Zeroizing Only Crypto-Variables (CVs) is just another added layer of security to
prevent any attacks against the PUF-protected keys

7.2 Differential Power or Side-Channel Analysis Resistance
DPA is an analysis technique that relies upon multiple measurements of a security device's
instantaneous power consumption in order to recreate a secret being manipulated inside the device.
SmartFusion2 and IGLOO2 FPGAs are the first devices in the PLD industry incorporating DPA
countermeasures to protect the bitstream keys from discovery using side-channel analysis. Generally,
the DPA techniques use statistical methods to amplify the effects of small unintentional leakages of the
secret information in power consumption measurements, buried in large amounts of noise. For example, if
the same secret key is used to process multiple independent blocks of data, a DPA attack may be
mounted to determine the secret key used anywhere from a handful of power consumption traces to over
a million, depending upon the magnitude of the leak, the amount of noise which may be obscuring the
secret data, and which countermeasures are being used. In SmartFusion2 and IGLOO2 FPGAs, all built-
in uses of design security protocols have protection against DPA. These include bitstream decryption,
key confirmation, Certificate-of-Conformance generation, and so on. In addition, some of the
cryptographic services used in data security applications in “S” or “TS” devices have DPA resistance.

Figure 28 • DPA Logo

The seven protocols used for design security purposes have been assessed with respect to their DPA
resistance by an independent third-party security laboratory, Riscure, which has been accredited by
Cryptography Research Inc. (CRI)/Rambus to perform such assessments. Based on Riscure’s
assessment, which includes both physical side channel current, EMI (Electromagnetic Interference)
measurement and review of the protocol designs, all SmartFusion2 and IGLOO2 FPGAs design security
protocols have been certified by CRI under the Countermeasures Validation Program (CVP) scheme.
Microchip is allowed to use the CRI DPA “Padlock” security logo, shown here in association with these
products. The seven protocols included in the assessment are the:

• Bitstream Loading Protocol, BSP
• Bitstream Authentication Service, BAS
• Key Verification Protocol, KVP
• Plaintext Passcode Matching & Privilege Escalation, PTP
• One-Time
• Passcode, OTP
• Device Certificate Service DCS
• Pseudo-PUF Challenge/Response Service, PPS
The underlying cryptographic primitives (AES, ECC, SHA) are also used along with these protocols.

7.3 CRI Pass-Through DPA Patent License
Side-channel attacks, using Differential Power Analysis (DPA) and related attacks such as Differential
Electro-Magnetic Analysis (DEMA), can be mitigated by using Cryptographic Research Incorporated
Microchip Proprietary 67

Device Level Anti-Tamper Features
(CRI, now a division of Rambus) DPA-resistant technology. Microchip has obtained a license from CRI
for the DPA patent portfolio, consisting of more than fifty patents. In the “S” or “TS” version of
SmartFusion2 and IGLOO2 FPGAs, the CRI patent portfolio license is extended to the end users of the
devices for use in their data security applications. The buyers of these devices may use CRI's current
and future patented techniques in the intellectual property (IP) they purchase from licensed third parties,
many of whom are Microchip partners, or use the techniques in IP they develop, without having to obtain
an additional license from CRI. In effect, Microchip pre-pays the CRI royalty on these selected devices.
Once paid; the CRI patented techniques can be used in any design configuration downloaded to those
specific devices. The patented techniques may be implemented in the FPGA fabric or the firmware
running on the ARM Cortex-M3 processor

7.4 Fabric Configuration and eNVM Integrity Tests
SmartFusion2 and IGLOO2 devices have a number of methods that are used at different times to verify
the device configuration.

7.4.1 Legacy Verification Method – Resubmitting Bitstream
The first method is the legacy method where the encrypted/authenticated bitstream is resubmitted to the
device a second time, after using it the first time for programming the device. When used for verification
the bitstream is read, authenticated, and decrypted by the device, but instead of loading the NVM with it,
the existing NVM is compared to the incoming bitstream and a pass-fail indication is returned after the
whole incoming bitstream has been processed. Only the portions of NVM configured by that particular
bitstream are verified.

This method can be prohibited for a specific bitstream when the bitstream is generated and encrypted by
the programming tool; or by the device using a lock-bit.

7.4.2 Digest-Based Verification Method
The second method is based on the use of message digests computed using SHA-256. SmartFusion2
and IGLOO2 FPGAs have a novel NVM integrity check mechanism that can optionally be used to check
the reliability and security of a device automatically upon power-up, or upon demand. When the bitstream
file is prepared, that is, generated and encrypted by the programmer, the data in each bitstream
component (for example, FPGA,eNVM eNVM and so on.) is digested and the resulting hash value is
retained along with the bitstream file.

During programming of the device all data that the bitstream configures is written into the internal NVM
when the bitstream is loaded, and then for each bitstream component a message digest is calculated by
the device and exported. Thus, when the programmer actually configures a device it computes the hash
values and compares the expected hash values. Unless the bitstream is using variations, the results from
all the devices in a project should be identical for each bitstream component. In case of partial
programming, only some pages of eNVM are overwritten and only the NVM locations affected are
included in the check.

Since no secret keys are required, this comparison can be done by a less-trusted entity such as a
contract manufacturer. Conversely, the data is easy to forge, so while the verification provides a good
integrity check of what got programmed, it doesn’t really provide security against malicious attacks. One
advantage of the digest method over the “resubmit” method is that the bitstream does not need to be
loaded and decrypted a second time, therefore it is faster.

A single 256-bit message digest is computed over the entire FPGA fabric and this digest is stored in the
security segment. In the devices having only one eNVM controller (-005, -010, -025, -050 and -060
devices), a single eNVM digest is additionally computed and stored in one of the factory-reserved pages
at the top of the memory. The devices with two eNVM controllers (-090 and -150 devices) have four 256-
bit digests: one for the user portion of the first eNVM array, a second digest for the user portion of the
second eNVM array, and finally two more for the portion of the eNVM array that is private to the system
controller. Two are used instead of one for the private eNVM for the better usage of system controller so
that the portions such as the user SRAM-PUF activation code and key codes that are updated on user’s
request can be separate from the parts more closely associated with the factory.

All four eNVM digests are stored in the private region of the eNVM. eNVM pages can be write-protected
using the factory write-protect bits, set by the user using the programmer tool when the bitstream is
Microchip Proprietary 68

Device Level Anti-Tamper Features
created, thus making them like ROM (read only memory). The digest only includes user eNVM pages
that are write-protected. Pages which are not write-protected are assumed to be R/W memory, and may
be updated by any un-authorized bus master during run-time.

Please note that the system controller metal-mask ROM also holds a digest of its own contents), that is
checked when the system controller boots up.

Figure 29 • Message Digests Used for Integrity Checking of NVM

Note: The FPGA fabric is non-operational when the test is running on the fabric.

Ensure not to run the digest too often, as eventually the 20 year reliability of the flash cells is affected.
The digest verification of the fabric and each eNVM array can each be blocked with lock-bits. However,
these can be overridden with a match of the FlashLock passcode.

The digests can be verified on-demand by the user, either internally using a system service, or externally
using a programming instruction. In addition, the user can run digest checks automatically upon each
power-up. The following section describes the various options to run the digest check.

7.4.3 Automatic Integrity Check (Power-up Digest Check)
The digest checks for the FPGA fabric and one or both eNVM arrays (if present) can be configured using
lock-bits to run automatically upon each power-up. The tamper macro in the Libero SoC software allows
the user to set this option refer to Figure 30, page 70 and the POWERUP_DIGEST_ERROR signal
allows the user to check the status of digest check.

8 KB Private eNVM

eNVM0 eNVM1
FPGA Fabric

Configuration NVM

Factory page
write-protect flags

Security
Segments (6)
and Rows (12)

R/W

ROM
Microchip Proprietary 69

Device Level Anti-Tamper Features
Figure 30 • Power up Digest Check Selection in Tamper Macro

If the FPGA is selected for power-on digest check, there is a noticeable delay due to the time required to
run the hash algorithm on millions of bits (for example, one or two seconds) before it boots into normal
operation. The user must be careful and not run the digest often. Refer to “IGLOO2 and SmartFusion2
Datasheet for the maximum digest cycle. If the maximum digest cycle is exceeded, the device has to be
re-programmed.

7.4.4 Exporting Digests (Externally)
The stored digests for the FPGA fabric and the eNVM can be exported with a programming instruction. In
the larger devices having two eNVM controllers, the digest of the first eNVM array (which is all reserved
for the user) and the digest of the user portion of the second eNVM array can both be selected for export
along with, optionally, the digest of the FPGA fabric. The future programming software will have this
feature.

7.4.5 On-Demand Integrity Check
The NVM Data Integrity Check service recalculates and compares cryptographic digests of the selected
NVM component(s) - fabric, eNVM0, and eNVM1— with those previously computed and saved in NVM.

For FPGA fabric configuration digest, it is first placed in the Flash*Freeze state. The requestor must
therefore be prepared for an immediate Flash*Freeze shutdown if the fabric digest is to be checked. The
Flash*Freeze shutdown follows the exact shutdown sequence for a normal Flash*Freeze request, except
that the wake-up mechanism is not armed. The wake-up happens automatically after completion of the
data integrity check service.

The eNVM digests are computed over eNVM pages that have been declared as static by the user, as if
those pages are ROM. Pages that are not flagged as ROM (that is, as write-protected in the original
programming bitstream) are not included in the eNVM digest calculation. If no digest is present, the result is
a digest mismatch for the requested NVM block.

The Integrity test system service can be run using the fabric master. Refer to SmartFusion2 and IGLOO2
System Services, page 74 for details on running the system service. The following figure shows the steps
for running integrity check system service.
Microchip Proprietary 70

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/DataSheets/IGLOO-2-FPGA-And-SmartFusion-2-SoC-FPGA-Data-Sheet-DS00004750.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/DataSheets/IGLOO-2-FPGA-And-SmartFusion-2-SoC-FPGA-Data-Sheet-DS00004750.pdf

Device Level Anti-Tamper Features
Figure 31 • Integrity Check System Service Flow

The following table describes the Integrity Check system service request

The following table describes the Integrity Check system service response.

The firmware catalog has a driver for the Integrity Check system services so that the user can use the
API in their system. In addition, the user can use CoreSysServices IP or own RTL code and run it using
RTL code.

Table 22 • Integrity Check Service Request

Offset Length (bytes) Field Description
0 1 CMD = 23 Command

1 1 OPTIONS Service options.
Bit 7-3: reserved
Bit 2: eNVM1
Bit 1: eNVM0
Bit 0: FPGA fabric

Table 23 • Integrity Check Service Response

Offset Length (bytes) Field Description
0 1 CMD = 23 Command

1 1 DIGESTERR Pass/fail flags. Bit 7-3: unused
Bit 2: eNVM1ERR (0: eNVM1 digest check passed, 1: eNVM1 digest
mismatch)
Bit 1: eNVM0ERR (0: eNVM0 digest check passed, 1: eNVM0 digest
mismatch)
Bit 0: FABRICERR (0: FPGA fabric configuration digest check passed, 1:
FPGA fabric configuration digest mismatch)

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master sends Integrity
Check system service command

System controller executes the service and
sends system service response

Cortex-M3/Fabric master checks system
service response
Microchip Proprietary 71

http://soc.microsemi.com/products/ip/search/detail.aspx?id=800

Device Level Anti-Tamper Features
The following table lists the various Integrity test functions via JTAG/SPI and system services in
SmartFusion2 and IGLOO2 devices.I

1. As part of bitstream programming (FRAME_DATA JTAG/SPI commands): The digests and C-of-Cs
(MACs) of the newly programmed data are exported for each included bitstream segment (BITS,
KEYS, FPGA, eNVM, EOB) as they are loaded. Not available as a system service with IAP

2. READ_DIGESTS JTAG/SPI commands: On demand, exports digests that were previously
computed and stored during programming for the Fabric, and for the eNVM0 and eNVM1 ROM’d
pages (2)

3. CHECK_DIGESTS JTAG/SPI commands: Fresh flags for all the security segments, the FPGA
fabric, the eNVM0 & eNVM1 ROM’d pages, and the private eNVM. Immediately after running the
CHECK_DIGESTS command, the fresh digests for the FPGA fabric, eNVM0 and eNVM1 can be
exported

4. DIGEST CHECK system service: Computes fresh flags on demand for the FPGA Fabric, the eNVM0
& eNVM1 ROMVM0 & eNVM1 ROM’d pages, and the system controller ROM

5. POWER-ON-RESET DIGEST system service: Immediately after power-up, fresh flags for the same
data as DIGEST CHECK can be read (only available if PoR digest option is selected in security
policy)

Table 24 • Integrity Check Function

Function JTAG/SPI command System services
Export digest and C-
of-C (during bitstream
programming)

Yes1

Export digest stored
during programming
(on demand)

Yes2

Compute/Export
Fresh Digest (on
demand)

Yes3

Compute/Report
Fresh Flag (on
demand)

Yes4 Yes4

Compute/Report
Fresh Flag (after
Power-on-Reset)

Yes5
Microchip Proprietary 72

Data Security Through System Services
8 Data Security Through System Services

Data security is protecting the information the FPGA is storing, processing, or communicating in its role in
the end application. Most of the data security features in SmartFusion2 and IGLOO2 FPGAs are used by
running the various system services implemented by the SmartFusion2 and IGLOO2 system controller.
The data security features are only available in the “S” or “TS” version of the device. Some of the data
security features are only available in the larger devices (-060, -090 and -150 devices). Table 25,
page 73 lists the device specific data security features in SmartFusion2 and IGLOO2 FPGAs.

There are some additional data security features, which were explained in the preceding chapters.

Note: During JTAG or SPI-Slave programming, do not run any of the AES/DRBG/ECC Point Multiplication
system services. If the user design requests AES/DRBG/Point Multiplication system services when
System controller is processing initial component of the bitstream during JTAG or SPI-Slave
programming, the system service may corrupt the bitstream information. This issue does not exist in
Auto-update, IAP, or programming recovery. If these security system services must be run during
programming, you must generate a STAPL/DAT file using Libero 11.8 SP3 or later. Contact
soc_tech@microsemi.com to use older Libero versions.

The system services can greatly enhance many data security applications. Many moderate performance
information assurance applications may be implemented with these services using only minimal
additional FPGA resources. The availability of these services can reduce the need for expensive custom

Table 25 • SmartFusion2 and IGLOO2 Data Security Features through System Service

Data Security Features

M2S005S
M2S010S/TS
M2S025TS
M2S050TS
M2GL005S M2GL
010S/TS M2GL
025TS M2GL
050TS

M2S060TS
M2S090TS
M2S150TS
M2GL060TS
M2GL 090TS
M2GL 150TS

Non-Deterministic Random Bit Generator (NRBG) system service x x

AES-128/256 system service (ECB, OFB, CTR, CBC modes) x x

SHA-256 system service x x

HMAC-SHA-256 system service x x

Key Tree system service x x

PUF Emulation (Pseudo-PUF) system service x

SRAM-PUF system services
• Create User Activation Code (AC) or Delete User Activation Code

AC Service
• Get Number of Key Code (KC) Service
• Create User KC for an Intrinsic Key Service
• Create User KC for an Extrinsic Key Service
• Export all KC Service
• Import all KC Service
• Delete User KC Service
• Fetch a User PUF Key Service
• Get a PUF Seed Service

x

Elliptic Curve Cryptography (ECC) system services
• ECC Point-Multiplication system service
• ECC Point-Addition system service

x

Microchip Proprietary 73

Data Security Through System Services
or third-party IP. For example: Quality true random bits are required in many cryptographic (and gaming)
applications. Designing a quality NRBG, implemented using conventional FPGA resources such as LUTs
(Look-Up Tables) and FFs(Flip_Flops) requires considerable effort both in the original design and in
characterizing it over process, voltage, temperature, and life. Similarly, the SRAM-PUF provides a
revolutionary set of key management features having the highest security available on almost any
integrated circuit, whether an ASIC, ASSP, or FPGA.

8.1 SmartFusion2 and IGLOO2 System Services
SmartFusion2 and IGLOO2 system services are system controller actions initiated by asynchronous
events from the ARM Cortex-M3 processor or a master in the FPGA fabric. Similarly, IGLOO2 system
services are system controller actions initiated by asynchronous events from a master in the FPGA
fabric. For performance ratings of the various cryptographic system services, refer to the SmartFusion2
and IGLOO2 Datasheet. The system services use the Communication Block (COMM_BLK) that
interfaces between the MSS/HPMS and system controller. There are two COMM_BLK instances: one in
the MSS/HPMS that the user interfaces with and one that communicates with the first one that is located
in the system controller. The COMM_BLK consists of an APB interface, eight byte transmit FIFO, and an
eight byte receive FIFO. The communication block (COMM_BLK) provides a bidirectional message
passing facility between the MSS/HPMS and the system controller.
Microchip Proprietary 74

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/DataSheets/IGLOO-2-FPGA-And-SmartFusion-2-SoC-FPGA-Data-Sheet-DS00004750.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/DataSheets/IGLOO-2-FPGA-And-SmartFusion-2-SoC-FPGA-Data-Sheet-DS00004750.pdf

Data Security Through System Services
Figure 32 • Interfacing of COMM_BLK with System Controller

System services are initiated by the user using the COMM_BLK interface attached to the MSS, which
can be read or written to by any master on the AHB bus matrix; typically either the Cortex -M3 or a design
in the FPGA fabric. The system controller receives the command through its matching COMM_BLK. If
additional data is needed to perform the system service, the system controller uses the SII Master (an
MSS bus master controlled by the system controller) to get the additional details and options at an
address supplied in the original COMM_BLK command; pointing where this structured data has been
stored in memory by the user prior to invoking the command. eSRAM0 is usually used for this purpose.
Upon completion of the requested service, the system controller returns a status message through the
COMM_BLK. Depending on the command, there may be other data and side effects generated as a
result of performing the command. The following figure shows a generic system service flow diagram
using Cortex-M3 processor.

When multiple masters are used to send a system service request, the user must keep track of the
system service request so that, it is sent only when the system controller is not servicing any other

ARM Cotrex-M3
Processor

Cache Controller

s D I

s D IC

AHB Bus Matrix

PDMA

APB_0 APB_1 AHB SII
Master

System Controller

Tx FIFO Rx FIFO

COMM_BLK

COMM_BLK

Rx FIFO

SII
Interface

Tx FIFO

APB
Interface

Control
and

Status
FIC

MSS/HPMS

99

DATA_IN [8:0]*

DATA_OUT [8:0]*

SII Bus

COMMS_INT

Fabric

* 9-bit is used as a start of frame
(command) marker

PD
M

A
 I

nt
er

ru
pt

Rx RDY

Tx RDY
Microchip Proprietary 75

Data Security Through System Services
system service. If there is only one master in the design, such as the ARM Cortex-M3 processor, the
system service request can be controlled in the code and the user must wait for the current system
service to be completed before sending a new system service request.

Figure 33 • Generic System Service Flow Diagram Using the Cortex-M3 Processor

The following figure shows a generic system service flow diagram using an FGPA fabric master.

AHB Bus Matrix

System Controller

ARM
Cortex-M3
Processor

Cache
Controller eSRAM0 eSRAM1

SII
Master

COMM_B
LK

SII
Master

COMM_BLK

Descriptor setup

Fetch description data

Send service request and
Read service response

Send service resultS D I

S D I

AHB to
APB3

MSS
Microchip Proprietary 76

Data Security Through System Services
Figure 34 • Generic System Service Flow Diagram using an FPGA Fabric Master

Note: When sending the system service from the fabric master using CoreSystemServices IP, check the busy
signal (which remains active when the system controller is servicing any system service from the fabric)
before sending a new system service request.

Accessing system services requires the following generic steps:

1. The ARM Cortex-M3 processor or a fabric master set up a descriptor in the user memory space.
2. The ARM Cortex-M3 processor or a fabric master sends the system service command and a data

pointer using the COMM_BLK.
3. The system controller fetches the descriptor data using the SII master.
4. The system controller executes the system service and writes the output using the data pointer and

also returns the service response through the COMM_BLK in the system controller.
5. The ARM Cortex-M3 processor or the fabric master reads the system service result and checks the

service response.
6. The ARM Cortex-M3 processor or the fabric master reads the system service data output from the

pointer location.

FPGA Fabric

System
Controller

Cache
Controller

SII
Master

COMM_BLK

SII
Master

COMM_BLK

Fabric Master Descriptor setup

Fetch description data

Send service request and
Read service response

Send service result

APB_1

eSRAM0 eSRAM1

AHB Bus Matrix

Fig_01
Microchip Proprietary 77

Data Security Through System Services
Figure 35 • Generic System Service Flow Diagram

The following section describes the various cryptographic system services in detail.

8.2 Non-Deterministic Random Bit Generator Service
SmartFusion2 and IGLOO2 FPGAs include a non-deterministic random bit generator (NRBG), also
sometimes called as a true random number generator (TRNG). It comprises of two main components: a
true random entropy source, and a deterministic random bit generator (DRBG), sometimes called as a
pseudo-random number generator (PRNG). The entropy source is used to seed the DRBG, which can
generate many pseudo-random output bits from one seed.

The following figure shows the NRBG block in SmartFusion2 and IGLOO2 devices.

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the descriptor

Cortex-M3/Fabric master sends system service
command and pointer

System controller fetches descriptor data

System controller executes the service and
write the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads system service
output from pointer location
Microchip Proprietary 78

Data Security Through System Services
Figure 36 • NRBG Block in SmartFusion2 and IGLOO2 Devices

8.2.1 SmartFusion2 and IGLOO2 NRBG Implementation
The NRBG is designed to be compliant with the NIST SP800-90A, NIST SP800-22, and BIS AIS-31
standards, including all required health monitors. The NRBG services in SmartFusion2 and IGLOO2
devices comprises a collection of commands patterned after the functions defined in the NIST SP800-
90A recommendation for random number generation using deterministic random number generators.
The user interacts with the DRBG portion of NRBG only; it is not possible for the user to see the true
random seed inputs of the DRBG. There are several optional features possible in an SP800-90A DRBG.

8.2.1.1 DRBG Mechanism
The SmartFusion2 and IGLOO2 DRBG mechanism is CTR_DRBG, as defined in SP800-90A. It
generates random bits in a manner similar to the way AES counter mode generates a keystream. In
addition, at each call to the Generate service there is a mixing operation performed on the instantiations’
internal state, as per the recommendation. The DRBG has been certified to NIST SP800-90A by a NIST
accredited laboratory under the cryptographic algorithm validation program (CAVP) scheme.

8.2.1.2 Number of Instantiations
The current implementation limits the number of user instantiations for use with system services in data
security applications to two. In addition there is one instantiation used by the system controller for design
security applications, and one for test. New instantiations may incur a delay of up to 10 msec if sufficient
entropy has not already been accumulated in the primary entropy source.

In larger devices (-060, -090 and -150 devices) the SRAM-PUF iRNG™ function is used to provide an
additional 256 bits of seed entropy via the nonce input of the DRBG. For the iRNG function to generate
this random seed the SRAM block must have been powered down for approximately 100 msec.
Depending on the recent history of the SRAM, it may take slightly over 100 msec to complete each
instantiation in these larger devices.

8.2.1.3 Security Strength
The NIST SP800-90A recommendation allows several possible security strengths. The Microchip
implementation only supports the highest standardized strength; that is, security strength of 256 bits for
both the overall design and each instantiation. Since this is the only security strength offered, there is no
security strength argument in any of the DRBG commands.

NRBG Block

Based upon a noisy
ring oscillator,

measured against a
system clock

Raw Entropy
Source Conditioner

Health
Monitors

DRBG per NIST SP800-90

D
ER

IVATIO
N

FU

N
C
TIO

N AES-
256
CTR

DRBG

Entropy input

Nonce

(optional)
additional input

Health

COMM_BLK

SII Master

p/o system controller

Command
Status

Output
0-1024

NONCE
GENERATION

Additional Entropy
 256/512

Ring Oscillator

reset

Full entropy
conditioned

bits

MSS/HPMS Bus
Interfaces

384

384

384/640

256

0-1024
Microchip Proprietary 79

Data Security Through System Services
8.2.1.4 Prediction Resistance
Prediction resistance, optional in the NIST SP800-90A recommendation, is supported. Prediction
resistance is requested on demand for each Generate request. When prediction resistance is requested
the DRBG is reseeded at the start of the Generate operation. Reseeding can incur a delay of up to 10
msec if the primary entropy source needs time to accumulate the required number of full entropy bits.

8.2.1.5 Entropy Input
Instantiation or reseed of a DRBG uses 384 bits of entropy from the primary true entropy source plus an
additional 384-bit nonce. Even though the primary entropy source provides full entropy bits, the optional
derivation function defined in the recommendation is used.

The nonce supplied to the DRBG is provided by the Microchip implementation of the NRBG, and does
not take any user input. In the larger devices (-060, -090 and -150 devices) which have the SRAM-PUF
feature, an additional 256-bits of true random entropy from the SRAM-PUF iRNG function is included in
the nonce during instantiation (but not reseeding). This makes the nonce 640 bits long in the specific
devices, all of which should be full entropy.

Since the SRAM-PUF requires a power-down interval of approximately 100 msec before generating a
random seed, a delay up to this order of magnitude is possible in the larger devices depending on the
time interval since the last usage and power down of SRAM PUF.

8.2.1.6 Additional User Input
Additional Input, as per the recommendation, is optional and supported in this implementation. Additional
Input parameters are permitted for the Instantiate function (known as Personalization String in this case),
and for the Generate & Reseed functions. The length of the additional Input parameters (for
Personalization String) is constrained from 0 bits to 128 bytes.

Additional Input is compressed with the block cipher derivation function defined in the recommendation.
In its core it works in a way very similar to AES-CBC-MAC, but generates 384 bits of output using a
complex mixing function that updates the state, including the 256-bit key, in order to extend the output to
three AES 128-bit blocks.

Microchip recommends usage of the personalization string. The intent of a personalization string is to
differentiate this DRBG instantiation from all other instantiations that may ever be created. The
personalization string should be set to some bit string that is as unique as possible, and may include
secret information. Secret information should not be used in the personalization string if it requires a level
of protection that is greater than the intended security strength of the DRBG instantiation (that is, 256
bits). The types of personalization string contents include:

• Device serial numbers
• Public keys
• User identification
• Per-module- or per-device values
• Timestamps
• Network addresses
• Special key values for this specific DRBG instantiation
• Application identifiers
• Protocol version identifiers
• Random numbers
• Nonces
• Seedfiles

8.2.1.7 Reseeding
The DRBG is reseeded by using the Reseed command, or if prediction resistance is requested by a
Generate command. Reseeding may incur a delay of up to 10 msec if the primary entropy source has not
accumulated enough entropy already.

8.2.1.8 Self-Test
SP800-90A requires a number of self-test features which must be executed at specific periods of time or
on demand by the user. If any self-test should fail, the DRBG enters a fatal error state where no further
Microchip Proprietary 80

Data Security Through System Services
DRBG functions can be executed. Further self-tests are inhibited until the DRBG is reinitialized using the
Reset command.

8.2.1.9 Generate Size
The DRBG computes and outputs random bits using the Generate command. Its output is limited from 0
to 1024 bits (128 bytes) per call.

The following sections describe in the detail steps to run the various NRBG system services in
SmartFusion2 and IGLOO2 devices.

8.2.2 Self Test Service
This service invokes all DRBG health tests. If any health test fails, a fatal error condition is entered,
otherwise the state of the DRBG and all instantiations are not affected. The fatal error condition can only
be removed by a device reset or user invocation of the DRBG reset service. The following figure shows
the steps for running DRBG Self Test Check system service.

Figure 37 • DRBG Self Test Check System Service Flow

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master sends DRBG Selftest
system service command and pointer

System controller executes the service and
sends system service response

Cortex-M3/Fabric master checks system
service response
Microchip Proprietary 81

Data Security Through System Services
The following three tables provide details about the DRBG Self Test Check system service request,
DRBG Self Test Check system service response, and Self Test response status codes, respectively.

8.2.3 Instantiate Service
The Instantiate service checks the validity of the input parameters, determines the security strength for
the DRBG instantiation, obtains entropy input with entropy sufficient to support the security strength,
obtains the nonce (if required), determines the initial internal state using the instantiate algorithm and
returns a state handle for the internal state. In SmartFusion2 and IGLOO2 devices, the Instantiate
service instantiates a DRBG with an optional personalization string. The personalization string must be in
the range between 0-128 bytes, inclusive. An error is displayed from the DRBG if the value of the
personalization string is out of range. The following is the flow diagram for DRBG instantiate system
service.

Table 26 • DRBG Self Test Check System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 40 Command

Table 27 • DRBG Self Test Check System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 40 Command

1 1 STATUS Command result status (see Table 28, page 82)

Table 28 • DRBG Service Response Status Codes

STATUS Description

0 Success (DRBGHANDLE is valid)

1 Fatal error

2 Maximum instantiations exceeded

3 Invalid handle

4 Generate request too big

5 Maximum length of additional data exceeded

127 HRESP error occurred during MSS/HPMS transfer

253 Not licensed

254 Service disabled by factory security

255 Service disabled by user security
Microchip Proprietary 82

Data Security Through System Services
Figure 38 • DRBG Instantiate Check System Service Flow

Table 29, page 83 and Table 30, page 84 show the DRBG Instantiate service request and the DRBG
Instantiate service response. The layout of the data descriptor is shown in Table 31, page 84.

Table 29 • DRBG Instantiate Check System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 41 Command

1 4 DRBGINSTANTIATEPTR Pointer to DRBGINSTANTIATE structure (see Table 31,
page 84)

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
DRBGINSTANTIATEPTR descriptor

Cortex-M3/Fabric master sends DRBG
Instantiate system service command and

DRBGINSTANTIATEPTR pointer

System controller fetches descriptor data

System controller executes the service and
sends system service response

Cortex-M3/Fabric checks system service
response

Cortex-M3/Fabric master reads DRBGHANDLE
from the pointer location
Microchip Proprietary 83

Data Security Through System Services
8.2.4 Generate Service
This service generates a random bit sequence up to 128 bytes long. An error is displayed from the
DRBG if this field is out of range. The following figure shows the steps for running DRBG Generate
system service.

Table 30 • DRBG Instantiate Check System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 41 Command

1 1 STATUS Command status (see Table 28, page 82)

2 4 DRBGINSTANTIATEPTR Pointer to DRBGINSTANTIATE structure

Table 31 • DRBGINSTANTIATE Data Descriptor Structure

Offset Length (bytes) Field Description

0 4 PER_STRING_PTR Pointer to RBG personalization string

4 1 PER_STRING_LENGTH Length of personalization string in bytes. Length must be
in the range 0-128 bytes inclusive.

5 1 RESERVED Reserved

6 1 DRBGHANDLE Returned DRBG handle
Microchip Proprietary 84

Data Security Through System Services
Figure 39 • DRBG Generate System Service Flow

Table 32, page 85 and Table 33, page 86 show the DRBG Generate system service request and the
DRBG Generate system service response. The layout of the data descriptor is shown in Table 34,
page 86.

Table 32 • DRBG Generate System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 42 Command

1 4 DRBGGENERATEPTR Pointer to DRBGGENERATEPTR structure
(see Table 34, page 86)

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
DRBGGENERATEPTR descriptor

Cortex-M3/Fabric master sends DRBG Instantiate
system service command and
DRBGGENERATEPTR pointer

System controller fetches descriptor data

System controller executes the service and write the
output data to pointer location and sends system

service response

Cortex-M3/Fabric master checks system service
response

Cortex-M3/Fabric master reads NRBG output from
REQUESTEDDATAPTR pointer location
Microchip Proprietary 85

Data Security Through System Services
8.2.5 Reseed Service
In SmartFusion2 and IGLOO2 FPGAs, this service is used to force a Reseed operation. The NIST
recommendation (from SP800-90A) is that DRBG must be reseeded after every 248 generate requests.
The system controller automatically forces the DRBG to be reseeded after 65535 generate requests. The
following is the flow diagram for DRBG Reseed system service.

Table 33 • DRBG Generate System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 42 Command

1 1 STATUS Command status (see Table 28, page 82)

2 4 DRBGGENERATEPTR Pointer to DRBGGENERATE structure

Table 34 • DRBGGENERATE Data Descriptor Structure

Offset Length (bytes) Field Description

0 4 REQUESTEDDATAPTR Pointer to buffer to receive generated random data

4 4 ADDITIONALINPUTPTR Pointer to additional input data

8 1 REQUESTEDLENGTH Number of bytes of random data to generate. Length
must be in the range between 0–128 bytes inclusive. An
error is displayed from the DRBG if this field is out of
range.

9 1 ADDITIONALINPUTLENGTH Length of additional input in bytes. Length must be in
the range 0–128 bytes inclusive.

10 1 PRREQ Prediction resistance request. If PRREQ is non-zero,
prediction resistance is provided.

11 1 DRBGHANDLE DRBG handle specifies which random bit generator
instance is to be used to generate the random data. The
value of DRBG handle is obtained as a result of a call to
the DRBG Instantiate service.
Microchip Proprietary 86

Data Security Through System Services
Figure 40 • DRBG Reseed System Service Flow

The following tables show the DRBG Reseed system service request and the DRBG Reseed system
service response.

Table 35 • DRBG Reseed System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 43 Command

1 4 DRBGRESEEDPTR Pointer to DRBGRESEED structure (see Table 37,
page 88)

Table 36 • DRBG Reseed System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 43 Command

1 1 STATUS Command status

2 4 DRBGRESEEDPTR Pointer to DRBGRESEED structure

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
DRBGRESEED descriptor

Cortex-M3/Fabric master sends DRBG Reseed
system service command and DRBGRESEED

pointer

System controller fetches descriptor data

System controller executes the service and
sends system service response

Cortex-M3/Fabric master checks system
service response
Microchip Proprietary 87

Data Security Through System Services
The following table describes the layout of the data descriptor.

8.2.6 Uninstantiate Service
The uninstantiate operation removes a previously instantiated DRBG and releases the associated
memory resources for later use by a new instantiation. The working state of the DRBG Instantiation is
zeroized before release. The following is the flow diagram for DRBG Uninstantiate system service.

Figure 41 • DRBG Uninstantiate System Service Flow

The following table describes the DRBG Uninstantiate system service request.

The following table describes the DRBG Uninstantiate system service response.

Table 37 • DRBGRESEED Data Descriptor Structure

Offset Length (bytes) Field Description

0 4 ADDITIONALINPUTPTR Pointer to additional input parameter in MSS/HPMS
address space

4 1 ADDITIONALINPUTLENGTH Length of additional input in bytes. Length must be in the
range between 0–128 bytes inclusive.

5 1 DRBGHANDLE DRBG handle specifies which random bit generator
instance to reseed. The value of DRBG handle is
obtained as a result of a call to the DRBG Instantiate
service.

Table 38 • DRBG Uninstantiate System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 44 Command

1 1 DRBGHANDLE DRBG Handle

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master sends DRBG
uninstataite system service command

System controller executes the service and
sends system service response

Cortex-M3/Fabric master checks system
service response
Microchip Proprietary 88

Data Security Through System Services
8.2.7 DRBG Reset Service
The Reset operation removes all the DRBG instantiations and resets the DRBG. This service is the only
mechanism used by device to recover from a catastrophic DRBG error without any physical reset of the
device. All active instantiations are automatically destroyed. The following is the flow diagram for DRBG
Reset system service.

Figure 42 • DRBG Reset System Service Flow

The following tables show the DRBG Reset system service request and the DRBG Reset system service
response.

Due to the unpredictable and uncontrolled nature of true random bit sequences, both catastrophic (fatal)
and non-fatal errors occur at some frequency. The DRBG is seeded by the true random source whenever
a new instantiation is created, when the reseed command is used, when prediction resistance is
requested, or automatically after 65535 generate operations.

Table 39 • DRBG Uninstantiate System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 44 Command

1 1 STATUS Command status

2 1 DRBGHANDLE DRBG handle uninstantiated

Table 40 • DRBG Reset System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 45 Command

Table 41 • DRBG Reset System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 45 Command

1 1 STATUS Command status

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master sends DRBG Reset
system service command

System controller executes the service and
sends system service response

Cortex-M3/Fabric master checks system
service response
Microchip Proprietary 89

Data Security Through System Services
Non-fatal errors may occur as frequently as once every 500-1000 reseed operations, and should not
cause an alarm unless the default rate is exceeded. The failing command can be retried immediately.
Fatal errors, requiring a reset of the NRBG, should occur naturally at a rate less than one per million
seeds generated, and should not cause alarm unless this rate is exceeded.

8.3 AES-128/256 Service (ECB, OFB, CTR, CBC modes)
The “S” or “TS” version of SmartFusion2 and IGLOO2 FPGAs have a Cryptographic Services block. The
Cryptographic Services block includes an AES engine for performing AES encryption or decryption
operations. AES is based on a state of the art algorithm originally called Rijndael chosen in an
international competition and standardized (with selected key sizes) by the United States National
Institute of Standards and Technology on October 2, 2000 as FIPS-197. Although selected, it was not
officially approved by the US Secretary of Commerce until Q2 2001.

The following figure shows the Cryptograhic Services block in SmartFusion2. IGLOO2 also has similar
Cryptographic Services block.

Figure 43 • Cryptographic Services Block in SmartFusion2

In SmartFusion2 and IGLOO2 FPGAs, the AES engine can accept a 128-bit plaintext input word, and
generate a corresponding 128-bit cipher text output word using a supplied 128- or 256-bit AES key. It
also provides the reverse function, generating plaintext from supplied cipher text, using the same AES
key used for encryption. The AES engine in SmartFusion2 and IGLOO2 devices is designed and
subsequently certified to support the following cipher operating modes as recommended by national
institute of standards and technology (NIST) Special Publication SP800-38A, recommendation for block
cipher modes of operation:

1. Electronic Codebook (ECB)
2. Cipher-Block Chaining (CBC)
3. Output Feedback (OFB)
4. Counter (CTR)
The AES-128/256 Service uses the AES engine and runs AES operations. The following is the flow
diagram for AES system service in SmartFusion2 and IGLOO2 FPGAs.

System Controller

Random
Number

Generator

Oscillator
Control

Cryptographic
Services

SPI

JTAG

COMM_BLK

SII Master

RX FIFO

TX FIFO

Oscillators

COMM_BLK

TX FIFO

RX FIFO

AHB
SII Master

Reset
Controller ARM

Cortex-M3

S D I

Cache Controller

S D IC

APB_1

AHB Bus Matrix

PoR MSS

JTAG
SWD

USI

DEVRST_N

SPI Signals for
Programming

JTAG Signals

FPGA Fabric
Microchip Proprietary 90

Data Security Through System Services
Figure 44 • AES System Service Flow

The following table describes the AES system service request.

Table 42 • AES System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 3 or 6 Command (for AES128 command=3 and for AES256
command=6)

1 4 AES128DATAPTR/
AES256DATAPTR

Pointer to AES128DATA or AES256DATA descriptor

Cortex-M3/Fabric master setup the
AES128DATA/AES256DATA descriptor

M3/Fabric master send AES system service
command and AES128DATA/

AES256DATApointer

System controller fetches descriptor data

System controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads AES output
from DSTADDRPTR pointer location

Note: Coretex-M3 is only available in SmartFusion2
Microchip Proprietary 91

Data Security Through System Services
The following table describes the AES system service response.

The following table describes the layout of the AES128 data descriptor.

The following table describes the layout of the AES256 data descriptor.

Table 43 • AES System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 3 or 6 Command (for AES128 command=3 and for AES256
command=6)

1 1 STATUS Command status:
0 Success
127 HRESP error occurred during HPMS transfer
253 Not licensed
254 Service disabled by factory security
255 Service disabled by user security

1 4 AES128DATAPTR/
AES256DATAPTR

Pointer to AES128DATAPTR or AES256DATAPTR descriptor

Table 44 • AES128 Data Descriptor

Offset Length (bytes) Field Description

0 16 KEY Encryption key to be used

16 16 IV Initialization vector (ignored for ECB mode)

32 2 NBLOCKS Number of 128-bit blocks to process (max 65535)

34 1 MODE Cipher operating mode.
Bit 7: DECRYPT
Bit 6:2: RESERVED
Bit 1: OPMODE
Bit 0: OPMODE
DECRYPT: if DECRYPT is ‘0’ then the data at SRCADDRPTR field is
treated as plain text for encryption. If DECRYPT is ‘1’ then the data at
SRCADDRPTR field is treated as cipher text for decryption.
OPMODE: Defines operating mode.
00: ECB mode
01: CBC mode
10: OFB mode
11: CTR mode

35 1 RESERVED Reserved

36 4 DSTADDRPTR Pointer to return data buffer

40 4 SRCADDRPTR Pointer to data to encrypt/decrypt

Table 45 • AES256 Data Descriptor

Offset Length (bytes) Field Description

0 32 KEY Encryption key to be used

32 16 IV Initialization vector (Ignored for ECB mode)

48 2 NBLOCKS Number of 128-bit blocks to process (max 65535)
Microchip Proprietary 92

Data Security Through System Services
Note: The AES engine in SmartFusion2 and IGLOO2 devices does not have strong built-in DPA
countermeasures. For design security applications it is only used in protocols that effectively prevent
DPA attacks from succeeding. This is primarily done by strictly limiting the number of uses of any given
key. If used repeatedly with the same key, there is a danger that the key could be extracted using DPA
techniques.

8.4 SHA-256 Service
The Cryptographic Services block in SmartFusion2 and IGLOO2 devices also include a SHA-256 engine.
The SHA-256 engine natively implements the SHA-256 algorithm as defined in NIST FIPS180-3. The
SHA-256 compression function operates on a 512-bit message block and a 256-bit intermediate hash
value.

In SmartFusion2 and IGLOO2 devices, the SHA-256 engine can take message inputs of any size up to
232 bits in length (further limited by the size of the memory used) and digest them down to a 256-bit
result, as per the standard. If the message ends with a partial byte, the significant bits are assumed to be
at the LSB end of the byte. The unused MSBs of the final byte are ignored. The input and output data
format of the SHA-256 service is little-endian type. Input messages are automatically padded with a
minimum of 65 bits up to a maximum of 576 additional bits, depending on the length of the user input
message, as per the SHA-256 standard.

The following figure shows the basic SHA-256 operation.

Figure 45 • SmartFusion2 and IGLOO2 SHA-256 Operation

The SHA-256 service uses the SHA-256 engine and runs SHA-256 operation. The following is the flow
diagram for SHA-256 system service in SmartFusion2 and IGLOO2 devices.

50 1 MODE Cipher operating mode. Bit 7: DECRYPT
Bit 6:2: RESERVED
Bit 1: OPMODE
Bit 0: OPMODE
DECRYPT: if DECRYPT is ‘0’ then the data at SRCADDRPTR field is
treated as plaintext for encryption. If DECRYPT is ‘1’ then the data at
SRCADDRPTR field is treated as cipher text for decryption.
OPMODE: Defines operating mode.
00: ECB mode
01: CBC mode
10: OFB mode
11: CTR mode

51 1 RESERVED Reserved

52 4 DSTADDRPTR Pointer to return data buffer

56 4 SRCADDRPTR Pointer to data to encrypt/decrypt

Table 45 • AES256 Data Descriptor (continued)

Preprocessing Hash
Computation

Message
Digest

(256 bits)

Message
(<232 bits)

SHA-256
Algorithm
Microchip Proprietary 93

Data Security Through System Services
Figure 46 • SHA-256 System Service Flow

The following table describes the SHA-256 system service request.

Table 46 • SHA-256 System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 10 Command

1 4 SHA256DATAPTR Pointer to SHA256DATA structure

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
SHA256DATA descriptor

Cortex-M3/Fabric master send SHA-256
system service command and SHA256DATA

pointer

System Controller fetches descriptor data

System Controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads SHA-256
output from HASHRESULTPTR pointer location
Microchip Proprietary 94

Data Security Through System Services
The following table describes the SHA-256 system service response.

The following table provides details about the layout of the SHA256DATA data descriptor

Similar to AES engine, the SHA engine in SmartFusion2 and IGLOO2 devices does not have built-in DPA
countermeasures. For design security applications it is only used in protocols that effectively prevent
DPA attacks from succeeding. Hashing is often used with public data, where no secrets are processed.
But, when used with a secret value such as a key, the SmartFusion2 and IGLOO2 devices' built-in design
security protocols strictly limit the number of uses of the secret in order to prevent its leakage through
side-channels.

8.5 HMAC-SHA-256 Service
The HMAC service implements the FIPS 198 HMAC algorithm using SHA-256 as the approved hash
function. Key lengths up to 32 bytes (256 bits) can be used to generate the message authentication
code. If the key length is less than 256 bits, the unused upper bits must be set to 0. The service allows for
lengths up to 232 bits of data to hash (further limited by the size of the memory used). If the message
ends with a partial byte, then the significant bits are assumed to be at the LSB end of the byte. The
unused MSBs of the final byte are ignored. The input and output data format of the HMAC service is little
endian type. Input messages are automatically padded with a minimum of 65 bits up to a maximum of
576 additional bits, depending on the length of the user input message, as per the SHA-256 standard.

The HMAC service is based on the SHA-256 implementation, which does not have strong DPA
countermeasures. Therefore, if the same key is used repeatedly with the HMAC service, there is a
danger of it being extracted using DPA techniques.

Table 47 • SHA-256 System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 10 Command

1 1 STATUS Command status:
0 Success
127 HRESP error occurred during HPMS transfer
253 Not licensed
254 Service disabled by factory security
255 Service disabled by user security

2 4 SHA256DATAPTR Pointer to SHA256DATA structure

Table 48 • SHA256DATA Structure

Offset Length (bytes) Field Description

0 4 LENGTH Length of data pointed to by DATAINPTR field in bits (up to 232
bits).

4 4 HASHRESULTPTR Pointer to 32-byte buffer to receive 256-bit hash result.

8 4 DATAINPTR Pointer to data to be hashed
Microchip Proprietary 95

Data Security Through System Services
The following is the flow diagram for HMAC-SHA-256 system service.

Figure 47 • HMAC-256 System Service Flow

The following table describes the HMAC system service request.

Table 49 • HMAC System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 12 Command

1 4 HMACDATAPTR Pointer to HMACDATA structure

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
HMACDATA descriptor

Cortex-M3/Fabric master sends HMAC system
service command and HMACDATA pointer

System controller fetches descriptor data

System controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads HMAC output
from RESULTPTR pointer location
Microchip Proprietary 96

Data Security Through System Services
The following table describes the HMAC system service response.

The following table provides details about the layout of the HMAC Data Descriptor (HMACDATA).

8.6 Key Tree System Service
The Key tree system service is a very useful cryptographic construct, especially where DPA-resistant
implementations are required. It is available in all premium “S” class parts, regardless of capacity.

The Key Tree service takes a 256-bit root key and from it calculates a 256-bit output value, using two
input parameters: a 7-bit “optype” value which can be used to separate up to 128 possible uses of the
Key Tree, and a 128-bit “path” input that is used to mix the root key pseudo-randomly over a 2-to-the-
128th power output space. The Key Tree can be used for a number of applications, such as:

• A message authentication code algorithm (from a key and a hash input)
• A key derivation function (from a root key and a key ID)
• To emulate an ideal PUF (from a PUF secret value and a challenge)
• In Challenge-Response protocols (from a key and a challenge)
• To generate pseudo-random bits (from a seed and a counter)
Key tree service is implemented using a DPA-resistant cryptographic construct, a SHA-256 based binary
key tree with the 256-bit root key at its start. The service processes one bit of the “optype” or “path” input
parameter at a time. If the current input bit is zero, one branch of the tree is taken by hashing the result of
the previous level with one constant, but if the input bit is one the opposite branch of the tree is taken by
hashing the result of the previous level with a different constant. The constants used are private to
Microchip. The Key-Tree algorithm calculates 7 tree levels using the 7-bit optype input argument to
provide up to 128 (27) possible unique sub-trees, and then an additional 128 levels using the 128-bit
“path” input argument. The result is the 256-bit output of the last branch of the tree after a total of 135
SHA-256 hashing operations.

Although the DPA resistance of the root key, the keys at each level and the output is very high, to be
conservative it is assumed that the difference between a right or left branch creates a detectable side
channel signal, and thus the optype and path inputs are not considered DPA-safe secrets.

The DPA resistance of the keys is achieved with the SHA-256 engine which, by itself is not particularly
DPA-resistant, because each key is only processed a maximum of three times: the hash function higher
up the tree that generated it, and the two possible hash functions that may consume it going down the
tree (depending upon the value of the path argument). These three operations may be repeated any
number of times by an adversary, which reduces the effect of uncorrelated noise, but provide enough

Table 50 • HMAC System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 12 Command

1 1 STATUS Command status:
0 Success
127 HRESP error occurred during HPMS transfer
253 Not licensed
254 Service disabled by factory security
255 Service disabled by user security

2 4 HMACDATAPTR Pointer to HMACDATA structure

Table 51 • HMACDATA Structure

Offset Length (bytes) Field Description

0 32 KEY Key to use

32 4 LENGTH Length of data pointed to by DATAINPTR field in bytes

36 4 DATAINPTR Pointer to data to be hashed

40 4 RESULTPTR Pointer to 32-byte buffer to receive 256-bit HMAC result
Microchip Proprietary 97

Data Security Through System Services
side-channel leakage to overcome the correlated (algorithmic) noise to be able to reconstruct the key at
that level. Between levels, the hashing operation mixes any partial information the adversary may have
obtained at the old level, effectively forcing a new attack at each new level.

The following figure shows the steps for running the Key Tree system service.

Figure 48 • Key Tree System Service Flow

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
KEYTREEDATAPTR descriptor

Cortex-M3/Fabric master sends Key tree
system service command and

KEYTREEDATAPTR pointer

System Controller fetches descriptor data

System Controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads new KEY
output from KEYTREEDATAPTR pointer

location
Microchip Proprietary 98

Data Security Through System Services
The following table describes the Key Tree system service request.

The following figure describes the Key Tree system service response.

The following table provides details about the layout of the key tree data descriptor (KEYTREEDATA).

The key tree is used for a number of applications, such as:

• A message authentication code algorithm (from a key and a hash input)
• A key derivation function (from a root key and a key ID)
• To emulate a “strong” PUF (from a PUF secret value and a challenge)
• In Challenge-Response protocols (from a key and a challenge)
• To generate pseudo-random bits (from a seed and a counter)

Table 52 • KeyTree System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 9 Command

1 4 KEYTREEDATAPTR Pointer to KEYTREEDATA structure

Table 53 • KeyTree System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 9 Command

1 1 STATUS Command status:
0 Success
127 HRESP error occurred during HPMS transfer
253 Not licensed
254 Service disabled by factory security
255 Service disabled by user security

2 4 KEYTREEDATAPTR Pointer to KEYTREEDATA structure

Table 54 • KEYTREEDATA Structure

Offset Length (bytes) Field Description

0 32 KEY 256-bit key (root key) to be modified or generated output key

32 1 OPTYPE Key tree optype parameter (7-bits, MSB ignored)

33 16 PATH Path variable to be used
Microchip Proprietary 99

Data Security Through System Services
8.7 PUF Emulation (Pseudo-PUF) Service
The pseudo-PUF is used to emulate the functionality of a real PUF. It is based on a 256-bit secret
generated by the device's own non-deterministic random bit generator (NRBG) during manufacturing of
the device, and stored permanently in the factory keys security NVM segment. It is used in a challenge-
response type of protocol. Unlike the other factory installed keys, the pseudo-PUF key is not ever known
by Microchip. The key is not even disclosed to the user. To use it, one or several challenges are
generated by the user, and the responses are recorded during an enrollment phase. Later, a challenge
whose response is known can be provided to the device to prove it is the same enrolled device. The
Pseudo-PUF service performs the CRI-patented DPA-safe key tree algorithm using a 256-bit static
random key generated and stored by the device during its manufacture as the starting secret. The
Pseudo-PUF-based PUF Emulation service is available in -005, -010, -025 and -050 devices. In the -060,
-090 and -150 devices, the PUF emulation service is based on the SRAM-PUF as explained in the
SRAM-PUF section.

A strong PUF is a PUF with a cryptographically large input domain and output range. Most of the strong
PUFs have had difficulty achieving even 2-to-the-24th power element input domain or output ranges, and
may have modeling or other non-randomness kinds of weaknesses. The pseudo-PUF does not meet the
ideal of unclonablity, since the secret is just stored in NVM and likewise the input-output non-linear
mapping is not based on an unclonable intrinsic function of the silicon, but rather on standard
mathematical cryptographic algorithms. As a black box however, pseudo -PUF emulates an ideal
physically-unclonable function, A total of 128 different ideal strong physically-unclonable functions are
emulated, each with a 2128element input domain and output range.
Microchip Proprietary 100

Data Security Through System Services
The following is the flow diagram for Pseudo-PUF system service.

Figure 49 • Pseudo-PUF System Service Flow

The following table describes the Pseudo-PUF system service request.

Table 55 • Pseudo-PUF System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 14 Command

1 4 PPUFCHRESPPTR Pointer to PPUFCHRESP structure

Note: Coretex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
PPUFCHRESPPTR descriptor

Cortex-M3/Fabric master sends Pseudo-PUF
system service command and

PPUFCHRESPPTR pointer

System controller fetches descriptor data

System controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads new key
output from KEYADDRPTR pointer location
Microchip Proprietary 101

Data Security Through System Services
The following table describes the Pseudo-PUF system service response.

The following table provides details about the layout of the Pseudo-PUF Data Descriptor
(PPUFCHRESPPTR).

The Pseudo-PUF service can be used in anti-counterfeiting applications and for the generation of
pseudo-random numbers, such as derived keys.

8.8 SRAM-PUF Services
SRAM-PUF services are available in the following SmartFusion2 and IGLOO devices: -060, -090 and -
150 devices. The SRAM-PUF subsystem comprises the Quiddikey core from Intrinsic ID and a 2KB
SRAM. The SRAM-PUF system services can be used for key generation and storage as well as device
authentication. The SRAM-PUF start-up value is also used to transparently generate a random number
generator seed, improving the security of the non-deterministic random bit generator in the devices
having the SRAM-PUF.

The following figure shows the SRAM-PUF block in the SmartFusion2 and IGLOO2 devices.

Table 56 • Pseudo-PUF System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 14 Command

1 1 STATUS Command status:
0 Success
127 HRESP error occurred during HPMS transfer
253 Not licensed
254 Service disabled by factory security
255 Service disabled by user security

2 4 PPUFCHRESPPTR Pointer to PPUFCHRESP structure

Table 57 • PPUFCHRESP Structure

Offset Length (bytes) Field Description

0 4 KEYADDRPTR Pointer to 32-byte buffer to receive result

4 1 OPTYPE Key-tree optype parameter (MSB ignored)

5 16 PATH Path variable to be used
Microchip Proprietary 102

Data Security Through System Services
Figure 50 • SRAM-PUF Block in SmartFusion2 and IGLOO2 Devices

The first time the SRAM-PUF is used, a particular intrinsic secret is determined in a process called
enrollment. To detect the exact same secret on each subsequent power-up cycle, in spite of bit-level
turn-on to turn-on noise, a activation code (effectively parity data) is stored in a dedicated read- and
write-protected region of the eNVM block. During subsequent turn-on cycles Quiddikey reads the SRAM
start-up values and applies the activation code to regenerate the PUF secret. This is a strong analogy to
a fingerprint. Each time a fingerprint is scanned the measurement is slightly different due to noise, but
still close enough (and unique enough) to be able to identify the person.

The SRAM-PUF system services provide a Physically Unclonable Function (PUF) that can be used for
key generation and storage as well as device authentication. The various SRAM-PUF services available
in the larger SmartFusion2 and IGLOO2 devices include:

• Create User Activation Code (AC) or Delete User Activation Code(AC) Service
• Get Number of Key Code (KC) Service
• Create User KC for an Intrinsic Key Service
• Create User KC for an Extrinsic Key Service
• Export all KC Service
• Import all KC Service
• Delete User KC Service
• Fetch a User PUF Key Service
• Get a PUF Seed Service

8.8.1 Create User AC or Delete User AC Service
This service enrolls a new user activation code or deletes the user activation code. The activation code
(AC) is required by the SRAM-PUF to regenerate the intrinsic secret from the SRAM-PUF start-up value.
The start-up value of the PUF's SRAM block is slightly different from one power-up to the next. In order to
be able to determine the exact same secret on each subsequent power-up cycle, in spite of bit-level turn-
on to turn-on noise, some processing is performed on the PUF's SRAM start-up value. This processing is
performed using the activation code, which functions as parity bits that are used to reconstruct the same
PUF intrinsic secret each time.

The larger SmartFusion2 and IGLOO2 devices (-060, -090 and -150 devices) are shipped with one
activation code enrolled during the manufacturing process. In “S” and “TS” devices, the user may
optionally enroll a second activation code. The activation code is usually generated only once, typically
when the system containing the SartFusion2 or IGLOO2 devices are being commissioned using a JTAG

System Controller

Random
Number

Generator

Oscillator
Control

Cryptographic
Services

SPI

JTAG

COMM_BLK

SII Master

RX FIFO

TX FIFO

Oscillators

COMM_BLK

TX FIFO

RX FIFO

AHB
SII Master

Reset
Controller ARM

Cortex-M3

S D I

Cache Controller

S D IC
APB_1

AHB Bus Matrix

PoR MSS

JTAG
SWD

USI UJTAG

DEVRST_N

SPI Signals for
Programming

JTAG Signals

FPGA Fabric

SRAM-PUF
Microchip Proprietary 103

Data Security Through System Services
or SPI programming command. Each additional re-enrollment leads to a potential but minor drop in the
security level as the re-enrollment has more dependency on keeping the AC secret. For this reason, the
AC is stored in encrypted form in private memory. The activation code is created using the following
system service command:

• The AC command enrolls a new user AC or deletes the AC based on the sub-commands. The two
sub-commands are:
• CREATE_AC: This sub-command enrolls a new user Activation Code (AC). The 1192 byte AC

is stored in the private eNVM for future use to generate user keys.
• DELETE_AC: This sub-command deletes AC along with all user key codes.

The following is the flow diagram for the SRAM-PUF user AC system service.

Figure 51 • SRAM-PUF User AC System Service Flow

The following table describes the User Activation Code Create or Delete service request.

Table 58 • User Activation Code Create or Delete Service Request

Offset Length (bytes) Field Description

0 1 CMD = 25 User AC Command

1 4 PUFUSERACPTR Pointer to user SRAM-PUF Activation Code (PUFUSERAC)
structure

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master sends user AC
system service command and PUFUSERACPTR

pointer

System controller executes the service and
sends system service response

Cortex-M3/Fabric master checks system
service response
Microchip Proprietary 104

Data Security Through System Services
The following table describes the User Activation Code Create or Delete service response.

The following table provides details about the layout of the User SRAM-PUF Activation Code
(PUFUSERAC) data descriptor.

This user AC may be used in the case the first user activation code is intentionally deleted and a new one
is desired. The activation code does not have to be kept confidential because the secret is not stored in
the activation code. The secret is rooted in the start-up behavior of the SRAM block. As an added
security precaution in the SmartFusion2 and IGLOO2 SRAM-PUF implementation of Quiddikey, the
activation code components are stored in a private section of the eNVM.

8.8.2 Create Delete Export Import User Key Code
This system service is used for key codes (KC). The SRAM-PUF can be used to enroll cryptographic
keys. The keys are stored in such a way that the key’s actual value never appears in the system unless it
is retrieved by the user. A key code is generated when a key is enrolled and is stored in the private eNVM
instead of the key’s value. The key code value is created from the enrolled key’s plaintext value and the
intrinsic secret value by encrypting it using the AES block cipher. The KC also includes some meta-data
about the key, and a message authentication code. The key’s value can later be regenerated from the key
code value and intrinsic secret value upon user’s request and authenticated.

Table 59 • User Activation Code Create or Delete Service Response

Offset Length (bytes) Field Description

0 1 CMD = 25 Command

1 1 STATUS 0: Success completion
1: eNVM MSS/HPMS error
2: PUF error, during creation
3: Invalid subcmd
4: eNVM program error
7: eNVM verify error
127: HRESP error occurred during MSS/HPMS transfer
253: License not available in the device
254: Service disabled by factory security
255: Service disabled by user security

Table 60 • User SRAM-PUF Activation Code (PUFUSERAC) structure

Offset Length (bytes) Field Description

0 1 SUBCMD 0 CREATE_AC: The PUF core is requested to enroll a new user
activation code. The 1192 byte AC is stored in eNVM.
1 DELETE_AC: The user AC gets deleted along with all user
keycodes and ECC public key.
Microchip Proprietary 105

Data Security Through System Services
The following figure shows the SRAM-PUF user key codes.

Figure 52 • SRAM-PUF Key Codes

The Create, Delete, Export, Import User Key Code command includes the below sub-commands:

• GET_NUMBER_OF_KC sub command returns the total number of keys. The total number of keys
includes two reserved KC (KC#0 and KC#1). These two keys are reserved for the bitstream uses.
Refer to GET_NUMBER_OF_KC, page 109 for details.

• CREATE_INT_KC or CREATE_EXT_KC sub commands generate the new user key code using the
existing activation code for an intrinsic and extrinsic key respectively.

• EXPORT_ALL_KC sub command export key codes 0 to 57 in encrypted form.
• IMPORT_ALL_KC the import subcommand can only be successful if an EXPORT operation has

been successfully executed.
• DELETE_KC sub command deletes the KC corresponding to the key number provided. User cannot

delete keys 0 and 1.

SRAM-PUF
start-up value

Activation
code

KeyCode #0

KeyCode #1

KeyCode #2

KeyCode #n

KeyCode #57

eNVM

Intrinsic
Secret

Key #n

SmartFusion2 System Controller
Microchip Proprietary 106

Data Security Through System Services
The following figure shows the flow diagram for the KC system service.

Figure 53 • Create Delete Export Import User Key Code System Service Flow

The following table describes the Create or Delete User Key Code (User KC) and Export or Import User
Key Code system service request.

Table 61 • Create Delete Export Import User Key Code System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 26 Command

1 4 PUFUSERKCPTR Pointer to SRAM-PUF User Key Code (PUFUSERKC) request
structure

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
PUFUSERKCPTR descriptor

Cortex-M3/Fabric master sends
command = 26 PUFUSERKEYPTR pointer

System controller fetches descriptor data

System controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads the system
service output from PUFUSERKCPTR pointer

location, if needed

p

Microchip Proprietary 107

Data Security Through System Services
The following table describes the Create or Delete User Key Code (User KC) and Export or Import User
Key Code system service response.

The following table provides details about the layout of the SRAM-PUF User Key Code (PUFUSERKC).

Table 62 • Create Delete Export Import User Key Code System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 26 Command

1 1 STATUS 0: Success completion
1: eNVM MSS error4
2: PUF error, during creation
3: Invalid request or KC, during export or import
4: eNVM program error4
5: Invalid hash2
6: Invalid user AC1
7: eNVM verify error4
8: Incorrect keysize for renewing a kc
10: Private eNVM user digest mismatch
11: Invalid subcmd
12: DRBG error3
127: HRESP error occurred during MSS transfer
253: License not available in device
254: Service disabled by factory security
255: Service disabled by user security

Table 63 • SRAM-PUF User Key Code (PUFUSERKC) Structure

Offset Length (bytes) Field Description

0 1 SUBCMD Sub Command
0: GET_NUMBER_OF_KC
1: CREATE_EXT_KC
2: CREATE_INT_KC
3: EXPORT_ALL_KC
4: IMPORT_ALL_KC
5: DELETE_KC

1 4 PUFUSERKEYADD
R

PUF User Key Fetch address, when creating PUF User KC
address, to export to or import

5 4 USEREXTRINSICK
EYADDR

User Extrinsic Key address

9 1 KEYNUM Key number from 2 to 57

10 1 KEYSIZE Size of the Key.
The key size value can be 0 to 63:
0 - 4096 bit
1 - 64 bit
2 - 2*64 = 128 bit
……………….
63 - 63*64 = 4032 bit
Note: 0,1,2 to 64 denote key size value in above examples and

the bits in the right hand side denote the total size of the
key
Microchip Proprietary 108

Data Security Through System Services
The following sections describe the various sub-commands in detail.

8.8.2.1 GET_NUMBER_OF_KC
Keys are identified by a number and are enrolled sequentially. This sub command returns the total
number of user keys returned in KEYNUM of PUFUSERKC structure. This valid numbers range from 2 to
57. Key codes #0 and #1 are reserved as a 256-bit symmetric extrinsic key and a 384-bit private
asymmetric intrinsic key, both used for design security only, and are enrolled by JTAG (or SPI)
programming commands. So the total number of keys are a minimum of 2 (KC#0 and KC#1). All keys,
valid and invalid are counted up to the last valid key. An invalid key is one that is deleted, since it is
followed by a valid key. You can only create new keys in sequence from this number onwards till the
maximum key number.

8.8.2.2 CREATE_INT_KC or CREATE_EXT_KC
This sub command generates the new user key code using the existing activation code for an intrinsic
and extrinsic key respectively. The user key code is stored in the private eNVM, for future use to
generate the user keys. The user can request the generation of key code from 2 to 57. The keys can only
be created in sequence. The key size supported is 64 bits to 4096 bits; refer to KEYSIZE in Table 63,
page 108. The total number of keycodes is limited by the amount of memory allocated to this function by
the system controller. The maximum number of keycodes (58) is only possible if all the user keys (2 to
57) are 256 bits or less in size.

An extrinsic key is created by enrolling the key pointed at by USEREXTRINSICKEYADDR. It is up to the
user to manage this key and remove it from memory if no longer needed. Both the KC and the 4 byte
address PUFUSERKEYADDR are stored in eNVM. The PUFUSERKEYADDR address is defined by the
user at the time of creation and is used when fetching a PUF user key. This address must be unique for
each key. When importing the keycodes, all keys are automatically generated and stored in memory
pointed by these addresses. As a security precaution, when keys are regenerated they must be
regenerated into the same address as used when the keycode was first created. In combination with
other security features (such as the HW firewalls), the legitimate user can make it more difficult for an
adversary to regenerate and extract the keys protected by the PUF as keycodes.

8.8.2.3 EXPORT_ALL_KC
This subcommand exports the AC and KC, 0 to 57 from the system controller's private memory to the
FPGA user in encrypted form. One use model is to export the AC and KCs for long-term storage off-chip,
or even somewhere else on the network the system is attached to. This can provide extra security since
without the AC it is effectively impossible to reconstruct the PUF intrinsic secret enrolled by that AC, due
to the existence of a noise floor in the PUF SRAM's start-up values, even if the values are known to an
adversary.

The stored user AC and all KCs are first XORed with the one-time pad and copied to a contiguous
memory space specified by the user (PUFUSERKEYADDR). The one time pad is stored in its place in
the private eNVM and is composed of a 32 byte hash (SHA-256), and the remainder is populated by
random bits from the DRBG. The exported activation and key codes can only be decrypted by the unique
device that exported them. The digest checks when the AC and KCs are re-imported, makes sure the AC
and all the KC values are equal to the original exported values.

The exported KCs vary in size, between 44 and 524 bytes and are preceded by their KC size. If the KC
size is 0, it means this KC has been deleted, and the following two bytes signify the KC size of the next
key. If the KC size is 525, which is one byte more than the maximum defined key code size, it denotes
that all the valid KCs have been exported and this marks the end. The maximum possible size of the
complete export record is 1318+56*46=3894 bytes.

Table 64 • PUFUSERACKCEXPORT Memory View

Offset Length (bytes) Field Description

0 1192 User AC User activation code, encrypted

1192 2 Size KC#0 Size in bytes of KC#0

1194 44 KC#0 KC#0 encrypted
Microchip Proprietary 109

Data Security Through System Services
The export key code operation can only be successful if a CREATE_INT_KC or CREATE_EXT_KC
operation has been successful previously and no prior export operation was subsequently carried out.
User can only export once and after export he can import as many times as needed. The user KC and
create user KC can be deleted by the user.

8.8.2.4 IMPORT_ALL_KC
The AC and all the key codes are re-imported using this subcommand. It reads the user AC and all KC's
from a contiguous memory space, addressed by PUFUSERKEYADDR, defined in the
PUFUSERKC structure. This memory space is identical to the structure, defined in Table 64, page 109.
The user AC and all the KCs are then verified to be last created by the device.

The individual private keys are automatically regenerated from the PUF on import and are copied into the
individual memory address spaces defined by the CREATE_EXT_KC or CREATE_INT_KC sub
commands and stored in private eNVM. The Import operation can only be successful if an EXPORT
operation is successfully executed.

As a result of the operation, the memory space, addressed by PUFUSERKEYADDR contains the
addresses of all user keys.

8.8.2.5 DELETE_KC
This sub command deletes the KC corresponding to key number provided. User cannot delete KC#0 and
KC#1. The KC is cleared in eNVM storage and in the memory address. The key index is maintained the
way all other valid keys, maintain their index.

8.8.3 Fetch a User PUF Key
The Fetch a User PUF Key system service regenerates the key using the existing activation code and
key code located in the eNVM memory. The identification number of the key to be fetched is passed as
KEYNUM parameter to this system service. The requested key's value is regenerated and copied to the
PUFUSERKEYADDR location. The key's value then becomes available for use unless until it is required
and wiped, by the user's application, from the memory buffer it was fetched into. If exported, Fetch a
User PUF Key system service cannot be used. Also if the key has been deleted using DELETE_KC of

1238 2 Size KC#1 Size in bytes of KC#1

1240 76 KC#1 KC#1 encrypted

1316 2 Size KC#2 Size in bytes of KC#2

1318 User defined KC#2 KC#2 encrypted

...

User defined 2 Size KC#n Size in bytes of KC#n

User defined User defined KC#n KC#n encrypted

User defined 2 End marker End marker is 525,one more than the maximum keycode
size

Table 65 • PUFUSERACKCIMPORT Memory View

Offset Length (bytes) Field Description

0 4 Key#2_address MSS/HPMS address where user Key #2 is regenerated

4 4 Key#3_address MSS/HPMS address where user Key #3 is regenerated

8 4 Key#4_address MSS/HPMS address where user Key #4 is regenerated

... ...

220 4 Key#57_address MSS/HPMS address where user Key #57 is regenerated

Table 64 • PUFUSERACKCEXPORT Memory View
Microchip Proprietary 110

Data Security Through System Services
the PUFUSERKC service, the user key export fails. In both the preceding scenarios a return code 3 is
returned.

The following is the flow diagram for fetching a user PUF key system service.

Figure 54 • Fetching a User PUF Key System Service Flow

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
PUFUSERKEYPTR descriptor

Cortex-M3/Fabric master sends Fetch a user
PUF key system service command and

PUFUSERKEYPTR pointer

System controller fetches descriptor data

System controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads the key from
PUFUSERKEYPTR pointer location
Microchip Proprietary 111

Data Security Through System Services
The following table describes the Fetch a User PUF Key system service request. If successful, the user
PUF key is written at the address pointed to by PUFUSERKEYADDR. This address is returned by the
service, which was defined at the time of creating the user KC.

The following table describes the Fetch a User PUF Key system service response.

The following table describes the Fetch a User PUF Key Response Status.

The following table provides details about the Fetch a User PUF Key (PUFUSERKEY).

8.8.4 Fetch a PUF ECC Public Key
The Fetch a PUF ECC Public key system service retrieves the key from eNVM. If available and
successful, it is stored as 2x384 bit (96 bytes) in the MSS/HPMS memory space pointed to by
PUFPUBLICKEYADDR.

The SRAM-PUF subsystem comprises the Quiddikey core from Intrinsic ID and a 2 KB SRAM. The
Quiddikey core requires that when the SRAM power switch is turned off, a 100 ms time delay must be
maintained before turning on the power switch again.

Table 66 • Fetch a User PUF Key System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 27 Command

1 4 PUFUSERKEPTR Pointer to Fetch a User PUF Key (PUFUSERKEY) structure

Table 67 • Fetch a User PUF Key System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 27 Command

1 1 STATUS Response status

2 4 PUFUSERKEYPTR Pointer to original buffer from request

Table 68 • Fetch a User PUF Key Response Status

Status Description

0 Success completion

2 PUF error, during creating

3 Invalid keynum or argument or exported or invalid key

5 Invalid hash

10 Private eNVM user digest mismatch

127 HRESP error occurred during MSS/HPMS transfer

253 License not available in device

254 Service disabled by factory security

255 Service disabled by user security

Table 69 • Fetch a User PUF Key (PUFUSERKEY) Structure

Offset Length (bytes) Field Description

0 4 PUFUSERKEYADDR PUF User Key address

4 1 KEYNUM Key numbers from 2 to 57
Microchip Proprietary 112

Data Security Through System Services
The following diagram shows the flow for fetching a PUF ECC Public Key system service.

Figure 55 • Fetching a PUF ECC Public Key System Service Flow

The following table describes the Fetch a PUF ECC Public Key system service request.

Table 70 • Fetch a PUF ECC Public Key System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 28 Command

1 4 PUFPUBLICEYPTR Pointer to PUFPUBLICKEY structure

Note: Coretex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
PUFPUBLICKEYPTR descriptor

Cortex-M3/Fabric master sends fetch a PUF
ECC public key system service command and

PUFPUBLICKEYPTR pointer

System controller fetches descriptor data

System controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads the key from
PUFPUBLICKEYPTR pointer location
Microchip Proprietary 113

Data Security Through System Services
The following table provides details about the layout of the Fetch a PUF ECC Public key
(PUFPUBLICKE) descriptor.

The following table describes the Fetch a PUF ECC Public Key system service response.

8.8.5 Get a PUF Seed
The Get a PUF Seed system service generates a 256-bit seed. The PUF Seed is a true random number
that is generated using the PUF's SRAM start up values and a DRBG called iRNG by Intrinsic-ID that is
totally independent of the SmartFusion2 and IGLOO2 primary NRBG described in Non-Deterministic
Random Bit Generator Service, page 78. The following figure shows the flow for the Get a PUF Seed
system service. If successful, the PUF seed is written at the address pointed to by PUFSEEDADDR. In
the -060 and larger devices, a 256-bit PUF seed is used in generating the nonce used as additional seed
material when the primary NRBG instantiates a DRBG, thus making the primary NRBG more secure.

Table 71 • Fetch a PUF ECC Public key Descriptor Structure

Offset Length (bytes) Field Description

1 4 PUFPUBLICKEYADDR PUF Public Key address

Table 72 • Fetch a PUF ECC Public Key System Service Response

Offset Length (bytes) Field Description

0 1 CMD=28 Command

1 1 STATUS Command Status

2 4 PUFPUBLICKEYPTR Pointer to original buffer from request

Table 73 • Fetch a PUF ECC Public key Status

Status Description

0 Success completion

3 No valid public key present in eNVM

10 Private eNVM user digest mismatch

127 HRESP error occurred during MSS/HPMS transfer

253 License not available in device

254 Service disabled by factory security

255 Service disabled by user security
Microchip Proprietary 114

Data Security Through System Services
Figure 56 • Get a PUF Seed System Service Flow

The following table describes the Get a PUF Seed system service request.

Table 74 • Get a PUF Seed System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 29 Command

1 4 PUFSEEDPTR Pointer to PUFSEED structure, refer to Table 77, page 116

Note: Coretex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
PUFSEEDPTR descriptor

Cortex-M3/Fabric master sends get a PUF
seed system service command and

PUFSEEDPTR pointer

System controller fetches descriptor data

System controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads the PUF seed
from PUFSEEDPTR pointer location
Microchip Proprietary 115

Data Security Through System Services
The following table describes the Get a PUF Seed system service response

The following table lists the PUFSEED Response Status Codes.

The following table provides details about the layout of the PUF Seed descriptor (PUFSEEDPTR).

8.9 Elliptic Curve Cryptography (ECC) Services
Certain SmartFusion2 and IGLOO2 devices (-060, -090 and -150 devices) are equipped with a hardware
accelerator for performing common elliptic curve cryptography (ECC) operations. The ECC accelerator
can be used directly by the user for data security applications. It provides two mathematical services:
scalar point multiplication and point addition, computed using the NIST P-384 Elliptic Curve domain
parameters. These are the most compute intensive operations typically used in the ECC cryptosystem –
especially the point multiplication operation. The P-384 domain parameters are defined in NIST FIPS
PUB 186-3 Appendix D.1.2.4. As of now this is the only elliptic curve approved for protecting classified
information up to and including the top secret present in the NIST Suite B list of approved algorithms and
in the Commercial National Security Algorithm (CNSA) Suite approved for National Secure Systems
(NSS) by the Committee for National Security Systems (CNSS).

The ECC point multiplication service multiplies a point by a scalar. The scalar is a 384-bit integer, and
points are defined by two 384 bit integers depicting the point’s “X” and “Y” coordinates. The point
coordinates are restricted to the Galois Field defined by the P-384 domain parameters. The input scalar
is normally restricted to the range of values that map directly to the unique points in the curve; and for
use as keys; certain values (such as zero and one) may also be excluded. The input point must be on the
elliptic curve, as defined by a simple 3rd-order algebraic equation with the coefficients given in the
domain parameters, with all calculations being done in the Galois Field.

Point addition is defined as an arbitrary operation involving the (x, y) coordinates of both input points and
the elliptic curve equation, resulting in another (x, y) point on the curve. This has a geometrical
interpretation when done in a real number field, but is nonrepresentational when done in a Galois Field.

When using the ECC scalar-times-point multiplication service or the ECC point-plus-point addition
service, in order to avoid known attacks, it is required that the elliptic curve input point(s) are verified (by
the user) as valid points on the NIST P-384 curve before any outputs from the service are revealed to a

Table 75 • Get a PUF Seed System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 29 Command

1 1 STATUS PUFSEED Response Status Codes

2 4 PUFSEEDPTR Pointer to original buffer from request

Table 76 • Get a PUF Seed Response Status Codes

Status Description

0 Success completion

2 PUF error, during creation

127 HRESP error occurred during MSS/HPMS transfer

253 License not available in device

254 Service disabled by factory security

255 Service disabled by user security

Table 77 • PUFSEEDPTR Structure

Offset Length (bytes) Field Description

1 4 PUFSEEDADDR PUF Seed address pointer
Microchip Proprietary 116

Data Security Through System Services
potential adversary, for example, a digital signature calculated from the private scalar using these
services. Here for a point to be valid, the “x” and “y” coordinates must satisfy the following equation:

E: y2 = x3 – 3x +b (mod p); for x and y defined in a Galois Field of prime order p and an elliptic curve
of order n. The values of p, n, and the curve coefficient b for the NIST P-384 curve domain parameters
can be found in NIST FIPS 184-4, Appendix D.1.2 (page 91). The ECC system services do not perform
this check. If the inputs to the system service are invalid, the results are also invalid, and potentially
harmful.

8.9.1 ECC Point Multiplication Service
The ECC cryptosystem is based on the apparent difficulty of reversing the point multiplication operation.
If a scalar and a base point are given, it is relatively easy to calculate the point resulting from
multiplication. When there is a base point and the result point, cryptographically it is very difficult to
determine which point is the scalar. Based on the best known attacks, the security strength of an ECC
cryptosystem is estimated as half the number of bits in the private key, that is, the security strength of the
P-384 system is about 192 bits. Point multiplication is commonly used for generating an ECC public key
(a point) given the private key (a scalar, that is, a 384-bit integer and a member of the Galois Field
comprising of “n” elements (GFn), with a couple of exclusions such as “0”). The domain parameters
specify the base point to use. The default NIST base point is built into the accelerator, which has a
special form of the scalar multiplication command that uses the defined P-384 base point without the
need for the user to enter it. The public key is just the private key times the base point.

Point multiplication is also commonly used for establishing a shared secret using the Diffie-Hellman
protocol. Two parties generate key pairs, as explained above, and exchange their public keys. Each party
multiplies the public key it receives (an X, Y point) with its own private key (a scalar). The resulting point
calculated by both parties is the same: the domain's base point times both of the parties' private keys
which gives the same result regardless of the order the multiplications are done in.

Other useful ECC public key operations include generating and validating digital signatures. The ECC
accelerator point multiplication and point addition functions, along with a hash function can be used to
implement digital signature operations. For generating a NIST approved digital signature having a
security strength of 192 bits, 384-bit ECC operations (which are built in the device), and a 384-bit or 512-
bit hash operation, which is not built in, and would have to be supplied by the user as additional hardware
or firmware IP are required.

The ECC point multiplication service has very strong algorithmic and other DPA countermeasures that
randomize the side channel leakage signals making it very difficult to extract the secret key (the scalar).
Microchip Proprietary 117

Data Security Through System Services
The following is the flow diagram for ECC point multiplication system service.

Figure 57 • ECC Point Multiplication System Service Flow

The following table describes the ECC Point Multiplication system service request.

Table 78 • ECC Point Multiplication System Service Request

Offset Length (bytes) Field Description

0 1 CMD = 16 Command

1 4 ECCPMULTPTR Pointer to ECCPMULT structure

Note: Cortex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
ECCPMULTPTR descriptor

Cortex-M3/Fabric master send ECC Point
Multiplier system service command and

ECCPMULTPTR pointer

System controller fetches descriptor data

System controller executes the service and
writes the output data to pointer location and

sends system service response

M3/Fabric checks system service response

Cortex-M3/Fabric master reads the ECC
multiplier output from QPTR pointer location
Microchip Proprietary 118

Data Security Through System Services
The following table describes the ECC Point Multiplication system service response.

The following table provides details about the layout of the ECC Point Multiplication Data Descriptor
(ECCPMULT).

The ECC point multiplication service has very strong algorithmic and other DPA countermeasures that
randomize the side-channel leakage signals making it very difficult to extract the secret key (that is, the
scalar). The ECC point multiplication services can be used in data security applications, for example, to
generate public keys, to perform key establishment, to do encryption or decryption, and to generate or
verify digital signatures.

8.10 Elliptic Curve Cryptography (ECC) Point-Addition
Service
The ECC point addition service “adds” two points according to the commonly accepted definition of
elliptic curve point addition. The inputs are two (x, y) points, each lying on the P-384 curve, and the result
is another (x, y) point which is guaranteed to be on the curve (or be the point at infinity). The input points
are not checked by the service to see if they are legal points, but if they are, then the result point is
guaranteed by design to be correct.

The point addition operation is designed to be timing-invariant, independent of the input data, that
prevents timing analysis, and, to have insignificant amplitude leakage, which prevents simple power
analysis or simple electromagnetic analysis. The operation has weak DPA countermeasures, so if the
same secret is used many times with different data that is known to the adversary, a DPA attack may
succeed. The “points” are never secrets in the common ECC algorithms, only the scalar in point
multiplication is a secret. Therefore, there may be no need for DPA protection for point addition, which
deals only with points. It is up to the user to be sure of using this service in a safe way to meet the
security needs of the application.

Table 79 • ECC Point Multiplication System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 16 Command

1 1 STATUS Command status:
0 Success
127 HRESP error occurred during HPMS transfer
253 Not licensed
254 Service disabled by factory security
255 Service disabled by user security

2 4 ECCPMULTPTR Pointer to ECCPMULT structure

Table 80 • ECCPMULT Structure

Offset Length (bytes) Field Description

0 4 DPTR Pointer to 384-bit scalar, (big endian)

4 4 PPTR Pointer to (X,Y) coordinates of P

8 4 QPTR Pointer to (X,Y) coordinates of result Q
Microchip Proprietary 119

Data Security Through System Services
The following is the flow diagram for the ECC point addition system service.

Figure 58 • ECC Point Addition System Service Flow

The following table describes the ECC Point Addition system service request.

Table 81 • ECC Point Addition System Service Request

Offset Length (bytes) Field Description

0 1 CMD=17 Command

1 4 ECCPADDPTR Pointer to ECCPADD structure

Note: Coretex-M3 is only available in SmartFusion2

Cortex-M3/Fabric master setup the
ECCADDPTR descriptor

Cortex-M3/Fabric master sends ECC Point
Multiplier system service command and

ECCADDPTR pointer

System controller fetches descriptor data

System controller executes the service and
writes the output data to pointer location and

sends system service response

Cortex-M3/Fabric master checks system
service response

Cortex-M3/Fabric master reads output from
RPTR pointer location
Microchip Proprietary 120

Data Security Through System Services
The following table describes the shows the ECC Point Addition system service response.

The following table provides details about the layout of the ECC Point Addition Data Descriptor
(ECCPADDRPTR).

8.11 Summary of Expected DPA-Resistance of Cryptographic
Services
The built-in system services in SmartFusion2 and IGLOO2 vary in their expected resistance to side
channel analysis, such as differential power analysis or electromagnetic analysis. The following table
provides a summary of hardware accelerator blocks that have DPA protection.

Table 82 • ECC Point Addition System Service Response

Offset Length (bytes) Field Description

0 1 CMD = 17 Command

1 1 STATUS Command status:
0 Success
127 HRESP error occurred during HPMS transfer
253 Not licensed
254 Service disabled by factory security
255 Service disabled by user security

2 4 ECCPADDPTR Pointer to ECCPADD structure

Table 83 • ECCPADDRPTR Structure

Offset Length (bytes) Field Description

0 4 PPTR Pointer to (X,Y) coordinates of input point P

4 4 QPTR Pointer to (X,Y) coordinates of input point Q

8 4 RPTR Pointer to (X,Y) coordinates of result R

Table 84 • DPA Protection on System Services

Service Operation DPA Protection Comments
AES-128 AES-256 Encrypt

Decrypt
No ECB, CTR, CBC, OFB

Modes (see AES-128/256
Service (ECB, OFB, CTR,
CBC modes), page 90)

SHA-256 Message Digest No

HMAC Message Authentication
Code (MAC)

No Based on SHA-256

ECC Point Multiplication Yes Based on NIST P-384 curve

Point Addition No

KeyTree Key Derivation, or MAC
(Validator)

Yes DPA-resistant alternative to
HMAC
Microchip Proprietary 121

Data Security Through System Services
All of the cryptographic services are safe from timing analysis (TA). They are all designed to have no
data-dependent timing variations. Likewise, all are believed safe from simple power analysis (SPA). All
the system services are designed to have no significant data-dependent amplitude variation in power or
electro-magnetic side channel leakages. However, the AES and SHA accelerators have only very light
DPA countermeasures, and are not considered safe to use repeatedly with the same secrets or keys or
in situations where the adversary may be able to choose the cipher text. Repeated measurements of side
channel leakage while using the same secret mixed with different data may allow the adversary to use
signal processing and statistical techniques to amplify the side channel signal until strong enough to
extract the secrets. Since the HMAC implementation is based on the relatively unprotected SHA
accelerator, user should be cautious to not use the same key with more than a few different message
texts, or a DPA attack may succeed in extracting the key.

The system controller uses the same accelerators for design security purposes in a DPA-safe way by
limiting the exposure of any one secret or key to just a few operations involving different data. For
example, one AES key may be used to decrypt only a few unique ciphertexts. This strategy, which
provides very strong DPA resistance compared to most other countermeasures, is available to Microchip
as both the generation and the consumption of bitstreams are under Microchip’s control. This strategy
may not be available for the user’s data security application, in case where standards must be followed
that require repeated use of the same key; or if the generation of data is under control of an entity that
doesn’t follow these rules, but that data must is still consumed within the FPGA in a DPA-resistant way. In
that case, the built-in AES and SHA accelerators (especially when used with a secret such as in the
HMAC algorithm) are not suitable. An FPGA or firmware implementation with stronger intrinsic DPA
countermeasures have to be instantiated. In that case, the true random numbers available from the
NRBG service may be very helpful in implementing masking or other countermeasures. A number of
Microchip IP partners provide DPA resistant soft cores or firmware for most of the common cryptographic
primitive algorithms, under license to Cryptography Research, Inc. (a division of Rambus).

Another reason the built-in accelerators may not be suitable in an end application is not having high-
performance. Soft cores for implementation in the FPGA fabric are available from Microchip and several
of its IP partners who can achieve greater magnitude of performance than the built-in services. For
example, highly parallelized and pipelined AES implementations are available.

The ECC scalar point multiplication service has very strong intrinsic timing analysis (TA), simple power
analysis (SPA) and differential power analysis (DPA) countermeasures built in. These include data-
dependent timing-invariant execution times and sophisticated algorithmic masking countermeasures that
randomize any side channel signature which is assessed by an independent third party security
laboratory to be effective against DPA and digital electro-magnetic emissions analog(DEMA) when used
during the implementation of FPGA design security protocols. The point multiplication countermeasures
are effective in all scenarios.

The ECC point addition service has weak DPA countermeasures, though it has been designed to be
timing-invariant under all input data. However, DPA resistance is not much required by the point addition
function. Point addition is used in verifying elliptic curve digital signature algorithm (ECDSA) digital
signatures, but since there are no secrets involved DPA resistance is not generally required. The user
should examine his algorithm carefully to see if DPA resistance is a requirement before using the point
addition service.

All the SRAM-PUF services are safe against timing analysis and simple power analysis. They are also
safe against DPA since all the inputs and outputs are secrets. As an added precaution, in the Microchip

PUF Emulation Challenge-Response-like
Protocol

Yes Uses SRAM-PUF in larger
parts
Uses Pseudo-PUF in smaller
parts

SRAM-PUF Key Enrollment and Deletion
Activation Code
Management Key
Regeneration

Yes Intrinsic or Extrinsic design
security or data security keys

Table 84 • DPA Protection on System Services (continued)
Microchip Proprietary 122

Data Security Through System Services
implementation of Quiddikey the activation code and all key codes are stored in read and write protected
eNVM, along with authentication and other countermeasures.

The PUF emulation service uses the key tree algorithm, which is also available as a system service.

The Key Tree service is intrinsically DPA safe because it limits the use of any secret key to just three
possible operations: the hash function higher up the tree that generated it, and the two possible hash
functions that may consume it going down the tree (depending upon the value of the path argument). No
matter how many times the same key is used, with the same or a different path variable, any given root,
intermediate or result key can have, at most, these three operations (possibly multiple times) which can
leak information about it. While multiple measurements repeatedly using the same data may help the
adversary normalize the effects of uncorrelated noise, it does nothing to reduce the effects of an
algorithmic noise. The side channel leakage of the SHA accelerator is less compared to the self-
generated algorithmic noise and prevents significant reduction in key entropy with just three
measurements. Between levels of the key tree, the intermediate keys are hashed, thus effectively
destroying any information gained by the adversary at a level preceding the next. As an added
precaution, the two constants used in the right and left branches of the key tree, respectively, are
maintained as secrets.

All the NIST standard cryptographic algorithms implemented in SmartFusion2 and IGLOO2 FPGAs have
been certified by a NIST accredited laboratory under the NIST cryptographic algorithm validation
program (CAVP) scheme. See the Hardware Cryptographic Accelerators, page 11 for the NIST certificate
numbers.
Microchip Proprietary 123

Using System Services Driver

Microchip Proprietary 124

9 Using System Services Driver

Microchip provides system services firmware drivers to access the system services implemented by the
system controller. The SmartFusion2 system services driver can be downloaded from the firmware
catalog. The firmware catalog is a standalone executable program, that supports Microchip SoftConsole,
Keil MDK, and IAR Embedded Workbench embedded processor development tool chains. The firmware
drivers can also be delivered through the Libero SoC environment. Please refer to Firmware Catalog
page on Microchip website for details.

The system services driver provides APIs to access the system services. The system services APIs must
be called in the user application code to access system services. The system services driver provides
MSS_SYS_init() API to initialize the communication with the system controller. The MSS_SYS_init()
function can be used to register a system services event handler. Each system service API returns a
service response to inform the status of the service.

The system services driver package includes sample projects to show the usage of the system services
driver. The sample projects are available for three different tool chains: IAR Embedded Work, Keil-MDK,
and SoftConsole. The sample project can be generated by right clicking on the system services driver
and selecting Generate sample project, as shown in Figure 59, page 124.

To know more refer to each system service driver user guide and release notes available in the Firmware
Catalog. The user guide lists the system services APIs and their descriptions.

Figure 59 • System Service Firmware Driver Generation

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog

Reverse Engineering Protection
10 Reverse Engineering Protection

Reverse engineering of an IC can usually be accomplished provided there is enough time and money.
Invasive attacks that deconstruct and analyze the IC design layer by layer are difficult to do, especially at
advanced technology nodes where the design features are on the order or even smaller than the
wavelength of visible light however, such attacks are difficult to prevent as well.

A user design implemented using an FPGA is unique as the total design IP is loaded in the configuration
data of the FPGA rather than in the design of the IC.

Protecting the data stored in an IC is feasible. If any sort of tampering is detected, the data can be
zeroized before there is time to extract it. Zeroization protects user's design IP and other sensitive data
against all attacks. However, as all the security mechanisms ultimately are implemented in the integrated
circuit hardware, it is at least theoretically possible for a dedicated adversary with “deep pockets,”
enough time, and access to enough devices to eventually reverse engineer and then defeat all the layers
of IC-level countermeasures and extract the user's sensitive data. Hence, it is recommended for very
high security applications that multiple layers of security be applied. Tamper resistant packaging
techniques may be used in which volume protection can be both passive and active, providing the FPGA
an externally-derived tamper signal to zeroize all sensitive data before the FPGA integrated circuit can
even be reached.

Microchip has experts and partners who can assist users with providing effective multi-layered anti-
tamper defenses above the silicon level. Microchip or its partners also can provide tamper-resistant
packaging with both passive and active countermeasures using either commercial or U.S. classified
techniques at a facility certified for trusted packaging by the U.S. DoD Defense Micro-Electronics Activity
(DMEA).

SmartFusion2 and IGLOO2 FPGAs offer the best-in-class layered security features and
countermeasures to help eliminate reverse engineering of user's designs. For example:

• DPA countermeasures prevent low-cost passive key-extraction attacks from succeeding
• Elimination of plaintext bitstreams and hardening of programmer software makes reverse

engineering of the Microchip bitstream format substantially more difficult, and hopefully too
expensive for academics

• Obtaining the plaintext bitstream by read-back via the JTAG or SPI programming ports is protected
by many layers of security, and is only possible in Factory Test Mode by Microchip reliability
engineers with the cooperation of the user. Even this well-defended capability can be permanently
locked with several layers of defenses

• Additional countermeasures protect against many active, semi-invasive, and invasive attacks
• Advanced key management and information assurance techniques, including public key methods in

some family, help assure the integrity, authenticity, and confidentiality of the bitstreams used to
configure the devices

• High levels of redundancy are used to improve reliability, and in the case of critical security data,
detect possible tampering, such as with high energy semiconductor lasers

• SEU immunity improves reliability dramatically as the natural or radiation-induced faults don't cause
security information to be leaked

• The associated HSM-assisted programming tools (called the Microchip Secure Production
Programming Solution, SPPS) help manage user keys and keep all cryptographic variables
protected behind hardware security boundaries, or use strong encryption when stored or transmitted
outside of hardware security boundaries

• Built-in active countermeasure techniques like tamper detection and responses (zeroization) help
prevent extraction of keys or configuration data

The underlying flash technology that stores all user non-volatile data on SmartFusion2 and IGLOO2
FPGAs is fundamentally hard to extract data from. It is difficult to read the state of the floating gates of
the flash transistors using known technology, and substantially more difficult if hundreds or millions of bits
must be extracted from a single device. Access to the gate-level metallization is blocked by many other
layers of metal used for routing. Removal of the intervening metal layers without destroying the charge
on the floating gates is next to impossible.
Microchip Proprietary 125

Reverse Engineering Protection
Even attacks using optical emissions through the base silicon are becoming difficult as the feature size
becomes smaller than the optical wavelengths that can be transmitted through silicon. Besides using an
advanced technology node, Microchip has included several countermeasures in SmartFusion2 and
IGLOO2 against certain such types of attack.

10.1 Configuration Port Security
The main configuration ports for SmartFusion2 and IGLOO2 are the JTAG and SPI-slave ports. They
support a nearly identical set of programming instructions. JTAG supports the JTAG-defined boundary
scan instructions, decodes the optional user JTAG instruction range.

As described in FPGA Lock-bits, page 36 there is a user lock-bit that disables the JTAG boundary scan
instructions, and there are other lock bits that can disable all JTAG programming instructions. Few other
lock-bits also disable the similar SPI Slave programming instructions.

SmartFusion2 and IGLOO2 FPGAs can be configured in SPI master mode by asserting the
FLASH_GOLDEN_N external pin on the device. This causes the system controller to read the SPI port
and look for a valid bitstream. If found, the bitstream is loaded. This operation can be blocked by a user
lock-bit.

Finally, SmartFusion2 and IGLOO2 FPGAs can also be configured using a system service called in-
application programming (IAP). In SmartFusion2 this would typically be done using firmware running on
the Cortex-M3. The bitstream can be imported to the device via any supported media (e.g., Ethernet) and
then routed into the internal system service via the Comm_Blk bus slave from where the system
controller can write it to an external (but local) SPI PROM, verify it via another IAP system service, and
then load it with another; or it can be loaded immediately (with somewhat greater risk of a denial-of-
service if it arrived over the media corrupted). In any case, the IAP system service(s) can be blocked with
a lock-bit, thus providing a hardware level of protection. Even if the Cortex-M3 has caught a virus and is
executing malware, it can't override any lock-bits as they can only be changed by an
authenticated/encrypted bitstream file. As this “port” is blocked by the current lock-bit setting, any such
bitstream would have to come in via one of the other ports mentioned above that wasn't currently
blocked.

10.2 User JTAG (UJTAG) Security Considerations
SmartFusion2 has two JTAG tap controllers: The primary one is for the system controller and various
device testing facilities; the second one is the Cortex-M3 tap controller, which allows the use of standard
ARM debug tools. Essentially, the two tap controllers are mutually exclusive, sharing the same input and
output pins. The tap controller selection is made using an external input pin, “JTAG_SEL,” which would
normally have a pull-up resistor at the board level so that without any other connections (such as a
debugger tool) the default would be to select the system controller tap controller.The selection is forced
to the system controller tap controller if Cortex-M3 debugging is disabled via the lock-bit, in this scenario
the unselected tap controller is held in reset

The system controller JTAG tap controller has an 8-bit instruction register, which is used to identify the
command that is being executed, that is which data register is selected. The range from 0x10 to 0x7F
(inclusive; 16 to 127 in decimal notation) is decoded and reserved for User JTAG.

The UJTAG capability can be used to monitor the JTAG data input, or to add additional JTAG data
registers, via the FPGA fabric. They can also be useful during the debugging phase to instrument the
design. This is done by instantiating the UJTAG macro in the user design, and connecting to its ports to
the User's custom user logic (or logic inserted by debugging tools). Microchip offers a Security Monitor
soft IP macro that, amongst other things connects to the UJTAG pins, looking for suspicious JTAG
activity and imposing an appropriate penalty, if found.
Microchip Proprietary 126

Reverse Engineering Protection
Figure 60 • JTAG Controllers CBlock Diagram (Including UJTAG Data Registers)

If the UJTAG macro is used during development, for accessing and scanning out potentially sensitive
internal signals (for debugging purposes), then it should be certain that it is removed from the final design
UJTAG is used by Identify® (from Synopsys), one of the third-party debugging tools Microchip supplies,
and possibly by other third-party tools as well.

A great many of the JTAG commands can be disabled by user lock-bits. For example, the IEEE 1149.1
JTAG boundary scan instructions that are so useful for board-level testing can be disabled with a lock-bit.
Likewise, groups of debugging-related commands, programming commands, passcode entry
commands, can be disabled with lock-bits. See FPGA Lock-bits, page 36 for further description of these
and other lock-bit features.

10.3 Programming Port Monitor
In all models, most JTAG and all SPI Slave instructions are monitored and reported in fourteen logical
groups via the asynchronous USI bus attached to the FPGA fabric. These signals can be monitored by
the logic in the FPGA fabric by instantiating the Tamper macro in the user's design, and connecting to its

TDO

HW-only Data Registers

Fireware Data Registers

TDI

TMS

TCK

TRSTB

Instruction Register

Decode

UREG [7:0]
JTAG State Machine

UJTAG Data Reister

System Controller JTAG tap controller

User JTAG (UJTAG) FPGA Fabric Design

UREG [7:0]

Cortex-M3 Debug Data Registers

Cortex-M3 JTAG Tap Controller

JTAG State Machine

JTAG Input Pins

Instruction Register

Decode

U
D

R
C
A
P

U
D

R
S
H

U
D

R
U

PD

U
R
S
TB

1

0

Sel

= JTAGSEL + M3DEBUG

Sel = JTAGSEL + M3DEBUG

JTAGSEL

M3DEBUG

User Lock-bit

(“1” Enabled debugging)

UTDO

JTAG output pin

UTDI

UTCK
Microchip Proprietary 127

Reverse Engineering Protection
ports. Refer to SmartFusion2 and IGLOO2 FPGA Tamper Detection and Tamper Response, page 59 for
detail.

10.4 Intrusion Detection and Protection
SmartFusion2 and IGLOO2 FPGAs have a number of built-in tamper detection and response capabilities
that can be used to enhance design and data security. Microchip offers a flexible Security Monitor IP core
that takes advantages of many of the built-in tamper detection and response capabilities, and allows
external tamper flags to be monitored, as well.

10.5 Side Channel Analysis (SCA), Passive & Active, Non-
and Semi-Invasive
Whenever any electronic device performs internal operations, there is information leakage via the energy
lost to various so-called side channels. Common side channels used as attack vectors include device
power consumption and electromagnetic radiation (radio spectrum), leading to power analysis (PA) and
electromagnetic analysis (EMA). Photons (in the light spectrum) can also be used as a side channel, but
generally de-packaging of the device is required to gain access (semi-invasive), whereas PA and EMA
can be non-invasive or even performed from a distance of up to several meters.

By monitoring the side channel (for example, fluctuations in the power consumption), sometimes there is
enough leakage that with a single or just a few measurements an attacker can reconstruct secrets the
device is using in what is called Simple Power Analysis (SPA). In less favorable (to the attacker) signal-
to-noise ratio situations, additional known information such as the encrypted bitstream and
measurements over many operations using the same secret (such as the bitstream decryption key) are
needed to determine the secret using Differential Power Analysis (DPA).

Published reports from researchers have shown that no FPGA, microcontroller or ASIC is immune from
this vulnerability of the bitstream keys (used for FPGA design security), and keys used in cryptographic
algorithms running in the FPGA fabric or on an embedded microcontroller (used in various data security
applications) have all been reported in numerous studies to have been extracted using DPA techniques.
In reports analyzing several types of SRAM FPGAs, one team of researchers learned enough
information from one power-up cycle (per device) to reconstruct the bitstream key used by that device by
monitoring the devices power consumption. In another study, the keys in a technologically advanced
SRAM FPGA were extracted using a form of differential electro-magnetic analysis (DEMA) using only
5000 measurements.

Because of the severity of this vulnerability, nearly all the secure processors in the smartcards used in
the financial industry, set-top boxes, trusted platform modules in personal computers and encrypted disk
drives, amounting to approximately six billion chips per year, incorporate countermeasures to DPA.

Figure 61 • DPA Logo

SmartFusion2 SoC FPGAs and IGLOO2 FPGAs are the first devices in the programmable logic device
(PLD) industry incorporating DPA countermeasures to protect the bitstream key(s) from discovery using
side channel analysis. All built-in uses of design security secret keys have been protected against side-
channel analysis. Many of the countermeasures used are licensed from Cryptography Research Inc.
(CRI), a division of Rambus, Inc., who holds the patents thereto. Microchip is a licensee of Cryptography
Research's DPA patent portfolio, thus CRI allows Microchip to use their trademarked “Licensed DPA
Countermeasures” logo, shown here.
Microchip Proprietary 128

Reverse Engineering Protection
All SmartFusion2 and IGLOO2 devices incorporate strong DPA countermeasures for all design security
features, The DPA countermeasures are certified as effective by CRI based on an assessment from an
independent third-party lab (Riscure) under Rambus-CRI's DPA Validation Program (DVP) scheme.

All design security cryptographic keys and secrets managed by the Programming system controller are
automatically protected against DPA and related passive non-invasive side channel attacks such as
DEMA without the user having to do anything. The paragraphs immediately following discuss protections
these devices have against a broad range of side channel attacks.
Microchip Proprietary 129

Internal Security Features
11 Internal Security Features

11.1 Single Event Upset Robustness
In complementary metal-oxide-semiconductor (CMOS) technology, memories such as SRAM and flip-
flops can have their state changed by radiation particles. These particles can come from high-energy
particles hitting atmospheric molecules, causing them to emit sub-atomic particles such as neutrons that
(when they strike the silicon) can create charged particles. Another source of alpha radiation is from
device packaging materials such as epoxy. The net result is that radiation can cause the state of a
memory cell to flip. The effect, called SEU is worse at some latitudes (due mainly to the shape of the
Earth's magnetic field) and altitudes. In general it gets worse from sea-level to approximately 60,000 ft,
and then drops up to the radiation belts circling the Earth where the radiation is quite high. Even at sea-
level, it is usually by far the largest single source of failures in SRAM FPGAs, and the effect can go up
several orders of magnitude at commercial airliner or military aircraft altitudes.

Configuration memory, which is supposed to hold its state statically for the entire duration of operation of
the device is especially susceptible because of its large size (that is, number of memory cells), the long
and constant exposure, and the persistence and severity of effects of a fault. Until corrected, the
fundamental operation of the FPGA routing and logic may be affected. Unless special measures are
taken to detect and correct such configuration memory faults, the firm errors may persist for long times
by affecting a large amount of data or even completely destroying the function of the FPGA. Since triple
redundancy is considered too expensive on such a large amount of memory, usually a compromise
approach is taken where it takes some time for a scrubber to detect and correct a firm error. In some
devices, the entire configuration memory needs to be reloaded from the external source, causing a large
down-time that is unacceptable in many applications.

This is generally more severe and effective than a flip-flop in the data-path is affected. In this case, the
problem is often transient and usually very quickly self-corrected. When the flip-flop is next enabled and
clocked, it latches a new, correct value, which often happens within nanoseconds. How far the false
value propagates down the data-path is subject to the algorithm design. Also, because there are far
fewer flip-flops than configuration memory cells (by two to three orders of magnitude), the probability of
such an upset is much lower. In high-reliability applications, single flip-flops can be automatically
replaced with triple-redundant flip-flops in the user programmable design by tools provided by Microchip
EDA partners. The two unaffected flip-flops will automatically vote away and correct an SEU in the
affected flip-flop.

SmartFusion2 and IGLOO2 FPGAs incorporate flash configuration memory that is virtually SEU immune
with error detection and correction (EDAC) techniques on nearly all the SRAM blocks throughout the
MSS and HPMS. This implementation makes these devices substantially more reliable than most typical
commercial microcontrollers that do not incorporate EDAC so widely (if at all) and far more reliable than
any comparably-sized SRAM FPGAs.

11.1.1 FPGA Fabric Configuration Memory
The flash configuration memory in SmartFusion2 and IGLOO2 FPGAs are virtually immune to SEU.
Since this is typically the largest single source of failures in SRAM FPGAs, this single attribute of
Microchip flash FPGAs makes them by far the most reliable in the industry. Because of their inherent
high-immunity to SEUs and high overall reliability over their rated life, no periodic scrubber circuitry is
required to detect and fix errors after the fact. The SEU errors normally never occur in the first place.

Integrity check mechanisms can be used to ensure that there are no failed bits at power-on or on
demand (whether caused naturally or maliciously) by checking the cryptographic grade digest computed
over the entire FPGA configuration NVM.
Microchip Proprietary 130

Internal Security Features
11.1.2 Security Non-Volatile Memory (NVM)
The SNVM is used where factory and user design security keys and lock-bits are stored. The SNVM is
designed with the same long-life high-reliability SEU-immune characteristics as the FPGA fabric flash-
configuration memory. Because of the sensitivity of the data it contains, to achieve ultra-high reliability
including protection against malicious attacks, each row of security data has single-error correction,
double-error detection (SECDEC) error detection and correction (EDAC) circuitry.

Unlike typical row-and-column addressed memory arrays, any bit stored in the SmartFusion2 and
IGLOO2 SNVM are designed by Microchip to be continuously output on a logic signal in parallel with
others, regardless of the rows or columns they have or other such memory cells are in. This is similar to
the difference between a register file and an SRAM array in volatile memory technology. The SRAM can
only read one row at a time, but any bit can be brought out of a register file in parallel with any others.
Many lock-bits are used to control other hardware security features directly using these parallel output
signals. Critical lock-bits have continuously-on detection circuitry that monitors these logic signals in real
time and generates a tamper flag if there are any natural or malicious faults in these bits especially
security-sensitive bits, guaranteeing detection of the faults immediately.

In addition, each row of security data also contains cryptographic-grade digest of the row's contents.

11.1.3 Embedded NVM Array
The eNVM applies SECDEC standard EDAC techniques using hidden parity bits stored in addition to
user data in each page of data.

The cryptographic-grade digest computed over the ROM (that is, static) portions of user's eNVM space
can be used at each power-on cycle, or on demand, to check the integrity of the memory. One digest is
available for the user memory portion for each of the NVM controllers in the device, that is, one in -005, -
010, -025, -050 devices, and -060 devices, two in -090, and -150 devices. In -090 and -150 devices, two
additional digests are used to cover the system controllers private eNVM pages in the second eNVM
array.

11.1.4 MSS embedded SRAM (eSRAM)
The two 64 KByte eSRAM blocks attached to the MSS bus switch have an option to apply SECDEC
EDAC techniques to each row of data saved and read. This can help to mitigate SEU or other types of
errors. This feature is set by default.

If even higher reliability is required where data is stored statically in SRAM for very long time periods, a
scrubber may be designed either in firmware or a bus master in logic in the FPGA that periodically reads
each memory location and overwrites it with the corrected data if a correctable error was detected.

If EDAC is not required, the bits which are used for parity may be used instead of user data, increasing
the capacity of these memories from 64 Kbytes to 80 Kbytes, each.

11.1.5 Miscellaneous SRAM Blocks Throughout the MSS
Essentially, all the smaller SRAM blocks scattered throughout the MSS have SECDEC EDAC circuitry.
For example, FIFOs in the Ethernet, CAN, and USB controllers. The instruction cache for the Cortex-M3
processor automatically corrects errors or flushes uncorrectable pages and re-fetches them, if possible.

This provides SEU immunity and reliability above-and-beyond that of most microcontrollers in the
market.

11.1.6 DDR Memory Controllers
SmartFusion2 and IGLOO2 devices contain on-chip controllers (and PHY) for off-chip DDR SDRAM-type
memories. These controllers have an option to calculate parity bits when writing to the DDR memories
and apply EDAC to the results that are read back, so long as user provides required external memory for
the extra bits in each word that are required. This automatically improves the reliability and SEU
immunity of the external DDR memories.

The primary usage of the external DDR memory is to hold the Cortex-M3 programs that are too large to
fit in the on-chip memory. Therefore, an SEU error in this memory will be equivalent to a design error and
could have disastrous security implications. EDAC significantly enhances the reliability of these
Microchip Proprietary 131

Internal Security Features
memories for natural failures, such as caused by weak bits, noise, and SEU failures. If protection against
malicious failures (for example, caused by board-level tampering) is also required then either in-line
encryption or authentication techniques or both can be implemented for the FDDR memory using master
in the FPGA fabric.

Note: The FDDR memory is only available in -050 and -150 devices

11.1.7 FPGA Fabric SRAM Blocks
The FPGA fabric tightly-coupled SRAM blocks do not have EDAC built-in. If EDAC or scrubbing are
required, the additional logic required for these functions can easily be implemented using the FPGA
fabric soft logic. Microchip provides CoreEDAC Directcore IP that can generate EDAC circuitry for both
internal (on-chip) and external RAM blocks.

11.1.8 System Controller SRAM Buffers
The system controller has a small SRAM buffer used for temporary storage. In consideration of SEU
effects, SRAM buffer's usage is designed so that it is used only for very short term storage. In general,
the system controller is in sleep mode most of the time. Data is not held over in SRAM storage while the
system controller is in sleep mode. Between the small size of this SRAM and short times and duty factors
where it is used, the risk caused by SEUs is minimal.

In -060, -090 and -150 devices, the ECC engine and the SRAM-PUF have small SRAM blocks
associated. As with the system controller memory, long-term usage of the SRAM is not available, which
will expose relatively static stored values to potential SEUs. The duty factor on these memories is
extremely small. The ECC engine is used mainly during initial configuration of the user keys, and
occasionally used after that for device authentication or user data security demands. In many systems,
the entire lifetime usage is spread over 20 years may only amount to something measured in seconds.

Similarly, the SRAM-PUF memory block is very low-duty cycle, and is even in its own power domain
where the power is removed nearly all the time. It is only used for a few milliseconds during enrollment
and each time keys are reconstructed or a new random seed is requested. By design, there is a
proportionately long power-down time of 100 msec between uses.

Furthermore, even if there is an SEU, the most probable outcome is that a protocol or command will
detect the failure. In the case, of the SRAM-PUF, the algorithm is designed to be tolerant of turn-on
noise. A bit failing during a more sensitive step might cause the reconstructed key to fail to match its
built-in authentication tag and a failure will be flagged rather than returning an erroneous key. Generating
random seeds is relatively tolerant of errors as a failure will most often just appear as another source of
entropy; and these errors are very unlikely due to the small size and low-duty factory.

Performance an ECC operation such as point multiplication with an SRAM bit failure will likely cause an
erroneous result. If even the low failure rates expected are of concern, the resulting point can be checked
to see if it is on the elliptic curve or the computations can be run twice. Either of these will have the
beneficial effect of helping to detect malicious faults injected by an adversary as well as any faults
caused by SEUs.

In design security uses of the ECC engine, any SEU (or malicious) failure will be detected by a
downstream authentication or validation protocol. But it should be emphasized that failures are expected
with a very low probability. Compared to the size of a configuration memory of 50 million bits with 100%
duty factor requirement, a small SRAM (for example, 16 Kbits) with a <<1% duty factory has a lower
failure rate more than five or six orders of magnitude less all other things being equal. All other things are
not equal in flash FPGAs since the configuration memory has an essentially zero SEU sensitivity for
atmospheric neutrons; at least four or five orders of magnitude less than SRAM and perhaps more.

In summary, the exposure of the system controller and cryptographic SRAM blocks to SEUs is low
because of the small number of SRAM bits, and the low-duty factor. Many of the possible failures have
tolerable effects, such as a detected failure of a command or a result that is still useable.

In certain high-reliability applications such as avionics, there may be some residual concerns regarding
the SEU-induced failure rate of the system controller, and concerns perhaps also driven by certification
requirements. In this case, SmartFusion2 and IGLOO2 FPGAs also offer a mode where, once the device
is booted instead of just going into sleep mode until an interrupt, the system controller goes asleep until
the next reset. This is called Suspend mode. System services such as user cryptographic algorithm and
Microchip Proprietary 132

Internal Security Features
random bit generator services, the zeroization service, or the Flash*Freeze service are not available in
Suspend mode.

11.1.9 FPGA Fabric User Flip-Flops
Fabric flip-flops are less in number compared to configuration bits. Thus, the probability of an SEU in a
fabric flip-flop is relatively low.

Even if this low probability is still a concern, user can use triple-redundant flip-flops instead of single flip-
flops or use error-tolerant coding techniques, especially in key state machines where an error will have a
more catastrophic long-lasting effect. One such technique is to choose a state encoding that includes
redundancy, such as Hamming or one-hot encoding, where any single failure (at a minimum) can be
detected and a safe response taken.

By selectively using these techniques in the portions of the logic which will have the most damaging
impact in the case of a failure (for example, in important state machines and control-path logic) and
conventional design in those portions of the design where the effect of a failure may only be transient or
will have a less serious impact (for example, in much of the data-path) the overall reliability and security
of the design in the face of SEU or other failures can be increased at a very low cost.

For very high assurance applications, entire blocks of logic can be duplicated at macro level, and voting
circuitry used to detect failures by looking for mismatches in their outputs using fail-safe design
assurance (FSDA) techniques. If malicious faults are also a concern, then time-shifting the calculations
done by the redundant logic can also improve the resilience of the overall system to attacks.

11.2 Environmental Monitoring
SmartFusion2 and IGLOO2 devices do not have any built-in environmental monitors. Supply voltages
are monitored during turn-on, and the boot process is held-off until the voltages reach acceptable levels.

11.3 Partial Reconfiguration Security
SmartFusion2 and IGLOO2 devices can be partially reconfigured as long as atomic units are either fully
reprogrammed, or not reprogrammed at all. The most common scenario for partial reconfiguration with
these devices is to reload just a portion of the eNVM array. The atomic unit for the eNVM array is a page,
consisting of 1024 bits of user data and some additional hidden data such as write-protect flags and
parity bits that are automatically taken care of.

Each security segment can be erased and written as an atomic unit. This includes the three user security
NVM segments:

• User Key segment
• User 2 Key segment
• User Lock segment.
The FPGA fabric is always treated as a single atomic unit. Partial reconfiguration of the FPGA fabric is
not supported.

Programming any part of SmartFusion2 or IGLOO2 device requires an encrypted and authenticated
bitstream containing the desired components. Any of the available programming methods can be used.
The bitstream is authenticated as a whole; it is not possible to remove a portion of it. For example, a page
of eNVM (even though eNVM pages are atomic units) without detection.

User with write privileges to eNVM can also write to its pages from internal FPGA or Cortex-M3 design
application after importing the data. However, using the built-in bitstream loading mechanisms, whether
through IAP or ISP, has the advantages of automating much of the key management and all the
cryptography associated with the encryption and authentication of the incoming data, and is already
designed to be safe from DPA attacks in all SmartFusion2 and IGLOO2 models regardless of their
capacity.

11.4 User Test and Debug Modes
This paragraph discusses the user design debug capabilities of the SmartFusion2 and IGLOO2 devices
from a security viewpoint.
Microchip Proprietary 133

Internal Security Features
These debugging features are powerful tools to help in bringing a design to a working state. They are
equally powerful tools for an adversary to observe the workings of a system, if it is not properly protected.

11.4.1 FPGA Fabric Real-Time Probes and Probe Read/Write Features
SmartFusion2 and IGLOO2 devices offer a unique feature for debugging the user design in the FPGA
fabric in real time. Any two user flip-flop outputs can be routed to external debug pins at one time and
monitored with a high-speed oscilloscope or logic analyzer. Some additional FPGA fabric IP blocks, such
as fabric SRAMs and DSP blocks also have probe points.

In addition, the probe mechanism can also read (peek) and write (poke) values to individual flip-flops or
to banks of flip-flops. It is possible to read and restore the entire state of the design with these features.
These features are available in Live Probe and Active Probes tabs in SmartDebug tool.

Read and write operations and the Live Probe feature are not available during Flash*Freeze mode or
during programming, and are blocked with separate read and write debug lock-bits. The read debug lock-
bit blocks probe-read and live-probe. The write debug lock-bit blocks probe-write. These locks are stored
in the user security segments and can be temporarily overridden by matching the Debug Passcode
(DPK) or the FlashLock Passcode (UPK1).

Additionally, there are fabric cluster row probe read-locks that prevent reading of any probe-points in the
fabric cluster row, as another layer of protection. These locks are part of the FPGA fabric flash segments,
and can only be cleared by erasing the entire FPGA fabric design configuration along with the row locks.
FPGA fabric erasing and overwriting is controlled by additional lock-bits as described in the FPGA Lock-
bits, page 36.

The FPGA configuration non-volatile memory is not accessible via the probe mechanism, and can only
be inferred indirectly by probing the dynamic signals processed by the User's FPGA logic.

11.4.2 System IP Interface (SII) Bus Test Modes
The SII bus has access to various FPGA fabric blocks including:

• LSRAM blocks
• µSRAM blocks
• Built-in self-test logic for the SRAMs
• Clock conditioning circuit (CCC) blocks
• Fabric control circuitry
The DSP blocks are the only type of IP blocks in the FPGA fabric not attached to the SII bus. The eNVM
and eSRAM blocks, which are clearly outside the fabric, are not attached to the SII bus. The SII bus is
used for testing new devices in the Microchip production environment, and by the system controller for
some system services. It also has an external debug interface, accessed via the JTAG or SPI-slave
programming ports.

The debug interface is mostly used by the Microchip user debugging tools to read and write to the FPGA
fabric SRAM blocks.

This debugging feature is disabled by the same read and write debug locks: the read debug lock blocks
reading of the SRAM and the write debug lock blocks writing to the SRAM.

11.4.3 Cortex - M3 Debugging Modes
The debug system of the Cortex-M3 processor is based on the ARM CoreSight architecture. CoreSight
based designs enable the memory and peripheral registers to be examined even when the CPU is
running. The Cortex-M3 debugging features are only available in SmartFusion2 devices, and not in
IGLOO2 devices.

The debug port uses a serial wire JTAG debug port (SWJ-DP). This enables either the JTAG or the Serial
Wire Debug (SWD) to be used for debugging. The SWJ-DP defaults to JTAG mode at power-up and can
be switched to SWD mode by applying a specific sequence to the debug pins.

The trace port interface unit (TPIU) is configured to support Instruction Trace Module (ITM) debug trace
and Embedded Trace Module (ETM) debug trace.

The Cortex-M3 processor provides the following debug Interfaces:
Microchip Proprietary 134

Internal Security Features
11.4.3.0.1 JTAG Debugger
SWJ-DP: JTAG is the industry-standard interface used to download and debug programs on a target
processor, as well as for other functions. It offers access to all of the ARM Cortex-M3 processor
CoreSight debug capabilities. The JTAG pins are shared with the main JTAG tap controller and the
Cortex-M3 JTAG tap controller under control of an external device pin.

11.4.3.0.2 Serial-Wire Debugger
SW-DP: The serial wire debug (SWD) mode is an alternative to the standard JTAG interface. SWD uses
2-pins to provide the same debug functionality as JTAG with no performance penalty, and introduces
data trace capabilities with the Serial Wire Viewer (SWV). The SWD interface pins are overlaid with the
JTAG signals, allowing standard target connectors to be used.

SWV: It provides real-time data trace information from various sources within the Cortex-M3 processor.
This is output via the single SWO pin while the system processor continues running at full speed. SWV
can only be used with the SWD Interface

11.4.3.0.3 Embedded Trace Module (ETM)
The embedded trace macrocell provides high bandwidth instruction trace via four dedicated trace pins.

It also includes trace capabilities as:

• Data Trace: Generating events to record data reads/writes, exceptions/interrupts, and PC (program
counter) sampling information.

• Software Trace: Supporting output of debug messages (for example, printf) to the host.
• Instruction trace: Collecting a sequence of every executed instruction continuously for a selected

portion of your application.
Trace results are generated in the form of packets, which can be of various lengths. The trace
components transfer the packets using the advanced trace bus (ATB) to the TPIU which formats the
packets into the trace interface protocol (TIP). The data is then captured by an external trace capture
device such as a trace port analyzer (TPA).

11.4.4 MSS Debug Features
The MSS bus switch and slaves can be mastered by the system controller, allowing it access to any of
the slaves attached to the bus switch. The system controller provides a debug interface via the external
JTAG or SPI-slave programming ports to read or write via its bus mastering capability. The primary
benefit of this debug interface is to read or write the MSS eSRAM or eNVM memories.

Note: In SmartFusion2 devices, this functionality is duplicated by the ARM Cortex-M3 debug capabilities
and it depends on the debugging tool used as to which underlying hardware debug capability is used.

Some portions of the MSS memory space that are off-limits to the user, such as the system controller
private eNVM pages in -090 and -150 devices, are also always blocked to the debug interface. However,
the hardware firewalls that may optionally block access to all or parts of the eSRAM and eNVM by some
selected bus masters do not block these debug accesses since these transactions are treated as having
originated from the system controller bus master. eNVM page-level write-protect flags are still effective,
though.

As with most of the other debug features, the read debug lock-bit disables reading from any bus slave
(for example, eSRAM or eNVM) via the bus master and the write debug lock disables writing.

11.4.5 Activating and Deactivating Debugging Features
Debugging features are deactivated using user lock-bits. There is one for read operations, one for write
operations, and one for Cortex-M3 -related debugging features. There are also FPGA fabric row locks for
blocking the probe-read and the live-probe real-time-monitoring debug capabilities.

Debug lock-bits (except the row locks) can be temporarily overridden by matching the Debug Passcode.
Microchip recommends to disable plaintext passcode matching (with another lock-bit) and use only the
one-time-use encrypted passcode protocol. Thus, the debugging session is opened up for just one
debugging session, that is to say, until the device is reset or the JTAG reset is applied. The one-time-use
protocol cannot be replayed to unlock debugging again, as a plaintext passcode can be.
Microchip Proprietary 135

Internal Security Features
The row locks can only be overridden by erasing the entire FPGA fabric, including the parts of the user
design.

11.5 Flash*Freeze Service
Flash*Freeze is a system service that places the FPGA fabric into a very low power mode. User design is
stopped, the state of all the FPGA fabric flip-flops is mirrored into lower-power latches in a separate
power domain, and then the FPGA is powered down. When the FPGA is woken up, power is applied to
the FPGA fabric again, the mirrored state is restored to the main fabric flip-flops, and user design
restarted. The power savings are substantial, and the area cost is minimal due to the clever way the low
power latches are designed and integrated with other circuitry. The read-, write-, and live-probe debug
features are inoperable while in Flash*Freeze mode. The FPGA configuration non-volatile memory is
unaffected by Flash*Freeze mode. It is even more secure than during normal operation, since the power
is removed.

11.6 System Controller Suspend Mode
For a few high-reliability applications, such as avionics applications, the system controller can be
suspended once the initial power-on boot sequence is finished. In general, the system controller goes
into a sleep mode and waits for interrupts such as may be generated by system service requests. When
it is put into suspend mode, it does not wake up and respond to any such interrupts. Hence, none of the
system services can be used. The services that are disabled during suspend mode include (for example,
the cryptographic services) the tamper flags or tamper responses such as the zeroization service, and
the Flash*Freeze service.

The suspend operation is controlled by a user configuration lock-bit, and that is set or cleared via the
programming tool.
Microchip Proprietary 136

Security Glossary
12 Security Glossary

12.1 A
12.1.1 Advanced Encryption Standard (AES)

AES is a 128-bit block cipher with a choice of a 128-bit, 192-bit, or 256-bit key.

AES is based on a state of the art algorithm originally called Clarinda chosen in an international
competition and standardized (with selected key sizes) by the United States National Institute of
Standards and Technology on October 2, 2000 as FIPS-197. Although selected, it was not officially
“approved” by the US Secretary of Commerce until Q2 2001.

12.1.2 AES
See Advanced Encryption Standard (AES), page 137.

12.1.3 ANSI
American National Standards Institute is one of the main organizations responsible for furthering
technology standards within the USA. ANSI is also a key player with the International Standards
Organization (ISO).

12.1.4 Authentication
Authentication refers to the verification of the authenticity of either a person or of data. An example is a
message authenticated as originating from its claimed source. Authentication techniques usually form
the basis for all forms of access control to systems and data.

12.1.5 Authorization
Authorization is the process whereby a person approves a specific event or action. In companies with
access rights hierarchies, it is important that audit trails identify both the creator and the authorizer of
new or amended data. It is an unacceptably high risk situation for one to have the power to create new
entries and then to authorize those same entries oneself.

12.2 B
12.2.1 Block Cipher

A block cipher is a type of cipher that works on a block of data. For example, the DES block cipher works
on a block size of 64 bits and the AES block cipher works on a block size of 128 bits.

Most block ciphers operate by alternately performing a reversible (“affine”) non-linear transformation on
groups of bits in the block (often using a small carefully designed look-up table), then permuting bits or
small groups of bits and then mixing in key information all in a series of “rounds” which are repeated a
number of times with different parts of the key or with sub-keys derived from the key.

12.2.1.1 Block Cipher Modes of Operation
Since block ciphers only work on relatively small blocks of data, such as 64 or 128 bits, some form of
unambiguous padding is required for messages that are not exact multiples of the block size, and a
scheme for handling multiple blocks is needed.

One way to pad is to add a one to the end of the message, and then fill with zeroes until the next block
boundary.

The simplest mode for handling multiple blocks of data is just to encrypt each block individually using the
same secret key. This is called Electronic Codebook (ECB) mode, since it is equivalent to using a
hypothetical (albeit humongous) code book with 2128 input-output pairs recorded in it (for the case of a
128-bit block cipher like AES). Though this efficiently scrambles the contents of each block, it is
Microchip Proprietary 137

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/testsuit_zip.zip?__blob=publicationFile
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexc.pdf
http://csrc.nist.gov/groups/ST/toolkit/random_number.html
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

Security Glossary
unsuitable for use in most cases because repeated message blocks are encrypted exactly the same
way; a situation that is all too common in real messages.

Popular modes of operation that overcome this problem include Cipher Block Chaining (CBC) mode. In
this mode, the output ciphertext of each block is used to randomize the input to the next block using a bit-
wise XOR operation. Counter (CTR) mode increments and then encrypts an ever increasing count value,
and then uses the result as keying material that is XORed with the plaintext, as in a stream cipher.

The NIST recommended block cipher modes are documented in Special Publication (SP) 800-38 parts A,
B, C, D, and E:

• SP 800-38A—Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB),
Output Feedback (OFB), and Counter(CTR) modes

• SP 800-38B—A block cipher-based Message Authentication Code (CMAC)
• SP 800-38C—Counter with Cipher Block Chaining Message Authentication Code (CCM) mode
• SP 800-38D—Galois/Counter Mode (GCM) and Galois Message Authentication Code (GMAC)
• SP 800-38E—XEX Tweakable Block Cipher with CipherText Stealing (XTS) mode, for use with

storage devices

12.3 C
12.3.1 CERT

The Computer Emergency Response Team is recognized as the Internet's official emergency team. It
was established in the USA by the Defense Advanced Research Projects Agency (DARPA) in 1988
following the Morris computer Worm incident, which crippled approximately 10% of all computers
connected to the Internet.

CERT is located at the Software Engineering Institute, a US government funded research and
development center operated by Carnegie Mellon University, and focuses on security breaches, denial-
of-service incidents, providing alerts, and establishing incident-handling and avoidance guidelines. CERT
also covers hardware and component security deficiencies that may compromise existing systems.

CERT is the publisher of Information Security alerts, training, and awareness campaigns. CERT website
is www.cert.org.

12.3.2 Checksum
Checksum is a technique whereby the individual binary values of a string of storage locations on your
computer are totaled, and the total retained for future reference. On subsequent accesses, the summing
procedure is repeated, and the total compared to the one derived previously. A difference indicates that
an element of the data has changed during the intervening period. Agreement provides a high degree of
assurance (but not total assurance) that the data has not changed during the intervening period.

A checksum is also used to verify that a network transmission has been successful. If the counts agree it
is assumed that the transmission was completed correctly.

A checksum also refers to the unique number that results from adding up every element of a pattern in a
programmable logic design. Typically either a four or eight digit hex number, it is a quick way to identify a
pattern, since it is very unlikely any two randomly selected patterns will ever have the same checksum.
Because they are linear functions, checksums are virtually useless in the face of a malicious adversary
who can easily find two messages with the same checksum.

See also the entries for Cyclic Redundancy Check (CRC), page 140, Hash Function, page 144, and
Message Digest, page 145.

12.3.3 Cipher
A cipher is the generic term used to describe a means of encrypting data. In addition, the term cipher can
refer to the encrypted text itself (ciphertext, as opposed to the unencrypted plaintext). Encryption ciphers
will use an algorithm, which is a complex mathematical calculation required to scramble the text and a
key. Knowledge of the key allows the encrypted data to be decrypted.
Microchip Proprietary 138

www.cert.org

Security Glossary
Ciphers scramble bits or digits or characters or blocks of bits, whereas codes replace natural language
words or phrases with another word or symbol. Modern block ciphers like AES use alternating non-linear
substitutions and permutations repeated for a number of “rounds” to encrypt the data. AES, for example,
does byte-wide operations on the contents of a 16-byte data block for 10, 12, or 14 rounds, depending
upon the key size chosen. Modern ciphers such as AES can be very resistant to mathematical
cryptanalysis, requiring an infeasible number of messages encrypted under the same key and a
practically infinite amount of computing power to break them.

12.3.4 Code
Codes are a technique for encrypting data, usually in a natural language such as English, by substituting
each word or phrase with a secret word or symbol. Because codes require the cumbersome distribution
of large code books (essentially a dictionary-like look-up table) to all the participants they are seldom
used. Ciphers are used instead; they work at the alphabet or binary level and require only a relatively
short (256-bit) key to be shared by the users.

Codes can be broken through the use of word frequency analysis, and by correctly guessing plaintext
words from the message. For example, it may be known that a weather report is sent at a certain time
each day, and by examining several of these messages from known locations the code for “rain” can be
guessed. Codes were traditionally used both for confidentiality, and to make telegraph messages, which
were charged by length, shorter. Sometimes codes are cascaded with a cipher, a weak form of double-
encryption.

12.3.5 Cloning
Cloning is the act of copying a design without making any changes. No understanding of the design or
the ability to modify the design is required.

12.3.6 Configuration
The act of programming an FPGA. For SRAM-based FPGAs this must be done at each system power-up
to make it functional. Configuration of SRAM FPGAs require the use of an external configuration device,
which is typically a PROM (see the entry for PROM) or other type of nonvolatile memory which must be
present in the system.

Since they are nonvolatile, flash and anti fuse based FPGAs only require configuring once, usually during
the system assembly process. Flash FPGAs have the option of being reconfigured but anti fuse FPGAs
are intrinsically one-time programmable.

12.3.7 Corrupt Data
Corrupt data is data that has been received, stored, or changed, so that it cannot be read or used by the
program that originally created the data.

12.3.8 CPLD
A complex programmable logic device is usually a simple low density programmable logic solution. It
typically contains macrocells that are interconnected through a central global routing pool. This type of
architecture provides moderate speed and predictable performance. CPLDs are traditionally targeted
towards low end consumer products.

12.3.9 CRC
See Cyclic Redundancy Check (CRC), page 140.

12.3.10 Cryptography
The subject of cryptography is primarily concerned with maintaining the privacy of communications and
modern methods use a number of techniques to achieve this. Encryption is the transformation of data
into another usually unrecognizable form. The only means to read the data is to decrypt the data using a
secret key. Other common cryptographic services include ensuring data integrity, authentication of data
sources, and digital signatures.
Microchip Proprietary 139

Security Glossary
12.3.11 Cyclic Redundancy Check (CRC)
A class of algorithms for computing a short digest value from an arbitrarily long message, similar to a
checksum or hash. CRC may also refer to the resulting digest value itself. The “cyclic” in CRC refers to
the underlying cyclic codes describing the mathematics of the algorithm. More precisely, CRC algorithms
use linear operations in a Galois Field (usually a binary extension field) which are similar to polynomial
division using a generator polynomial.

Common CRC algorithms and their generator polynomials have been standardized for many uses, such
as detection of bit errors in data transmission. CRC codes are efficient in detecting large bursts of errors,
which matches well to some types of storage media or transmission channels. Examples of some
standardized CRC algorithms are CRC-16-CCITT, which is used by Bluetooth (personal area wireless
network), CRC-32-IEEE, which is used in 802.3 (wired Ethernet), and MPEG-2 (video).

Because they are linear operations, they are unsuitable for use in the presence of malicious attacks. An
attacker can easily create messages with arbitrary CRC digest values. Cryptographic hash functions
must be used instead of a CRC in applications such as digital signatures, data integrity, and
authentication where there might be non-random errors (malicious attacks).

See also the entry for Hash Function, page 144.

12.4 D
12.4.1 Data Encryption

Data encryption is a means of scrambling the data so that it can only be read by the person(s) holding the
key—a password of some sort. Without the key, the cipher (hopefully) cannot be broken and the data
remains secure. Using the key, the cipher is decrypted and the data is returned to its original value or
state.

Using the DES cipher, a key from approximately 72,000,000,000,000,000 possible key variations is
randomly generated and is used to encrypt the data. The same key must be made known to the receiver
so the data can be decrypted at the receiving end. DES can be broken in a matter of hours using a brute-
force search because the number of possible keys is too low by today’s standards.

See also Public Key Cryptography, page 146.

12.4.2 Data Encryption Standard (DES)
An unclassified cryptographic algorithm adopted by the U.S. National Bureau of Standards (NBS, now
called the National Institute of Standards and Technology, NIST) for public and government use as
Federal Information Processing Standard (FIPS) 46. It is a 64-bit block cipher with a 56-bit effective key
length.

DES is a data encryption standard for the scrambling of data to protect its confidentiality. It was
developed by IBM in cooperation with the United States National Security Agency (NSA) and published
in 1974 by NIST. It has become extremely popular and, because at the time it was thought to be so
difficult to break, with approximately 72,000,000,000,000,000 possible key variations, was banned from
export from the USA. However, restrictions by the US Government on the export of encryption
technology were lifted in 2000 to the countries of Europe and a number of other countries.

DES was cracked by researchers in 96 days in 1997 by the DESSHALL project and again in 41 days by
distributed.net, both projects using thousands of distributed personal computers, where they showed that
DES was susceptible to brute force attacks. One of the final blows to the short 56-bit key length of DES
was in 1998 when the Electronic Frontier Foundation (EFF) and Cryptography Research, Inc. (CRI)
discovered several DES keys, first in 56 hours and then later in only 22 hours, using a custom-designed
computer called DES Cracker. The industry then turned to Triple DES, which uses DES three times, as a
short term standard to secure transactions. Generally sluggish performance caused an outcry that
resulted in a new standard. The NIST has since standardized the Advanced Encryption Standard (AES),
based on the Rijndael algorithm, as recommended for all new block cipher applications, although Triple
DES is still used extensively in the finance industry for legacy reasons.
Microchip Proprietary 140

Security Glossary
12.4.3 Decryption
The process by which encrypted data is restored to its original form in order to be understood/usable by
another computer or person.

12.4.4 Denial of Service
Denial of service (DoS) attacks deny service to valid users trying to access a site. Consistently ranked as
the single greatest security problem for IT professionals, DoS attack is an Internet attack against a
website whereby a client is denied the level of service expected. In a mild case, the impact can be
unexpectedly poor performance. In the worst case, the server can become so overloaded as to cause a
crash of the system.

DoS attacks do not usually have theft or corruption of data as their primary motive and will often be
executed by persons who have a grudge against the organization concerned. The following are the main
types of DoS attack:

• Buffer Overflow Attacks whereby data is sent to the server at a rate and volume that exceeds the
capacity of the system, causing errors. This could be just a single long message that exceeds the
size of the receiving buffer.

• SYN Attack. This takes places when connection requests to the server are not properly responded
to, causing a delay in connection. Although these failed connections will eventually time out, they
can result in denial of access to other legitimate requests for access should they occur in volume.

• Teardrop Attack. The exploitation of features of the TCP/IP protocol whereby large packets of data
are split into bite-sized chunks, with each fragment being identified to the next by an offset marker.
Later the fragments are supposed to be reassembled by the receiving system. In the teardrop
attack, the attacker enters a confusing offset value in the second (or later) fragment, which can crash
the recipient's system.

• Ping Attack. This is where an illegitimate attention request or Ping is sent to a system, with the
return address being that of the target host (to be attacked). The intermediate system responds to
the Ping request but responds to the unsuspecting victim system. If the receipt of such responses
becomes excessive, the target system will be unable to distinguish between legitimate and
illegitimate traffic.

• Viruses. Viruses are not usually targeted but where the host server becomes infected, it can cause
a DoS.

• Physical Attacks. A physical attack may be little more than cutting the power supply, or perhaps the
removal of a network cable.

12.4.5 DES
See Data Encryption Standard (DES), page 140.

12.4.6 Differential Power Analysis (DPA)
An analysis technique that relies upon multiple measurements of a security device's instantaneous
power consumption in order to recreate a secret being manipulated inside the device. Simple and
Differential Power Analysis was first reported by Paul Kocher et al in 1990. Generally this class of
techniques uses statistical methods to amplify the effects of small unintentional leakages of the secret
information in power consumption measurements, buried in large amounts of noise.

For example, if the same secret key is used to process multiple independent blocks of data, a DPA attack
might be mounted to determine the secret key using anywhere from a handful of power consumption
traces to over a million, depending upon the magnitude of the leak, the amount of noise which may be
obscuring the secret data, and what countermeasures are being used. Systems that handle large
amounts of data using the same key, or which can be repeatedly be given random or chosen input data
which is then processed using the secret key, are especially vulnerable to DPA.

12.4.7 Diffie-Hellman Key Exchange
The Diffie-Hellman key exchange algorithm, named after Whitfield Diffie and Martin Hellman, was the first
public key algorithm ever published, in 1976. The third inventor was Ralph Merkle. With it, they
revolutionized the field of cryptology, and made secure communication over the Internet feasible.
Microchip Proprietary 141

Security Glossary
It is based upon the difference in difficulty of a particular function and its inverse, namely the ease of
exponentiation and the difficulty of computing the discrete logarithm (both) in a finite field. When the
numbers involved are large (i.e., over one thousand bits) the difference in difficulty is approximately 30
orders of magnitude, and grows with the size of the numbers.

The Diffie-Hellman protocol allows two entities (computers or people) who do not have nor have ever had
a secure channel between them to compute a common secret using public information they send to each
other. Anyone eavesdropping on the conversation would find it computationally infeasible to learn the
shared secret, even though they see all the messages. This is because each of the parties to the
computation holds one secret they do not transmit, but use in the exponentiation formula to compute a
value that is practically impossible to reverse; and this is the value that is sent over the insecure channel.

Prior to this invention, secret communications always involved having a shared secret key. This shared
key had to be transmitted securely between the parties by a trusted courier or some similar means before
encrypted communication over an insecure medium such as radio or telegraph could be done using the
shared secret key. Since each possible pair of entities might need a unique shared key, the system did
not scale well to large groups where the number of combinations can be exceedingly large.

12.4.8 Digital Signatures
With the advent of public key cryptography a number of new cryptographic services were born, with
digital signatures perhaps being the most important.

The concept of digital signatures is that the signer performs a computation using a secret key that only
the signer knows, but which can be confirmed by anyone having the matching public key.

Using the RSA cryptosystem, this is done by interchanging the usual role of the private and public keys:
In “normal” encryption, any sender encrypts the message using the recipient's public key and the
recipient decrypts it using the private key that only the recipient knows. In the RSA digital signature
algorithm, the signer “encrypts” the message using the private key that only the signer knows, and any
verifier can “decrypt” the signature and verify it is the same as the message using the freely available
public key.

Since only the signer has a copy of the private key, it is difficult for the signer to repudiate any valid
signatures. This is different from symmetric (shared key) systems where at least two parties must be in
possession of a key for it to have any use.

In practice, the whole message is not signed. Because of computational efficiency, and to reduce the size
of the signature that has to be transmitted along with the message, a hybrid scheme is used. The
message is first hashed; that is, a short digest is computed from the message, and it is this digest that is
signed using the private key. The verifier also hashes the received message, and verifies the signature
matches the hash using the public key.

There are variations of this hybrid signature scheme using Elgamal and elliptic curve cryptosystems.

12.4.9 Disable
Disabling is the process by which hardware or software is deliberately prevented from functioning in
some way. For hardware, it may be as simple as switching off a piece of equipment, or disconnecting a
cable. It is more commonly associated with software, particularly shareware or promotional software,
which has been supplied to a user at little or no cost, to try before paying the full purchase or registration
fee. Such software may be described as “crippled”, in that certain functions, such as saving or printing
files, are not permitted. Some in-house development staff may well disable parts of a new program, so
that the user can try out the parts that have been developed, while work continues on the disabled
functions.

Disabling is also often used as a security measure. For example, the risk of virus infection through the
use of infected floppy diskettes can be greatly reduced by disconnecting a cable within the PC, thereby
disabling the floppy drive. Even greater protection is achieved by removing the drive altogether, thereby
creating a diskless PC.
Microchip Proprietary 142

Security Glossary
12.5 E
12.5.1 Electromagnetic Analysis (EMA)

A form of side-channel analysis where the unintentional information leakage from the cryptographic
system is via electromagnetic (EM) emissions. Electromagnetic emissions have been a well known
source of leakage, prompting the US government to specify EM requirements for secure applications in
what are called TEMPEST requirements. In one example of EM leakage, the van Eck radiation of a
display terminal is read from a distance of hundreds of meters using simple equipment.

Many power analysis (PA) classifications have an EMA analog where a similar attack can be performed
using essentially the same method for EMA as for PA. For instance, differential electromagnetic analysis
(DEMA) is the analog of differential power analysis (DPA), and can be used to extract the AES key, for
example, from an unprotected device using an RF antenna and amplifier instead of a current monitor.
One important difference is that in EMA the usable signal is often more strongly modulated on harmonics
of the fundamental frequencies due to the better propagation properties of higher frequencies; therefore
demodulation is often used to bring these harmonic-related signals back to baseband before completing
the analysis.

12.5.2 Elliptic Curve Cryptography (ECC)
Elliptic curve cryptography is a public key cryptographic system defined using elliptic curve polynomials
in finite fields. The important principle is related to the Diffie-Hellman problem of finding discrete
logarithms in finite fields, but instead of exponentiation the group operator is scalar point multiplication.
Since some of the most efficient algorithms available for finding discrete logarithms do not work on elliptic
curves, the key sizes required for elliptic curves can be much shorter than for the Diffie-Hellman (or RSA)
cryptosystems for a roughly equivalent security strength.

12.5.3 Encryption
The process by which data is temporarily rearranged into an unreadable or unintelligible form for
confidentiality, transmission, or other security purposes.

12.5.4 Entropy
In information theory, entropy is a measure of the uncertainty of a system. For example, if all the bits of
an n-bit binary number are unbiased (equal probability of a one or zero) and independent (not correlated
with any other bits) and are unknown, then the number “contains” n bits of entropy and is said to have full
entropy.

In this case, there would be no better method of guessing the number than a brute force search
attempting every possible value (2n values), with an expected match after about one half the values had
been tried. However, if the bits were known to be biased (e.g., 1/3 were randomly selected as zero, and
2/3 as one), then the entropy would be less than n bits and a more efficient search could be performed
that started by guessing more ones than zeroes, with an expected match much earlier than in the
unbiased case.

In cryptographic applications it is usually critically important that random numbers, such as those used
for secret keys, have full entropy.

There is a beautiful and unexpected relationship between entropy as used in information theory and
entropy as used in the physical sciences (such as thermodynamics), but in most practical applications
the two uses are distinct.

12.6 H
12.6.1 Hacker

A hacker is an individual whose primary aim in life is to penetrate the security defenses of large,
sophisticated, computer systems. A truly skilled hacker can penetrate a system right to the core and
withdraw again without leaving a trace of the activity. Hackers are a threat to all computer systems that
allow access from outside the organization's premises, and the fact that most hacking is just an
Microchip Proprietary 143

Security Glossary
intellectual challenge should not allow it to be dismissed as a prank. Clumsy hacking can do extensive
damage to systems even when such damage was not intentional.

Statistics suggest that the world's primary hacker target, the Pentagon, is attacked, on average, once
every three minutes. How many of those attacks are from hackers and how many from Government
Agencies, criminals, and terrorists, around the world is another question entirely.

12.6.2 Hash Function
A cryptographic hash, also called a message digest, is a publicly-known function that takes as its input a
message of (almost) any length and compresses it into a random-like short message called a digest or
fingerprint. “Hash” may refer to either the function or the output digest value itself. Commonly used digest
output lengths are from 160 to 512 bits. Hash functions are important components of integrity,
authentication, and digital signature schemes, amongst other uses.

A good cryptographic hash is required to have several properties: 1) pre-image resistance: it must be
infeasible to determine any part of the input message from the output digest; 2) second pre-image
resistance: it must be infeasible to generate any input message with a given output digest; 3) collision
resistance: it must be infeasible to find any two input messages with the same output digest. These imply
a strong one-way-ness property for cryptographic hash functions. For a good hash function, if even one
bit of the input message is changed, roughly one-half of the output bits will change.

Commonly used hash functions are MD5, SHA-1, and the SHA-2 family of hashes, including SHA-256,
SHA-384, and SHA-512. Though still in widespread use, MD5 is considered broken, and SHA-1 has
some serious weaknesses. The US government agency NIST is recently completed a competition for a
new family of hash functions called SHA-3 that must have better security than the current standard hash
functions. An algorithm called Keccak was selected as the winner. It uses different principles than most
prior hash functions, and is very efficient in hardware implementations.

Cryptographic hashes are related to, but not the same as hashes used in computer science for creating
tables for looking up data by value. Those hash functions do not have the three security properties
(above) required for a cryptographic hash and as a result must never be used in a cryptographic
(adversarial) setting.

See also the entries for Cyclic Redundancy Check (CRC), page 140 and Security Strength, page 147.

12.6.3 HEX / Hexadecimal
Hexadecimal, or hex, is a numbering system using base 16 (as opposed to the usual base 10). Hex is a
useful way to express binary computer numbers. A byte is normally expressed as having 8 bits. Two hex
characters represent eight binary digits, also known as a byte.

12.7 I
12.7.1 IAP

See In-Application Programming (IAP), page 144.

12.7.2 In-Application Programming (IAP)
IAP is the ability of a microcontroller to run an application that reconfigures (reprograms) its own
nonvolatile program code storage. Some flash FPGAs having a built-in microcontroller natively support
both IAP and ISP.

See also the entries for In-System Programming (ISP), page 144.

12.7.3 In-System Programming (ISP)
ISP is the ability to program and reprogram an FPGA that is mounted on a circuit as part of a functional
system. Flash and SRAM-based FPGA technologies support ISP.

12.7.4 Intellectual Property (IP)
Intellectual property is defined as creative, technical, and intellectual products, often associated with
custom circuit designs implemented in ASIC or programmable logic architectures.
Microchip Proprietary 144

Security Glossary
12.7.5 Invasive Attack
Invasive attack is an attack on a semiconductor to determine its functionality and requires physical entry
to the part. Typical methods include probing, etching, and FIB (focused ion beam) intrusion.

See also the entries for Noninvasive Attack, page 146 and Semi-Invasive Attack, page 148.

12.7.6 ISP
See In-System Programming (ISP), page 144.

12.8 M
12.8.1 Malicious Code

Malicious code includes all and any programs (including macros and scripts) that are deliberately coded
in order to cause an unexpected (and usually unwanted) event on a PC or other system. However,
whereas antivirus definitions (vaccines) are released weekly or monthly, they operate retrospectively. In
other words, someone's PC has to become infected with the virus before the antivirus definition can be
developed. In May 2000, when the Love Bug was discovered, although the antivirus vendors worked
around the clock, the virus had already infected tens of thousands of organizations around the world,
before the vaccine became available.

12.8.2 Message Authentication Code
A Message Authentication Code (MAC) is similar to a hash function in that it computes a random-like
output digest from any size input message, but unlike a hash, which is a public function that anyone can
compute, a MAC uses a secret key so that only those in possession of the secret can correctly create or
verify it.

12.8.3 Message Digest
See Hash Function, page 144.

12.8.4 Modes of Operation
See Block Cipher Modes of Operation, page 137.

12.9 N
12.9.1 National Institute of Standards and Technology (NIST)

NIST was formerly the National Bureau of Standards (NBS). NIST is the government agency that sets
weights and measures for the United States. It is an agency of the Commerce Department. In security
and cryptography, NIST works closely with the National Security Agency (NSA), a part of the Defense
Department, to set government standards and make recommendations for private sector use.

12.9.2 Nonce
A number used only once. Nonces are an important element of many protocols because they help
protect against replay attacks. By incorporating a unique nonce in the protocol the attacker cannot replay
data from an earlier run of the protocol that, by definition, used a different nonce. Nonces are also often
required for initialization vectors such as those used with some block cipher modes of operation, or
stream ciphers. If the same initialization vector is used with the same key on more than one message,
the security of the cipher mode can be very seriously compromised.

Common ways of generating nonces are by counting, using a time stamp, or using a sufficiently large
random number whose chance of repeating is vanishingly small. The best choice depends upon the
circumstances, because each of these has its own difficulties and advantages. For instance, in many
systems it is very difficult to be sure of a secure time source. With a counter, the issue is to make sure
that it is never reset or a count value used twice, even if the power supply is tampered with. In other
systems there may not be a good source of entropy with which to create sufficiently large random
numbers.
Microchip Proprietary 145

Security Glossary
12.9.3 Noninvasive Attack
A noninvasive attack is an attack on a semiconductor to determine its functionality that does not require
physical entry to the part. Types of attacks include varying voltage levels to gain access, and side-
channel analysis.

See also the entries for Invasive Attack, page 145, Semi-Invasive Attack, page 148, and Side-Channel
Analysis, page 148.

12.9.4 Nonvolatile
A device is nonvolatile if it does not lose its contents when its power is removed. Nonvolatile memory is
useful in microcomputer circuits because it can provide instructions for a CPU as soon as the power is
applied, before secondary devices, such as disk, can be accessed. Nonvolatile memories include metal-
mask read-only memory (ROM), fusible-link programmable ROM (PROM), ultra-voilet-erasable
electrically-programmable ROM (UV-EPROM), and electrically-erasable PROM (EEPROM) including
“flash” memory, a special type of EEPROM where the memory is erased in large blocks rather than by
individual bytes or words, making it much faster and also less expensive.

12.10 O
12.10.1 Overbuilding

Unscrupulous contract manufacturers (CM) will overbuild on a program or contract and sell the excess
on the gray market.

12.11 P
12.11.1 Power Analysis

See Side-Channel Analysis, page 148 (a super-set of power analysis), Simple Power Analysis,
page 148, and Differential Power Analysis (DPA), page 141 (both sub-types).

12.11.2 Public Key Cryptography
Public key cryptography is based upon the revolutionary principle that instead of using a shared secret
key for two or more parties to communicate privately, as in all ciphers and codes before 1976, a key can
have two parts: a public part and a secret part. The public part may be communicated to anyone and
does not have to be kept secret. It can be used for encryption, thus allowing anyone in the world to
encrypt a message intended for a given recipient. Only the recipient, namely the holder of the secret part
of the key, can perform the decryption.

The first public key scheme, called the Diffie-Hellman key exchange algorithm, was published by
Whitfield Diffie, Martin Hellman, and Ralph Merkle, in which they used mathematics based upon the
difficulty of the discrete logarithm problem to generate a shared secret key between two parties that had
no prior secret communication. This was later expanded into the Elgamal encryption system for
enciphering messages. Shortly after, Ron Rivest, Adi Shamir, and Len Adleman published the now well
known RSA encryption scheme named after them, based upon the difficulty of factoring large primes.

Besides greatly simplifying key distribution between anonymous parties, public key cryptography also
introduced a new cryptographic service called digital signatures. The holder of the secret key “signs” a
message with a message-dependent code only they can generate, and anyone in possession of the
public key can verify the integrity of the data and the correctness of the signature. Since only one person
holds the private key (unlike in symmetric key systems where at least two people have the key), it makes
it much more difficult for the signer to later repudiate their signature.

Though attributed to the inventors mentioned above who were the first to publish their results, it is now
known that public key cryptography had been invented a few years earlier by James Ellis, Clifford Cocks
and Malcolm Williamson, employees of the General Communications Headquarters (GCHQ), a British
government agency, which kept their results secret and largely failed to recognize the importance of the
discoveries.
Microchip Proprietary 146

Security Glossary
12.12 R
12.12.1 Random Numbers

Random numbers are used extensively in cryptography, for generating secret keys and nonces, for
example. In most implementations, they are binary numbers. The random numbers must be unknown
and unpredictable to an adversary. An n-bit binary number which is completely unpredictable and
unknown to an adversary is said to contain n bits of entropy; if the adversary has a better than 50%-50%
chance of guessing some of the bits, the entropy is reduced.

True random numbers are derived from an unpredictable physical source, most often some form of
electrical noise although radiation decay and some other physical processes are also sufficiently random
though less practical. If each bit generated by the physical process is unbiased and uncorrelated with all
the other bits then it has one bit of entropy. By gathering many such bits, one can accumulate a large
amount of entropy.

Pseudo-random numbers are derived from a deterministic computational process. With good algorithms
pseudo-random bits can be computationally indistinguishable from true random bits. However, no matter
how many such bits are generated, the entropy content is limited by the lesser of the initial true random
seed used to initialize the computation process and the number of bits of internal state storage. If an
adversary were able to learn the internal state of a pseudo-random generator (by guessing or other
means) he could predict all future values, and may even learn something about past values.

Important standards related to random numbers include:

• SP 800-90—(NIST) Recommendation for Random Number Generation Using Deterministic Random
Bit Generators

• FIPS 140-2 Annex C—(NIST) Approved Random Number Generators for FIPS PUB 140-2
• SP 800-22—(NIST) A Statistical Test Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications
• Test Suite—(BSI) Random number Test Suite
• AIS-31—(BSI) Functionality classes and evaluation methodology for physical random number

generators

12.12.2 Reverse Engineering
Reverse engineering is the act of examining a design to understand exactly how it works, with the intent
to copy the design. The design is then altered to differentiate it from the original design for the purpose of
improving upon it or to prevent legal action because of the theft, or to insert a “Trojan Horse”.

12.13 S
12.13.1 Security Strength

Security strength is a rough measure of the work effort, log base 2, required to attack a given
cryptographic problem. For a well-designed block cipher, the best approach an attacker has is a brute
force search over all the possible keys. In this case the security strength, measured in bits, is the same
as the length of the key (in bits). For example, AES-128 (the version of AES using a 128-bit key) has an
estimated security strength of 128 bits since the best known attack is a brute force search of all 2128

keys.

For a well-designed hash function, the security strength varies depending upon which of the security
properties is being depended upon in its usage (see the entry for Hash Function). For pre-image
resistance and 2nd-pre-image resistance, the security strength is the same as the digest output size (in
bits). For collisions, the security strength is very nearly half the number of bits in the output. The reduced
strength is due to the Birthday attack, which is applicable in this situation.

For public key algorithms, the security strength is a complicated function of the key size but also depends
upon the most efficient attack algorithm known. Since the most efficient attacks on RSA or Elgamal do
not work on elliptic curve algorithms, shorter keys can be used with elliptic curve cryptography for a given
security strength. For elliptic curve algorithms, the keys must be roughly twice as long as for symmetric
algorithms such as AES. RSA, Diffie-Hellman, and Elgamal all require comparable (to each other) but
Microchip Proprietary 147

Security Glossary
much longer keys. For example, a one-thousand bit RSA key is roughly equivalent in security strength to
an 80-bit symmetric key and a 160-bit elliptic curve key.

Not all block ciphers and hash functions have the ideal security strength shown above. If some attacks
are known that reduce the work factor to find the key (or pre-image, or collision, etc.) caused by a
weakness in the algorithm, then the security strength is correspondingly downgraded. For instance, the
MD5 hash algorithm design in 1994, which has a digest size of 128 bits, must have a collision resistance
security factor of 64 bits (which in itself is marginal), but attacks had been found by 2006 that reduced the
work factor to less than 224, (one trillion times easier) making it unsuitable for cryptographic applications
since the latest/best attack algorithm known can find an MD5 collision in less than one minute on a
standard notebook computer.

Security strength is often equated with the length of time the algorithm or secret data will be used. For
short term (ephemeral) use, 80 bits may be enough for strong security, but for data that has to last a few
years 100 bits or more is recommended, and for data that may have to keep secret for several decades,
128 bits is recommended. This is because attacks only get better, and computing equipment has been
getting faster and cheaper due to Moore's Law.

12.13.2 Semi-Invasive Attack
A semi-invasive attack is an attack on a cryptographic device such as an integrated circuit which may
involve removing all or part of the package, but does not require internal probing or cutting of circuit lines.
Instead, the attack is carried out using optical observations or by injecting (temporary) faults optically,
which do not require the active device to be touched. This family of attacks is generally less expensive to
conduct than invasive attacks but more expensive than other types of fault attack or side-channel
analysis.

See also the entries on Invasive Attack, page 145, Noninvasive Attack, page 146, and Side-Channel
Analysis, page 148.

12.13.3 Side-Channel Analysis
Side-channel analysis is a noninvasive (or occasionally a semi-invasive) analysis technique which
attempts to break the security of a cryptographic system by observing information unintentionally leaked
via side-channels. These side-channels could be power consumption, electromagnetic emissions, optical
emissions, thermal signatures, or timing of response times, for example. As all “real world”
implementations of cryptographic systems have unintended side-channels, they represent a serious
threat to the security provided by these systems.

See also Simple Power Analysis, page 148, Differential Power Analysis (DPA), page 141, and
Electromagnetic Analysis (EMA), page 143.

12.13.4 Simple Power Analysis
Simple power analysis is a side-channel analysis technique based upon one or just a few measurements
of a security device's power consumption. Information about secrets being manipulated inside the device
are unintentionally leaked out via the instantaneous power consumption of the device. In some cases, a
secret key can be read more-or-less directly from simple observations of a single oscilloscope trace.

12.13.5 SRAM FPGA
An SRAM FPGA is an FPGA that utilizes SRAM (Static Random Access Memory) technology to make
the interconnect and to define the logic. SRAM FPGAs are re programmable, volatile, and require a boot-
up process to initialize. SRAM FPGAs are generally considered less secure than flash or anti fuse
technology based FPGAs because the design configuration bitstream has to be loaded from an external
component at each power-up cycle.

See also Differential Power Analysis (DPA), page 141.
Microchip Proprietary 148

Security Glossary
12.14 T
12.14.1 Tamper Detection

Tamper detection is an alarm set off when any of a number of possible tamper detection sources is
triggered. Common tamper detectors for high-end security integrated circuits include voltage, clock and
temperature alarms, internal redundancy violations, physical tampering alarms such as a failure of a
mesh covering important circuits, etc.

See also the entry on Zeroization, page 149, which is one possible response to a tamper detection alarm.

12.14.2 Tamper Resistant Packaging
Often used in smart card systems, tamper resistant packaging is designed to render electronics
inoperable if the product is physically (invasively) attacked.

See also the entries on Zeroization, page 149 and Tamper Detection, page 149.

12.15 V
12.15.1 Volatile

As applied to memory technology, volatile memory loses its data when power is removed. SRAM and
DRAM technologies are volatile, while flash, EEPROM, and fuse-type memories are nonvolatile. The
inability of an SRAM-based FPGA to maintain its configuration when power is removed is a function of
the volatile memory technology upon which it is based. Thus, SRAM-based FPGAs require additional
external nonvolatile memory components, and the sensitive data must be securely transported from the
external device to the FPGA at each power-up cycle.

12.16 Z
12.16.1 Zeroization

Active zeroization is used to erase critical information, followed by verification that the erase operation
was successful. It can be used as one of many possible responses to a tamper detection alarm.

See also the entry for Tamper Detection, page 149.

Passive zeroization is erasure of nonvolatile memory by removal of the power source. Verification may
be infeasible in this case.
Microchip Proprietary 149

	1 Revision History
	1.1 Revision 13.0
	1.2 Revision 12.0
	1.3 Revision 11.0
	1.4 Revision 10.0
	1.5 Revision 9.0
	1.6 Revision 8.0
	1.7 Revision 7.0
	1.8 Revision 6.0
	1.9 IGLOO2 Document List of Changes (Outdated)
	1.10 SmartFusion2 Document List of Changes (Outdated)

	2 Security Concerns in FPGAs
	2.1 Design Security
	2.2 Data Security
	2.3 Design Security Concerns
	2.3.1 Cloning
	2.3.2 Overbuilding
	2.3.3 Reverse Engineering
	2.3.4 Counterfeiting

	2.4 Data Security Concerns
	2.5 Design Security Impact on Data Security

	3 Security Features Overview
	3.1 Security Architecture
	3.2 SmartFusion2 Security Architecture
	3.3 IGLOO2 Security Architecture
	3.4 System Controller for Programming and Various Services
	3.5 Hardware Cryptographic Accelerators
	3.6 AES-128/256 Hardware Accelerator
	3.7 SHA-256 Hardware Accelerator
	3.8 Non-Deterministic Random Bit Generator (NRBG)
	3.9 Elliptic Curve Cryptography Hardware Accelerator (P- 384 Curve)
	3.10 SRAM-PUF Secure Key Storage and Random Seed Generation Engine
	3.11 Design Security Features
	3.12 Cryptographic Design Security
	3.12.1 Bitstream Protection and Key Management
	3.12.2 FPGA Hardware Access Control
	3.12.3 Supply Chain Assurance

	3.13 Anti-Tamper Protection
	3.14 Data Security Features
	3.15 Cryptography Research Incorporated (CRI) DPA Patent Portfolio License
	3.16 Summary of SmartFusion2 and IGLOO2 FPGA Security Features

	4 Cryptographic Security Features
	4.1 SmartFusion2 and IGLOO2 FPGAs Programming Model
	4.1.1 Security Segment
	4.1.2 User Security Segment
	4.1.3 Fabric Configuration Segment
	4.1.4 FPGA Fabric
	4.1.5 eNVM Array

	4.2 Bitstream Security
	4.2.1 Bitstream Encryption Overview
	4.2.2 Bitstream Content
	4.2.3 Programming Modes

	4.3 Key Management
	4.3.1 Key Modes (Encryption/Authentication Key Selection)
	4.3.2 Default Key Mode
	4.3.3 Factory Key Mode & Associated Symmetric Key Databases
	4.3.4 Factory ECC Public Key Modes
	4.3.5 User Symmetric Key Modes
	4.3.6 User ECC Key Modes (KUP and KUPE)

	4.4 Authorization Code Component and Key Mode
	4.4.1 Use of the Authorization Code to Prevent Overbuilding
	4.4.2 Authorization Code Key Mode
	4.4.3 Authorization Code with ECC Key Modes

	4.5 Support for Configuration Variations
	4.6 Versioning (Bitstream Re-Play Protection)
	4.7 Key Confirmation/Verification Protocols
	4.8 Passcode Matching Protocols
	4.8.1 Plaintext Passcode Matching Protocol
	4.8.2 One-Time-Use Encrypted Passcode Matching Protocol

	4.9 FlashLock
	4.10 Permanent FlashLock (OTP Mode)

	5 FPGA Hardware Access Controls
	5.1 FlashLock Passcode Security (256-bit)
	5.2 FPGA Lock-bits
	5.2.1 Security Segment Lock-bits (Erase/Write/Verify)
	5.2.2 Passcode Locks (Permanent Locks)
	5.2.3 Fabric Programming Erase Verify Read Lock-bits
	5.2.4 Key-Mode Lock-bits
	5.2.5 Lock-bit to Require One-Time-Use Encrypted Passcodes (Prohibit Plaintext Passcode Matching)
	5.2.6 Programming Port Lock-bits
	5.2.7 Lock-bit to Deactivate Debugging Features
	5.2.8 Cryptographic Services Lock-bits
	5.2.9 Hardware Firewall Lock-bits

	5.3 Memory Access Controls
	5.4 Software MPU
	5.4.1 Software eNVM User Page-Write Locks
	5.4.2 Hardware eNVM Factory Page-Write Locks
	5.4.3 Hardware eNVM, eSRAM, and MDDR Data Security Access Controls

	5.5 Factory-reserved eNVM

	6 Supply Chain Assurance
	6.1 Certificate-of-Conformance (C-of-C)
	6.2 Back-Tracking Prevention (Versioning)
	6.3 Exporting Public Information or Configuration Data
	6.3.1 Device Certificates (Anti-Counterfeiting)

	6.4 Information Services
	6.4.1 Device and Design Information System Service
	6.4.2 Serial Number Service
	6.4.3 USERCODE Service
	6.4.4 User Design Version Service
	6.4.5 Security Settings
	6.4.6 Exporting User SRAM-PUF Activation Codes
	6.4.7 Configuration Read Back in User Mode
	6.4.8 Configuration Read Back in Factory Test Mode

	7 Device Level Anti-Tamper Features
	7.1 SmartFusion2 and IGLOO2 FPGA Tamper Detection and Tamper Response
	7.1.1 Tamper Detection Flags
	7.1.2 Tamper Response
	7.1.3 LOCKDOWN_ALL_N
	7.1.4 DISABLEIO_ALL_IOS_N
	7.1.5 RESET_N
	7.1.6 ZEROIZE_N

	7.2 Differential Power or Side-Channel Analysis Resistance
	7.3 CRI Pass-Through DPA Patent License
	7.4 Fabric Configuration and eNVM Integrity Tests
	7.4.1 Legacy Verification Method – Resubmitting Bitstream
	7.4.2 Digest-Based Verification Method
	7.4.3 Automatic Integrity Check (Power-up Digest Check)
	7.4.4 Exporting Digests (Externally)
	7.4.5 On-Demand Integrity Check

	8 Data Security Through System Services
	8.1 SmartFusion2 and IGLOO2 System Services
	8.2 Non-Deterministic Random Bit Generator Service
	8.2.1 SmartFusion2 and IGLOO2 NRBG Implementation
	8.2.2 Self Test Service
	8.2.3 Instantiate Service
	8.2.4 Generate Service
	8.2.5 Reseed Service
	8.2.6 Uninstantiate Service
	8.2.7 DRBG Reset Service

	8.3 AES-128/256 Service (ECB, OFB, CTR, CBC modes)
	8.4 SHA-256 Service
	8.5 HMAC-SHA-256 Service
	8.6 Key Tree System Service
	8.7 PUF Emulation (Pseudo-PUF) Service
	8.8 SRAM-PUF Services
	8.8.1 Create User AC or Delete User AC Service
	8.8.2 Create Delete Export Import User Key Code
	8.8.3 Fetch a User PUF Key
	8.8.4 Fetch a PUF ECC Public Key
	8.8.5 Get a PUF Seed

	8.9 Elliptic Curve Cryptography (ECC) Services
	8.9.1 ECC Point Multiplication Service

	8.10 Elliptic Curve Cryptography (ECC) Point-Addition Service
	8.11 Summary of Expected DPA-Resistance of Cryptographic Services

	9 Using System Services Driver
	10 Reverse Engineering Protection
	10.1 Configuration Port Security
	10.2 User JTAG (UJTAG) Security Considerations
	10.3 Programming Port Monitor
	10.4 Intrusion Detection and Protection
	10.5 Side Channel Analysis (SCA), Passive & Active, Non- and Semi-Invasive

	11 Internal Security Features
	11.1 Single Event Upset Robustness
	11.1.1 FPGA Fabric Configuration Memory
	11.1.2 Security Non-Volatile Memory (NVM)
	11.1.3 Embedded NVM Array
	11.1.4 MSS embedded SRAM (eSRAM)
	11.1.5 Miscellaneous SRAM Blocks Throughout the MSS
	11.1.6 DDR Memory Controllers
	11.1.7 FPGA Fabric SRAM Blocks
	11.1.8 System Controller SRAM Buffers
	11.1.9 FPGA Fabric User Flip-Flops

	11.2 Environmental Monitoring
	11.3 Partial Reconfiguration Security
	11.4 User Test and Debug Modes
	11.4.1 FPGA Fabric Real-Time Probes and Probe Read/Write Features
	11.4.2 System IP Interface (SII) Bus Test Modes
	11.4.3 Cortex - M3 Debugging Modes
	11.4.4 MSS Debug Features
	11.4.5 Activating and Deactivating Debugging Features

	11.5 Flash*Freeze Service
	11.6 System Controller Suspend Mode

	12 Security Glossary
	12.1 A
	12.1.1 Advanced Encryption Standard (AES)
	12.1.2 AES
	12.1.3 ANSI
	12.1.4 Authentication
	12.1.5 Authorization

	12.2 B
	12.2.1 Block Cipher

	12.3 C
	12.3.1 CERT
	12.3.2 Checksum
	12.3.3 Cipher
	12.3.4 Code
	12.3.5 Cloning
	12.3.6 Configuration
	12.3.7 Corrupt Data
	12.3.8 CPLD
	12.3.9 CRC
	12.3.10 Cryptography
	12.3.11 Cyclic Redundancy Check (CRC)

	12.4 D
	12.4.1 Data Encryption
	12.4.2 Data Encryption Standard (DES)
	12.4.3 Decryption
	12.4.4 Denial of Service
	12.4.5 DES
	12.4.6 Differential Power Analysis (DPA)
	12.4.7 Diffie-Hellman Key Exchange
	12.4.8 Digital Signatures
	12.4.9 Disable

	12.5 E
	12.5.1 Electromagnetic Analysis (EMA)
	12.5.2 Elliptic Curve Cryptography (ECC)
	12.5.3 Encryption
	12.5.4 Entropy

	12.6 H
	12.6.1 Hacker
	12.6.2 Hash Function
	12.6.3 HEX / Hexadecimal

	12.7 I
	12.7.1 IAP
	12.7.2 In-Application Programming (IAP)
	12.7.3 In-System Programming (ISP)
	12.7.4 Intellectual Property (IP)
	12.7.5 Invasive Attack
	12.7.6 ISP

	12.8 M
	12.8.1 Malicious Code
	12.8.2 Message Authentication Code
	12.8.3 Message Digest
	12.8.4 Modes of Operation

	12.9 N
	12.9.1 National Institute of Standards and Technology (NIST)
	12.9.2 Nonce
	12.9.3 Noninvasive Attack
	12.9.4 Nonvolatile

	12.10 O
	12.10.1 Overbuilding

	12.11 P
	12.11.1 Power Analysis
	12.11.2 Public Key Cryptography

	12.12 R
	12.12.1 Random Numbers
	12.12.2 Reverse Engineering

	12.13 S
	12.13.1 Security Strength
	12.13.2 Semi-Invasive Attack
	12.13.3 Side-Channel Analysis
	12.13.4 Simple Power Analysis
	12.13.5 SRAM FPGA

	12.14 T
	12.14.1 Tamper Detection
	12.14.2 Tamper Resistant Packaging

	12.15 V
	12.15.1 Volatile

	12.16 Z
	12.16.1 Zeroization

