
 

 

   
 

Using CryptoMemory® in Full I2C Compliant 
Mode 

1. Introduction 
This application note describes how to communicate with CryptoMemory® 
devices in full I2C compliant mode. Full I2C compliance permits use of I2C 
hardware peripheral controllers within microcontrollers to communicate with 
CryptoMemory, thus eliminating the need for software drivers and General 
Purpose Input/Output (GPIO) pins. This leads to performance improvement 
by lowering CPU utilization and firmware footprint. 
This application note comes with downloadable code examples for the Atmel 
AVR microcontroller platform. The download includes source and project 
Makefile files for user trials on any AVR based development platforms, 
including Atmel’s Aris, Aris+, and Aris++ development kits 

 
Using 
CryptoMemory® in 
Full I2C Compliant 
Mode 

AT88SC0104CA 
AT88SC0204CA 
AT88SC0404CA 
AT88SC0808CA 
 
Application Note 

8662A–CryptoMemory–03/09 

 

2. CryptoMemory Devices That Support Full I2C 
Compliance 
Support for full compliance to I2C communication is available to newer 
generation CryptoMemory devices. These devices are identifiable by a “CA” 
termination of their base names as in AT88SC0104CA. They offer full 
backward compatibility to older generation CryptoMemory devices 
identifiable by a “C” termination in their base names as in AT88SC0104C.  

3. CryptoMemory and I2C Compliance 
All generations of CryptoMemory comply with I2C communications to some 
extent. The older generation devices only offer partial compliance. The entire 
command set for this generation requires the least significant bit of the 
command byte – also known as the R/W bit of an I2C command structure, is 
always at logic 0. In I2C communications, this signifies a WRITE operation. 
The implications of having the R/W bit always at logic 0 is that  any 
microcontroller attempting to use its hardware I2C buss controller to 
implement the CryptoMemory command set will always try to send data to 
CryptoMemory irrespective of the command intent. When the command in 
question happens to be a READ command which requires transfer of data 
from CryptoMemory to the microcontroller, a buss contention will result as 
both microcontroller and CryptoMemory try to put information on the buss.  
Older generation CryptoMemory devices therefore require I2C buss 
controllers implemented entirely in firmware and using General Purpose 
Input/Output (GPIO) pins for physical connectivity. 



  
 

2 Using CryptoMemory in Full I2C Compliant Mode  
 8662A–CryptoMemory–03/09 

Figure 1. The R/W bit of the I2C command byte is always logic 0 in the command set for older generation 
CryptoMemory. 

R/W bit = 0 ONLY

START • • •
DataCommand Data

 

Figure 2. The R/W bit of the I2C command byte is either logic 0 or 1 in the command set for the new generation 
CryptoMemory. 

R/W bit = 0 or 1

START • • •
Command Data Data

 
Newer generation CryptoMemory adds a new command, Random Read, to the existing CryptoMemory command set 
that has the least significant bit of the I2C command byte set to logic 1.  
While older generation CryptoMemory devices are only partially compliant to the I2C communication protocol by 
supporting only WRITE type transactions, new generation devices are fully compliant and natively support both READ 
and WRITE transactions. 

4. The CryptoMemory Random Read Command 
New generation CryptoMemory devices support the command, Random Read, in addition to the entire command set of 
older generation CryptoMemory. Random Read is the command that enables full compliance by encoding both the 
device address and setting the I2C R/W bit to logic 1 to conform to the requirements of the I2C command structure’s 
READ command. 
Unlike the rest of CryptoMemory commands that are 4-bytes in length, for efficiency and throughput, the Random Read 
command is only one-byte long. This means quicker initiation of read operations. However, this also requires that the 
READ address would already have been defined within the CryptoMemory device prior to using this command.  Initial 
usage for any given memory segment therefore entails two phases: an address setup and a data read phase. 

4.1. The Address Setup Phase 
The address setup phase allows passing of the start address of the CryptoMemory location to read from. It entails use 
of a CryptoMemory WRITE command with the desired READ address populated in the command’s address fields. The 
microcontroller sends the four bytes of the command, but instead of following these with data bytes as would be 
expected, terminates the command. By so doing, the microcontroller has succeeded in clocking the desired address 
bytes into the CryptoMemory device and the CryptoMemory device’s buffers now hold this address information. 



 Using CryptoMemory in Full I2C Compliant Mode 
 

   

3
 

8662A–CryptoMemory–03/09 

Figure 3. The Random Read command address setup phase 

Abort transaction

START 0I2C Addr P1 P2 N
LSB # BytesCM WRITE cmd MSB

Address to Read From

 
The value of N (number of bytes) in this address setup phase is irrelevant for reasons that will be clear soon.  The 
actual number of bytes received during a random read transaction depends on the number of bytes the microcontroller 
acknowledges during the data read phase. 

Figure 4. Code snippet illustrating the address setup transaction for setting the address to 0x0A. 

        /* STEP 1: Setup the command to use a WRITE operation for setting the READ address */ 
        /* Collect the four command bytes into pTxData  buffer*/ 
        pTxData [0] = 0xB4;     // CryptoMemory SYSTEM_WRITE Command byte 
        pTxData [1] = 0x00;     // Most significant byte of address 
        pTxData [2] = 0x0A;     // Least significant byte of address (MTZ base in this example) 
        pTxData [3] = 0x01;     // 'don't care' byte; address has been catured by now 
 
        /* STEP 2: Send the command. */ 
        twi_transmit(pTxData,0x04); 
  

4.2. The Data Read Phase 
This phase comprises actual extraction of data from the CryptoMemory device.  It entails issuance of the single byte 
Random Read command.  After aborting the WRITE transaction of the address setup phase, the microcontroller may 
immediately send a START signal followed by the Random Read command byte. 

Figure 5. The data read phase of the Random Read command. 

1START I2C Addr
Random Read

 

Figure 6. The Random Read command showing both address setup and data read phase initiation. 

Abort transaction

START 0 1START I2C Addr
CM WRITE cmd MSB LSB # Bytes Random Read

I2C Addr P1 P2 N

Address to Read From

 



  
 

4 Using CryptoMemory in Full I2C Compliant Mode  
 8662A–CryptoMemory–03/09 

On receiving the Random Read command byte, the CryptoMemory device immediately clocks out the byte from the 
location defined by the address current in its address buffer. It then automatically increments the address value by one 
so as to point to the next data byte in anticipation of the next action from the microcontroller. If the microcontroller 
sends a receipt acknowledgement signal (ACK), CryptoMemory will clock out the next byte and again increment the 
address.  CryptoMemory will continue to do so until the microcontroller sends a non-acknowledgement signal (NACK).  
Use of ACK and NACK signaling explains the non-relevance of the value of the byte count parameter, N, within the 
address setup phase. At this point, CryptoMemory expects the microcontroller to send a protocol STOP signal for 
formal termination of the transaction. 

Figure 7. The Random Read command complete data read phase 

START 1 • • •
Data Data

STOP

ACK ACK NACKACK

I2C Addr
Random Read Data

 
It is therefore important that the internal address buffer contains the current address to read from prior to issuing the 
Random Read command.  The address setup phase establishes this requirement. 

Figure 8. Code snippet illustrating the data read transaction for reading two bytes. 

        /* Send CryptoMemory's I2C compliant RANDOM_READ READ command. */ 
        /* Send 0xB1 command byte, receive two bytes and store them in pRxData buffer  */ 
        cm_twi_receive(0xB1,pRxData,0x2); 
  
If subsequent READ operations are to continue from the last read location, then no additional address setup operations 
are necessary.  This provides a big boost in transaction throughput. 
The code snippets of figures 4 and 8 illustrate reading from the CryptoMemory device’s configuration memory.  Other 
read operations that pertain to CryptoMemory are fuse byte and user memory reads.  The next two sections describe 
this in more detail. 

5. Reading the Fuse Byte 
The Random Read command takes care of all I2C compliant READ commands with the exception of the 
CryptoMemory Fuse Read command.  To read the current value of the fuse, simply point to any address of the 
reserved section of the CryptoMemory device’s configuration memory and read a single byte.  This read operation will 
return the fuse byte. 



 Using CryptoMemory in Full I2C Compliant Mode 
 

   

5
 

8662A–CryptoMemory–03/09 

Figure 9. Code snippet illustrating a complete Fuse Read transaction. 

        /* STEP 1: Setup the command to use a WRITE operation for setting the READ address */ 
        pTxData [0] = 0xB4;     // CryptoMemory SYSTEM_WRITE command byte 
        pTxData [1] = 0x00;     // MSB of address 
        pTxData [2] = 0xFF;     // LSB of address (Any address from the RESERVED memory) 
        pTxData [3] = 0x00;     // 'don't care' byte; address has been captured by now 
 
        /* STEP 2: Send the command. */ 
        twi_transmit(pTxData,0x04); 
 
        /* STEP 3: Send CryptoMemory's I2C compliant RANDOM_READ READ command. */ 
        /* Receive the fuse byte and put it in pRxData buffer */ 
        cm_twi_receive(0xB1,pRxData,0x1); 
 

 

6. Reading the User Memory 
The Random Read command allows for reading of the configuration memory, fuses, and user memory.  Previous 
sections show how to read configuration memory and the fuse byte. Usage of the Random Read command 
fundamentally remains the same in both cases and so equally applies to reading of the user memory.  One just has to 
point to the right user memory zone.  The following example illustrates this.  
 

Figure 10. Code snippet illustrating a read of user memory 

        /* STEP 1: Issue a SetUserZone command for zone */ 
        pTxData [0] = 0xB4;             // SYSTEM_WRITE command byte 
        pTxData [1] = 0x03;             // Set User Zone command code 
        pTxData [2] = 0x00;             // Zone ID  
        pTxData [3] = 0x00;             // 'don't care' 
 
        /* STEP 2: Send the command */ 
        twi_transmit(pTxData,0x04); 
 
        /* STEP 3: Setup the READ address */ 
        pTxData [0] = 0xB0;             // WRITE_USER_ZONE command byte 
        pTxData [1] = 0x00;             // MSB of address 
        pTxData [2] = 0x00;             // LSB of address  
        pTxData [3] = 0x00;             // 'don't care' 
 
        /* STEP 4: Send the command. */ 
        twi_transmit(pTxData,0x04); 
 
        /* STEP 5: Send CryptoMemory's I2C compliant RANDOM_READ READ command. */ 
        cm_twi_receive(RANDOM_READ, pRxData,0x4);  
  



  
 

6 Using CryptoMemory in Full I2C Compliant Mode  
 8662A–CryptoMemory–03/09 

7. Example 
As an example, a complete transaction to setup the address and read two bytes from CryptoMemory device’s Memory 
Test Zone (MTZ) having a starting address of 0x0A would look thus: 

Figure 11. A complete Random Read command address setup and data read transaction example. 

Abort transaction

START 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 STOP
Data Data

ACK NACK

START
System Write MSB LSB # Bytes Random Read

0x00 0x0A don't care

Address to Read From

 
Although all the commands of the command set inherited from the older generation CryptoMemory devices look like I2C 
WRITE commands and potentially are viable for use in the address setup phase, it is important to use WRITE rather 
than READ commands for setting up the address. Using a READ command will succeed in setting the address but runs 
the risk of buss contention as CryptoMemory may legitimately also begin to respond. 

Figure 12. Code snippet illustrating a complete transaction for reading 10 bytes from CryptoMemory device’s 
configuration memory. 

        /* Read 10 bytes of Configuration Memory starting from address 0x02 */ 
        /* ----------------------------------------------------------------------- */ 
        /* STEP 1: Setup the command to use a WRITE operation for setting the READ address */ 
        /* Collect the four command bytes into pTxData  buffer*/ 
        pTxData [0] = 0xB4;     // CryptoMemory SYSTEM_WRITE Command byte 
        pTxData [1] = 0x00;     // Most significant byte of address 
        pTxData [2] = 0x02;     // Least significant byte of address 
        pTxData [3] = 0x00;     // 'don't care' byte; address has been captured by now 
 
        /* STEP 2: Send the command. */ 
        twi_transmit(pTxData,0x04); 
         
        /* STEP 3: Send CryptoMemory's I2C compliant RANDOM_READ READ command. */ 
        /* Send 0xB1 command byte, receive two bytes and store them in pRxData buffer  */ 
        cm_twi_receive(0xB1,pRxData,0x0A); 
  

8. Conclusion 
This application note demonstrates how to use CryptoMemory in full I2C compliant mode. Full I2C compliance permits 
use of hardware I2C buss controllers within any microcontroller for CPU offloading and low firmware footprint 
advantages.  It examines the degree of compliancy by older generation CryptoMemory devices in contrast with full 
compliance by new generation devices.  The application note comes with separate downloadable code examples using 
the AVR microcontroller hardware I2C controllers complete with source code and project Makefile files for any AVR 
microcontroller platforms including Atmel’s Aris, Aris+, and Aris++ development kits. 

9. Revision History 
 

Doc. Rev. Date Comments 

8662A 03/2009 Initial document release 

 



 

 

 

Headquarters  Internat ional    

Atmel Corporation 
2325 Orchard Parkway 
San Jose, CA 95131 
USA 
Tel: 1(408) 441-0311 
Fax: 1(408) 487-2600 

 
Atmel Asia 
Room 1219 
Chinachem Golden Plaza 
77 Mody Road Tsimshatsui 
East Kowloon 
Hong Kong 
Tel: (852) 2721-9778 
Fax: (852) 2722-1369 

Atmel Europe 
Le Krebs 
8, Rue Jean-Pierre Timbaud 
BP 309 
78054 Saint-Quentin-en- 
Yvelines Cedex 
France 
Tel: (33) 1-30-60-70-00 
Fax: (33) 1-30-60-71-11 

Atmel Japan 
9F, Tonetsu Shinkawa Bldg. 
1-24-8 Shinkawa 
Chuo-ku, Tokyo 104-0033 
Japan 
Tel: (81) 3-3523-3551 
Fax: (81) 3-3523-7581 

  Product  Contact    

  
Web Site 
www.atmel.com 

Technical Support 
CryptoMemory@atmel.com 

Sales Contact 
www.atmel.com/contacts 

  
Literature Requests 
www.atmel.com/literature 

  

 
 

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any 
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND 
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED 
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS 
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED 
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this 
document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to 
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive 
applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, CryptoMemory® and others are registered trademarks or 
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 

 
 
 8662A–CryptoMemory–03/09 

 


	1. Introduction
	2. CryptoMemory Devices That Support Full I2C Compliance
	3. CryptoMemory and I2C Compliance
	4. The CryptoMemory Random Read Command
	4.1. The Address Setup Phase
	4.2. The Data Read Phase

	5. Reading the Fuse Byte
	6. Reading the User Memory
	7. Example
	8. Conclusion
	9. Revision History

