Using CryptoMemory® in Full I°C Compliant
Mode

1. Introduction I

This application note describes how to communicate with CryptoMemory®
devices in full I°C compliant mode. Full I’c compliance permits use of 1°Cc
hardware peripheral controllers within microcontrollers to communicate with

CryptoMemory, thus eliminating the need for software drivers and General USlng

Purpose Input/Output (GPIO) pins. This leads to performance improvement ® :
by lowering CPU utilization and firmware footprint. Cryptzo Mem 0 ry In
This application note comes with downloadable code examples for the Atmel Full 1°C Com P liant
AVR microcontroller platform. The download includes source and project MOde

Makefile files for user trials on any AVR based development platforms,
including Atmel’s Aris, Aris+, and Aris++ development kits

AT88SC0104CA
2. CryptoMemory Devices That Support Full I’C AT88SCO204CA

Compliance

. ance 10 1 e AT88SCO404CA
upport for full compliance to 1°C communication is available to newer

generation CryptoMemory devices. These devices are identifiable by a “CA” AT88SC0808CA

termination of their base names as in AT88SC0104CA. They offer full
backward compatibility to older generation CryptoMemory devices
identifiable by a “C” termination in their base names as in AT88SC0104C.

Application Note
3. CryptoMemory and I’C Compliance

All generations of CryptoMemory comply with I°C communications to some
extent. The older generation devices only offer partial compliance. The entire
command set for this generation requires the least significant bit of the
command byte — also known as the R/W bit of an I°C command structure, is
always at logic 0. In I’C communications, this signifies a WRITE operation.
The implications of having the R/W bit always at logic 0 is that any
microcontroller attempting to use its hardware I°’C buss controller to
implement the CryptoMemory command set will always try to send data to
CryptoMemory irrespective of the command intent. When the command in
guestion happens to be a READ command which requires transfer of data
from CryptoMemory to the microcontroller, a buss contention will result as
both microcontroller and CryptoMemory try to put information on the buss.
Older generation CryptoMemory devices therefore require I°C buss
controllers implemented entirely in firmware and using General Purpose
Input/Output (GPIO) pins for physical connectivity.

8662A—-CryptoMemory—-03/09

AIMEL

4.1.

AIMEL

Figure 1. The R/W bit of the I°C command byte is always logic 0 in the command set for older generation
CryptoMemory.

R/W bit =0 ONLY

STAaRT) LTI TPy e ttIirgyg---
Command Data Data
Figure 2. The R/W bit of the I°C command byte is either logic O or 1 in the command set for the new generation
CryptoMemory.

R/W bit=0or1

[STArRT]] O] (O ITTg e

Command Data Data

Newer generation CryptoMemory adds a new command, Random Read, to the existing CryptoMemory command set
that has the least significant bit of the I°C command byte set to logic 1.

While older generation CryptoMemory devices are only partially compliant to the I’C communication protocol by
supporting only WRITE type transactions, new generation devices are fully compliant and natively support both READ
and WRITE transactions.

The CryptoMemory Random Read Command

New generation CryptoMemory devices support the command, Random Read, in addition to the entire command set of
older generation CryptoMemory. Random Read is the command that enables full compliance by encoding both the
device address and setting the I°C R/W bit to logic 1 to conform to the requirements of the I°C command structure’s
READ command.

Unlike the rest of CryptoMemory commands that are 4-bytes in length, for efficiency and throughput, the Random Read
command is only one-byte long. This means quicker initiation of read operations. However, this also requires that the
READ address would already have been defined within the CryptoMemory device prior to using this command. Initial
usage for any given memory segment therefore entails two phases: an address setup and a data read phase.

The Address Setup Phase

The address setup phase allows passing of the start address of the CryptoMemory location to read from. It entails use
of a CryptoMemory WRITE command with the desired READ address populated in the command’s address fields. The
microcontroller sends the four bytes of the command, but instead of following these with data bytes as would be
expected, terminates the command. By so doing, the microcontroller has succeeded in clocking the desired address
bytes into the CryptoMemory device and the CryptoMemory device’s buffers now hold this address information.

Using CryptoMemory in Full 12C Compliant Mode s—

8662A—CryptoMemory—03/09

—— USing CryptoMemory in Full [2C Compliant Mode

Figure 3. The Random Read command address setup phase
Address to Read From Abort transaction
|START| | 12CAddr |O] | P1 | | P2 | | N |
CM WRITE cmd MSB LSB # Bytes

The value of N (number of bytes) in this address setup phase is irrelevant for reasons that will be clear soon. The
actual number of bytes received during a random read transaction depends on the number of bytes the microcontroller
acknowledges during the data read phase.

Figure 4. Code snippet illustrating the address setup transaction for setting the address to Ox0A.

/* STEP 1: Setup the command to use a WRITE operation for setting the READ address */
/* Collect the four command bytes into pTxData buffer*/

pTxData [0O] = OxB4; // CryptoMemory SYSTEM_WRITE Command byte

pTxData [1] = Ox00; // Most significant byte of address

pTxData [2] = Ox0A; // Least significant byte of address (MTZ base in this example)
pTxData [3] = 0x01; //'don't care' byte; address has been catured by now

/* STEP 2: Send the command. */
twi_transmit(pTxData,0x04);

4.2, The Data Read Phase

This phase comprises actual extraction of data from the CryptoMemory device. It entails issuance of the single byte
Random Read command. After aborting the WRITE transaction of the address setup phase, the microcontroller may
immediately send a START signal followed by the Random Read command byte.

Figure 5. The data read phase of the Random Read command.

|START| | 12C Addr |1|
Random Read

Figure 6. The Random Read command showing both address setup and data read phase initiation.
Address to Read From Abort transaction
[START] [12CAddr 0] | Pl | | P2] [N | [START] [12CAddr [1]
CM WRITE cmd MSB LSB # Bytes Random Read

ATMEL 3

8662A—CryptoMemory—03/09

4

AIMEL

On receiving the Random Read command byte, the CryptoMemory device immediately clocks out the byte from the
location defined by the address current in its address buffer. It then automatically increments the address value by one
so as to point to the next data byte in anticipation of the next action from the microcontroller. If the microcontroller
sends a receipt acknowledgement signal (ACK), CryptoMemory will clock out the next byte and again increment the
address. CryptoMemory will continue to do so until the microcontroller sends a non-acknowledgement signal (NACK).
Use of ACK and NACK signaling explains the non-relevance of the value of the byte count parameter, N, within the
address setup phase. At this point, CryptoMemory expects the microcontroller to send a protocol STOP signal for
formal termination of the transaction.

Figure 7. The Random Read command complete data read phase

ACK ACK ACK NACK

[START] [T2CAddr T1] [TTTTTT T [TTTITTT1] «-- OITTTTT] [S0P]

Random Read Data Data Data

It is therefore important that the internal address buffer contains the current address to read from prior to issuing the
Random Read command. The address setup phase establishes this requirement.

Figure 8. Code snippet illustrating the data read transaction for reading two bytes.

/* Send CryptoMemory's I2C compliant RANDOM_READ READ command. */
/* Send OxB1 command byte, receive two bytes and store them in pRxData buffer */
cm_twi_receive(OxB1,pRxData,0x2);

If subsequent READ operations are to continue from the last read location, then no additional address setup operations
are necessary. This provides a big boost in transaction throughput.

The code snippets of figures 4 and 8 illustrate reading from the CryptoMemory device’s configuration memory. Other
read operations that pertain to CryptoMemory are fuse byte and user memory reads. The next two sections describe
this in more detail.

Reading the Fuse Byte

The Random Read command takes care of all 12C compliant READ commands with the exception of the
CryptoMemory Fuse Read command. To read the current value of the fuse, simply point to any address of the
reserved section of the CryptoMemory device’s configuration memory and read a single byte. This read operation will
return the fuse byte.

Using CryptoMemory in Full 12C Compliant Mode s—

8662A—CryptoMemory—03/09

—— USing CryptoMemory in Full [2C Compliant Mode

Figure 9. Code snippet illustrating a complete Fuse Read transaction.

/* STEP 1: Setup the command to use a WRITE operation for setting the READ address */
pTxData [0O] = OxB4; // CryptoMemory SYSTEM_WRITE command byte

pTxData [1] = 0x00; // MSB of address

pTxData [2] = OxFF; // LSB of address (Any address from the RESERVED memory)
pTxData [3] = 0x00; // 'don't care' byte; address has been captured by now

/* STEP 2: Send the command. */
twi_transmit(pTxData,0x04);

/* STEP 3: Send CryptoMemory's I2C compliant RANDOM_READ READ command. */
/* Receive the fuse byte and put it in pRxData buffer */
cm_twi_receive(OxB1,pRxData,0x1);

6. Reading the User Memory

The Random Read command allows for reading of the configuration memory, fuses, and user memory. Previous
sections show how to read configuration memory and the fuse byte. Usage of the Random Read command
fundamentally remains the same in both cases and so equally applies to reading of the user memory. One just has to
point to the right user memory zone. The following example illustrates this.

Figure 10. Code snippet illustrating a read of user memory

/* STEP 1: Issue a SetUserZone command for zone */

pTxData [0] = OxB4; // SYSTEM_WRITE command byte
pTxData [1] = 0x03; // Set User Zone command code
pTxData [2] = 0x00; // Zone ID

pTxData [3] = 0x00; // 'don't care'

/* STEP 2: Send the command */
twi_transmit(pTxData,0x04);

/* STEP 3: Setup the READ address */

pTxData [0] = OxBO; // WRITE_USER_ZONE command byte
pTxData [1] = 0x00; // MSB of address

pTxData [2] = 0x00; // LSB of address

pTxData [3] = 0x00; // 'don't care'

/* STEP 4: Send the command. */
twi_transmit(pTxData,0x04);

/* STEP 5: Send CryptoMemory's I2C compliant RANDOM_READ READ command. */
cm_twi_receive(RANDOM_READ, pRxData,0x4);

AIMEL 5

8662A—CryptoMemory—03/09

AIMEL

Example

As an example, a complete transaction to setup the address and read two bytes from CryptoMemory device’s Memory
Test Zone (MTZ) having a starting address of 0xOA would look thus:

Figure 11. A complete Random Read command address setup and data read transaction example.

Address to Read From Abort transaction ACK NACK
[START] [fotz010]0 [0x00 || Ox0A] [dontcare | [START] fozzoo00 g [TTTIIJ 11 [TIT1111] [STor]
System Write MSB LSB # Bytes Random Read Data Data

Although all the commands of the command set inherited from the older generation CryptoMemory devices look like 1’c
WRITE commands and potentially are viable for use in the address setup phase, it is important to use WRITE rather
than READ commands for setting up the address. Using a READ command will succeed in setting the address but runs
the risk of buss contention as CryptoMemory may legitimately also begin to respond.

Figure 12. Code snippet illustrating a complete transaction for reading 10 bytes from CryptoMemory device’s
configuration memory.

/* Read 10 bytes of Configuration Memory starting from address 0x02 */

/* __ */

/* STEP 1: Setup the command to use a WRITE operation for setting the READ address */
/* Collect the four command bytes into pTxData buffer*/

pTxData [0O] = OxB4; // CryptoMemory SYSTEM_WRITE Command byte
pTxData [1] = O0x00; // Most significant byte of address

pTxData [2] = 0x02; // Least significant byte of address

pTxData [3] = 0x00; // 'don't care' byte; address has been captured by now

/* STEP 2: Send the command. */
twi_transmit(pTxData,0x04);

/* STEP 3: Send CryptoMemory's I2C compliant RANDOM_READ READ command. */
/* Send 0xB1 command byte, receive two bytes and store them in pRxData buffer */
cm_twi_receive(OxB1,pRxData,0x0A);

Conclusion

This application note demonstrates how to use CryptoMemory in full | ’c compliant mode. Full | ’c compliance permits
use of hardware I°C buss controllers within any microcontroller for CPU offloading and low firmware footprint
advantages. It examines the degree of compliancy by older generation CryptoMemory devices in contrast with full
compliance by new generation dewces The application note comes with separate downloadable code examples using
the AVR microcontroller hardware I°C controllers complete with source code and project Makefile files for any AVR
microcontroller platforms including Atmel’'s Aris, Aris+, and Aris++ development kits.

Revision History

Doc. Rev. Date Comments

8662A 03/2009 Initial document release

Using CryptoMemory in Full 12C Compliant Mode s—

8662A—CryptoMemory—03/09

AIMEL

®

Headquarters

International

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia

Room 1219

Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon

Hong Kong

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud
BP 309

78054 Saint-Quentin-en-
Yvelines Cedex

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551

Tel: (852) 2721-9778 France
Fax: (852) 2722-1369 Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Fax: (81) 3-3523-7581

Product Contact

Sales Contact
www.atmel.com/contacts

Web Site Technical Support
www.atmel.com CryptoMemory@atmel.com

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, CryptoMemory® and others are registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8662A—CryptoMemory—03/09

	1. Introduction
	2. CryptoMemory Devices That Support Full I2C Compliance
	3. CryptoMemory and I2C Compliance
	4. The CryptoMemory Random Read Command
	4.1. The Address Setup Phase
	4.2. The Data Read Phase

	5. Reading the Fuse Byte
	6. Reading the User Memory
	7. Example
	8. Conclusion
	9. Revision History

