
 SMART ARM-based Microcontrollers

 AT10843: CPU Usage Demonstration Using DMAC
of SAM L22

 APPLICATION NOTE

Description

The Direct Memory Access Controller (DMAC) in Atmel® | SMART SAM L22
can transfer data between memories and peripherals, and thus off-load
these tasks from the CPU. It enables high data transfer rates with minimum
CPU intervention, and frees up CPU time. It contains both a Direct Memory
Access engine and a Cyclic Redundancy Check (CRC) engine. With access
to all peripherals, the DMAC can handle automatic transfer of data between
communication modules.

This application note demonstrates the CPU usage when an application is
executed with and without DMA. The analog data from light sensor is
sampled with ADC and data is sent to USART. In this application note, the
CPU usage is calculated with and without DMA for the data transfer.

Features

This application note covers the following peripheral features:
• DMA data transfer between

– Peripheral (ADC) to peripheral (USART)
– Peripheral (ADC) to memory (SRAM)
– Memory (SRAM) to memory (SRAM)
– Memory (SRAM) to peripheral (USART)

• Transfer trigger sources
– Software
– Peripherals

• Multi-buffer transfer modes by linking multiple descriptors
• Enabling three independent channels with automatic descriptor for

each channel
• Fixed priority scheme within each priority level
• 1K beats AHB data transfer in single block transfer
• Multiple addressing modes

– Static
– Programmable increment scheme

Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

• Transaction complete interrupt generation
• DMA Event output
• Event system for direct peripheral-to-peripheral communication signaling
• Event triggered ADC conversion for accurate timing
• DMA transfer of conversion result
• CPU usage calculation using System Timer (SysTick)

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

2

Table of Contents

Description...1

Features.. 1

1. Abbreviations...5

2. Pre-requisites...6

3. Setup... 7
3.1. Hardware Setup..7

3.1.1. SAM L22 Xplained Pro.. 7
3.1.2. IO1 Xplained Pro Extension Board.. 8

3.2. Software Setup...9

4. Direct Memory Access Controller.. 11
4.1. Block Diagram.. 11
4.2. Functional Description.. 11

4.2.1. DMAC Basic Operation..11
4.2.2. DMAC Channels.. 12
4.2.3. DMAC Transfer Operation... 12
4.2.4. Other Features...12

5. Peripherals Overview...14
5.1. Event System (EVSYS)..14
5.2. Analog-to-Digital Converter (ADC)... 14
5.3. SERCOM – Serial Communication Interface..14
5.4. SERCOM – USART..15
5.5. The System Timer (SysTick).. 15

6. Example Implementation... 16
6.1. Peripheral to Peripheral Transfer with DMAC (ADC to USART).. 16

6.1.1. Application Configuration and Implementation.. 16
6.1.2. CPU Utilization Calculation..18

6.2. Peripheral to Memory and Memory to Peripheral Transfer with DMAC (ADC to SRAM and
SRAM to USART)...18
6.2.1. Application Configuration and Implementation.. 18
6.2.2. CPU Utilization Calculation..21

6.3. Peripheral to Peripheral Transfer without DMAC (ADC to USART)... 22
6.3.1. Application Configuration and Implementation.. 22
6.3.2. CPU Utilization Calculation..23

6.4. Peripheral to Memory and Memory to Peripheral Transfer without DMAC (ADC to SRAM and
SRAM to USART)...23
6.4.1. Application Implementation and Configuration.. 23
6.4.2. CPU Utilization Calculation..24

6.5. CPU Utilization Calculation...25

7. Application Limitations...28
7.1. USART Baudrate and ADC Sampling Frequency.. 28
7.2. SRAM to SRAM Transfer Type...28

8. CPU Utilization Analysis Between Different Cases... 29
8.1. CPU Frequency Calculation... 29
8.2. CPU Idle Time Calculation from Result Observed... 29

9. Execution of Application.. 32

10. References.. 34
10.1. ARM Documentation on Cortex-M0+ Core...34
10.2. Atmel Software Framework (ASF)..34
10.3. Atmel Studio... 34
10.4. Device Datasheet... 34
10.5. Hardware Tools User Guide... 34
10.6. Online Tools User Guide...34

11. Revision History...35

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

4

1. Abbreviations
ADC Analog to Digital Converter

ASF Atmel Software Framework

Atmel Studio Integrated Development Environment (IDE) for Atmel applications

CDC Communication Device Class

DMAC Direct Memory Access Controller

DRE Data Register Empty

EDBG Embedded Debugger

EVSYS Event System

IDE Integrated Development Environment

Ksps Kilo samples per second

MCU Micro Controller Unit

RAM Random Access Memory

SERCOM Serial Communication Interface

SysTick System Timer Tick

USART Universal Synchronous and Asynchronous Receiver and Transmitter

USB Universal Serial Bus

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

5

2. Pre-requisites
The solutions discussed in this document requires basic familiarity with the following tools.

• Atmel Studio 7 or later
• SAM L22 Xplained Pro
• ASF 3.27 or later

This application note covers the overview of the following peripherals.
• DMAC
• SERCOM – USART
• EVSYS
• ADC
• SysTick

Refer to the product datasheet for better understanding and working of each of the peripherals.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

6

3. Setup
The application is developed for SAM L22 Xplained Pro board using Atmel Studio 7 or later. This chapter
covers hardware and software setup required for testing this application.

3.1. Hardware Setup

3.1.1. SAM L22 Xplained Pro
The Atmel SAM L22 Xplained Pro evaluation kit is a hardware platform to evaluate the Atmel
ATSAML22N18A.

The kit offers a set of features that enables the ATSAML22N18A user to get started with the SAM L
peripherals instantly and to understand the steps to integrate the device in a custom design.

This is an evaluation kit that allows connecting multiple external components via a wing connector. A wing
is a self contained board that can be connected to the Xplained Pro using a wing connector. The SAM
L22 Xplained Pro has three such wing connectors and EXT1 is used in this application.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

7

Figure 3-1. SAM L22 Xplained Pro Evaluation Kit Overview

3.1.2. IO1 Xplained Pro Extension Board
Atmel IO1 Xplained Pro extension board is a generic extension board for the Xplained Pro platform. It
connects to any Xplained Pro standard extension header on any Xplained Pro MCU board. The extension
board utilizes all functions available on the standard Xplained Pro extension header.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

8

Figure 3-2. IO1 Xplained Pro Extension Board

Atmel IO1 Xplained Pro has been designed to be connected to the Xplained Pro header marked EXT1.
However, it is compatible with all Xplained Pro EXT headers available on an Xplained Pro board. The pin-
out of the respective Xplained Pro evaluation kit is needed to find out which Xplained Pro EXT headers
can be used. In this application note, EXT1 has been used.

IO1 Xplained Pro features a ‘TEMT6000’ light sensor from Vishay Intertechnology, Inc. Pin3 of extension
board is utilized for this purpose. The sensor data can be gathered from an ADC pin on Xplained Pro
MCU board. In SAM L22 Xplained Pro kit, it is connected to EXT1 header. This application utilizes Light
sensor on IO1 Xplained pro board as an analog input to the ADC.

3.2. Software Setup
There are two USB ports on the SAM L22 Xplained Pro board - DEBUG USB and TARGET USB. For
debug using Embedded debugger EDBG, DEBUG USB port has to be connected. When the SAM L22
Xplained Pro kit is connected to the PC, the Windows® Task bar will pop-up a message shown as follows:
Figure 3-3. SAM L22 Xplained Pro Driver Installation

If the driver installation is successful, EDBG will be listed in the Device Manager:

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

9

Figure 3-4. Successful EDBG Driver Installation

To ensure that the EDBG tool is detected in Atmel Studio:

Open Atmel Studio, Go to View > Available Atmel Tools. The EDBG should get listed in the tools and
the tool status should display as Connected. This tool status indicates that the tool is communicating
properly with Atmel Studio.
Figure 3-5. EDBG under Available Atmel Tools

If the tool is not displayed in Available Tools, disconnect the tool and reconnect again.

Right click on the tool in the Available Tools list, click on Upgrade. This will verify if the firmware in the
tool is up to date. Click on Upgrade to upgrade the firmware to latest version.

After installing the software successfully, open terminal window (like RealTerm or TeraTerm) with the
COM port (EDBG Virtual COM port) number available in Device Manager.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

10

4. Direct Memory Access Controller
This chapter covers the DMAC features and its working relevant to this application note. Refer the
product datasheet for detailed description about its operation and configuration.

4.1. Block Diagram
Figure 4-1. DMAC Block Diagram

HIGH SPEED
BUS MATRIX

AHB/APB
Bridge

CPU

SRAM

S

S

M

M

Events
Channel 0

Channel 1

Channel n

Arbiter

DMA Channels

MASTER

Active
Channel

CRC

Engine

n

Fetch
Engine

Interrupt /
Events

DMAC

Interrupts
Transfer
Triggers n

D
at

a
Tr

an
sf

er

W
rit

e-
ba

ck

D
es

cr
ip

to
r F

et
ch

4.2. Functional Description

4.2.1. DMAC Basic Operation
The Direct Memory Access Controller (DMAC) contains both a Direct Memory Access engine and a
Cyclic Redundancy Check (CRC) engine. The DMAC can transfer data between memories and
peripherals, and thus off-load these tasks from the CPU. It enables high data transfer rates with minimum
CPU intervention, and frees up CPU time. With access to all peripherals, the DMAC can handle automatic
transfer of data between communication modules. This allows the CPU to sleep for longer time and thus
reduce the power consumption.

A complete DMA read and write operation between memories and/or peripherals is called a DMA
transaction. DMA reads data from the source address before writing to the destination address. A new
data is read when the previous write operation is completed. The transaction is initiated by a trigger and
uses a DMA channel. The DMA trigger source can be application software, peripheral or events from
Event System (EVSYS). Each read and write operations are done in blocks. The size of transfer is
controlled by block transfer size and is configured in software. The size of the block can be from 1 to 64K
beats. The beat can be byte, half-word or word.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

11

4.2.2. DMAC Channels
The DMA implements 16 channels, enabling 16 independent transfers. Each DMA channel has an
individual Transfer control descriptor setting that is stored in SRAM.

The transfer control descriptor defines the source and destination address, source and destination
address increment settings, block transfer count, and optional event output condition selection. Source
and destination addressing can be static or incremental.

Dedicated I/O registers for each channel is available that controls the trigger mode (peripheral/software),
peripheral trigger source type, event input actions and channel priority level settings.

Dedicated write-back memory section is available for each active channel, to maintain the current transfer
settings and status.

When enabling multiple channels, 4-level channel priority is supported, and fixed or round-robin scheme
is available within each priority level.

4.2.3. DMAC Transfer Operation
Single transaction can be executed (using only one descriptor) or multiple transactions can be executed
(using linked descriptor). Single or multiple block transfers can be enabled using the same DMA channel.

When DMA peripheral and respective channel are enabled, the transfer will happen upon receiving the
trigger request. The transfer type can be beat, block (group of beats together forms block) or transaction
(group of blocks forms transaction).

The channel is automatically disabled when DMA transfer is completed. If a single descriptor is defines
for a channel the channel will be disabled when a block transfer is completed. In case of linked
descriptors, the channel is disabled once the last descriptor is executed.

4.2.4. Other Features
Channel Suspend and Resume

The channel operation can be suspended or resumed at any time by software, or can be suspended
when a selectable block transfer is complete.

Interrupt Request

Interrupt requests can be generated when:

• A transaction is completes
• Selectable block transfer is complete
• DMA controller detects a bus error
• A channel operation is suspended

Event Input

The event input actions are available on the least significant DMA channels. The event can be
programmed to trigger:

• Transfers
• Periodic transfers
• Conditional transfers
• To suspend or resume a channel operation

Event Output

Event output selection is available for the least significant DMA channels. The pulse width of an event
output from a channel is one AHB clock cycle. Events can be generated when:

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

12

• Each AHB data transfer is complete
• Selectable block transfer is complete
• The entire transaction is complete

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

13

5. Peripherals Overview
This chapter covers the overview of other peripherals relevant to this application note. Users are
requested to refer to respective sections in the product datasheet for more detailed description about their
working and configuration.

5.1. Event System (EVSYS)
The Event System (EVSYS) allows autonomous, low-latency, and configurable communication between
peripherals. Several peripherals can be configured to emit and/or respond to signals known as events.

The exact condition to generate an event, or the action taken upon receiving an event, is specific to each
module. Peripherals that respond to events are called event users. Peripherals that emit events are called
event generators. A peripheral can have one or more event generators and can have one or more event
users.

Communication is made without CPU intervention and without consuming system resources such as bus
or RAM bandwidth. This reduces the load on the CPU and other system resources, compared to a
traditional interrupt-based system.

In this application note, EVSYS is configured to use ‘DMA channel 0 transfer complete’ (DMAC CH0) as
event generator and ADC start conversion (ADC START) as event user.

5.2. Analog-to-Digital Converter (ADC)
The Analog-to-Digital Converter (ADC) converts analog signals to digital values. The ADC has up to 12-
bit resolution, and is capable of converting up to 1MSPS. The input selection is flexible, and both
differential and single-ended measurements can be performed. An optional gain stage is available to
increase the dynamic range. In addition, several internal signal inputs are available.

ADC measurements can be started by either application software or an incoming event from another
peripheral in the device. Both internal and external reference voltages can be used.

The ADC may be configured for 8-, 10-, or 12-bit results, reducing the conversion time. ADC conversion
results are provided left- or right-adjusted, which eases calculation when the result is represented as a
signed value. It is possible to use DMA to move ADC results directly to memory or peripherals when
conversions are done.

In this application note, ADC is configured for 8-bit resolution and uses DMA to transfer ADC result to
destination address configured (can be peripheral or memory). Event input from DMA is used to trigger
next ADC conversion. Software trigger is used for the case that is implemented without using DMA.

5.3. SERCOM – Serial Communication Interface
The SERCOM serial engine consists of a transmitter and receiver, baud-rate generator and address
matching functionality. The transmitter consists of a single write buffer and a shift register. The receiver
consists of a two-levels receive buffer and a shift register. The baud-rate generator is capable of running
on the GCLK_SERCOMx_CORE clock or an external clock.

The serial communication interface (SERCOM) can be configured to support a number of modes; I2C,
SPI, and USART. Once configured and enabled, all SERCOM resources are dedicated to the selected
mode.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

14

5.4. SERCOM – USART
The universal synchronous and asynchronous receiver and transmitter (USART) is one of the available
modes in the Serial Communication Interface (SERCOM).

A data transmission is initiated by loading the DATA register with the data to be sent. The data in TxDATA
is moved to the shift register when the shift register is empty and ready to send a new frame. When the
shift register is loaded with data, one complete frame will be transmitted.

The Transmit Complete interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.TXC) is
set, and the optional interrupt is generated, when the entire frame plus stop bit(s) have been shifted out
and there is no new data written to the DATA register.

The DATA register should only be written when the Data Register Empty flag in the Interrupt Flag Status
and Clear register (INTFLAG.DRE) is set, which indicates that the register is empty and ready for new
data.

USART can generate DMA request when the transmit buffer (TX DATA) is empty. The request is cleared
when DATA is written.

In this application, EDGB CDC (SERCOM4) is utilized to transfer ADC result data to terminal.

5.5. The System Timer (SysTick)
The System Timer is a 24-bit timer that extends the functionality of both the processor and the NVIC.
Refer to the Cortex®-M0+ Technical Reference Manual for details (www.arm.com).

The timer consists of:

• A control and status register (SYST_CSR). This configures the SysTick clock, enables the counter,
enables the SysTick interrupt, and indicates the counter status.

• A counter reload value register (SYST_RVR). This provides the wrap value for the counter.
• A counter current value register (SYST_CVR)

When enabled, the timer counts down from the value in SYST_CVR. When the counter reaches zero, it
reloads the value in SYST_RVR on the next clock edge. It then decrements on subsequent clocks. This
reloading when the counter reaches zero is called wrapping. Interrupt can be enabled which triggers for
each time counter wrap around.

In this application, counter is loaded with maximum count value and is used to take time stamp while
calculating the CPU utilization. SysTick runs at processor clock as source.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

15

http://www.arm.com

6. Example Implementation
This chapter explains the application implementation in detail.

The objective of this application note is to demonstrate the features listed in this document and its
configuration. In addition to that, CPU utilization is calculated, when application is implemented with and
without DMA. This highlights the DMAC usage in reducing the CPU load.

In the example implementation, ADC converts input analog signal to digital value and the result is
transferred to USART. Light sensor in IO1 Xplained Pro is given as an input to ADC via EXT1 header.

This application is implemented in four different scenarios to cover the objective (i.e. with and without
DMAC) and user will need to select the case accordingly. Separate source files have been implemented
for each case. Based on the compiler option selected in conf_dma.h file, the main application will get
compiled for each case accordingly. The following lines explains about each case in detail.

6.1. Peripheral to Peripheral Transfer with DMAC (ADC to USART)
The compiler option to enable this transfer type is ADC_DMAC_USART. In this case, ADC result is
directly written to USART DATA register to illustrate the peripheral to peripheral DMA transfer type.

Note:  File to be referred adc_dmac_usart.c.

6.1.1. Application Configuration and Implementation
DMAC is configured to trigger a data transfer to the destination address configured when ADC RESULT is
ready (peripheral trigger source). The destination address configured here is USART DATA register
address and source is ADC RESULT register address. DMA source and destination address is static in
this case, as both the register addresses are fixed. The descriptor is configured in
setup_transfer_descriptor() as below:
{
 /* DMA descriptor configuration setup */
 struct dma_descriptor_config descriptor_config;

 /* Get default configuration */
 dma_descriptor_get_config_defaults(&descriptor_config);

 /* Set beat size as byte */
 descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
 /* Set block count as 1024 beats */
 descriptor_config.block_transfer_count = BLOCK_COUNT;
 /* Trigger interrupt once block transfer is complete */
 descriptor_config.block_action = DMA_BLOCK_ACTION_INT;

 switch (descriptor_num){

 case DMAC_DESCRIPTOR1_ID:
 /* Source address is static as it is ADC result register */
 descriptor_config.src_increment_enable = false;
 /*
 * Enable event for every beat transfer (I.e. byte in this case)
 * Every byte transfer occurs for each sample from ADC.
 * I.e. Event is triggered for every ADC result ready.
 */
 descriptor_config.event_output_selection = DMA_EVENT_OUTPUT_BEAT;
 /* Destination address is static as it is USART DATA register */
 descriptor_config.dst_increment_enable = false;
 /* Set source address as ADC RESULT register */
 descriptor_config.source_address = (uint32_t)(&ADC->RESULT.reg);
 /* Set destination address as USART DATA register */
 descriptor_config.destination_address = (uint32_t)(&EDBG_CDC_MODULE-

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

16

>USART.DATA.reg);
 break;

 default:
 Assert(false);
 break;
 }

 /* Create descriptor */
 dma_descriptor_create(descriptor, &descriptor_config);
}

For each trigger, a byte will get transferred as Beat size is configured as byte. Event output from DMA is
enabled which will get generated up on each DMA transfer complete. DMAC Channel zero is used for this
case and the configuration is done in configure_dma_resource() as below:
 case DMAC_CHANNEL0_ID:
 /* Trigger is enabled for each beat transfer */
 config.trigger_action = DMA_TRIGGER_ACTON_BEAT;
 /* Peripheral trigger source is ADC result ready */
 config.peripheral_trigger = ADC_DMAC_ID_RESRDY;
 /* Generate event once DMA transfer is done */
 config.event_config.event_output_enable = true;
 break;

ADC is configured as event user which will start conversion upon receiving event signal from DMAC via
Event System (EVSYS).The first ADC conversion is triggered by software trigger. Once input is sampled
and result is ready, it triggers DMA transfer from ADC RESULT to USART DATA register. The next ADC
conversion is triggered by the event signal from DMA upon completing the transfer to USART DATA
register and the cycle continues. Overall the operation is done as shown in the figure below.
Figure 6-1. DMA Peripheral to Peripheral Transfer

The whole operation is done using DMAC and EVSYS without interrupting CPU. DMAC block transfer
size is configured as 1024 bytes (BLOCK_COUNT) and an interrupt is configured to flag once block
transfer is complete. Once block transfer is completed, DMAC channel gets disabled automatically.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

17

6.1.2. CPU Utilization Calculation
As explained in CPU Utilization Calculation on page 25, time stamp from SysTick is taken before
starting first ADC conversion in main().

On completing 1024 byte transfer from ADC to USART, DMAC channel zero block transfer complete
interrupt call back is called. A flag is set and time stamp is taken to indicate transfer complete (as follows):
static void dmac_calback_channel0(struct dma_resource *const resource)
{
 #if defined (ENABLE_PORT_TOGGLE)
 /* Use oscilloscope to probe the pin. */
 port_base->OUTTGL.reg = (1UL << PIN_PA14 % 32);
 #endif
 /* Indicate DMA transfer has been completed */
 adc_dma_transfer_is_done = true;
 /* Get time stamp */
 time_stamp2 = SysTick->VAL;
}

From the time stamp, the number of cycles taken to complete the transfer is calculated. During the DMA
transfer, the idle_loop_count is incremented in main loop. This will give the count of CPU idle time during
the data transfer from peripheral to peripheral. After completion of the DMA transfer, the code enters an
infinite loop and no other tasks including idle task is executed.
Note:  Refer CPU Utilization Analysis Between Different Cases on page 29 for detailed description
about the CPU utilization calculation from the results observed.

6.2. Peripheral to Memory and Memory to Peripheral Transfer with DMAC (ADC to
SRAM and SRAM to USART)
The compiler option to enable this case is ADC_DMAC_MEM_MEM_USART. In this case, three DMAC
channels have been used to demonstrate each transfer type. As explained in SRAM to SRAM Transfer
Type on page 28, the purpose of having Memory to Memory type DMA transfer is for demonstration
purpose and the application does not need this for its proper working.

Note:  File to be referred for this case is adc_dmac_mem_mem_usart.c.

6.2.1. Application Configuration and Implementation
Channel zero is used to transfer BLOCK_COUNT (i.e. 1024 bytes in this example) number of beats from
ADC RESULT register (peripheral) to SRAM buffer (Memory).

Channel0 configuration (Peripheral to Memory):

As explained in Peripheral to Peripheral Transfer with DMAC (ADC to USART) on page 16, DMAC
channel 0 is configured for peripheral trigger from ADC RESULT ready. The next ADC conversion is
triggered by event output from DMA channel 0 up on completing each beat transfer as follows:
case DMAC_CHANNEL0_ID:
 /* Trigger is enabled for each beat transfer */
 config.trigger_action = DMA_TRIGGER_ACTON_BEAT;
 /* Peripheral trigger source is ADC result ready */
 config.peripheral_trigger = ADC_DMAC_ID_RESRDY;
 /* Generate event once DMA transfer is done */
 config.event_config.event_output_enable = true;
 break;

DMAC block transfer complete interrupt is enabled which gets generated up on completing 1024 bytes
from ADC to SRAM buffer. As the SRAM buffer will need to store 1024 bytes samples from ADC, the
destination address is incremented (which is the default configuration in ASF). The source address is

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

18

static as it is ADC RESULT register and the descriptor is linked to the channel 1 descriptor
(dma_adc_descriptor2) for next channel operation as done below:
 /* Set beat size as byte */
 descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
 /* Set block count as 1024 beats */
 descriptor_config.block_transfer_count = BLOCK_COUNT;
 /* Trigger interrupt once block transfer is complete */
 descriptor_config.block_action = DMA_BLOCK_ACTION_INT;

 switch (descriptor_num){

 case DMAC_DESCRIPTOR1_ID:
 /* Source address is static as it is ADC result register */
 descriptor_config.src_increment_enable = false;
 /*
 * Enable event for every beat transfer (I.e. byte in this case)
 * Every byte transfer occurs for each sample from ADC.
 * I.e. Event is triggered for every ADC result ready.
 */
 descriptor_config.event_output_selection = DMA_EVENT_OUTPUT_BEAT;

 /* Set source address as ADC RESULT register */
 descriptor_config.source_address = (uint32_t)(&ADC->RESULT.reg);
 /*
 * Set destination address as adc_result buffer in RAM.
 * NOTE : destination address increment is true as per default
configuration.
 */
 descriptor_config.destination_address = (uint32_t)(adc_result) + sizeof
(adc_result);
 /* Link to next descriptor */
 descriptor_config.next_descriptor_address = (uint32_t)
(&dmac_adc_descriptor2);

 break;

Once 1024 bytes samples get transferred from ADC to SRAM buffer (adc_result[]),
dmac_channel0_callback() is called where the channel1 transfer is triggered.
 /*! \brief DMA Channel0 call back */
static void dmac_calback_channel0(struct dma_resource *const resource)
{

 #if defined (ENABLE_PORT_TOGGLE)
 /* Use oscilloscope to probe the pin. */
 port_base->OUTTGL.reg = (1UL << PIN_PA14 % 32);
 #endif
 /* Trigger channel1 transfer */
 dma_trigger_transfer(&dmac_adc_channel1);

}

Channel1 configuration (Memory to Memory):

Channel 1 is configured with software trigger and transfer type is transaction. I.e. once software triggers
the transfer, complete ADC result stored in one SRAM buffer (adc_result) is transferred to another
adc_result_copy buffer stored in SRAM. This retains the default configuration done in ASF. So there is no
change needed at the application code.
 case DMAC_CHANNEL1_ID:
 /*
 * Retain default configuration for channel 1
 * I.e Transaction trigger transfer type, software trigger
 * source with even output disabled/

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

19

 */
 break;

The descriptor contains the source and destination address of two different SRAM buffers and both
addresses are incremental (default configuration in ASF). The channel 2 descriptor
(dmac_adc_descriptor3) is linked to this descriptor which would point to channel 3 at the end of channel 2
block transfer complete.
 case DMAC_DESCRIPTOR2_ID:
 /*
 * Set source address as adc_result buffer in RAM.
 * NOTE: source address increment is true as per default configuration.
 */
 descriptor_config.source_address = (uint32_t)(adc_result) + sizeof
(adc_result);
 /*
 * Set destination address as adc_result_copy buffer in RAM.
 * NOTE : destination address increment is true as per default
configuration.
 */
 descriptor_config.destination_address = (uint32_t)(adc_result_copy) +
sizeof (adc_result_copy);
 /* Link to other descriptor */
 descriptor_config.next_descriptor_address = (uint32_t)
(&dmac_adc_descriptor3);
 break;

Channel 1 transfer is triggered at the channel 0 transfer complete callback as explained already. Once
Channel 1 transfer is done, channel 2 is enabled to start the next conversion (as below) which is
explained in forthcoming sections.
/*! \brief DMA Channel1 call back */
static void dmac_calback_channel1(struct dma_resource *const resource)
{
 /* Enable and start channel2 transfer */
 dma_start_transfer_job(&dmac_adc_channel2);
}

Channel2 configuration (Memory to Peripheral):

Channel 2 is configured to have peripheral trigger and beat transfer type. A byte from SRAM buffer
(adc_result_copy) should be written to the USART DATA register whenever it is empty. I.e. Whenever
USART DATA register is empty (DRE) and is ready for new data to be written, it triggers a DMA transfer
from source to destination over the channel2.
 case DMAC_CHANNEL2_ID:
 /* Triggers for every beat */
 config.trigger_action = DMA_TRIGGER_ACTON_BEAT;
 /* Peripheral trigger source is USART data register empty */
 config.peripheral_trigger = SERCOM4_DMAC_ID_TX;
 break;

The destination address in the descriptor is incremental (default configuration in ASF) and destination
address is static as it is USART DATA register. It does not point to any next descriptor as there is not any
transfer going to occur.
 case DMAC_DESCRIPTOR3_ID:
 /* Set destination increment as static as it is USART DATA register */
 descriptor_config.dst_increment_enable = false;
 /*
 * Set source address as adc_result_copy buffer in RAM.
 * NOTE: source address increment is true as per default configuration.
 */
 descriptor_config.source_address = (uint32_t)(adc_result_copy) + sizeof
(adc_result_copy);

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

20

 /* Set destination address as USART DATA register */
 descriptor_config.destination_address = (uint32_t)(&EDBG_CDC_MODULE-
>USART.DATA.reg);
 break;

Unlike other channels, this channel should be enabled at the end of channel 1 transfer complete. The
reason is the USART DRE is always set as there is not any previous communication occurs. So if this
channel is enabled during the initialization, as USART DRE is already set, the DMA transfer will start
immediately on channel 2 which results in wrong operation.

Once Channel 2 is enabled in the channel 1 callback, the data is sent from SRAM to USART for each
DRE from USART. After it completes the transfer, a flag is set to indicate end of complete transfer and the
time stamp is taken for CPU utilization calculation.
/*! \brief DMA Channel2 call back */
static void dmac_calback_channel2(struct dma_resource *const resource)
{
 /* Indicate DMA transfer has been completed */
 adc_dma_transfer_is_done = true;
 /* Get time stamp */
 time_stamp2 = SysTick->VAL;
}

Overall the application works as illustrated as follows.
Figure 6-2. DMAC Peripheral – Memory – Memory – Peripheral Transfer

6.2.2. CPU Utilization Calculation
The time stamp is taken at the DMAC channel2 call back and the idle_loop_count is noted. This would
add some more overhead as it is interrupted by three different callbacks for each block transfer complete
of a channel.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

21

Note:  Refer CPU Utilization Analysis Between Different Cases on page 29 for detailed description
about the CPU utilization calculation from the results observed.

6.3. Peripheral to Peripheral Transfer without DMAC (ADC to USART)
This option is enabled by defining ADC_NO_DMAC_USART. In this case, the above mentioned scenarios
are implemented through interrupt handling without using DMA. This is done to demonstrate the DMAC
usage in reducing the CPU load.

Note:  File to be referred for this case is adc_no_dmac_usart.c.

6.3.1. Application Configuration and Implementation
ADC interrupt is triggered for RESULT ready and the software trigger mode is chosen to start the
conversion in configure_adc() function as follows:
 /* Enable ADC Result ready interrupt */
 adc_interrupt_enable(&adc_instance,ADC_INTFLAG_RESRDY);
 /* Enable ADC module interrupt in NVIC */
 system_interrupt_enable(SYSTEM_INTERRUPT_MODULE_ADC);

The first conversion is done in the main and the time stamp1 is taken. Once result is ready, ADC interrupt
handler is called. In the handler, the number of ADC samples is counted through a count variable
adc_sample_count. Until ‘adc_sample_count’ value reaches the BLOCK_COUNT (i.e.1024 bytes), the
data is stored in a buffer (adc_result), and the next ADC conversion is triggered from software. Once it
reaches the BLOCK_COUNT, ADC is disabled and further conversion is stopped. A flag is also set to
indicate transfer is done and the data is sent to USART data register. Time stamp is also taken at this
time to find CPU utilization.
static void _adc_interrupt_handler(void)
{
 /* ADC base address */
 Adc *const adc_hw = adc_instance.hw;

 /* get interrupt flags */
 uint32_t flags = adc_hw->INTFLAG.reg;

 /* Check if the all the samples has been done by ADC */
 if (adc_sample_count == BLOCK_COUNT){

 /* Disable ADC */
 adc_hw->CTRLA.reg &= ~ADC_CTRLA_ENABLE;

 /* Write samples to USART */
 usart_write_data(&usart_instance,adc_result,BLOCK_COUNT);

 /* Indicate conversion has been done */
 adc_conv_done = true;
 /* Get the time stamp from SysTick */
 time_stamp2 = SysTick->VAL;

 }else if (flags & ADC_INTFLAG_RESRDY) {
 /* Clear ADC interrupt */
 adc_hw->INTFLAG.reg = ADC_INTFLAG_RESRDY;
 /* Store ADC result to RAM buffer */
 adc_result[adc_sample_count] = adc_hw->RESULT.reg;
 /* Count the number of samples taken so far */
 ++adc_sample_count;
 /* Trigger next ADC conversion */
 adc_start_conversion(&adc_instance);
 }
} /* End of ADC Hander */

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

22

Over all application flow would work as illustrated in the following figure.
Figure 6-3. ADC to USART without DMAC

6.3.2. CPU Utilization Calculation
The same logic is used to calculate the CPU utilization except that in this case, interrupt is enabled and
does not use DMA. The ADC result from adc_result buffer transfer to USART DATA register is managed
by the SERCOM4 Handler.

The number of transfer is counted by the adc_sample_count. Once it reaches BLOCK_COUNT, time
stamp and idle_loop_count is noted to calculate CPU utilization as in CPU Utilization Calculation on page
25.

6.4. Peripheral to Memory and Memory to Peripheral Transfer without DMAC (ADC to
SRAM and SRAM to USART)
This option is enabled through ADC_NO_DMAC_MEM_MEM_USART. As mentioned in Peripheral to
Peripheral Transfer without DMAC (ADC to USART) on page 22, this is the counterpart implementation of
ADC_DMAC_MEM_MEM_USART which is done to demonstrate the DMAC usage in reducing the CPU
load.

Note:  File to be referred for this case is adc_no_dmac_mem_mem_usart.c.

6.4.1. Application Implementation and Configuration
This scenario is same as Peripheral to Memory and Memory to Peripheral Transfer without DMAC (ADC
to SRAM and SRAM to USART) on page 23 except that memory copy to another buffer adc_result_copy
is done which will add some over overhead to the application.
 /* Check if the all the samples has been done by ADC */
 if (adc_sample_count == BLOCK_COUNT){

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

23

 /* Disable ADC */
 adc_hw->CTRLA.reg &= ~ADC_CTRLA_ENABLE;

 /* Copy adc result to another buffer */
 memcpy_ram2ram(adc_result_copy,adc_result,BLOCK_COUNT);
 /* Write samples to USART */
 usart_write_data(&usart_instance,adc_result_copy,BLOCK_COUNT);

 /* Indicate conversion has been done */
 adc_conv_done = true;
 /* Get the time stamp from SysTick */
 time_stamp2 = SysTick->VAL;

 }else if (flags & ADC_INTFLAG_RESRDY) {
 /* Clear ADC interrupt */
 adc_hw->INTFLAG.reg = ADC_INTFLAG_RESRDY;
 /* Store ADC result to RAM buffer */
 adc_result[adc_sample_count] = adc_hw->RESULT.reg;
 /* Count the number of samples taken so far */
 ++adc_sample_count;
 /* Trigger next ADC conversion */
 adc_start_conversion(&adc_instance);
 }

The application block diagram is shown as follows.
Figure 6-4. ADC – SRAM – SRAM – USART Transfer without DMAC

6.4.2. CPU Utilization Calculation
The CPU utilization is similar as done in CPU Utilization Calculation on page 23.

Note:  Refer CPU Utilization Analysis Between Different Cases on page 29 for detailed description
about the CPU utilization calculation from the results observed.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

24

6.5. CPU Utilization Calculation
This section covers the logic implemented in this application to calculate the CPU utilization.

For calculating the CPU utilization, we need to measure total time taken for executing the data transfer
routine. This is measured using the SysTick timer.

We also need to measure how much time CPU is idle task when executing the above said routine. This is
measured by incrementing a variable (‘idle_loop_count’) whenever the CPU is idle. The idle counter value
is converted to time scale by multiplying the count value with the time taken to increment once.

Both the total time taken by the data transfer routine and idle counter is measured for fixed number of
data transfer as shown in the following figure. In this test, it is 1024 byte transfer.

Figure 6-5. CPU Utilization Calculation

The number of cycles taken (cycles_taken) to complete the transaction can be calculated from the time
stamp taken using SysTick. As SysTick runs at processor clock, the time taken for total transaction can
be calculated from the cycles taken and the CPU clock frequency of the application as below.

Time taken to complete transaction = (cycles_taken/CPU clock frequency)

The idle_loop_count represents the number of times the code enters idle task. This can be used to derive
the time that CPU is idle during complete transaction. To convert this count value to time scale, the time
taken for each count increment should be known.

For this purpose, in the application code, two separate port pins are toggled in the idle loop and in the
interrupt handler. Whenever the code enters interrupt handler, the idle loop count stops and pin toggled
inside idle loop stays at same level. When the code comes out of handler, the pin toggled inside handler
stays at same level and the idle loop pin starts toggle. The time taken for single toggling is calculated
after removing the time taken for handler execution. This is illustrated as follows.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

25

Figure 6-6. Calculation of Time Taken for a Single idle_loop_count Increment

From oscilloscope, the time taken for each count increment is calculated to be ~1.628µs (as shown in the
following figure). The count value when multiplied with the pulse width (i.e. 1.628µs) will give the time
CPU spends inside idle task.

Note: 
1. The duration of idle_loop_count and CPU idle time can be measured by probing port pins PA16 and

PA14 respectively.
2. The width of idle_loop_count pulse is the time taken to increment one idle count value when there

is no interrupt triggered.

Figure 6-7. Oscilloscope Shot of Idle Task

i

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

26

The CPU utilization analysis for each case has been done in CPU Utilization Analysis Between Different
Cases on page 29.

Note:  The ideal expectation is that the idle loop count should be more when using DMA than when not
using it. Because, when using DMA, the CPU is not interrupted and idle task can be executed in parallel.
But in practical, this cannot be the case. The reason is that, DMA will take lesser time to complete the
transfer. In case of using interrupt method; it takes more time to complete the transaction. So sometimes,
the time that code can spend for ideal task would be lesser for DMAC case and the idle_loop_count value
can be lesser than when not using DMA. To avoid such confusion, the time taken for completing the
transfer is also taken using system timer and the ratio of both is used to calculate the CPU utilization.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

27

7. Application Limitations

7.1. USART Baudrate and ADC Sampling Frequency
In DMAC usage case, as explained already, ADC RESULT is directly written to USART DATA register.
The DMA triggers ADC next conversion immediately once data is written to USART. This causes data
loss on terminal window if the usart baud rate is lesser than the ADC conversion time. To avoid this, ADC
is configured with lowest possible frequency and USART is configured with maximum possible baudrate.

For ADC:

The rate of conversion of ADC clock depends on the GCLK_ADC (i.e. 16MHz) and it’s prescalar which is
64 in this case.

ADC clock frequency = 16MHz/64 = 250kHz ~= 4µs

Conversion time = 8 cycles (8-bit resolution) + 1 cycle (Sampling time) = 9 * 4µs ~= 36µs

For USART:

As per section ‘Baud Rate Equations’ in the product datasheet: fbaud should be ≤ fref/S

For Asynchronous Arithmetic mode number of samples per bit (S) = 16

fref = 16MHz

So, maximum possible baudrate = 16MHz/16 = 500000

Baud rate configured = 460800 (i.e. 460800 bits sent in = 1s)

For 10 bit, it takes = (10/460800) ~= 21.7µs

So, setting 460800 baudrate is advisable. Because once ADC sample is ready for every 36µs. USART
would have sent the previous data in 21.7µs and waits for next ADC result without any data loss.

Note: 
1. The 10 bits comes from USART data frame - Start bit (1) + Data bit (8) + Stop bit (1).
2. Refer the device datasheet, for more details on timing calculations on ADC and USART.

7.2. SRAM to SRAM Transfer Type
For the cases ADC_DMAC_MEM_MEM_USART and ADC_NO_DMAC_MEM_MEM_USART, the transfer
type Memory to Memory. I.e. Copy of adc result from one SRAM buffer (adc_result) to another SRAM
buffer (adc_result_copy) is done for demonstration purpose. This application does not demand this need
to make it work properly.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

28

8. CPU Utilization Analysis Between Different Cases
After programming the firmware successfully, the results can be seen in the terminal window. The result
contains the ADC result data, number of cycles taken and idle loop count in ‘hex’ format. This chapter
explains how to derive CPU usage for each case from the results observed. The calculation is done as
explained in CPU Utilization Calculation on page 25.

Note:  The results shown in this application note taken are with the following conditions. The resulting
idle_loop_count and cycles_taken will vary with the optimizations, frequency or any change in the
application code.

• Optimization set to zero (-O0)
• Port toggling function (ENABLE_PORT_TOGGLE) is enabled in the conf_dma.h
• OSC16M internal oscillator is used with frequency selected as 16MHz

8.1. CPU Frequency Calculation
To find the time taken, CPU frequency needs to be known. This application runs at internal 16MHz
(OSC16M). The accuracy on internal RC oscillator can be taken from Electrical Characteristics of the
product datasheet. The accuracy of RC in the board used for testing was calculated to be 15.97MHz. This
is done by giving the main clock i.e. GCLK0 (which runs at 16MHz) output to I/O pin for the device tested
using the snippet below.
int main (void)
{
 struct system_pinmux_config pin_conf;
 system_pinmux_get_config_defaults(&pin_conf);
 pin_conf.direction = SYSTEM_PINMUX_PIN_DIR_OUTPUT;
 pin_conf.mux_position = 0x07;
 system_pinmux_pin_set_config(PINMUX_PA14H_GCLK_IO0 >> 16, &pin_conf);

 system_init();
 while(true);
}

Note: 
1. The I/O pin used here is PA14.
2. In src/config/conf_clock.h, CONF_CLOCK_GCLK_0_OUTPUT_ENABLE should be enabled true

to enable GCLK out output to I/O pin.

8.2. CPU Idle Time Calculation from Result Observed
The following snap shots shows the results of various cases used in the application.
Figure 8-1. ADC_DMAC_USART Terminal Output

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

29

Figure 8-2. ADC_DMAC_MEM_MEM_USART

Figure 8-3. ADC_NO_DMAC_USART Terminal Output

Figure 8-4. ADC_NO_DMAC_MEM_MEM_USART

For instance, take case ‘ADC_DMAC_USART’:

The last eight bytes of data represent the idle_loop_count and cycles_taken in big-endian format shown
as follows. The last four bytes of result is the idle_loop_count and the next four bytes is the cycles_taken.

So idle_loop_taken = 0x00006C4C = 27724d

Cycles_taken = 0x000B0127 = 721191d

Time taken to complete transaction = (cycles_taken/CPU clock frequency)

Time taken to complete transaction = (721191/15.97)µs = 45.159ms

The time taken for each idle count is calculated to be 1.628µs as in CPU Utilization Calculation on page
25.

Total CPU idle time = idle_loop_count * 1.628µs = 27724 * 1.628µs = 45.134ms

Therefore, in 45.159ms transfer period, CPU is idle for about 45.134ms for ‘ADC_DMAC_USART’ case.
In similar way, the calculation is done for other cases and the following table lists the same.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

30

Case Idle_loop_count Cycles_taken Total
transfer
time
[ms]

CPU
idle
time
[ms]

CPU
idle
time
[%]

ADC_DMAC_USART 0x00006C4C 0x000B0127 45.159 45.134 99.94

ADC_DMAC_MEM_MEM_USART 0x0000899B 0x000E0391 68.608 68.449 99.76

ADC_NO_DMAC_USART 0x000059EC 0x00126687 75.510 37.476 49.63

ADC_NO_DMAC_MEM_MEM_USART 0x000059EC 0x00128AA2 76.088 37.476 49.25

It can be seen from the table that when using DMAC, CPU is idle most of the time during the data
transfer. But without DMAC, the CPU is in idle mode only for some portion of data transfer and overall
transfer time is also high.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

31

9. Execution of Application
The firmware corresponding to this application note comes with the Atmel Software Framework and it can
be imported from Atmel Studio as well. The steps below explain the execution of this application.

Note:  This chapter assumes that the setup is ready as per Setup on page 7 of this application note

1. Import the example in Atmel Studio from File > New > Example Project > DMAC CPU Usage
Demo – SAM L22 Xplained Pro.

2. Choose the compiler option in src\config\conf_dma.h based on the execution mode needed.
3. Go to Build > Build Solution to compile the project.
4. Once it is compiled successfully, go to Tools > Device Programming Window.
5. Select appropriate tool, device and interface type and click Apply to connect to the kit. Check

Device Signature and Target Voltage to ensure proper connection.
6. Now go to Memories Tab. Browse the *.hex/elf file location and click program to flash the device

shown as follows:
Figure 9-1. Device Programming Window in Atmel Studio

7. To debug the code, right click on the project in the Solution Explorer Window > Go to Project
Properties.

8. Go to Tools > Debugger/programmer as EDBG and SWD as Interface.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

32

Figure 9-2. Debug Settings in Atmel Studio

9. Ensure optimization is None to utilize maximum debugging in Toolchain > ARM®/GNU C
Compiler > Optimization > Optimization Level > None(-O0).
Figure 9-3. Set Optimization Level

10. Go to Debug > Start Debugging and Break to debug the code and click Start without
debugging to continue programming without debugging.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

33

10. References

10.1. ARM Documentation on Cortex-M0+ Core
• Cortex-M0+ Devices Generic User Guide revision r0p1
• Cortex-M0+ Technical Reference Manual revision r0p1

10.2. Atmel Software Framework (ASF)
Web page:

http://www.atmel.com/tools/avrsoftwareframework.aspx

Document/file:

• ASF update for Atmel Studio (.vsix) from ASF web page
• ASF update through Atmel Gallery https://gallery.atmel.com/
• ASF update through Tools > Extension Manager from Atmel Studio
• ASF standalone package for GCC makefile and IAR users
• Atmel AVR4029: Atmel Software Framework - User Guide
• Atmel AVR4030: Atmel Software Framework - Reference Manual

The ASF online documentation for the API and example usage are available at http://asf.atmel.com.

10.3. Atmel Studio
The latest version of Atmel Studio can be downloaded from http://www.atmel.com/tools/atmelstudio.aspx.

10.4. Device Datasheet
The device datasheet contains the block diagrams of the peripherals and details about implementing
firmware for the device. It also contains the electrical specifications and expected characteristics of the
device.

Datasheet is available on www.atmel.com in the Documents section of Atmel SAM L22 product page.

10.5. Hardware Tools User Guide
• For SAM L22 Xplained Pro User Guide and Schematics: http://www.atmel.com/devices/

ATSAML22N18A.aspx?tab=tools
• For IO1 Xplained Pro User Guide and Schematics: http://www.atmel.com/tools/ATIO1-XPRO.aspx?

tab=documents

10.6. Online Tools User Guide
Online help for each tool is available at the link http://www.atmel.com/webdoc/.

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

34

http://www.atmel.com/products/microcontrollers/arm/sam-d.aspx?tab=tools
https://gallery.atmel.com/
http://asf.atmel.com
http://www.atmel.com/tools/atmelstudio.aspx
http://www.atmel.com
http://www.atmel.com/devices/ATSAML22N18A.aspx?tab=tools
http://www.atmel.com/devices/ATSAML22N18A.aspx?tab=tools
http://www.atmel.com/tools/ATIO1-XPRO.aspx?tab=documents
http://www.atmel.com/tools/ATIO1-XPRO.aspx?tab=documents
http://www.atmel.com/webdoc/

11. Revision History
Doc Rev. Date Comments

42627A 2/2016 Initial document release

Atmel AT10843: CPU Usage Demonstration Using DMAC of SAM L22 [APPLICATION NOTE]
Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

35

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42627A-CPU-Usage-Demonstration-Using-DMAC-of-SAML22_Application Note-02/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Windows® is a registered trademark of Microsoft
Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Description
	Features
	Table of Contents
	1. Abbreviations
	2. Pre-requisites
	3. Setup
	3.1. Hardware Setup
	3.1.1. SAM L22 Xplained Pro
	3.1.2. IO1 Xplained Pro Extension Board

	3.2. Software Setup

	4. Direct Memory Access Controller
	4.1. Block Diagram
	4.2. Functional Description
	4.2.1. DMAC Basic Operation
	4.2.2. DMAC Channels
	4.2.3. DMAC Transfer Operation
	4.2.4. Other Features

	5. Peripherals Overview
	5.1. Event System (EVSYS)
	5.2. Analog-to-Digital Converter (ADC)
	5.3. SERCOM – Serial Communication Interface
	5.4. SERCOM – USART
	5.5. The System Timer (SysTick)

	6. Example Implementation
	6.1. Peripheral to Peripheral Transfer with DMAC (ADC to USART)
	6.1.1. Application Configuration and Implementation
	6.1.2. CPU Utilization Calculation

	6.2. Peripheral to Memory and Memory to Peripheral Transfer with DMAC (ADC to SRAM and SRAM to USART)
	6.2.1. Application Configuration and Implementation
	6.2.2. CPU Utilization Calculation

	6.3. Peripheral to Peripheral Transfer without DMAC (ADC to USART)
	6.3.1. Application Configuration and Implementation
	6.3.2. CPU Utilization Calculation

	6.4. Peripheral to Memory and Memory to Peripheral Transfer without DMAC (ADC to SRAM and SRAM to USART)
	6.4.1. Application Implementation and Configuration
	6.4.2. CPU Utilization Calculation

	6.5. CPU Utilization Calculation

	7. Application Limitations
	7.1. USART Baudrate and ADC Sampling Frequency
	7.2. SRAM to SRAM Transfer Type

	8. CPU Utilization Analysis Between Different Cases
	8.1. CPU Frequency Calculation
	8.2. CPU Idle Time Calculation from Result Observed

	9. Execution of Application
	10. References
	10.1. ARM Documentation on Cortex-M0+ Core
	10.2. Atmel Software Framework (ASF)
	10.3. Atmel Studio
	10.4. Device Datasheet
	10.5. Hardware Tools User Guide
	10.6. Online Tools User Guide

	11. Revision History

