
 ATAN0145

 Using SAM DA1 in LIN Ultra-low-power Nodes

 APPLICATION NOTE

Introduction

This application note provides an example of LIN master and LIN slave
communication within LIN networks focused on ultra-low-power consumption
using Atmel® SMART SAMDA1 automotive-qualified microcontrollers.
SAMDA1 is an ultra-low-power embedded MCU device with very low power
consumption in standby sleep mode. To achieve the lowest power
consumption while in sleep mode, the device must be configured in standby
sleep mode with its SERCOM UART peripheral set to asynchronous wake-
up. Because the internal voltage regulator is only able to drive low-current
loads while in standby, it is necessary to configure the core and its
peripherals so that the device only consumes a very low amount of power
and the voltage regulator is not being overdriven. This application note
describes the use of peripherals and the operating modes of the LIN slave
node in order to achieve ultra-low sleep current while in standby.

Atmel-9419A-ATAN0145_Application Note-06/2016

Table of Contents

Introduction..1

1. Summary... 3

2. SAMDA1-XPRO Resources which Support the LIN Bus...4

3. LIN Protocol Overview...5

4. LIN Demo Description..8

5. Application Software..9

6. Standby Power Consumption.. 14

7. Appendix A - LIN Node Configuration..16

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

2

1. Summary
• The Atmel® SAMDA1 must be put into standby sleep mode to achieve the lowest power

consumption while in sleep.
• In standby sleep mode the internal voltage regulator is switched to the low-power state. In this state

the regulator can only supply limited current to the core and peripherals. So that wake-up is
successful, the load current on the internal VREG should not exceed 50µA before entering standby
sleep mode.

• Although multiple peripherals can run in standby mode, it is critical to enable only the ones required
for generating a wake-up signal. Careful power budgeting is recommended.

• In a LIN application, a wake-up trigger for a LIN slave node can, for example, be derived from the
UART asynchronous wake-up trigger by enabling the SFDE (start of frame detection enable) bit or
using an asynchronous wake-up via EIC (external interrupt controller) and enabling interrupt on pin
change. In both cases, the falling edge on the LIN pin (i.e., entering the break field) triggers a wake-
up.

• In order to successfully enter standby mode, all unused peripherals and their clocks must be
disabled before entering standby sleep mode (e.g., disable clocks in the Power Manager
APBxMASK registers (e.g., APBCMASK.AC1, I2S, PTC, DAC, ADC, SERCOM5-0, etc.).

• When using the PTC module, disable PTC debug pulses to minimize power consumption (i.e.,
DEF_TOUCH_QDEBUG_ENABLE=0 in touch.h).

• Minimize standby power by clearing the RUNSTDBY bit on used oscillators. This disables the
oscillator when the device enters standby sleep mode. Use a separate oscillator that can have the
RUNSTDBY bit enabled for peripherals that have to run in standby mode.

• Set RUNSTDBY=1 and ONDEMAND=1 bits to keep the oscillator running only when there is a
peripheral requesting its clock while in standby sleep mode.

• To minimize clock tree power consumption, select GCLK1, GCLK2, etc., as a generic clock driver
with a GCLK0 exception. GCLK0 is the main clock module and its drivers route output clocks to all
peripherals . This increased load increases power consumption when GCLK0 is used.

• When using EIC as a asynchronous wake-up source, the OSCULP32K oscillator can be used as a
system clock. This is a very low-power internal RC oscillator which is permanently enabled (even in
standby sleep mode) and can be used while in standby mode to further reduce power consumption.

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

3

2. SAMDA1-XPRO Resources which Support the LIN Bus
Atmel® SMART SAM DA1 resources used in a LIN application:

• ATSAMDA1J16A-ABT: ARM® Cortex®-M0+ MCU, TQFP64
– 64KB PM Flash, 2KB RWW Flash, 8KB SRAM
– Oscillators: OSC8M, OSC32K, OSCULP32K
– Idle/standby sleep mode
– SERCOM (UART) – supports LIN communication (LIN master, LIN slave)
– External Interrupt Controller (EIC) when used as wake-up source from the LIN TRX
– Peripheral Touch Controller (PTC) – touch interface support
– Real-Timer Counter (RTC) – Break and interframe timer
– WDT
– Serial Wire Debug (SWD) interface for debugging and programming

• LIN transceiver: Atmel ATA663231-FAQW
– SBC chip, including 3.3V VREG
– LIN 2.1 transceiver

• Integrated on SAMDA1-XPRO USB embedded debugger (with SWD interface) for MCU
programming and debugging. Connects to PC host via USB mini connector.

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

4

3. LIN Protocol Overview
The Local Interconnect Network (LIN) bus is based on a serial network protocol used for low-speed
communication between a LIN master node and up to 16 LIN slave nodes. It is primarily used in the
automotive industry for communication between individual ECUs which support a low baud rate (up to
20Kbaud), one- wire serial, HV (12V) signaling. The LIN protocol supports digital data communication
such as with the vehicle sunroof, doors, engine, and seats. LIN relies on a master-slave protocol where
the transmitting node provides master data frame timing and transmits the header data including the
synchronization and ID header data. The slave transmission constitutes the frame response consisting of
individual data fields and the integrity data check field as a checksum.

The main LIN features are:

• Master-slave protocol
• Based on standard UART hardware and data transmission formatting
• Physical layer is based on enhanced ISO 9141 (K-line)
• Baud rate up to 20Kbaud
• Addressing IDs for 16 nodes (e.g., 1 × master, 15 × slaves)
• Support of up to 8bytes of payload/frame

A typical LIN frame consists of a header and the response intervals. The header is transmitted by one LIN
master node and the response is transmitted either by one of the LIN save nodes or the LIN master itself.
The LIN master normally uses a scheduling table to configure the LIN frame where it addresses individual
LIN slaves using device/node IDs. Data is transmitted as 8-bit data bytes with one start, one stop and no
parity when sending UART 8-bit formatted data.

The figure below depicts a LIN frame and its individual fields.
Figure 3-1. LIN Message Frame Fields

Synch
field

Synch
break

Ident
field

Data
field

Data
field

Data
field

Header

Interbyte SPACE

IN_FRAME response space

Response

Message Frame

Data
field

Check-
sum
field Interframe

space or
break

Figure 3-2. LIN Frame Signaling

Response space

Header Response

Frame

Protected
identifier

field

Sync
field

Data 1

Interbyte space Interbyte spaces

Data 2 Data N ChecksumBreak
field

The header includes::
• Break: This indicates the beginning of the LIN frame and has a threshold of at least 11 × Tbit and

can be as long as 13 × Tbit. Its level is set to dominant (logic 0, i.e., GND).

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

5

• Sync: This is used for data synchronization of the slaves with the master. It follows directly after the
BREAK field and is defined as a typical data byte with its start bit, sync data byte (0X55), and the
end bit as well as two parity bits.

• Interbyte space: This is a recessive signal providing a gap for interfield jitter adjustment.
• Identifier: This is where the PID (protected identifier) is sent to the slaves. Only the node with a

corresponding PID can respond. The PID consists of two subfields: (1) the frame identifier - ID[5:0]],
with the values from 0 to 63, and (2) the parity - P[1:0], calculated on frame ID bits.

The response field includes:

• Data: Any LIN frame carries from 1 to 8 bytes of payload data. All the payload data is transmitted in
this data field. LSB is transmitted first (little-endian).

• Checksum: This is an inverted 8-bit sum with carry over all the data bytes and the PID field.

LIN frame types include unconditional, event triggered, sporadic and diagnostic frames.

• Unconditional frames always carry signals and their identifiers from 0 to 59. All subscribers receive
and provide the frame to the application.

• Event-triggered frames are frames generated based on the header information. They provide a
response only when data values have changed; if there is no change, the rest of the frame is silent.

• Sporadic frames are updated header info frames sent by the master. The publisher always provides
the response to the header.

• Diagnostic frames are frames which carry diagnostic information and always provide 8 data bytes;
the PID is set to 60 or 61.

• User-defined frames are specific to the user requirements. Their PID = 62 and the data payload is
user-defined.

• Reserved frames use PID = 63. They cannot be used in a LIN 2.0 cluster.

1. Identity Field Formatting
The protected identifier field consists of the frame identifier (ID00 to ID05) and the parity for the
identifier(P06 and P07).

Frame Identifier

Six bits are reserved for the frame identifier in the range from 0 to 63:

– 0–59 (0x3B): frame carrying the signal
– 60 (0x3C) and 61 (0x3D): frames carrying diagnostic and configuration data
– 62 (0x3E) and 63 (0x3F): frames reserved for future protocol enhancements

Parity

The P0 bit is calculated by computing the “OR” function of all the identifier bits (ID0 to ID4). The P1
bit is calculated by computing the “OR” function of the identifier bits (ID1 to ID5) and inserting the
result.

Protected identifier (PID) data is transmitted by sending ID bits in a manner similar to that used for
the data field format (ID0-5, LSB first) followed by the parity bits P0-1.

Figure 3-3. Identifier Bit Order

ID0Start
bit

Stop
bit

ID1 ID2 ID3 ID4 ID5 P0 P1

2. Data Field Formatting

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

6

Each frame can consist of 8 bytes of payload data and is transmitted in the byte field. The number
of bytes is agreed upon by the frame publisher and the frame subscriber at the network deployment
stage..

Figure 3-4. Data Field Bit Order

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

3. Checksum Field Formatting
The checksum field consists of a checksum byte which is a modulo-256 sum of all data bytes within
the data field (also including the PID data). To compute the checksum, all the data bytes are added
in with carry and the resulting sum is inverted.

The checksum is transmitted in the data field and uses data field formatting

Figure 3-5. Checksum Field Bit Order

C0 C1

Start Bit Stop Bit

C2 C3 C4 C5 C6 C7

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

7

4. LIN Demo Description
This LIN demo application consists of the LIN master and LIN slave node pair made up of SAMDA1-
XPRO and QT1-XPRO PCBs for each node. Both nodes are powered using 12VDC external power
supply and connected to the LIN bus via a single wire. The QT1 PCB attached to the LIN slave node is
used as the touch sensor interface where a detection of the touch, the slider and the wheel sensor is
displayed on QT1 LEDs. Once a touch is detected by the LIN slave node, it is published as a LIN
message to the LIN master node, where it is displayed on the LIN master QT-XPRO LEDs. This allows
the QT1-XPRO on the LIN slave to be used for detecting the touch and displaying it on its LEDs, with the
QT1-XPRO on the LIN master used only for displaying published LIN messages (no touch interface is
enabled on the LIN master) consisting of touch activity of the LIN slave node only.

The LIN demo hardware setup:
• 2 × SAMDA1-XPRO evaluation PCBs – LIN master and LIN slave node
• 2 × QT1 Xplained Pro SelfCap touch evaluation PCBs – Qtouch interface boards. Each PCB plugs

directly into EXT1 and EXT2 on each of the SAMDA1-XPRO PCBs and consists of 2 × touch
buttons, 1 × slider and 1 × wheel (optional)

• 12VDC power supply (VS_LIN) and a single wire connection between the SAMDA1-XPRO boards
on the LIN bus pin (LIN)

Table 4-1. LIN Demo SAMDA1-XPRO/QT1 Touch (Master) to SAMDA-XPRO/QT1 Touch (Slave) HW
Connections

Description - Signal/Port SAMDA1-XPRO (Master)
Signal/Port

SAMDA1-XPRO (Slave)

Vsupply-LIN (12V)(1) VS-LIN/HV port VS-LIN/HV port

Ground GND/HV port GND/HV port

LIN signal LIN/HV port LIN/HV port

QT1 touch extension PCB -
EXT1

SAMDA1-XPRO/EXT1 SAMDA1-XPRO/EXT1

QT1 touch extension PCB -
EXT2

SAMDA1-XPRO/EXT2 SAMDA1-XPRO/EXT2

EDBG USB debugger port(2) SAMDA1-XPRO/USB_EDBG SAMDA1-XPRO/USB_EDBG

USB target port(3) SAMDA1-XPRO/USB_TARGET SAMDA1-XPRO/USB_TARGET

Note: 
1. VS_LIN pins on the slave and the master node are connected to a 12VDC power supply.
2. EDBG USB debugger ports are used to download and debug source code to SAMDA1 targets.
3. USB target ports on SAMDA1 can be used to communicate with PC host hyper terminal, for

example.

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

8

5. Application Software
This LIN demonstration software example is provided for both the LIN master and LIN slave nodes which
are both based on the Atmel® SAMDA1J16 MCU. The supporting hardware consists of the SAMDA1
Xplained Pro evaluation board and the optional QT1-XPRO Qtouch board supporting the LIN
communication protocol in the following scenarios:

• The SAMDA1-XPRO is used in conjunction with the QT1-XPRO to demonstrate LIN touch
functionality while the touch data collected by the sensors on the QT1_XPRO slave node is
transmitted to the LIN master.

• The SAMDA1-XPRO is used in stand-alone configurations with LIN functionality and ultra-low-
power consumption.

LIN master application software overview:

• The LIN master uses master and slave software tasks to transmit and receive LIN data from the LIN
slave node.

• The LIN master node generates LIN subscription frames and sends the LIN frame header (Break,
Sync, PID) and receives the response published by the LIN slave consisting of the touch payload
data.

• The system clock is based on an OSC8M internal on-chip oscillator.
• The LIN master polls switch SW0 input, and if a push is detected, it transmits an idle LIN signal

(recessive level only) on the LIN pin. This ensures no data is transmitted on the LIN pin and
enables power measurement while in sleep mode on the LIN slave node.

• TC module generates a timer tick to transmit LIN frame header data at 10msec intervals (i.e.,
“time_to_schedule_lin” flag is set in main()).

• AtaHw_LinMasterStartFrame() is executed to transmit LIN starting frame break.
• AtaHw_LinMasterPollingTask() sends subsequent LIN header content.
• AtaHw_LinSlavePollingTask() receives published LIN response data. Then main.c parses

button1_state, button2_state, slider_position, and rotor_position active states. With QT1- XPRO
connected on the EXT1 and EXT2 header, the touch status is displayed for the buttons. The
position for the slider and the wheel is indicated on the QT1-XPRO LEDs.

• Once the l_flg_tst_statusupdated() flag is set, user LED0 toggles to indicate reception of data from
the slave node.

Note:  There are no touch detection functions enabled on the LIN master node.

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

9

Figure 5-1. LIN Master Software Flow

RESET

Yes

No

Yes

No

SW0 Button
Pushed?

Send LIN Master
Frame Header

Enter Idle Mode
(TXD = 1)

Receive LIN
Frame Response

1.Toggle LED on
FrameCntr

2.Illuminate LEDs
on QT1

Init System
Init Timer, Delay

Init Touch Sensor
Init UART

Enable LIN TRX
Config ports

LIN Response
Verifies?

LIN Slave Node Overview

• The LIN slave publishes payload data in the response field (this becomes the publish message for
the slave).

• The system clock is integrated within an OSC8M internal on-chip oscillator.
• RTC timing out triggers the PTC module to sense for the touch and update its touch state data on

“rtc_overflow_callback” by setting the touch_time.time_to_measure_touch flag variable.
• Touch status is updated once the “measurement_done_touch” flag is set. Touch sensor states are

updated. Upon touch detection, the LEDs on the QT-XPRO PCB are illuminated.
• The SAMDA1-XPRO user LED blinks to indicate valid LIN frame data communication.
• The LIN slave enters standby sleep mode each time a wait-for-interrupt instruction is executed

(asm("wfi")). This instruction is included in the while (1) loop in main() and it is executed each time

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

10

going through the loop. Each time a task is completed, it returns back to while (1) loop for
application execution.

• Interrupts are used as sources of wake-up. For data reception – asynchronous Start-of-Frame
Detection Trigger wake-up is used as data is detected on the RX pin by the UART peripheral.

• As an alternative, the interrupt-on-pin-change trigger using EIC can also be used as a wake-up
source as the frame data is detected on the RX pin. Upon device wake-up (via EIC), Atmel
SAMDA1 must be reconfigured to enable SERCOM/USART on the same RX pin as data input pin
used for wake-up by the EIC. While in standby, the EIC method consumes standby current at a
level to using the UART asynchronous wake-up.

• The LIN slave uses AtaHw_LinSlavePollingTask() to receive and transmit data using interrupts.
• When set to “0,” the <PTC_enable> variable excludes the PTC module to achieve the lowest

possible power consumption.
• The LIN driver can use interrupts or is polled by defining LIN_SLAVE_INTERRUPTS in the

conf_lin.h file.

The LIN slave node is put into standby mode with all peripherals and their clocks disabled in PM for
optimal power consumption. The LIN slave can use asynchronous wake-up by setting the Start of Frame
Detection Enable bit (SFDE) in the CTRLB register. Figure 5-2 shows an asynchronous wake-up
generation as the break field is detected. With the INTENSET.RXS bit configured, asynchronous wake-up
occurs on the falling edge of the RX signal. SAMDA1 reaches its full functionality after the OSC8M wake-
up period, when it reaches its operating voltage and frequency. For more information, see Figure 5-2.

Figure 5-2. Atmel SAMDA1 LIN Asynchronous Wake-up

USART/RX

INTENSET RXS

OSC8M

Async
Wakeup

Break Field Sync Field

QT1-Xpro: The touch extension board (QT1) can be optionally connected to the EXT1 and EXT2 headers
on the SAMDA1-XPRO and is a touch interface using Peripheral Touch Controller (PTC) functionality.
One slider, one wheel and two touch buttons are implemented on the QT1 and supported by the Atmel
SAMDA1 touch interface. The Atmel SAMDA1 Qtouch library is populated with its API functions as shown
in Table 5-1. Set PTC_enable=0 to disable PTC functionality for the best low-power consumption.
Note: 

1. Disabling the PTC debug clocks by setting DEF_TOUCH_QDEBUG_ENABLE to 0 improves power
consumption performance while the PTC peripheral is enabled. See the touch.h file in the QTouch
driver for this parameter.

2. The MCU current consumption can be measured while in sleep mode by setting the LIN signal to
idle (recessive level) on the LIN master node and by pushing and holding down the SW0 button.

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

11

Figure 5-3. LIN Slave Application Overview

RESET

Enter Sleep

Measure Touch
Sensors

Rx LIN Header
and Publish LIN

Response

Toggle LED on TX
FrameCntr

Init System
Init Timer, Delay

Init Touch Sensor
Init Sercom4

Enable LIN TRX
Config ports

Config Sleep Mode

Table 5-1. PTC Functions Used in LIN Slave (PTC_enable=1)

Function Description

touch_sensors_init() Initializes the QTouch lib and configures the touch
sensors

configure_port_pins() Configures the QT1 PCB outputs

touch_sensors_measure() Starts touch sensor measurement

GET_SELFCAP_SENSOR_STATE(n) Returns touch sensor state for a sensor number “n”
as a sensor number from 0 to 3: (1) n=1, button1
and button2 states respectively; (2) n=2, rotor
state; (3) n=3, slider state.

GET_SELFCAP_ROTOR_SLIDER_POSITION(1) Returns slider (n=1) position

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

12

The timing diagram below shows LIN frame transmission. The LIN master transmits the LIN header
interval and the LIN slave transmits the response. The scope trace show input pins and output pins on the
Atmel SAMDA1 device RXD and TXD connections to the LIN TRX:

• Channel_1(C1): UART_TX pin (data transmit)
• Channel_2(C2): UART_RX pin (data receive)
• Channel_3(C3): The GPIO signal is used as a byte strobe for byte reception in the response

interval. It is generated by the LIN master node upon byte 0-3 and checksum reception.

Figure 5-4. LIN Subscription Frame Transmission

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

13

6. Standby Power Consumption
The Atmel®SAMDA1 includes idle and standby sleep modes. They are both activated by the Wait For
Interrupt Instruction (WFI). Idle sleep mode is activated by setting idle bits in the sleep mode register
(SLEEP.IDLE) in the power manager. Standby mode is set by setting SLEEPDEEP bit in the system
control register of the CPU.

• IDLE mode: While in idle sleep mode, the CPU clock is stopped and, depending on which idle
mode is selected, the IDLE0, IDLE1, or IDLE 2 synchronous clock domains are stopped. VREG is
enabled and operated at its normal capacity.

• STANDBY mode: The CPU and all clocks are stopped. All clock sources are stopped depending on
those selected by the RUNSTDBY bit in the respective oscillator register. The regulator operates in
low-power mode which can only support load currents of up to 50µA. In this mode, only a very
limited number of clocks and/or oscillators can be enabled so that the regulator is not overloaded.

Table 6-1. SAMDA1 Sleep Modes

Mode Level Mode Entry Wake-up Sources

IDLE 0 SCR.SLEEPDEEP=0

SLEEP.IDLE=Level;

WFI

Synchronous (APB, AHB)
asynchronous

1 Synchronous (APB)
asynchronous

2 Asynchronous

STANDBY SCR.SLEEPDEEP=1 Asynchronous

LIN slave node can conserve power by entering a sleep mode. The device is powered down in standby
sleep mode, leaving only the most critical functionality such as USART/EIC for generating a wake-up
trigger once the WFI instruction is executed.

Examples for entering Idle_2 and standby sleep mode:

//Enable IDLE mode

// Sleepdeep bit in System Control Register in the CPU must be set to '0'
 SCB-> SCR.SLEEPDEEP = 0;
 PM->SLEEP.reg = 0x02; //Idle[1:0]=0x2 where CPU, AHB and APB domains are stopped after
WFI instr.

while(1)
{
asm("wfi");
}

//Enable Standby mode

// Sleepdeep bit in System Control Register in the CPU must be set to '1'
 SCB->SCR.SLEEPDEEP = 1; //Enters Standby mode after WFI instr.

while(1)
{
asm("wfi");
}

When using an asynchronous UART wake-up trigger as a wake-up source, the Start of Frame Detection
Enable bit (SFDE) in the USART CTRLB register must be set during initialization. When the LIN frame is

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

14

detected on the USART/RX input pin, the device triggers a wake-up when the INTENSET.RXS bit is set to
“1”.

Similarly, EIC can detect a frame when its interrupt signal input can be assigned to the USART RX pin for
wake-up only. Once the device is powered, the RX inputs can be reassigned back to their respective
USART peripheral for data detection.

1. Measuring standby power consumption
– Connect an ammeter to the power measurement header on the SAMDA1-XPRO.
– Press SW0 on the LIN master node SAMDA1-XPRO PCB and hold down to suspend data

transmission. The LIN pin is put into its recessive (high) state. At this time the LIN slave node
is put into standby mode. In this state the LIN slave is suspended in the standby state
because it is waiting for the Start-of-Frame asynchronous wake-up signal to be generated by
the USART module. The power consumption at this time is displayed by the ammeter
connected to the power measurement header.

Once SW0 is released, the LIN master node begins to send LIN frame data and the LIN demo
resumes normal operation. Note that the LIN slave still enters standby mode between data
transmissions and at any other times a wake-up signal occurs.

2. Measurement Results

Table 6-2 shows a sample of measurements taken using the normal, idle_2 sleep and standby sleep
modes.

Table 6-2. Atmel SAMDA1 Power Consumption

Operating Mode PTC_enable=1 PTC_enable=0

Normal operation (LIN protocol running)
- sleep mode=idle
- sleep mode=standby

932µA
500µA

724µA
300µA

Sleep only: idle mode(1) 870µA 628µA

Sleep only: standby mode(2) 355µA 24µA

Note: 
1. LIN slave in idle mode with no RX/TX data functionality.
2. LIN slave is in standby mode with no RX/TX data functionality.
3. PTC power consumption can be further reduced by utilizing only one sense channel used as one

Low Power Sensor (see application note: AT12405 Low Power Sensor Design with PTC).
4. Baud rate = 19200bps. LIN frame spacing = 10ms for all measurements.

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

15

7. Appendix A - LIN Node Configuration
Node configuration of a LIN node is provided using the LIN driver conf_lin.h and lin_driver.h files.
Peripheral mapping is configured using the lin_hw_mapping.h file.

• conf_lin.c, conf_lin.h – sets up data structures, vars and parameters
• lin_driver.c, lin_driver.h – defines LIN driver functions
• lin_hw_mapping.h – includes mapping: SERCOM mapping (0 to 5), LIN TC instance (3 to 7), port

IO mapping

Table 7-1. Common LIN Node Configuration Settings

Parameter Value Description

LIN_BAUD_BPS 19200 Sets baud rate to 19.2k

LIN_NMBR_FRAMES 1 Defines the LIN number of frames

LIN_SERCOM_INSTANCE 4 Selects SERCOM instance

LIN_SERCOM_GCLK_GENERATOR GCLK_
GENERATOR_0

Uses gclk0 to drive the UART

LIN_SERCOM_GCLK_FREQ_HZ 8000000 Sets gclk frequency to 8MHz

LIN_TC_INSTANCE 6 Selects TC instance

LIN_TC_GCLK_GENERATOR GCLK_
GENERATOR_0

Uses gclk0 to drive TC

LIN_TC_GCLK_FREQ_HZ 8000000 Sets gclk frequency to 8MHz

LIN_TX_PIN PIN_PB10 Defines UART TX pin (output to TX pin
on ATA663231 LIN TRX). EXT3-14.

LIN_RX_PIN PIN_PB11 Defines the UART RX pin (input from TX
pin on ATA663231 LIN TRX). EXT3-13.

Parameters shown below are set using #define directives in the conf_lin.h file. A LIN node sets its type by
defining the SELECT_LIN_MASTER parameter if it is to be configured as a LIN master (this parameter
does not need to be defined for LIN slaves).

Each node can also select the LIN_SLAVE_INTERRUPTS parameter if interrupts are to be used instead
of bit polling.

Table 7-2. Individual LIN Node #Define Settings

Parameter Value Description

SELECT_LIN_MASTER defined Defines the master node. It also
enables the LIN timer to be used
as a TC peripheral

LIN_SLAVE_INTERRUPTS defined Sets the slave node to be
interrupt driven

See example configuration for setting LINSERCOM before entering standby mode for the LIN slave node:

/* Enable USART gclk in PM */

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

16

PM->APBCMASK.reg |= PM_APBCMASK_LIN_SERCOM;

/* Assign GCLK0 to SERCOM4 and enable the clock */
GCLK->CLKCTRL.reg = (LIN_SERCOM_GCLK_ID_CORE << GCLK_CLKCTRL_ID_Pos) |
(LIN_SERCOM_GCLK_GENERATOR << GCLK_CLKCTRL_GEN_Pos) | GCLK_CLKCTRL_CLKEN;

/* Disable unneeded clocks in PM module by disabling enable bits APBCMASK registers (this
disables ADC gclk) */
PM->APBCMASK.reg &= ~(PM_APBCMASK_ADC);

/* Configure USART peripheral
...disable USART first so BAUD rate can be configured */
LIN_SERCOM->USART.CTRLA.reg = 0x00000000;
while (LIN_SERCOM->USART.SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_MASK) { /* ...wait for
synchronization */}

/* Set BAUD rate reg */
LIN_SERCOM->USART.BAUD.reg = BAUD_FP | BAUD_INT;
while (LIN_SERCOM->USART.SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_MASK) { /* ...wait for
synchronization */}

/* Config CTRLB reg.*/
// ... TX enabled, RX enabled (2-stop bit, 8 data bits) - break+autobaud will not operate w/
1 stop bit following sync field...
LIN_SERCOM->USART.CTRLB.reg = SERCOM_USART_CTRLB_SFDE | SERCOM_USART_CTRLB_SBMODE |
SERCOM_USART_CTRLB_TXEN | SERCOM_USART_CTRLB_RXEN;
while (LIN_SERCOM->USART.SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_MASK) { /* ...wait for
synchronization */}

// ... clear all interrupt flags & error flags
LIN_SERCOM->USART.INTFLAG.reg = SERCOM_USART_INTFLAG_MASK;
LIN_SERCOM->USART.STATUS.reg = SERCOM_USART_STATUS_MASK;

/* Config CTRLA reg */
USART.CTRLA.reg LIN_SERCOM->USART.CTRLA.reg = SERCOM_USART_CTRLA_DORD |
SERCOM_USART_CTRLA_FORM(4) \
 | SERCOM_USART_CTRLA_SAMPA(0) |
SERCOM_USART_CTRLA_RXPO(LIN_RX_RXPO) \
 |
SERCOM_USART_CTRLA_TXPO(LIN_TX_TXPO) | SERCOM_USART_CTRLA_SAMPR(1) \
 |
SERCOM_USART_CTRLA_MODE_USART_INT_CLK | SERCOM_USART_CTRLA_ENABLE ;

while (LIN_SERCOM->USART.SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_MASK) { /* ...wait for
synchronization */}

/* Enable Interrupts when LIN_SLAVE_INTERRUPTS is defined */
 LIN_SERCOM->USART.INTENSET.reg = SERCOM_USART_INTENSET_RXC | SERCOM_USART_INTENSET_RXBRK |
SERCOM_USART_INTENSET_ERROR;

NVIC_EnableIRQ(LIN_SERCOM_IRQ);

/* Set up OSC8M prescaler */
SYSCTRL->OSC8M.reg = (SYSCTRL->OSC8M.reg & (~SYSCTRL_OSC8M_PRESC_Msk)) |
SYSCTRL_OSC8M_PRESC(3);

Enabling IO ports for the USART TX and RX pins

/* Configure USART TX port */
 PORT->Group[LIN_TX_PIN/32].OUTSET.reg = 1u << (LIN_TX_PIN % 32);
 PORT->Group[LIN_TX_PIN/32].DIRSET.reg = 1u << (LIN_TX_PIN % 32);
 PORT->Group[LIN_TX_PIN/32].PMUX[(LIN_TX_PIN % 32)/2].reg &= ~(PORT_PMUX_PMUXE_Msk <<
((LIN_TX_PIN % 2) * 4));
 PORT->Group[LIN_TX_PIN/32].PMUX[(LIN_TX_PIN % 32)/2].reg |= (LIN_TX_PMUX << ((LIN_TX_PIN
% 2) * 4));
 PORT->Group[LIN_TX_PIN/32].PINCFG[LIN_TX_PIN % 32].reg = PORT_PINCFG_PMUXEN;

/* Configure USART RX port */
 PORT->Group[LIN_RX_PIN/32].DIRCLR.reg = 1u << (LIN_RX_PIN % 32);
 PORT->Group[LIN_RX_PIN/32].PMUX[(LIN_RX_PIN % 32)/2].reg &= ~(PORT_PMUX_PMUXE_Msk <<
((LIN_RX_PIN % 2) * 4));
 PORT->Group[LIN_RX_PIN/32].PMUX[(LIN_RX_PIN % 32)/2].reg |= (LIN_RX_PMUX << ((LIN_RX_PIN
% 2) * 4));
 PORT->Group[LIN_RX_PIN/32].PINCFG[LIN_RX_PIN % 32].reg = PORT_PINCFG_PMUXEN;

Atmel Using SAM DA1 in LIN Ultra-low-power Nodes [APPLICATION NOTE]
Atmel-9419A-ATAN0145_Application Note-06/2016

17

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-9419A-ATAN0145_Application Note-06/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Summary
	2. SAMDA1-XPRO Resources which Support the LIN Bus
	3. LIN Protocol Overview
	4. LIN Demo Description
	5. Application Software
	6. Standby Power Consumption
	7. Appendix A - LIN Node Configuration

