AT89S8252 In-System Programming

Introduction

This application note illustrates the in-
system programmability of the Atmel
ATBI9SXXXX (S-series) microcontrol-
lers. A method is shown by which an
AT89S8252 in an application may be
programmed remotely over a standard
telephone line.

The software for this application note
may be obtained by downloading from:
Atmel BBS (408) 436-4309 or

Website: http://www.atmel.com

An Example Application

The application shown in Figure 1 is a
simple implementation of a moving dis-
play. This application was selected for its
simplicity and ability to show graphically
the results of in-system programming.
The text to be displayed is programmed
into the AT89S8252 microcontroller as
part of its firmware, and can be changed
by reprogramming the device.

The displayed text is presented in one of
two modes, selected by a switch. In the
first mode, one character at a time
enters the display from the right and
moves quickly to the left through each
element of the display to its final position
in the assembled message. In the sec-
ond mode, the message moves through
the display, from right to left, with the dis-
play acting as a window onto the mes-
sage. This mode is familiar as the
method often used in displays of stock
prices.

The text is displayed on four DL1414T,
four-element, 17-segment alphanumeric
displays with integral decoders and driv-
ers. This yields 16 total display ele-
ments, each capable of displaying digits
0-9, the upper case alphabet, and punc-
tuation characters. The displayable char-
acter codes are ASCII 20-5F (hexadeci-
mal).

A power-on reset circuit and a 6-MHz
crystal complete the application. Neither
external program memory nor external
data memory is used.

Modifications to the Application to
Support In-System Programming

The AT89S8252 microcontroller features
an SPI port, through which on-chip Flash
memory and EEPROM may be pro-
grammed. To program the microcontrol-
ler, RST is held high while commands,
addresses and data are applied to the
SPI port. For command format and tim-
ing requirements, refer to the Atmel
AT89S8252 Microcontroller data sheet.

Figure 2 shows the example application
modified for in-system programming.
The microcontroller reset circuit has
been eliminated and RST is controlled
by the programmer. The absence of a
reset circuit requires that the program-
mer reset the microcontroller when
power is first applied to the application.
An optional connection (SHUTDN) to an
AT89S8252 interrupt input has been pro-
vided to allow the programmer to signal
the microcontroller prior to programming.
The resident firmware responds to the
interrupt by displaying a message
(“PROGRAMMING") indicating that pro-
gramming is in progress.

A simple latch, composed of four OR
gates, has been added between the out-
puts of the microcontroller and the dis-
play control inputs. The latch holds the
display control signals inactive when
RST is asserted, eliminating erratic oper-
ation of the displays during program-
ming. No isolation of the display address
or data inputs is required, since these
inputs are ignored by the displays when
the control signals are inactive. After
programming, when RST is deasserted,
the microcontroller 1/0O ports are high as

AIMEL

Microcontroller

Application
Note

0898A-A-12/97

5-73

AIMEL

the latch becomes transparent. Since the display control
inputs are inactive high, the display contents are not dis-
turbed until the new firmware writes the displays. Although
not essential in this application, it might be imperative in
some applications that the state of the peripheral circuitry
not be disturbed during programming.

Finally, programmer access has been provided to three
AT89S8252 SPI port pins: P1.5/MOSI, P1.6/MISO and
P1.7/SCK. SPI port pin P1.4/SS is not used during pro-
gramming. In the example application, the SPI port pins are

Figure 1. AT89S8252 Moving Display Application Example

available for use in programming the microcontroller. Appli-
cations which utilize the SPI port pins must be modified by
the addition of circuitry which will isolate the SPI port when
RST is asserted, freeing the pins for use in programming
the microcontroller. Circuitry which is added to support pro-
gramming must appear transparent to the application dur-
ing normal operation.

The code for the modified display application is shown in
Appendix 2.

/ \ U2
8 | Do
9 | D1
10 D2
11 D3
2 D4
1 D5
12 D6
5 | A0
4| A1
WA
DL1414T
VCC
VCC c2 Ut
)\
. 81 | 39
30 pF L EA/VPP gg.? = u3
+ C1 Y1 19 . 37 s Moo
p— —————— | XTAL1 P0.2
1uF . 6 MHz P0.3 gg 210
< | T 18 XTAL2 gOA 34 1 D3
: ; 02 s 2 | D4
v 30 pF 9 POS |5 e
ﬁ RST P0.7 21 oo
](1’ P3.0/RXD P2.0 2; i 2(1)
12 P3.1/TXD P2.1 23
13 P3.2/INTO P2.2 24 3 WA
14 P3.3/INT1 P2.3 25
P3.4/T0 P2.4
15 { p3sm P2.5 35 DL1414T
08/1 1 P2.6 28
o > P1.0/T2 P2.7
J7 SW SPST 3 El;/TZEX U4
4lp13 PSEN p220— 8 | po
5| p1.4/SS ALE/PROG |20 9 | b1
3 P1.5/MOSI R 10 | D2
P1.6/MISO P3.6/WR 17 11 D3
8 | p17/SCK P37/RD |17 ? g;t
AT8958252 12 | D6
5 | A0
4 | A1
34 Wr
DL1414T
us
8 | Do
9 | D1
10 | D2
11 D3
2 | D4
1 D5
12 | D6
5 | A0
4 | A1
L 34 WR
DL1414T
5-74 Microcontroller s

Microcontroller

Figure 2. AT89S8252 Moving Display Application Modified for In-System Programming

4 N
8| Do
9 | D1
10| b2
1] b3
2| D4
1]os
12 | b6
U2A 5 | A0
! 4| At
vee i N\ s .
WR
2 L/
DL1414T
c2 w? 74HCT32
!
! 31| = 39 A
e _L Y1 19 o Egﬁ) 23_/ 8 zz
& MHz XTAL1 oz |7 2o
c3 T Po.4 |22 0| D2
| 18 1 xTaL2 PO 1103
: S D4
30 pF 9 P0.6 1] os
RST P07 o
18 Paomxo P20 i
] P31 P2.1
—i5q Pa2/INTO P2.2 u2B o)
[SHuTDN 1o Pa.3/NTT P23 |
P3.4/T0 P24
s1 154 pasT P25 6 DL1414T
o/ P2.6 [S
o 11 p1om2 P27
2 1 p1.1/T2EX 74HCT32 us
SW SPST 31pio
41p13 PSEN p29 8 | Do
A4 51p14ES ALE/PROG 9 | b1
MOSI AS_ 6 1 py5MoSI - D2
1SO 2671 p1eMISO P36WR 11| b3
SCK A7_81p17/scK P3.7/RD D4
1]os
AT89S8252 12 | D6
u2c 5 A0
9 7a N
s 34 Wr
10 L/)
DL1414T
74ACT32
s
s | po
D1
o| b2
11 | b3
D4
1]os
12 | b6
u2D 5 | A0
[RST 12 4| At
11 3 WR
13

Note: 0.1 uF bypass caps on all ICs.

The Programmer

The programmer shown in Figure 3 interfaces with a
modem, from which it receives packetized data. After dis-
secting the data packets, the programmer generates the
signals required to program the data into the AT89S8252
microcontroller in the modified application. Code for the
programmer is shown in Appendix 3.

The programmer circuitry consists of little more than an
Atmel 20-pin AT89C2051 microcontroller and a Maxim
MAX232 line driver/receiver. The microcontroller runs at
11.0592 MHz, which allows the serial port to operate at a
number of standard baud rates. The line driver/receiver
produces RS-232 levels at the modem interface while
requiring only a 5-V power supply. The AT89C2051 micro-
controller does not support external program or data mem-
ory, which requires that program code be kept small
enough to fit into on-chip memory.

AIMEL

DL1414T
74HCT32

The serial interface, through which the programmer con-
nects to the modem, supports two handshaking signals,
DTR and DSR. On power up, the programmer asserts
DTR, to which the modem responds by asserting DSR. If
the modem should fail to respond to any command, includ-
ing the command to hang up, the programmer deasserts
DTR, which forces the modem to hang up.

The programmer controls the modem by sending ASCII
command strings over the serial interface, to which the
modem responds with Hayes-style ASCII numeric codes.
The programmer code is optimized for use with the U.S.
Robotics Sportster 14,400 baud external modem used in
the test configuration and may require modifications if used
with other modems.

Since a reset circuit is absent from the modified application,
the programmer provides the power-on reset function to the
AT89S8252 microcontroller. The programmer powers up
with RST asserted, resetting the microcontroller. Some

5-75

AIMEL

time later, RST is deasserted under firmware control, allow-
ing the application microcontroller to run normally. When

Figure 3. AT89S8252 Programmer

programming is required, the programmer again asserts
RST.

vcec

T

cs 1uF
N L5 RST
30 pF L \—4 XTAL2
RS
11.0592 MHz
c6
1} 51 xTaL1
30 pF
A\
J1 RX 21 p3.0/RxD
> 3 +P10 |12
13 5] P3.1mo0 S EE
e ———q P3.2/INTO SRy
o | DSR 7 N P1.2 MISO
12 vce ¢ Pa.3INTI 5
o2 P3.4/T0 P13 o MOSI
o]
c7 9 P1.4
11 P3.5/T1 17 SCK
il It P15 |22
o |
= P1.6 |zo——————<_SHUTDN
o—t5s 10/6.3 DTR) p37 P17 |2
9 +
o—19 1t cs v AT89C2051
el —1% 10/6.3
] o— U9
Bl ° 23 2 1
V+ Cl+
S 1o + c10
10/6.3
SR 61v- o T
o— 4
17 C2+
o]
+
1 T Toe one
g g o s T
15 ‘
o]
2 X Yoot TN L
—1 11— ’ RX 15| T20UT T2IN [
OSA 8 R1IN R10OUT 3 Note: 0.1 uF bypass caps on all ICs.
R2IN R20OUT
DB25-S
DTE \v4 MAX232

During programming, the programmer outputs serial data
on the MOSI pin, synchronized to a software-generated
clock output on the SCK pin. Serial data is input on the
MISO pin, also synchronized to SCK. The maximum fre-
guency of SCK must be less than 1/40th the crystal fre-
guency of the AT89S8252 microcontroller being pro-
grammed, as specified in the AT89S8252 data sheet. The
documented code produces a maximum SCK frequency of
approximately 90 KHz, permitting a minimum AT89S8252
crystal frequency of approximately 3.6 MHz.

Remote Programming Over a Standard

Telephone Line

The programmer and modified application described previ-
ously are connected to a phone line through a modem at a
remote site. Using a personal computer with a modem, a
user can upload code containing a new message, which is
programmed into the AT89S8252 microcontroller in the
application. When programming is complete, the microcon-
troller executes the new firmware, which displays the new
message.

Local Station

The local station in the test configuration consists of an IBM
PC AT-compatible personal computer with a Cardinal
MVPV34ILC 33,600 baud internal modem. Any modem
may be used, as long as it is compatible with the data com-

576 Microcontroller

munications software and matches the data rate and error
correction protocols of the modem at the remote site.

Procomm Plus for Windows, version 3.0, a commercial
data communications package, is used to configure the
modem, set up communications parameters, and establish
a link with the remote modem. Procomm Plus includes a
macro language called ASPECT, which allows the user to
write and compile scripts which implement custom file
transfer protocols. A simple ASPECT script was written to
read the contents of a code file and upload it to the remote
programmer. The ASPECT script is shown in Appendix 4.

The file transfer protocol (FTP) implemented is a simple
send-and-wait, packet-oriented protocol. The FTP transmit
and receive modes are diagrammed in the flowcharts in fig-
ures 4 and 5, respectively. The computer sends each
packet without flow control and waits for a response. The
programmer may acknowledge the packet by sending an
ACK or may negatively acknowledge the packet by sending
a NAK. Upon receipt of an ACK, the computer sends the
next packet. If the clone receives a NAK, it resends the
same packet. Transmission proceeds in this manner until
the entire file has been transferred.

The programmer might respond to a packet by sending a
CAN, which indicates that a non-recoverable error has
occurred and that the computer should immediately abort
the file transfer. If the programmer fails to respond to a

= Y ITei e {0 g 1 {01 [=)}

packet within a limited period of time, the computer will
resend the same packet. The computer will continue to
resend the same packet until a valid response is received
or until the allowed number of attempts is exceeded, at
which time the file transfer is aborted.

The send-and-wait nature of the FTP allows the time
required for the programmer to program the packet data
into the application microcontroller to be easily absorbed.
Programming verification requires no explicit command or
result codes, or additional data transfers. The program-
mer’s response to a packet reflects the result of the pro-
gramming verification operation performed by the program-
mer: ACK indicates success, CAN indicates failure.

Hexadecimal object file format (Intel hex) was chosen as
the format of the files to be uploaded to the programmer.
The records in a hex file serve, unchanged, as the packets
in the FTP described above; no service fields need to be
added. The fields in Intel hex file records are shown in
Appendix 1. The colon which begins each record serves as
the packet signature field. The load address field serves as
the packet sequence number. A checksum is provided as
the last field in each record. Since 7-bit ASCII coding is uti-
lized, the eighth bit of each byte is available to be used for
parity checking.

Since the AT89C2051 microcontroller in the programmer
does not utilize external data memory, necessary packet
buffering must be done using internal RAM. Limited mem-
ory precludes the use of conventional FTPs which utilize
packets of 128 bytes or more. The hex packet format used
in this application limits packet data fields to 16 or fewer
entries, requiring little memory for buffering.

A disadvantage of the hex packet format is the use of
ASCII, which requires each program data byte to be
expressed as two hex characters. This demands that
nearly twice as many bytes be transferred as might other-
wise be required. This is not a severe limitation, however,
since typical file transfer times are on the order of a few
seconds.

Remote Station

The remote station in the test configuration consists of the
programmer and modified application, previously
described, connected to a U.S. Robotics Sportster 14,400-
baud external modem.

After power is applied, the programmer resets the
AT89S8252 microcontroller in the application, and then
sets its control outputs inactive, allowing the application to
run normally. The programmer configures the modem to
answer incoming calls and puts itself to sleep. While the
programmer sleeps, the modem monitors the phone line,
waiting for an incoming call. When a call is detected, the
modem answers and attempts to establish communication
with the caller. If a connection is established, the modem
sends a connect code to the programmer, waking it up. The

AIMEL

programmer verifies the connect code and begins polling
for a valid packet header. Invalid connect codes are
ignored.

Incoming packets must arrive fewer than 30 seconds apart,
or the modem hangs up and the programmer returns to
sleep, waiting for the next call. If the caller hangs up, the
30-second period must expire before another call will be
answered. Calls incoming during the reset delay period are
ignored.

If a valid packet header is received prior to the expiration of
the reset delay period, the programmer will attempt to read
and validate the incoming packet. At any time during
packet reception, an invalid character, parity error or time-
out during character reception will cause the partial packet
to be declared invalid and discarded.

Two packet types are defined: data and end-of-file. A data
packet contains five fields in addition to the packet header,
one of which is a variable length data field. The data field
contains program data to be written into the application
microcontroller. The load address field contains the
address at which the data is to be written. The end-of-file
packet contains the same fields as the data packet, except
that the data field is empty. This packet type has special
meaning to the programmer, as explained below.

Any packet which contains an invalid record type, record
length or checksum is invalid. Program data accumulated
during the processing of an invalid packet is discarded. The
programmer sends a NAK to the computer to signal recep-
tion of an invalid packet and resumes polling for a valid
packet header.

Receipt of the first valid data packet causes the program-
mer to interrupt the application microcontroller. The micro-
controller responds to the interrupt by abandoning its usual
routine and displaying a message (“PROGRAMMING")
indicating that programming is taking place. If this is the
first valid data packet since power was applied or an end-
of-file packet was received, the programmer asserts the
control signals necessary to place the microcontroller into
programming mode.

The first and subsequent valid data packets are dissected
as they are received and the data which they contain is pro-
grammed into the application microcontroller at the address
indicated in the packet load address field. After program-
ming, the data is read back from the microcontroller and
verified against the received packet data. If programming
was successful, the programmer sends ACK to the com-
puter. The programmer then resumes polling for a valid
packet header, subject to the thirty second reset delay.

If programming fails, the programmer sends CAN to signal
the computer to abort the file transfer. The modem hangs
up and the programmer returns to sleep, waiting for the
next call. The application microcontroller is left in program-

5-77

AIMEL

ming mode, preventing it from executing the incomplete or
invalid firmware which it contains.

It is important to note that invalid packets are NEVER pro-
grammed into the application microcontroller. To do so
might over-write valid program data which could not be
recovered.

Upon receipt of an end-of-file packet, the programmer
returns its control outputs to the inactive, power-on state,
allowing the application microcontroller to begin execution
of its new firmware. The programmer then resumes polling
for a valid packet header, subject to the 30-second reset
delay. If a valid packet is received prior to the expiration of
the 30-second delay, another programming cycle begins,
which can only be terminated by the reception of a valid
end-of-file packet.

If the reset delay expires prior to the reception of a valid
end-of-file packet, the modem will hang up and the pro-
grammer will return to sleep, waiting for the next call. In this
case, the application microcontroller is left in programming
mode, preventing it from executing its firmware. To return
the application to normal operation, another call must be
received, and a valid program file downloaded, terminated
by an end-of-file packet.

Setting Up the Hardware

Local Station

Install the selected modem into the IBM PC AT-compatible
computer and connect it to a standard analog telephone
line. The modem must support a data rate of at least 9600
baud.

Remote Station

Connect the programmer and modified display application
to the U.S. Robotics Sportster 14,400 baud external
modem. Connect the modem to a standard analog tele-
phone line and set the modem switches as indicated below.

Modem switch settings:

1 UP DTR normal

2 DOWN Numeric result codes

3 DOWN Display result codes

4 DOWN Suppress command echo
5 UpP Auto answer

6 upP CD normal

7 UP Load NVRAM defaults

8 DOWN Smart mode

Turn the modem on and apply power to the programmer
and display application. The microcontroller in the applica-
tion will begin executing its firmware, if it contains any. The
programmer will initialize the modem, as indicated by the
activity on the modem status indicators. If it should become

578 Microcontroller

necessary to reinitialize the modem, briefly interrupt power
to the programmer.

Installing and Configuring Procomm Plus for

Windows, Version 3.0

Install Procomm Plus as instructed in the User Manual.
When prompted to specify the modem in use, select the
installed modem from the list.

Put the provided ASPECT script (ATX.WAX) into the Pro-
comm Plus ASPECT directory. If the default directories
were utilized during installation, the correct directory is:
\PROWIN3\ASPECT.ATX.WAX is the executable ASPECT
script which results from compiling the source file
ATX.WAS, shown in Appendix 4. Source files may be
edited from within Procomm Plus using the ASPECT Edi-
tor, available in the Tools menu. The ASPECT Editor pro-
vides the option to compile a source file in the Editor Tools
menu.

Launch Procomm Plus and create a Connection Directory
entry for the remote station. Under Port Settings, set the
baud rate to 9600, parity to EVEN, number of data bits to 7,
number of stop bits to 1, plex to FULL.

Creating a Hex File

The example source code for the modified display applica-
tion (Appendix 2) contains a string at location “usr_msg”
which is written repeatedly to the alphanumeric displays.
The user may substitute a different message, as long as it
is enclosed in single quotes and is null-terminated. Long
messages may require that the value in the subsequent
ORG directive be increased to prevent the message from
being over-written by code. The message may contain only
characters with ASCII codes from 20-5F (hexadecimal).
The modified source code may then be assembled, linked
and an Intel hex file produced.

During the development of this application note, code was
assembled and hex files generated utilizing the tools in a
vintage copy of the Intel MCS-51 Software Development
Package for the IBM PC. The source code may require
cosmetic changes for compatibility with other assemblers
and software tools. It is especially important to note that
variations exist in Intel hex file format. This application
requires that record data fields be limited to 16 or fewer
entries and that address fields contain 4 hex digits. The
user must verify that the hex files produced by the selected
tools conform to the format documented in Appendix 1.

Uploading a Hex File

Launch Procomm Plus and select the correct entry from the
list box in the toolbar to dial the remote site. If the line is
busy and remains busy for more than 30 seconds, the pro-
grammer must be reset.

After a connection with the remote site has been estab-
lished, run the ATX ASPECT script by selecting it from the
list box in the toolbar. When prompted by the script, enter

= Y ITei e {0 g 1 {01 [=)}

the path and file name (including extension) of the hex file
to upload to the programmer at the remote site. The pro-
grammer must receive the first record from the file within 30
seconds of the time the connection was established or it
will hang up and the user will be required to redial.

During the data transfer, data and status information is dis-
played in the Procomm Plus Terminal Window. If the trans-
fer completes successfully, the message “End of File” will
appear in the Terminal Window. The user has 30 seconds
from the appearance of messages “End of File” or
“EXCESSIVE RETRIES: UPLOAD ABORTED” to rerun the
script and upload another file, if desired, before the pro-
grammer hangs up. If the message “UPLOAD ABORTED
BY REMOTE" appears, the programmer has hung up and
the user must redial before uploading another file.

AIMEL

5-79

AIMEL

Appendix 1: Intel Hex File Definition
Each record in hexadecimal object file format (Intel hex) contains the following fields:

<:> <rec length> <load address> <rec type> <data> <checksum>
The colon is the record header.
The record length field consists of two hex digits, and represents the number of entries in the data field.

The load address field consists of four hex digits, and indicates the absolute address at which the data in the data field is to
be loaded.

The record type field consists of two hex digits, which are always zero in data records.
The data field contains from one to 16 pairs of hex digits.

The last two hex digits are a checksum on the record length, load address, record type, and data fields. The sum of the
binary equivalents of these fields and the checksum itself is zero.

Each record in the file is terminated by a carriage return (OD hex) and line feed (0OA hex).
A type one record marks the end of the file. The record always contains “:00000001FF".

Appendix 2: Code for Modified Display Application

NAME LEDShowl

; Displays predefined text strings on the LED display in one of two modes.

; The display mode can be changed at run time with the switch.

; The program may be interrupted by External Interrupt 1. This will cause the
; processor to display a string and enter a wait loop with interrupts disabled.
; Only reset will restore normal operation. This facility is provided so that

; the programmer can trigger an orderly shutdown before reprogramming the part.
; The LED display consists of four devices of four elements each,

; for a total display capacity of 16 characters.

; The display devices are numbered 0 to 3, from the right.

; The display elements are numbered from 0 to 3, from the right.

; Character positions are numbered 1 to 16, from the right.

NDEVS EQU 4 ; number of devices
NELMS EQU 4 ; number of elements in each device
SPACE EQU 20h ; blank
DSEG AT 60h ; stack origin
stack:DS 20h ; stack depth
SWITCH BIT p1.0 ; display mode select input
CSEG
ORG 0000h ; power on/reset vector
jmp init
ORG 0003h ; external interrupt O vector
reti ; undefined
ORG 000bh ; timer O overflow vector
reti ; undefined
ORG 0013h ; external interrupt 1 vector

5-80 Microcontroller s

jmp shutdown

ORG 001bh ; timer 1 overflow vector
reti ; undefined

ORG 0023h ; serial 1/O interrupt vector
reti ; undefined

ORG 30h ; begin constant data space

pgm_msg: DB' PROGRAMMING', 0
usr_msg: DB ' ATMEL AT89S8252 CMOS MICROCONTROLLER'
DB 'WITH FLASH MEMORY AND SPI PORT’, 0

ORG 0100h ; begin code space
USING 0 ; Register bank 0 (RBO)

init:
mov sp, #(stack-1) ; initialize stack pointer
setb IT1 ; ext 1 interrupt edge triggered
mov |E, #10000100b ; enable ext 1 and global interrupts

moO:
jb SWITCH, m1 ; check position of switch
call rotate_msg ; display message
jmp mO ; again
m1:

call shift_msg ; display message
mov a, #3 ; pause 3 sec between displays
call delay_sec ;
jmp mO ; again

shutdown:

; Respond to interrupt generated by serial programmer.

clr ea ; prevent interrupts
mov dptr, #pgm_msg ; point to message
call show_string ; display message
jmp $; wait for reset

show_string:

; Display null-terminated string pointed to by DPTR. The string is

; left-justified in the display. If the length of the string exceeds

; the number of display positions the excess characters are ignored.
call clear_display; begin by blanking display
mov b, #(NDEVS*NELMS) ; total display positions

gsl:
clr a ; get char
mov ca, @a-+dptr;
jz gs2 ; done if string terminator
call put_char ; display char at position in B

AIMEL

Microcontroller

5-81

AIMEL

inc dptr ; point to next char

djnz b, gs1 ; done when last position is filled
gs2:

ret

clear_display:

; Fill display with blanks.
; All registers preserved.

push acc

push b

mov b, #NDEVS*NELMS) ; total display positions

cl:

mov a, #SPACE

call put_char ; write space char

djnz b, cl1 ; do all positions

popb

popacc

ret

shift_msg:
; Display null-terminated string. Each character in the string,
; in turn, enters the display from the right and is moved quickly
; through each element of the display to its final position.
; The string may contain any number of characters, including none.
; If the length of the string exceeds the number of display
; positions, the excess characters are ignored.

call clear_display ; begin by blanking display
mov 15, #NDEVS*NELMS) ; total display positions
mov dptr, #usr_msg ; point to message

psl:
mov b, #1 ; first display position

ps2:
clr a
movc a, @a-+dptr ; get char
jz ps4 ; done if string terminator
call put_char ; display char at position in B
mov a, #25 ;25 ms
call delay_ms ; delay so char can be seen
mov a, b ; set up for compare
clr c ; ready for subtraction
subb a, r5 ; compare next position to final
jnc ps3 ; jump if char is in final position
mov a, #SPACE
call put_char ; blank out char

5-82 Microcontroller s

inc b ; next position
jmp ps2
ps3:
inc dptr ; point to next char
djnz 5, psl ; final position for next char
ps4:
ret
rotate_msg:

; Display null-terminated string. The string moves through the

; display, from right to left, with the display acting as a window

; onto the string. The string may contain any number of characters,
; including none.

mov dptr, #usr_msg ; point to string

clr a ; get first char

movc a, @a-+dptr;

jz dd1i1 ; blank display and exit if null string
call clear_display ; begin by blanking display

; Phase I. Shift the string into the display from the

; right until the first character is in the left-most

; display element. If the string has fewer characters than
; the display has elements, fill the balance with blanks.

mov 17, #0 ; loop counter, one pass per element
ddil:
mov dptr, #usr_msg ; point to string
mov b, r7 ; character position
inc b ; adjust
dd2:
clr a ; get next char
movc a, @a-+dptr;
jz dd3 ; jump if string terminator
call put_char ; display char at position in B
inc dptr ; point to next char
dinz b, dd2 ; loop until all positions written
jmp dd5 ; next pass
dds: ; encountered end of string
mov a, #SPACE ; pad balance of display with blanks
call put_char ; display char at position in B
djnz b, dd3 ; next position
dd5:
mov a, #150 ; 150 ms

AIMEL

Microcontroller

5-83

AIMEL

call delay_ms ; delay so string can be seen
inc r7 ; next pass
cjne r7, #(NDEVS*NELMS), dd1 ; loop until all elements done

; Phase Il. Shift the string THROUGH the display from

; the right until the last character is in the left-most

; display element. If the string has fewer characters than
; the display has elements, pad the balance with blanks.

mov dptr, #usr_msg ; point to string
inc dptr ; start with the second char
ddé:
clr a ; get char
movc a, @a-+dptr;
jz ddi1 ; blank display and exit if string end
push dpl ; save string pointer
push dph
mov b, #(NDEVS*NELMS) ; total char positions
dd7:
clr a ; get next char
movc a, @a-+dptr ;
jz dd8 ; jump if string terminator
call put_char ; display char at position in B
inc dptr ; point to next char
dinz b, dd7 ; loop until all positions written
jmp dd10 ; next pass
dds: ; encountered end of string
mov a, #SPACE ; pad balance of display with blanks
call put_char ; display char at position in B
djnz b, dd8 ; next position
dd10:
pop dph ; restore string pointer
pop dpl ;
inc dptr ; point to next char
mov a, #150 ; 150 ms
call delay_ms ; delay so string can be seen
jmp ddé ; process next char
dd11:
call clear_display ; blank display
mov a, #150 ; 150 ms
call delay_ms ; delay
ret
put_char:

; Display character in A at position indicated in B.

5-84 Microcontroller s

= Y ITei e {0 g 1 {01 [=)}

; All registers preserved.

s0:

sl:

s2:

s3:

s4:

sb:

push
push

mov

acc
b
po, a

; move character to output port

; Calculate device and element from display position.

mov
dec
mov
div
mov

cjne
mov
jmp

cjne
mov
jmp

cjne
mov
jmp

cjne
mov
jmp

jmp

orl
xrl
mov
orl
mov
pop
pop
ret

delay_ms:
; Delay for 1 ms times the value in the accumulator.

a, b

a

b, #NELMS
ab

p2, #0ffh

a, #0, sl
a, #00010000b
sb

a, #1, s2
a, #00100000b
sb

a, #2,s3
a, #01000000b
s5

a, #3,s4
a, #10000000b
sb

init

a, b

a, #11110000b
p2, a

a, #11110000b
p2, a

b

acc

; position 1..n

; convert to 0..n-1

; elements per device

; A= device, B= element

; clear display control port

; check device number
; device O select

; device 1 select
; device 2 select

; device 3 select

; undefined device, restart

; add element selector

; invert device selector

; write strobe low

; reset device selector

; write strobe high (latch data)

AIMEL

5-85

AIMEL

push acc
push b
mov b, #0
dd:

djnz b, $;500 us @ 12 MHz
djnz b, $;500 us @ 12 MHz
djnz acc, dd
pop b
pop acc
ret

delay_sec:

; Delay for 1 second times the value in the accumulator.

push acc
push b
mov b,a

ddd:
mov a, #250
call delay_ms ; 250 ms
call delay_ms ; 500 ms
call delay_ms ; 750 ms
call delay_ms ; 1000 ms
djnz b, ddd
pop b
pop acc
ret
END

Appendix 3: Code for AT89S8252 Programmer

NAME AT89S8252_ Programmer

; The programmer powers up with the control signals to the target AT8958252
; inactive, allowing the program in the target to run normally. Upon receipt

; of the first valid data record, the programmer puts the target into write

; mode. The first and subsequent valid records are dissected as they are

; received and their data is written into the target. Receipt of a valid

; end-of-file record terminates programming and resets the target control

; signals, allowing the new program in the target to run.

; Each record received is checked for validity. If it is invalid,

; the receiver sends a NAK to the remote system and discards the record.

; Bad records are not programmed into the target AT89S8252. Valid records

5-86 Microcontroller s

= Y ITei e {0 g 1 {01 [=)}

; are programmed into the target AT89S8252 and verified. If verification

; succeeds, an ACK is sent to the remote system. If verification fails,

; the receiver sends CAN to abort the upload. Failure to verify is a fatal

; error. The target AT89S8252 will be left in program mode (held reset) so

; that the incomplete or invalid code which it contains cannot be executed.

; Incoming records must appear less than 30 seconds apatrt, or the line

; is dropped in preparation for the next call. If the remote system drops

; the line, the programmer will wait 30 seconds before resetting. Calls

; incoming during this time are ignored.

: The programmer manages five lines (SHUTDN, RST, SCK, MOSI, MISO)

; which control the target AT89S8252 and 4 lines which handle the modem

; interface. The AT89S8252 control lines occupy bits of port 1 and the

; modem interface lines bits of port 3, as defined in the EQUates.

; Procedures SHOUT (SHift OUT) and SHIN (SHift IN) manage the serial transfer
; of data between the programmer and the target AT89S8252. The serial clock
; is generated and timed by software. The code meets timing requirements

; when executed by an AT89Cx051 microcontroller with a 12-MHz clock.

; Code modifications may be required if a faster clock is substituted.

; Two long period timers are implemented utilizing Timer Zero and members of
; register bank one. Timer Zero is configured in 16-bit mode and is loaded

; with an initial count of zero, which yields the maximum delay of 65.5 ms

; (at 12 MHz). The timer is allowed to free-run, generating an interrupt

; each time the count rolls over from FFFF to 0000. At each interrupt, the

; counts in each of the long period timers are decremented if their respective

; overflow flags are not set. If the new count in either long timer is zero,

; the corresponding overflow flag is set. It is not necessary to stop Timer

; 0 or to disable interrupts to reload the long timers, because they will

; not be disturbed by the Timer O interrupt service routine whenever their

; overflow flags are set. Because Timer 0O free-runs, it is not possible to

; know where in a period timing of an event begins. Therefore, one additional

; count should be added to the calculated long timer count to guarantee that

; the timed interval is not short.

; Long timer 0 is 16 bits, allowing a maximum timed interval of

; over one hour. Long timer 1 is 8 bits, allowing a maximum timed

; interval of 16 seconds.

; The programmer software is compatible with the U.S. Robotics Sportster

; 14,400-baud external modem and may require modifications if used with other
; modems. The switches on the modem are set as follows:

AIMEL 567

AIMEL

UP DTR normal

DOWNNumeric result codes
DOWNDisplay result codes
DOWNSuppress command echo
UP Auto answer

UP CD normal

UP Load NVRAM defaults
DOWNSmart mode

0 NO Ol WN PP

; Modem switch 7 specifies that the power on and reset configuration be

; loaded from NVRAM profile zero, which must contain the factory default

; hardware flow control template. Other switch settings then override the

; loaded configuration. If NVRAM profile zero does not contain the hardware
; flow control template, it may be restored with the following command

; sequence:

; AT&F1&WO<ENTER>

; Some of the switch functions can be controlled by software, but making

; use of the switches simplifies the code required to initialize the modem.

; The only additional commands which must be issued to the modem are:

; &R1llgnore RTS,

; &AODisable ARQ result codes.

; "&R1" causes the modem to forward incoming data to the programmer regardless
; of the state of RTS. "&A0" suppresses the extended protocol result codes.

; Note that suppression of the codes does not affect the connection. If it is

; desired to disable Error Control, issue the command "&MO0".

CR EQU 0dh ; carriage return

LF EQU 0ah ; line feed

ACK EQU 6h ; responses to remote system
NAK EQU 15h ;

CAN EQU 18h ;

BAUD_ 1200 EQU 0e8h ; 1200 baud timer reload values
BAUD_2400 EQU 0f4h ; 2400 baud

BAUD_9600 EQU 0fdh ; 9600 baud

OK EQU 'O ; modem status codes
RINGING EQU 2 ;

CONNECT_1200 EQU '&' ;
CONNECT_2400 EQU '10' ;
CONNECT_9600 EQU '13 ;

5-88 Microcontroller s

= Y ITei e {0 g 1 {01 [=)}

MTRIES EQU 5 ; max attempts to access modem
ERASE 1 EQU Oach ; erase chip function, first byte
ERASE_2 EQU 04h ; second byte
ENABLE 1 EQU 0Oach ; enable write function, first byte
ENABLE 2 EQU 53h ; second byte
DUMMY EQU 55h ; function third byte
WRITE_CODE EQU 02h ; write code memory function (Flash)
READ_CODE EQU O01h ; read code memory function
WRITE_DATA EQU 06h ; write data memory function (EEPROM)
READ_DATA EQU 05h ; read data memory function
It0_lo EQU r2 ; long timer one low byte
[t0_hi EQU 13 ; long timer one high byte
[t1 EQU r4 ; long timer two only byte
index EQU 10 ; general purpose index register
chksum EQU 15 ; running checksum on record
temp EQU 16 ; temporary storage
kount EQU 17 ; loop counter
DSR_ BIT p3.3 ; modem control signals
DTR_ BIT p3.7 ;
RST BIT pl.7 ; target control signals
SHUTDN_ BIT pl.6 ;
SCK BIT pl.4 ; serial clock
MOSI BIT pl.3 ; serial data out
MISO BIT pl.2 ; serial data in
DSEG AT 20h
flags DATA 20h ; misc flags
LTOF BIT flags.0 ; long timer 0 overflow flag
LT1F BIT flags.1 ; long timer 1 overflow flag
ORG30h
rec_type: DS 1 ; record type
laddr_lo: DS 1 ; record load address, low byte
laddr_hi: DS 1 ; record load address, high byte
data_len: DS 1 ; record data byte count
data_buf: DS 32 ; storage for record data field
ORG 60h ; stack origin
stack: DS 20h ; stack depth
PCON DATA 87h ; address of Power Control register
; (added to enlighten the assembler)
CSEG
ORG 0000h ; power on/reset vector
jmp init

AIMEL 569

attn_cmd:
reset_cmd:

init_cmd:

hangup_cmd:

init:

ml:

ORG
reti
ORG
jmp
ORG
reti
ORG
reti
ORG
jmp
ORG
DB
DB

DB

DB
ORG
USING

mov
call

setb
setb

setb

setb
call
clr
jnc
clr
orl

0003h

000Bh
timer_int
0013h

001Bh

0023h
serial_int
40h

+++', 0
'ATZ',CR, 0

'AT&R1&A0', CR, O

'ATH', CR, 0
0080h
0

sp, #(stack-1)

initialize
LTOF
LT1F

TI

ETO
modem_init
ETO

ml

EA

PCON, #1

AIMEL

; external interrupt O vector
; undefined
; timer O overflow vector

; external interrupt 1 vector
; undefined

; timer 1 overflow vector

; undefined

; serial 1/O interrupt vector

; begin constant data space

; modem return to command mode

; modem reset string

; must be last command on line and

; modem returns code before executing
; modem init string

; modem on-hook string

; begin code space

; register bank 0

; initialize stack pointer

; initialize controller registers
; disable long timer 0

; disable long timer 1

; Initialize the modem.

; set transmit interrupt flag

; (kludge for first use)

; enable timer 0O interrupt

; initialize modem

; disable timer O interrupt

; jump if modem init passes

; global interrupt disable

; idle the controller, reset exits

; Clear pending interrupts before enabling serial interrupts.

idle:

5-90

jnb
clr
clr
setb
clr

orl
jnb

T, $
TI

RI
ES
FO

PCON, #1
FO, idle

; wait for transmitter to clear

; clear transmit interrupt flag

; clear receive interrupt flag

; enable serial ints to wake controller
; clear connect flag / PSW.5 bit

; idle the controller, serial int exits
: return to idle if not connected

; Connection has been established.

Microcontroller

= Y ITei e {0 g 1 {01 [=)}

; Begin polling for valid record header.

; disable serial interrupts

; set transmit interrupt flag
; (kludge for first use)

; clear program mode flag
; enable timer 0O interrupt

; start 30-second timer

; get char, 1-second timeout

; try again if parity error or timeout

; try again if not record header

; Found header, process hex record.
; load and dissect record

; jump if record is good

; tell sender record is bad

; next record

; jump if record is not type zero

; jump if target is in write mode

; notify target of impending doom
; erase target

; place target in write mode

; flag target in write mode

; program data into target
; verify program data

; jump if verify OK

; tell sender to abort

; hang up and reset for next call
; take target out of write mode

; flag target not in write mode

; tell sender record OK

; next record

; poll until timer times out

clr ES
setb TI
clr FO
setb ETO

m2:
call init_longtimer0

ma3:
call get_char
ic m8
cjne a,#:,m8
call get_record
jnc m4
mov a, #NAK
call send_char;
jmp m2

m4:
cjne a, #0, m6
; Process record type zero (data).
jb FO, m5
call shutdown

; call erase_chip

call set_pgm
setb FO

m5:
call write_record
call verify_record
jnc m7
mov a, #CAN
call send_char;
jmp m9

me6:

; Process record type one (end-of-file).
call clear_pgm
clr FO

m7:
mov a, #ACK
call send_char
jmp m2
m8:
jnb LTOF, m3
m9:

; timer timed out or upload cancelled

AIMEL

5-91

serial_int:

call hang_up
clr ETO
jmp m1l

AIMEL

; break the connection
; disable timer O interrupt
; return controller to idle

; Process serial interrupt. Interrupts due to transmit done are

; cleared and ignored. If interrupt is due to receive data ready,

; check for a modem connect code, and set the connect flag.

; The procedure includes code for identifying both single- and

; double-character connect codes, but both may not be active
; simultaneously. The code for identifying double-character
; connect codes is dependent on the receive baud rate.

; Serial interrupts are enabled elsewhere.

Sil:

Si2:

timer_int:

clr FO ; clear connect flag

clr TI ; clear transmit interrupt flag

jnb RI, si2 ; exit if not receive data ready
mov a, SBUF ; get character into accumulator
mov c,p ; carry set for odd parity (error)
jc sil ; ignore char if parity error

; Test for single-character 1200-baud connect code.

anl a, #7th ; strip off parity (eighth) bit

cjne a, #CONNECT_1200, sil ; ignore char if wrong code
; Test for double-character 9600-baud connect code.

anl a, #7fh ; strip off parity (eighth) bit

cjne a, #(HIGH CONNECT_9600), sil; ignore wrong char
clr RI ; reset receive flag

mov a, #2 ; expect next char in about 1 ms
call delay_ms ; wait for next char

jnb RI, si2 ; exit if not receive data ready
mov a, SBUF ; get character into accumulator
mov c,p ; carry set for odd parity (error)
jc sil ; ignore char if parity error

anl a, #7fh ; strip off parity (eighth) bit

cjne a, #(LOW CONNECT_9600), sil; ignore wrong char
setb FO ; set connect flag

clr RI ; reset receive flag

reti

; Process Timer Zero interrupt, which occurs about every 65.5 ms.

; Each long timer count is decremented if its overflow flag is clear.

; When a long timer count reaches zero, its overflow flag is set.

5-92

Microcontroller

= Y ITei e {0 g 1 {01 [=)}

; Counts are reloaded and overflow flags are reset elsewhere.

push
setb
jb
cjne
dec
til:

djnz
cjne

setb
ti2:

jb

djnz

setb
ti3:

pop

reti

initialize:

; Initialize controller registers and 1/O lines.

psw
RSO

LTOF, ti2
It0_lo, #0, til
It0_hi

It0_lo, ti2
It0_hi, #0, ti2

LTOF
LT1F, ti3
It1, TI3

LT1F

psw

; save flags

; select register bank one

; skip if long timer O overflow set

; test low byte

; low byte is zero, borrow from high

; dec low byte, skip if not zero

; low byte is zero, test high byte
; both bytes equal zero

; set overflow flag

; skip if long timer 1 overflow set
; decrement count and skip if not zero

; count is zero, set overflow flag

; restore flags and reg bank zero

; initialize power control register
; deactivate all interrupts

SCON, #01000000b; serial port mode 1
TMOD, #00100001b; timer 1 8-bit auto-reload,

;. timer 0 16-bit

TH1, #BAUD_1200 ; timer 1 reload value
TH1, #BAUD_9600 ; timer 1 reload value
TCON, #01000000b; start timer 1

mov PCON, #0
mov IE, #0
mov

mov

mov

mov

mov

mov TLO, #0
mov THO, #0
setb TRO

setb REN

setb EA

; Initialize 1/0 lines.
setb DTR_
setb SHUTDN_
setb MISO
setb MOSI

clr SCK

clr RST

ret

; set timer 0 to max count
; start timer O

; enable serial reception

; global interrupt enable

; remove reset from target

AIMEL

5-93

AIMEL

modem_init;
; Reset and initialize the modem.
; Return with carry set if modem fails to respond as expected.
clr DTR_ ; assert DTR to talk to modem

; First must ensure that the modem is in command mode.

mov a, #1 ; wait 1 second

call delay_sec ;

mov dptr, #attn_cmd ; point to attention string
call send_string ; transmit string

mov a, #1 ; wait 1 second

call delay_sec ;

; Reset modem, causing the switches to be read.
mov dptr, #reset cmd ; point to reset string

call modem_cmd ; transmit string

jc nnl ; jump on falil

mov a, #1 ; wait 1 second before next command
call delay_sec ;

; Modem is powered up and on-line.
; Send required software parameters.

mov dptr, #init_cmd ; point to init string

call modem_cmd ; transmit string

jnc nn2 ; jJump on pass
nnl:

; Modem is misbehaving, so deactivate it.

; The controller must be reset to exit this state.

setb DTR_ ; deassert DTR to deactivate modem
nn2:

ret
hang_up:

; Force the modem to drop the line.
; First must return the modem to command mode.

mov a, #1 ; wait 1 second

call delay_sec ;

mov dptr, #attn_cmd ; point to attention string
call send_string ; transmit string

mov a, #1 ; wait 1 second

call delay_sec ;

; Issue command to hang up.

mov dptr, #hangup_cmd ; point to hang up string
call modem_cmd ; transmit string

jnc hh ; jump on pass

; The polite way didn't work, so drop DTR.

5-94 Microcontroller s

= Y ITei e {0 g 1 {01 [=)}

hh:

modem_cmd:

; The controller must be reset to exit this state.

setb

ret

DTR_

; force modem to drop the line

; Transmit command string to modem and validate the response.

; Return with carry set if modem fails to respond as expected,

; or if excessive parity errors or receive timeouts occur.

; Valid responses consist of a byte code followed by a carriage

; return. Parity errors and timeouts cause the command to be

; resent. Expected delays for command responses are absorbed
; by GET_CHAR. On entry, DPTR must point to a null-terminated
; command string.

mm1:

mm?2:

mma3:

mm4:

send_string:

push
mov

call
clr

call
ic
cjne
call
ic
cjne

clr
jmp
djnzb,

setb

pop
ret

b
b, #MTRIES

send_string
RI

get_char
mm3

a, #OK, mm2
get_char
mm3

a, #CR, mm2

mm4

mm1l
C

; Transmit string pointed to by DPTR.
; String may be of any length, but must be null-terminated.

push
push
push

acc
dpl
dph

; humber of attempts

; transmit command string
; discard any waiting character

; receive result code
; jump on parity error or timeout
; loop if response is not valid

; receive carriage return

; jump on parity error or timeout
; loop if response is not valid

; valid response complete

; clear error flag
; return

; resend command
; out of retries, set error flag

AIMEL

5-95

ssl:
clr
movc

call
inc
jmp
SS2:
pop
pop
pop
ret

send_char:

AIMEL

a

a, @a-+dptr ; get character

Ss2 ; check for terminator
send_char ; send character

dptr ; point to next character
ssl

dph
dpl
acc

; Wait for transmitter to clear, add even parity bit to character
; in accumulator and transmit it. Does not wait for transmitter
; to clear before returning.

jnb
clr
push
movc,
mov
mov
pop
ret

get_char:

T, $; wait here for transmitter to clear
TI ; clear transmit flag

acc ; save char

p ; get parity bit

acc.7, ¢ ; add parity bit to data

SBUF, a ; load character into transmitter
acc ; restore char

; Read a character from the serial port and check for even parity.

; Return the character in the accumulator with parity stripped off.

; The routine will wait for approximately 1 second before timing

; out. Return with carry set on parity error or timeout.

gcl:

gc2:

5-96 Microcontroller

RI, gc2 ; jump if char is waiting
init_longtimer1 ; start 1-second timer
RI, gc2 ; exit loop when char received
LT1F, gcl ; loop until timer times out

; set error flag
gc3 ; return
a, SBUF ; get character into accumulator
c,p ; carry set for odd parity (error)
a, #7fh ; strip off parity (eighth) bit

= Y ITei e {0 g 1 {01 [=)}

gc3:

get_byte:

clr

ret

RI

; reset receive flag

; Read two hexadecimal ASCII characters from the serial port
; and return their binary equivalent in the accumulator.

; Return with carry set if either character was invalid or

; contained a parity error.

gb:

ascii2bin:

call
ic
call
ic
swap
mov
call
jc
call
jc
orl

ret

get_char
gb
ascii2bin
gb

a

b, a
get_char
gb
ascii2bin
gb

a, b

; get first char from serial port
; exit on parity error

; convert hex to binary

; exit on invalid char

; first hex digit times 16

; save value

; get second char from serial port
; exit on parity error

; convert hex to binary

; exit on invalid char

; combined binary equivalent

; Convert hexadecimal digit in the accumulator to its binary

; equivalent and return it in the accumulator. Valid hex digits
;are 0..9 and A..F (upper case only). Return with carry set

; if the character received is not a valid hex digit.

al:

mov
clr
subb
jnc
mov
clr
subb
jmp

mov
subb

cpl

temp, a
c

a, #('9'+1)

al

a, temp
c

a, #0'
a4

a, temp

a, #(F'+1)

c
a4

; save char

; prepare for subtraction

; compare to '9'

; jump if char above '9'

; get original char

; prepare for subtraction

; compare to '0'

; return error if char below '0'

; else binary value in accumulator

; get original char

; compare to 'F'

; invert error flag

; return error if char is above 'F'

AIMEL

5-97

az2:

a3:

a4:

get_record:

mov
subb

add

ret

AIMEL

a, temp ; get original char

a, #A' ; compare to ‘A’

a4 ; return error if char is below 'A’
a, #10 ; adjust binary value

; Read and dissect record. Two record types are accepted: data and
; end-of-file. If the record type is data, the appropriate values

; are extracted and stored. If the record type and checksum are

; valid, the carry bit is cleared and the record type is returned

; in the accumulator. Return with carry set to signal an invalid

; record type, checksum error, or other problem. Errors returned

; by routine GET_BYTE (invalid char or parity) cause an immediate

; return with carry set.

rrl:

5-98

mov
call
ic
mov
clr
subb
jnc
call
jc
mov
call
jc
mov
call
ic
mov
cjne

chksum, #0 ; clear running checksum
get_byte ; get record data length field

rr4 ; jJump on error

data_len, a ; save data length

c ; prepare for subtraction

a, #(16+1) ; data length limited to 16 bytes
rr4 ; jump if max size exceeded
get_byte ; get high byte of load address field
rr4 ; jump on error

laddr_hi, a ; save it

get_byte ; get low byte of load address field
rr4 ; jump on error

laddr_lo, a ; save it

get_byte ; get record type field

rr4 ; jJump on error

rec_type, a ; save type

a, #0, rr2 ; jump if not type zero (data)

; Process data in data type record.

mov
mov

call
jc
mov
add

Microcontroller

index, #data_buf ; pointer to data buffer

kount, data_len ; byte counter

get_byte ; get data from serial port
rrd ; jump on error

@index, a ; save data in buffer

a, chksum ; update checksum

= Y ITei e {0 g 1 {01 [=)}

mov chksum, a ;

inc index ; point to next location
djnz kount, rrl ; decrement byte count and loop
jmp re3 ; done with data, do checksum
re2:
mov a, rec_type ; get record type
cine a,#1,rrd ; jump if not type one (end-of-file)
rr3:
; Process checksum.
call get_byte ; get record checksum
ic rr4 ; jJump on error
add a, chksum ; update running checksum
add a, data_len ;
add a, laddr_lo ;
add a, laddr_hi ;
add a, rec_type ;
jnz rr4 ; jump if record checksum is not zero
; Discard CR/LF which terminates record.
; call get_byte
; jc rr4 ; jJump on error
; call get_byte
; ic rr4 ; jJump on error
mov a, rec_type ; return record type in accumulator
clr c ; NO errors
jmp re5 ; return
re4:
; Error: data field too large, invalid type or bad checksum.
setb ¢ ; set error flag
rr5:
ret

write_record:
; Write the data extracted from the most recently received record
; into the target AT89S8252. Timing delays are enforced by software.
; This routine assumes that the target has already been prepared
; for programming. Returns nothing.

mov 2, laddr_lo ; save low byte of load address
mov r3, laddr_hi ; save high byte of load address
mov a, r3 ; get high byte of load address
anl a, #00011111b ; isolate 5 bits

rl a ; move 5 bits to top

rl a ;

rl a ;

AIMEL 599

AIMEL

orl a, #*WRITE_CODE ; specify code write function

mov temp, a ; save adjusted high byte
mov index, #data_buf ; pointer to data buffer
mov kount, data_len ; byte counter
ppl:
mov a, temp ; send adjusted high byte of address
call shout ;
mov a, r2 ; send low byte of address
call shout ;
mov a, @index ; send data from buffer
call shout ;
mov a, #3 ; wait 3 ms
call delay_ms
; Next address.
mov a, r2 ; get low byte of address
add a, #1 ; increment low byte
movr2, a ; save incremented value
jnc pp2 ; jump if no carry out of low byte
; carry out of low byte
mov a, r3 ; get high byte of address
add a, #1 ; increment high byte
mov r3,a ; save incremented value
anl a, #00011111b ; isolate 5 bits
rl a ; move 5 bits to top
rl a ;
rl a ;
orl a, #*WRITE_CODE ; specify code write function
mov temp, a ; save adjusted high byte
pp2:
; Next data.
inc index ; point to next buffer location
djnz kount, ppl ; decrement byte count and loop
ret

verify_record:
; Verify the data extracted from the latest record against that
; written into the target AT89S8252. Timing delays are enforced by
; software. This routine assumes that the target has already been
; prepared for programming. Return with carry set if verify fails.

mov r2, laddr_lo ; save low byte of load address
mov r3, laddr_hi ; save high byte of load address
mov a, r3 ; get high byte of load address
anl a, #00011111b ; isolate 5 bits

5-100 Microcontroller s

= Y ITei e {0 g 1 {01 [=)}

wl:

w2:

w3:

2N

wb:

rl a
rl a
rl a

orl a, #READ_CODE
mov temp, a

mov index, #data_buf
mov kount, data_len

mov a, temp

call shout

mov a,r2

call shout

; Read data and verify.
call shin

mov b, @index
cjne a, b, w2

jmp w3
setb ¢
jmp w5

; Next address.

mov a,r2

add a, #1

mov r2,a

jnc Wz

; carry out of low byte
mov a, r3

add a, #1

mov r3, a

anl a, #00011111b

rl a

rl a

rl a

orl a, #READ_CODE
mov temp, a

; Next data.

inc index

djnz kount, w1l
clr c

ret

; move 5 bits to top

; specify code read function

; save adjusted high byte
; pointer to data buffer
; byte counter

; send adjusted high byte of address

; send low byte of address

’

; read data
; get record data
; jump on verify fail

; verify OK, do next address

; set error flag
; return

; get low byte of address
; increment low byte
; save incremented value

; jump if no carry out of low byte

; get high byte of address
; increment high byte

; save incremented value
; isolate 5 bits

; move 5 bits to top

; specify code write function

; save adjusted high byte

; point to next buffer location
; decrement byte count and loop

; clear error flag

AIMEL

5-101

shout:

AIMEL

; Shift out a byte, most significant bit first.
; SCK expected low on entry. Return with SCK low.
; Called with data to send in A.

push b
mov b, #8 ; bit counter
X42:

rlc a ; move bit into CY
mov MOSI, ¢ ; output bit
nop ; enforce data setup
nop ;
setb SCK ; raise clock
nop ; enforce SCK high
nop ;
nop ;
nop ;
clr SCK ; drop clock
djnz b, x42 ; hext bit
pop b
ret

shin:

; Shift in a byte, most significant bit first.
; SCK expected low on entry. Return with SCK low.
; Returns received data byte in A.

push b
mov b, #8 ; bit counter
x43:

setb SCK ; raise clock
mov ¢, MISO ; input bit
rlc a ; move bit into byte
nop ; enforce SCK high
nop ;
clr SCK ; drop clock
nop ; enforce SCK low
nop ;
dinz b, x43 ; next bit
pop b
ret

erase_chip:

; Erase target AT89S8252.

5-102 Microcontroller

= Y ITei e {0 g 1 {01 [=)}

shutdown:

setb RST ; force target into reset
mov a, #ERASE 1 ; send first byte of erase function
call shout ;

mov a, #ERASE_2 ; send second byte

call shout ;

mov a, #DUMMY ; send third byte

call shout ;

mov a, #10 ; wait 10 milliseconds

call delay_ms ;

clr RST ; remove reset from target
ret

; Force target to abandon execution of its internal program.

set_pgm:

clr SHUTDN_ ; notify target of impending reset
mov a, #5 ; give target 5 ms to shut down
call delay_ms ;

setb SHUTDN_ ; deassert interrupt

ret

; Prepare the target AT89S8252 for programming.

clear_pgm:

init_longtimerO:

setb RST ; force target into reset
mov a, #1 ; wait 1 ms (arbitrary)
call delay_ms ;

; Enable writes to code and data memory.

mov a, #ENABLE_1 ; send first byte of enable code
call shout ;

mov a, #ENABLE_2 ; send second byte
call shout ;

mov a, #DUMMY ; send third byte

call shout ;

ret

; Allow target AT89S8252 to resume execution of its own program.

clr RST ; remove reset from target
ret

; Load and start long timer 0.

AIMEL

5-103

AIMEL

; System Timer 0 count loaded and interrupt enabled elsewhere.

setb LTOF

setb RSO

mov It0_lo, #0c8h
mov It0_hi, #1

clr RSO
clr LTOF
ret

init_longtimer1:
; Load and start long timer 1.

; disable counter

; select register bank one
; load 30-second count

; back to bank zero

; enable counter

; System Timer Zero count loaded and interrupt enabled elsewhere.

setb LT1F
setb RSO
mov It1, #17
clr RSO

clr LT1F
ret

delay_ms:

; disable counter

; select register bank one
; load 1-second count

; back to bank zero

; enable counter

; Delay for 1 ms times the value in the accumulator.

push acc
push b
mov b, #0
dd:
dnz b, $
dnz b, $
djnz acc, dd
pop b
pop acc
ret
delay_sec:

;500 us @ 12 MHz
;500 us @ 12 MHz

; Delay for 1 s times the value in the accumulator.

push acc
push b
mov b,a
ddd:
mov a, #250
call delay_ms; 250 ms
call delay_ms; 500 ms

5-104 Microcontroller

= Y ITei e {0 g 1 {01 [=)}

call delay_ms; 750 ms
call delay_ms; 1000 ms
djnz b, ddd

pop b

pop acc

ret

END

ATMEL

AIMEL

Appendix 4: ASPECT Script for Procomm Plus
; PROCOMM ASPECT script to read and transmit an Intel hex file.

; The script does not set up communications parameters, initialize the
; modem, dial out or establish a connection with the receiver; this is

; done manually via the PROCOMM Connection Directory.

; Each record in the hex file is terminated by a CR/LF. The receiver is
; expected to respond with an ACK after each record is validated and

; programmed into the target processor. If the receiver cannot validate
; the record, it responds with a NAK. If the receiver cannot verify the

; record data after programming the target processor, it responds with
; @ CAN, which tells the transmitter to abort the upload. The transmitter
; walits 2 seconds between records for a response. If a response is not
; received in the allowed interval, or if the response is other than an

; ACK or a CAN, the record is retransmitted.

#define ACK 6 i \F
#define NAK 21 ; "U
#define CAN 24 ; AX
#define MAXRETRIES 4

proc main

string filename, record
integer retry, rxcode
sdlgfopen "Select HEX File" "*.hex" single filename; get file name
if failure ; get file name failed

exit
endif
if flename ; validate path and file name

if fopen 0O filename read; open file for read

fgets O record; read record

else
errormsg "FILE OPEN FAILED"
exit
endif
else
errormsg "FILE DOES NOT EXIST"
exit
endif
set aspect rxdata on ; Script processes receive data
while not feof 0 ; check for EOF
termwrites record ; show record
rxflush ; purge pending receive data
transmit record raw ; send record including CR/LF
comgetc rxcode 2 ; wait max 2 seconds for answer
call show_rxcode with rxcode ; show received code
retry =0 ; initialize counter

5-106 Microcontroller s

= Y ITei e {0 g 1 {01 [=)}

while (rxcode !'= ACK) && (retry < MAXRETRIES)

if (rxcode == CAN); abort ordered by remote
errormsg "UPLOAD ABORTED BY REMOTE"
fclose 0; close file
set aspect rxdata off
exit

endif

termwrites "Resending record"M”J"

termwrites record; show record

rxflush ; purge pending receive data

transmit record raw ; send record

comgetc rxcode 2 ; get response

call show_rxcode with rxcode; show received code

++retry ; advance counter and try again
endwhile

if (rxcode != ACK)
errormsg "EXCESSIVE RETRIES: UPLOAD ABORTED"
fclose O; close file
set aspect rxdata off

exit

endif

fgets O record; read next record
endwhile
termwrites "End of file*M"J"
fclose O ; close file
set aspect rxdata off
exit

endproc

proc show_rxcode
param integer rxcode
; termmsg "%#X'r'n", rxcode
switch rxcode
case -1
termwrites "Timed out"M~J"
endcase
case ACK
termwrites "Received ACK"M”J"
endcase
case NAK
termwrites "Received NAKAMAJ"
endcase
case CAN
termwrites "Received CAN"M"J"
endcase

AIMEL

5-107

AIMEL

default
termwrites "Received garbage"M~J"
endcase
endswitch
endproc

5-108 Microcontroller s

Microcontroller

Figure 4. FTP Transmit Mode

—————»O0

i

Get Next Record

Send Record

Receive Receive Y Tx Attempts
——»O0——>
ACK (AF) NAK ("U) Exceeded
Y
N Receive N

Last Record CAN (*X)

A
O
A

<4+——O

End

AIMEL

AIMEL

Figure 5. FTP Receive Mode

Begin

A4

A

v

Packet
Header

Y
Abort
Get Packet
A N Packet
o Send NAK (AU) OK
Disable Programming J
0<— Send ACK ('F) A
N
Enable Programming Programming
Enabled
#(I
Write Data
Verify Data
Send ACK (~F)
N
v
Send CAN (*X) 3
End

5-110 Microcontroller

