Interrupt Management: Auto-vectoring and
Prioritization

Background

The AT91 is based on the ARM7TDMIO microcontroller core. It features the
Advanced Interrupt Controller (AIC), an 8-level priority, individually maskable, vec-
tored interrupt controller.

This microcontroller core implements two physically independent sources of interrupt:
* FIQ - Fast Interrupt
e IRQ - Normal Interrupt

Each of these interrupts has a corresponding vector, at addresses 0x00000018 for the
IRQ and 0x0000001C for the FIQ.

The AIC is connected to the NFIQ (Fast Interrupt Request) and the NIRQ (Standard
Interrupt Request) inputs of the ARM7TDMI processor.

The processor’s NFIQ line can only be asserted by the external fast interrupt request
input: FIQ (multiplexed with the PIO P12). Therefore, when an FIQ occurs, it is not
necessary to de-multiplex the handler according to the cause of the interrupt (it is
assumed that there is no multiplexing added by the external hardware). The FIQ man-
agement code can be reached either directly from the vector (0x0000001C), or by
using the Fast Interrupt Vector Register (AIC_FVR) as described in the datasheet of
the AT91 products.

The NIRQ line can be asserted by the interrupts generated by the on-chip peripherals
and the external interrupt request lines: IRQO to IRQ2. Therefore it is necessary to
manage a prioritization when several interrupt sources are asserted at once and to
de-multiplex the handler according to the source of the interrupt.

AIMEL

Y F)

AT91 Series
ARM® Thumb ®
Microcontrollers

Application Note

Rev. 1168A-10/98

AIMEL

Auto-Vectoring

This feature consists of a set of registers which provide the address of the handler to execute according to the source of an
interrupt.

Each interrupt source is associated with a Source Vector Register (AIC_SVR1 - AIC_SVR31) which contains the address
of the function corresponding to the active interrupt. When the Interrupt Vector Register (AIC_IVR) is read, it automatically
returns the contents of the source vector register corresponding to the active interrupt with the highest priority. Note that
AIC_IVR is located at address OxFFFFF100.

During the boot sequence and before enabling the interrupts, the software must:
1. |Initialize the source vector registers for each interrupt
2. Initialize the IRQ vector at address 0x00000018 with the following code:
[dr pc,[pc,#-0xF20]
When an interrupt occurs, the core performs the following (see the ARM Architectural Reference Manual):
R14 irqg = address of next instruction to be executed + 4
SPSR_irg = CPSR
CPSR[5:0] = 0b010010 Interrupt mode
CPSR[6] = unchanged Fast interrupt status is unchanged
CPSR[7]=1 Normal interrupts disabled
PC = 0x00000018
When the instruction at the address 0x00000018 is executed, the effective address is:
0x00000020 - 0xOF20 = OxFFFFF100
(0x00000020 is the value of the PC when the instruction at address 0x18 is executed)

This causes the core to load the PC with the value read in AIC_IVR which returns the value of AIC_SVR corresponding to
the active interrupt. This has the effect of directly jumping to the correct interrupt service routine.

Also note that when the AIC_IVR is read, the AIC does the following:
» deasserts the NIRQ line on the core

« determines which pending interrupt has the highest priority

* pushes the level of this interrupt in its internal hardware stack
 clears the interrupt if it is configured to be edge triggered

The interrupt level is popped when the End of Interrupt (EOI) is indicated to the AIC by a write in AIC_EOICR (see “Prioriti-
zation” on page 3).

s A\ 1 91 Series

Prioritization

The NIRQ line is controlled by an 8-level priority encoder. Each source has a programmable priority level of 7 to 0. Level 7
is the highest priority and level 0 the lowest.

When the AIC receives more than one unmasked interrupt at a time, the interrupt with the highest priority is serviced first.
The interrupt management of the interrupt with the lower priority level is therefore delayed.

The AIC manages the prioritization by using an internal stack on which the current interrupt level is automatically pushed
when AIC_IVR is read, and popped when AIC_EOICR is written (any value). Between these two events, the software can
manage the state and the mode of the core in order to re-enable the IRQ line and to allow an interrupt with a higher priority.

When an interrupt is managed by the core, R14_irg and SPSR_irq are automatically overwritten without being saved: it is
mandatory to save these registers before re-enabling the IRQ line and to restore them before exiting the interrupt manage-
ment routine. Moreover, if the interrupt treatment performs function calls (Branch with Link), R14_irq is used. In this case,
IRQ can not be re-enabled while the core is in IRQ mode. It is mandatory to first change the mode of the core. In order to
keep all exceptions available, the SYSTEM mode must be used. Therefore, the stack used during the interrupt execution is
the same as that used out of the interrupt. This must be taken into account in the sizing of the SYSTEM/USER stack.

This is performed as follows:

Save R14 irg and SPSR _irq in the IRQ stack (current)

Set the mode bits in CPSR with the SYSTEM value (0b11111)
Re-enable IRQ by clearing bit I in CPSR

Execute the actions related to the interrupt

Disable IRQ by clearing bit | in CPSR

Set the mode bits in CPSR with the USER value (0b10000)
Restore R14_irq and SPSR_irq from the IRQ stack

Note that this sequence is automatically preceded by a read of AIC_IVR (see “Auto-Vectoring” on page 2) and must be fol-
lowed by a write in AIC_EOICR before exiting from the interrupt.

No o k~wdPRE

AIMEL 3

AIMEL

AT91M40400 Implementation

The implementation of the auto-vectoring is done by initializing the IRQ vector at address 0x0000018 with the following
instruction:

Idr pc,[pc,#-0xF20]

The implementation of the prioritization is described in the file “irg.mac” which is included in the folder “at91_include” of the
AT91 library (examples of use can be found in the files “irq_*.s” of the folder “at91_lib"). This file includes 2 macros:

* IRQ_ENTRY which saves the registers and switches to SYSTEM mode

» IRQ_EXIT which switches back to IRQ mode, restores the registers and exits from the interrupt after acknowledging the
current interrupt by writing in AIC_EOICR.

The standard format of an interrupt handler is:

1. Auto-Vectoring: instruction “ldr pc,[pc,#-0xF20]"

2. Validate the nested interrupts: macro-definition IRQ_ENTRY

3. Perform interrupt treatment (e.g. for the USART transmitter, write a new byte in the US_THR)
4. Disable the nested interrupts: macro-definition IRQ_EXIT

IRQ_ENTRY Macro Definition
MACRO

IRQ_ENTRY $reg
;- Adjust and save LR of current mode in current stack

sub rl4, rl4, #4
stmfd sp!, {r14}

;- Save SPSR and r0 in current stack
mrs rl4, SPSR
stmfd sp!, {r0, r14}

;- Read Modify Write the CPSR to Enable the Core Interrupt
;- and Switch in SYS Mode (same LR and stack than USR Mode)

mrs ri4, CPSR
bic rl4, r14, #_BIT
orr ri4, r14, #ARM_MODE_SYS
msr CPSR, r14
;- Save used registers and LR_usr in the System/User Stack
stmfd sp!, {r1-r3, $reg, r12, r14}

MEND

The parameter “$reg” allow the list of the registers used by the interrupt treatment to be pushed on the SYSTEM/USER
stack by using the instruction which pushes R14_User. This list must be the same for the IRQ_EXIT call.

Note that in this application note, all registers defined as “scratched” by APCS (r0, r1, r2, r3, r12) are saved by IRQ_ENTRY
and restored by IRQ_EXIT.

s A\ 1 91 Series

IRQ_EXIT Macro Definition
MACRO

IRQ_EXIT $reg,
;- Restore used registers and LR_usr from the System/User Stack
I[dmfd sp!, {r1-r3, $reg, r12, r14}
;- Read Modify Write the CPSR to disable interrupts
;- and to go back in the mode corresponding to the exception

mrs r0, CPSR

bic ro, r0, #ARM_MODE_SYS

orr r0, r0, #|_BIT:OR:ARM_MODE_IRQ
msr CPSR, r0

;- Mark the End of Interrupt on the interrupt controller

Idr r0, = AIC_BASE
str r0, [r0, #AIC_EOICR]
;- Restore SPSR_irg and r0 from the IRQ stack
ldmfd sp!, {r0, r14}
msr SPSR, r14
;- Restore ajusted LR_irg from IRQ stack directly in the PC
ldmfd sp!, {pc}*

MEND

The IRQ Stack

The IRQ stack pointer (R13_irq) must be initialized at the top (upper address) of a reserved space. The size needed for this
stack is 12 bytes (3 words for registers r0, r14 and SPSR) per level used in the application. If all levels are used, the stack
space must be 96 bytes.

Constants

The constants used in this application note are as follows:
ARM_MODE_SYS EQU Ox1F
I_BIT EQU 0x80
AIC_BASE EQU OxFFFFF000
AIC_EOICR EQU 0x0130

AIMEL 5

AIMEL

s A\ 1 91 Series

AIMEL

AIMEL

I P

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Europe Atmel Rousset

Atmel U.K., Ltd.

Coliseum Business Centre
Riverside Way

Camberley, Surrey GU15 3YL

Zone Industrielle

13106 Rousset Cedex, France
TEL (33) 4 42 53 60 00

FAX (33) 4 42 53 60 01

England
TEL (44) 1276-686677
FAX (44) 1276-686697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369

Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Fax-on-Demand
North America:
1-(800) 292-8635
International:
1-(408) 441-0732

e-mail
literature@atmel.com

. Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

B POWERED

ARM

© Atmel Corporation 1998.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel's Terms and Conditions located on the Company’s website. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.
ARM, Thumb and ARM Powered are registered trademarks of ARM Limited.

The ARM7TDMI is a trademark of ARM Ltd. « Printed on recveled paper
Terms and product names in this document may be trademarks of others. @ 4 paper.

1168A-10/98/xM

