

Quick Start Guide

1.0 INTRODUCTION

The ENC624J600 Quick Start Guide provides a visual view of step-by-step procedures used when establishing a TCP/ IP connection between the Fast Ethernet PICtail board and the Explorer 8 development board. Detailed information is included in the following sections:

- · Section 2.0, General Considerations
- Section 3.0, Creating a Project Using MCC and TCP/IP Lite Stack
- · Section 4.0, Sending and Receiving UDP Packets
- Section 5.0, TCP Client Implementation
- · Section 6.0, TCP Server Implementation
- Section 7.0, Conclusion

2.0 GENERAL CONSIDERATIONS

2.1 Required References

The ENC624J600 implementor should have the following documents on hand:

- ENC424J600/624J600 Stand-Alone 10/100 Ethernet Controller with SPI or Parallel Interface Data Sheet
- ENC424J600/624J600 ENC424J600/624J600 Silicon Errata and Data Sheet Clarification
- · Fast 100 Mbps Ethernet PICtail Plus Daughter Board User's Guide
- · Explorer 8 Development Board User's Guide
- · ENC Board Schematics

2.2 Hardware Requirements and Setup

All the hardware devices mentioned in this quick start guide can be acquired using their part numbers from www.micro-chipdirect.com. Below is a list of devices:

- · Explorer 8 Development Board with power supply (DM160228)
- Fast 100 Mbps Ethernet PICtail Plus Daughter Board (AC164132)
- PIC18F87K22 PIM (MA180028)
- Ethernet cables (RJ45)
- · Ethernet switch with a power supply

2.3 Software Requirements

- MPLAB X IDE
- · XC8 Compiler
- MPLAB Code Configurator (MCC)
- · Wireshark Packet Analyzer
- Microchip TCP/IP Lite Stack (AN1921 Source Code)

2.4 Jumper Settings

2.4.1 FOR THE EXPLORER 8 DEVELOPMENT BOARD:

- J14 Connect to 5V power setting.
- J2 Move to supply 5V power to the board.
- J7 Connect to provide LED current path.
- J37 Do not connect a jumper to any of the pins.
- J45 Connect the microcontroller SDO pin to the J32 mikroBUS MOSI.
- J46 Connect the microcontroller SDI pin to the J32 mikroBUS MISO.
- J47 Connect the microcontroller SCK pin to the J32 mikroBUS SCK.
- J31 Configure RA4 as an I/O port.
- J4 Configure RA5 as an I/O port.

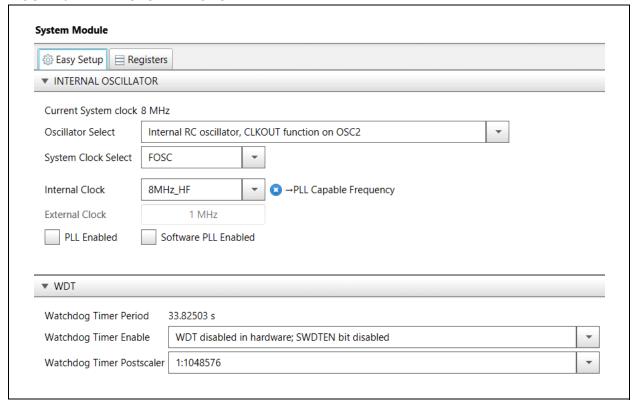
2.4.2 FOR THE PICTAIL PLUS DAUGHTER BOARD:

- JP2 Shorted by jumper shunt
- JP9 Jumper between PSPCFG2 and GND
- JP10 Jumper between 3V3 and PSPCFG3
- JP11 Jumper between PSPCFG1&4 and GND

3.0 CREATING A PROJECT USING MCC AND TCP/IP LITE STACK

This chapter demonstrates the generation of a basic project with the TCP/IP Lite library using MCC.

3.1 General Procedure


Follow the steps below to start a basic project:

- 1. Open the MPLAB X IDE and create a new project.
- 2. Launch the MCC plug-in using the MCC icon in the top right corner in the MPLAB X IDE. Alternatively, MCC can be launched by selecting <u>Tools>Embedded>MPLAB Code Configurator v3: Open/ Close</u>.

3.2 System Module Configuration

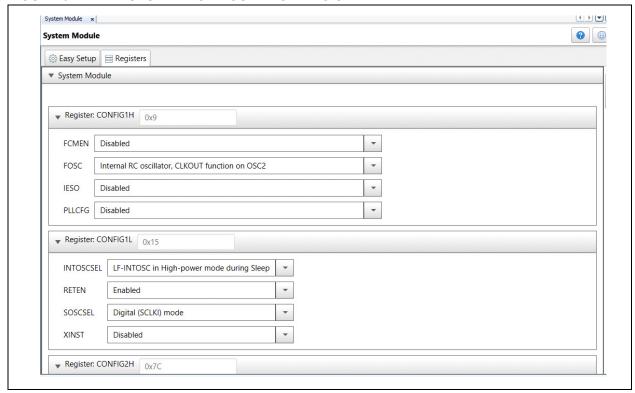
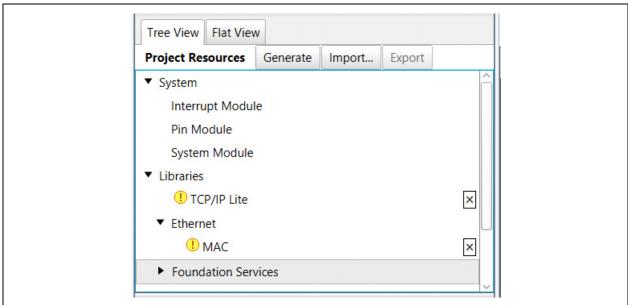

 In the Project Resources tab, select System Module. Go to Easy Setup view and change the "Oscillator Select" to Internal RC oscillator, CLKOUT function on OSC2. (See Figure 3-1.)

FIGURE 3-1: SYSTEM MODULE

Navigate to the Registers tab of the System Module in the MCC window. In the CONFIG1L register, disable the "XINST" bit to disable the extended instruction set. (See Figure 3-2.)


FIGURE 3-2: SYSTEM CONFIGURATION REGISTER

3.3 Ethernet Configuration

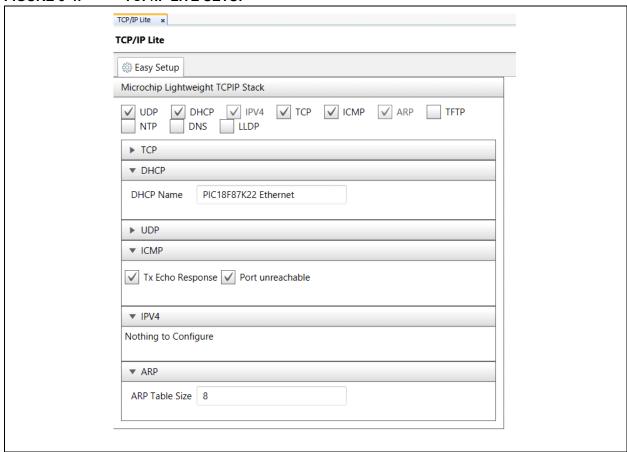

1. Expand the Ethernet Library listed in the **Device Resources** tab. Double-click on the TCP/IP Lite library to add it to the project. Similarly, add the MAC in the Ethernet library to the project. (See Figure 3-3.)

FIGURE 3-3: PROJECT RESOURCES TCIP MAC

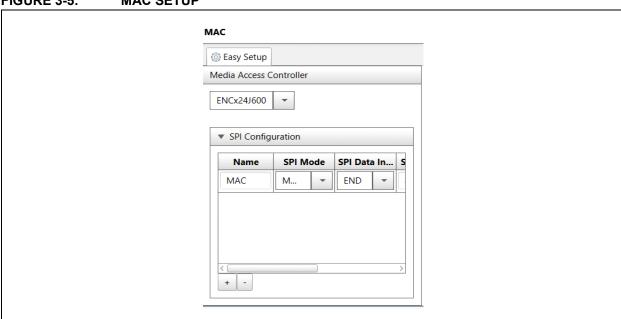
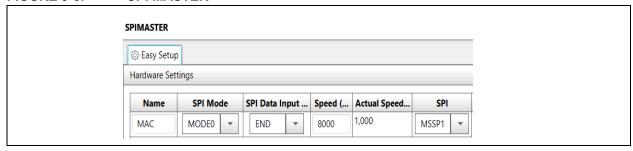

2. In the **Project Resources** tab, select **TCP/IP Lite** module. This will display all the protocols supported by the TCP/IP Stack. "UDP," "DHCP," "TCP," and "ICMP" protocols must be checked. "IPV4" and "ARP" are always required and are checked by default. (See Figure 3-4.)

FIGURE 3-4: TCP/IP LITE SETUP

3. In the **Project Resources** tab, select **MAC** module. This gives the list of available MACs. Select the ENCx24J600 and MSSP1. (See Figure 3-5.)

FIGURE 3-5: MAC SETUP

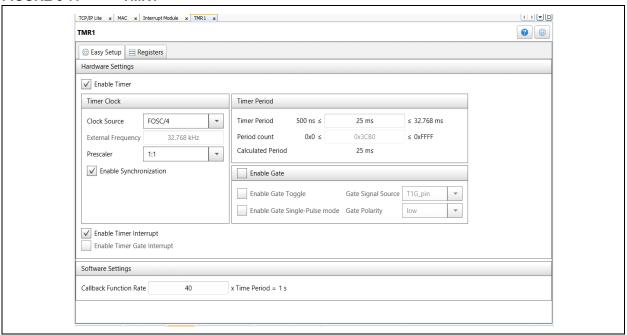

3.4 SPI Configuration

The Master Synchronous Serial Port module (MSSP1) needs to be configured as SPI Master for accessing the ENCx24J600. Configure the MSSP1 **Easy Setup** as follows:

- 1. Set "Mode" to SPI Master.
- 2. Set "Input Data Sampled" to End.
- 3. Set "Clock Edge" to Active to Idle.
- 4. Set "Clock Source" to Fosc/4.

See Figure 3-6.

FIGURE 3-6: SPI MASTER


3.5 Timer Configurations

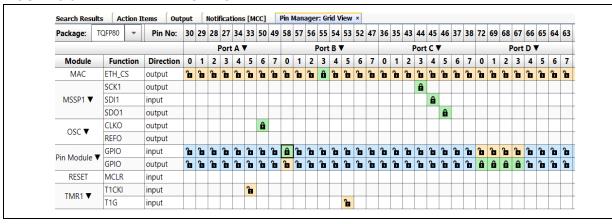
Perform the following steps to set timer configurations:

- Go to Peripherals listed in the Device Resources tab. Expand Timer peripheral and double-click on TMR1 to load the module.
- 2. In the Project Resources tab, select TMR1 module. Configure the system time to 1s by doing the following:
 - a) Update the "Clock Source" to FOSC/4.
 - b) Update the "Timer Period" to 25 ms.
 - c) Tick "Enable Timer Interrupt."
 - d) Update the "Callback Function Rate" to 40 times.

This results the timer configuration to interrupt for every 1 second. (See Figure 3-7.)

FIGURE 3-7: TMR1

3.6 Pin Configuration


Follow these steps to configure the pins:

1. Go to the **Pin Manager: Grid [MCC]** tab. Click on the pins stated in Table 3-1 as illustrated in Figure 3-8 for their configuration.

TABLE 3-1: PIN FUNCTION TABLE

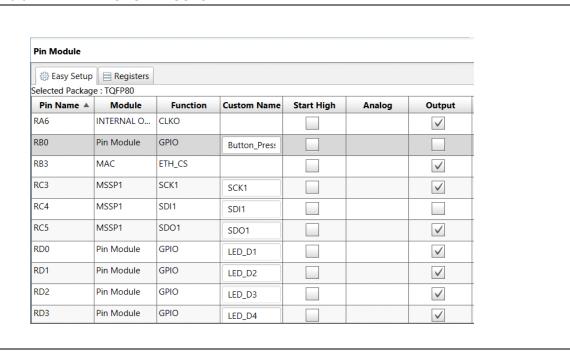

Module in Pin Manager	Pin	Custom Name	Function
MAC	RB3	Not Configurable	Chip select pin for the MAC
MSSP1	RC3	SCK1	Serial Clock
MSSP1	RC4	SDI1	Serial Data In
MSSP1	RC5	SDO1	Serial Data Out
Pin Module	RB0	Button_Press	Push button S1 on the Explorer 8 Board (Input)
Pin Module	RD0	LED_D1	LED D1 on the Explorer 8 board (output)
Pin Module	RD1	LED_D2	LED D2 on the Explorer 8 board (output)
Pin Module	RD2	LED_D3	LED D3 on the Explorer 8 board (output)
Pin Module	RD3	LED_D4	LED D4 on the Explorer 8 board (output)

FIGURE 3-8: PIN MANAGER GRID

2. Set the custom names for the pins as shown in the MPLAB Code Configurator tab. (See Figure 3-9.)

FIGURE 3-9: PIN MODULE CUSTOM NAME

4. Click on **Generate** to generate the code for the configured modules.

Note: Click on **Generate** even if the MPLAB X shows a warning. These warnings are handled later by modifying the code.

3.7 Programming and Wireshark

In the Projects tab, under sources file, double-click on "main.c". In the file, enable global and peripheral interrupts by removing the comment declaration "//".
(See Figure 3-10.)

FIGURE 3-10: GLOBAL AND PERIPHERAL INTERRUPTS

```
// Enable the Global Interrupts
INTERRUPT_GlobalInterruptEnable();

// Disable the Global Interrupts

//INTERRUPT_GlobalInterruptDisable();

// Enable the Peripheral Interrupts
INTERRUPT_PeripheralInterruptEnable();
```

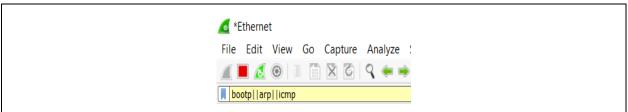

2. In "main.c", add Network_Manage() to the while(1) loop and the corresponding network.h header file. This is required to handle the packets in the network. (See Figure 3-11.)

FIGURE 3-11: ADDING NETWORK MANAGE

```
while (1)
{
    // Add your application code
    Network_Manage();
}
```

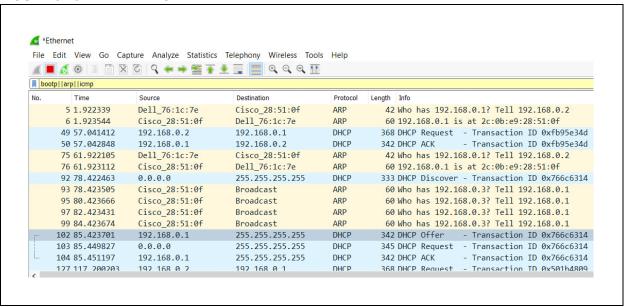

- 3. Launch Wireshark. From the Capture menu, click on **Options**. Select an Interface from the list to which your board and PC are connected. Click on **Start** for capturing the packet. (e.g. Ethernet)
- 4. In Wireshark, set the filter field as "Bootp I I arp I I icmp." (See Figure 3-12.)

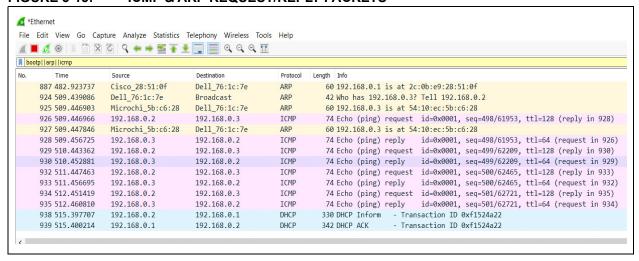
FIGURE 3-12: FILTER SETTINGS

- In MPLAB X IDE, click on Clean and Build project. Select the PICkit Programmer. After a successful build, click on Run project to program the code to the device.
- 6. In Wireshark, notice the DHCP packets handshake to get the device IP address and MAC address. (See Figure 3-13.)

FIGURE 3-13: DHCP OFFER

7. In Wireshark, double-click on Offer packet. Expand Bootstrap protocol to get the device IP address. (See Figure 3-14.)

FIGURE 3-14: OFFER PACKET


```
> Frame 102: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits) on interface 0
> Ethernet II, Src: Cisco_28:51:0f (2c:0b:e9:28:51:0f), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
> Internet Protocol Version 4, Src: 192.168.0.1, Dst: 255.255.255.255
> User Datagram Protocol, Src Port: 67, Dst Port: 68
➤ Dynamic Host Configuration Protocol (Offer)
    Message type: Boot Reply (2)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6
    Hops: 0
    Transaction ID: 0x766c6314
    Seconds elapsed: 0
  > Bootp flags: 0x8000, Broadcast flag (Broadcast)
    Client IP address: 0.0.0.0
    Your (client) IP address: 192.168.0.3
    Next server IP address: 0.0.0.0
    Relay agent IP address: 0.0.0.0
    Client MAC address: Microchi_5b:c6:28 (54:10:ec:5b:c6:28)
    Server host name not given
    Boot file name not given
    Magic cookie: DHCP
```

On your PC, open the Command Prompt (cmd.exe) window and ping the device using its IP address with the command.

ping IP Address e.g.: ping 19.168.0.3

9. Check the Wireshark window to see the ICMP & ARP Request/Reply packets. (See Figure 3-15.)

FIGURE 3-15: ICMP & ARP REQUEST/REPLY PACKETS

4.0 SENDING AND RECEIVING UDP PACKETS

This chapter illustrates the following steps for implementing UDP packet communication:

- 1. Open the MPLAB X IDE and load the UDP DEMO.X file (Refer to TCP/IP Lite Stack.).
- 2. Open the Windows Command Prompt on your PC and type "ipconfig" and press enter to find the IP address of your PC.Se. (See Figure 4-1.)

FIGURE 4-1: IPCONFIG

```
Administrator: Command Prompt
  Autoconfiguration IPv4 Address. . : 169.254.246.202
  Subnet Mask . . . . . . . . . . : 255.255.0.0
  Default Gateway . . . . . . . :
Wireless LAN adapter Local Area Connection* 1:
  Media State . . . . . . . . . : Media disconnected
  Connection-specific DNS Suffix .:
Wireless LAN adapter Local Area Connection* 12:
  Media State . . . . . . . . . : Media disconnected
  Connection-specific DNS Suffix .:
Ethernet adapter Ethernet:
  Connection-specific DNS Suffix .:
  Link-local IPv6 Address . . . . : fe80::cc46:77e8:5ebb:af2b%10
  IPv4 Address. . . . . . . . . : 192.168.0.2
  Subnet Mask . . . . . . . . . . : 255.255.255.0
  Default Gateway . . . . . . . :
Wireless LAN adapter Wi-Fi:
  Connection-specific DNS Suffix . : mchp-main.com
  Link-local IPv6 Address . . . . : fe80::64b5:6bd:f990:36a5%14
  IPv4 Address. . . . . . . . . . : 10.10.178.172
  Default Gateway . . . . . . . . : 10.10.176.1
```

3. Open and scroll down in the file udp_demo.c. In the UDP_DEMO_Initialization() API function, update destination IP address (value found in Step 2) and Port Number (custom value within Dynamic/Private range). (See Figure 4-2.)

FIGURE 4-2: INITIALIZING UDP DEMO

```
void UDP_DEMO_Initialize(void)

{

/* UDP Packet Initializations*/
    udpPacket.destinationAddress = MAKE_IPV4_ADDRESS(192,168,0,2);
    udpPacket.sourcePortNumber = 65533;
    udpPacket.destinationPortNumber = 65531;
```

4. In the main.c file from the *Project>Source Files*, call **UDP_DEMO_Initialize()**. (See Figure 4-3.)

FIGURE 4-3: CALL UDP INITIALIZE API

```
// Enable the Peripheral Interrupts
INTERRUPT_PeripheralInterruptEnable();

// Disable the Peripheral Interrupts
//INTERRUPT_PeripheralInterruptDisable();

UDP_DEMO_Initialize();

while (1)
```

- Open and scroll down the main.c file from <u>Project>Source Files</u>. Scroll down to while(1) loop, call the function UDP_DEMO_Send() to demonstrate the sending UDP packets.
- 6. Send the UDP packet through the following steps:
 - a) Start the UDP packet.
 - b) Write the UDP packet.
 - c) Send the UDP packet.

See Figure 4-4.

FIGURE 4-4: UDP START WRITE SEND

Navigate through the <u>Projects>Source Files>MCC Generated Files>TCPIP Library>udpv4 port han-dler table.c file</u>. Add the "UDP_DEMO_Recv" handler to receive UDP packets on desired port, '65531,' in the UDP_CallBackTable[]. (See Figure 4-5.)

FIGURE 4-5: UDP PORT NUMBER

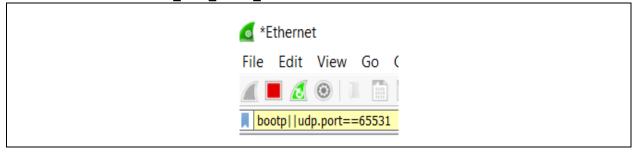
In the same file include the UDP demo application header file ${\tt udp_demo.h.}$

 Open the udp_demo.c file. Scroll down to UDP_DEMO_Recv() function, add UDP library API to read the receive UDP packet. (See Figure 4-6.)

FIGURE 4-6: UDP DEMO RECEIVE

```
void UDP_DEMO_Recv(void)

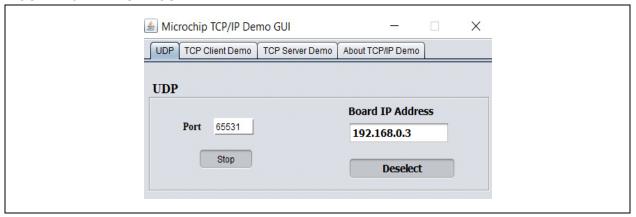
ls = {
    udpDemoRecv_t udpRecv;


udpDemoRecv_t udpRecv;

UDP_ReadBlock(&udpRecv, sizeof(udpDemoRecv_t));

udpDemoRecv_t);
```

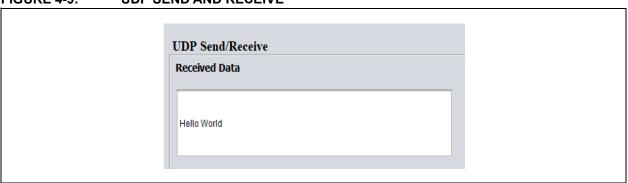
- 9. Launch Wireshark. From the Capture menu, click on Options.
- 10. Select an interface from the list to which your board and PC are connected, click on **Start** for capturing the packets. e.g.: Ethernet
- 11. In Wireshark, set the filter field as "bootp||udp.port == 65531." (See Figure 4-7.)


FIGURE 4-7: BOOTP_UDP_PORT_65531

- 12. In MPLAB IDE, from the Production menu, click on **Clean and Build Project**. After successful build, click on **Run** from the tool bar to program the code to the board.
- 13. In Wireshark, notice the DHCP packets handshake to get the device IP address.
- 14. In Wireshark, double-click on Offer packet. Expand Bootstrap protocol to get the device IP address.
- 15. Open the Java application TCPIP_Demo GUI (Refer TCP/IP Lite Stack).
- 16. Go to **UDP** tab and assign the same port number as "Port", which was assigned in the UDP library (in step 4). Click on the **Listen** button, and click on **Allow Access** if warning occurs. (See Figure 4-8.)

Note: Step 4 and Step 16 should use the same UDP port number. The board will be sending UDP packets to Java application on that port.

FIGURE 4-8: UDP GUI



17. Click the push button **S1** on your board to send "Hello World" in the UDP packet. The first click issues an ARP request to get the MAC Address of the PC. In Wireshark, open the filter field "arp," and click on **Apply** to set the filter.

Note: Step 17 needs to be done more than twice.


18. The TCP/IP Demo GUI prints the received data. (See Figure 4-9.)

FIGURE 4-9: UDP SEND AND RECEIVE

19. In TCP/IP Demo GUI, click on any **LED** buttons (**1**, **2**, **3**, or **4**). Observe the corresponding LED's (D1, D2, D3, or D4) toggle ON/OFF on the board. (See Figure 4-10.)

FIGURE 4-10: UDP LED DEMO

20. In Wireshark, observe the UDP packets sent on the port numbers from step 2 to 14. (See Figure 4-11.)

FIGURE 4-11: UDP SENT PORT NUMBER

No.	Time	Source	Destination	Protocol	Length	Info		
	671 280.956230	192.168.0.2	192.168.0.1	DHCP	368	DHCP Request	- Transaction ID 0	xefc1c68f
	672 280.957399	192.168.0.1	192.168.0.2	DHCP	342	DHCP ACK	- Transaction ID 0	xefc1c68f
	746 340.996158	192.168.0.2	192.168.0.1	DHCP	368	DHCP Request	- Transaction ID 0	x2a093651
	747 340.998142	192.168.0.1	192.168.0.2	DHCP	342	DHCP ACK	- Transaction ID 0	x2a093651
	826 401.032731	192.168.0.2	192.168.0.1	DHCP	368	DHCP Request	- Transaction ID 0	xc4b57a8a
	827 401.037780	192.168.0.1	192.168.0.2	DHCP	342	DHCP ACK	- Transaction ID 0	xc4b57a8a
	883 433.181760	192.168.0.2	192.168.0.3	UDP	44	62139 → 65531	Len=2	
	885 435.390606	192.168.0.2	192.168.0.3	UDP	44	62140 → 65531	Len=2	

5.0 TCP CLIENT IMPLEMENTATION

This chapter shows how TCP Client communication can be implemented with the following procedure:

- 1. Open the MPLAB X IDE and load the TCPClientDemo.X file (Refer TCP/IP Lite Stack.).
- 2. Open the Windows Command Prompt on your PC and type "ipconfig" and press <Enter> to find the IP address of your PC.
- 3. Open and scroll down in the file tcp_client_demo.c. Scroll down in the source file to modify the UDP_DEMO_Initialize() function. Update the server IP address (PC's) and port number. (See Figure 5-1.)

FIGURE 5-1: TCP CLIENT INITIALIZE

```
void TCP_Client_Initialize() {

    // TODO[2] - Initialize the server IP address with your PC's IP address

    remoteSocket.addr.s_addr = MAKE_IPV4_ADDRESS(192, 168, 0, 2);
    remoteSocket.port = 65534;
}
```

4. In the main.c file from *Projects>Source Files*, call **UDP_DEMO_Initialize()**. (See Figure 5-2.)

FIGURE 5-2: CALL TCP CLIENT INITIALIZE

```
TCP_Client Initialize();
while (1)
{
```

5. Initialize socket by modifying function DEMO_TCP_Client() in file tcp_client_demo.c. (See Figure 5-3.)

FIGURE 5-3: INSERT SOCKET

```
case NOT_A_SOCKET:
    //TODO[4] - Inserting and Initializing the socket

TCP_SocketInit(&port65534TCB);
    break;
case SOCKET_CLOSED:
```

6. Call TCP_Connect() server on port '65534' once at least 2 seconds. (See Figure 5-4.)

FIGURE 5-4: CLIENT CALL TCP SOCKET

```
case SOCKET_CLOSED:
    // if the socket is closed we will try to connect again
    // try to connect once at 2 seconds
    socketTimeout = t_client + 2;
    TCP_InsertRxBuffer(&port65534TCB, rxdataPort65534, sizeof(rxdataPort65534));
    TCP_Connect(&port65534TCB,&remoteSocket);
    //TODO[5] - Connect to the Server
```

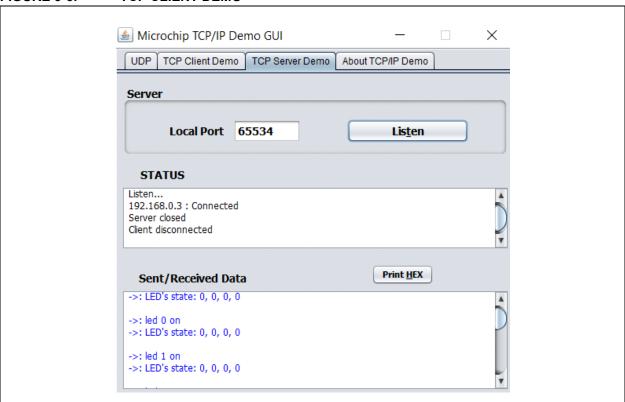

7. In main.c, call the **DEMO_TCO_Client()** function to start the device as a TCP Client. (See Figure 5-5.)

FIGURE 5-5: CALL DEMO TCP CLIENT

```
Network_Manage();
ip = ipdb_getAddress();
if(ip)
{
    DEMO_TCP_Client();
}
```

- 8. From the Production menu, click on **Clean and Build Project**. After a successful build, click on **Run** from the tool bar to program the device.
- 9. Open the Java application from the TCP/IP Demo GUI folder.
- 10. Go to the **TCP Server Demo** tab, assign the same port number as in Step 4; 65534. Click on the **Listen** button. The status of the TCP connection is printed inside the "STATUS" text box.
- 11. After the connection is established, the Explorer board sends the status of the LED's in a TCP packet. Click on the **LED** buttons (**0**, **1**, **2**, or **3**). This will toggle LEDs (**D1**, **D2**, **D3**, or **D4**). Board STATUS can be observed on the "Sent/Received Data" box in the GUI.
- 12. Push the **Disconnect** button, to close the TCP Connection. A client disconnected message will appear on the "STATUS" text box. (See Figure 5-6.)

FIGURE 5-6: TCP CLIENT DEMO

6.0 TCP SERVER IMPLEMENTATION

This chapter details the following steps for implementing TCP server communication:

- 1. Open the MPLAB X IDE and load the tcpServerDemo.X file (Refer TCP/IP Lite Stack.).
- 2. Insert and initialize the Socket in top server demo.c. (See Figure 6-1.)

FIGURE 6-1: TCP SERVER SOCKET INITIALIZE

```
case NOT_A_SOCKET:

//TODO[2] - Inserting and Initializing the socket

TCP_SocketInit(&port7TCB);
```

3. Bind the local port of the TCP Server to Port 7. (See Figure 6-2.)

FIGURE 6-2: TCP SOCKET SERVER BIND

```
case SOCKET_CLOSED:

//TODO[3] - Configure the local port

TCP_Bind(&port7TCB, 7);
```

4. Start the **TCP Server**. (See Figure 6-3.)

FIGURE 6-3: TCP SERVER LISTEN

```
// TODO[4] - Start the TCP server: Listen on port
    TCP_Listen(&port7TCB);
```

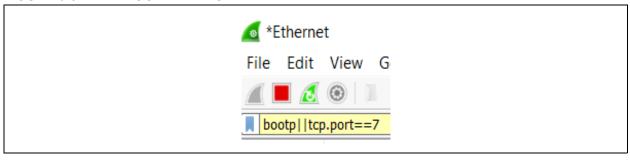

5. Call the **DEMO_TCP_EchoServer()** function within the while(1) loop in main.c. This allows the device to run as a TCP Server. (See Figure 6-4.)

FIGURE 6-4: CALL TCP ECHO SERVER

```
if(ip)
{
    DEMO_TCP_EchpServer();
}
```

- 6. Launch Wireshark. From the Capture menu, click on Options.
- 7. Select an interface from the list to which your PC and the board are connected. Click on **Start** to capture packets.
- 8. In Wireshark, set the filter field as "bootp || tcp.port==7." (See Figure 6-5.)

FIGURE 6-5: BOOTP TCP PORT 7

- 9. From the MPLAB IDE Production menu, click on **Clean and Build Project**. After successful build, click on **Run** from the tool bar to program the code to device.
- In Wireshark, notice the DHCP packet handshake to get the device IP address.
- 11. Double-click on Offer packet. Expand Bootstrap protocol to get the device IP address. (See Figure 6-6.)

FIGURE 6-6: TCP SERVER OFFER PACKET


```
Frame 29: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits) on interface 0
Ethernet II, Src: Cisco_28:51:0f (2c:0b:e9:28:51:0f), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Internet Protocol Version 4, Src: 192.168.0.1, Dst: 255.255.255.255
> User Datagram Protocol, Src Port: 67, Dst Port: 68

    Dynamic Host Configuration Protocol (Offer)

    Message type: Boot Reply (2)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6
    Hops: 0
    Transaction ID: 0x766c6314
    Seconds elapsed: 0
  > Bootp flags: 0x8000, Broadcast flag (Broadcast)
    Client IP address: 0.0.0.0
    Your (client) IP address: 192.168.0.3
    Next server IP address: 0.0.0.0
    Relay agent IP address: 0.0.0.0
    Client MAC address: Microchi_5b:c6:28 (54:10:ec:5b:c6:28)
    Server host name not given
    Boot file name not given
    Magic cookie: DHCP
```

- 12. Open the Java application from the TCP/IP Demo GUI folder.
- 13. Go to the **TCP Client Demo** tab, enter the IP address from step 12. Assign it as the Server IP address in the GUI. Assign the same port number in step 4. Click on the **Connect** button.
- 14. The status of the TCP Connection is printed inside the "STATUS" text box. (See Figure 6-7.)

FIGURE 6-7: TCP CLIENT DEMO

- 15. After the connection is established, type text inside the "Send Text" box. Click on the **Send** button. The text will be echoed and displayed inside the "Sent/Received Data" box. Notice the ECHO message is divided and sent into 32 Bytes packets by the device.
- 16. Push the **Disconnect** button to close the TCP Connection. The "STATUS" text box indicates the connection message.

7.0 CONCLUSION

In summary, the basic steps for implementing UDP and TCP communication have been demonstrated in this guide. The user can build upon this application to extend the capabilities of the ENC624J600 controller with the help of the driver provided by the MCC.

N		62	1	16	U	U
IV	L	OZ	4.	10	U	u

	\sim	 ^
N	()	 ⋖.

APPENDIX A: DOCUMENTATION CONVENTIONS

This quick start guide uses the following conventions:

TABLE 7-1: DOCUMENTATION CONVENTIONS

Description	Represents	Examples		
Arial Font:				
Italic characters	Referenced books	MPLAB [®] IDE User's Guide		
	Emphasized text	is the <i>only</i> compiler		
Initial caps	A window	the Output window		
	A dialog	the Settings dialog		
	A menu selection	select Enable Programmer		
Quotes	A field name in a window or dialog	"Save project before build"		
Underlined, italic text with right angle bracket	A menu path	<u>File>Save</u>		
Bold characters	A dialog button	Click OK		
	A tab	Click the Power tab		
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1		
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>		
Courier New Font:				
Plain Courier New	Sample source code	#define START		
	Filenames	autoexec.bat		
	File paths	c:\mcc18\h		
	Keywords	_asm, _endasm, static		
	Command-line options	-Opa+, -Opa-		
	Bit values	0, 1		
	Constants	0xff, 'A'		
Italic Courier New	alic Courier New A variable argument file.o, who			
Square brackets []	are brackets [] Optional arguments n			
Curly brackets and pipe Choice of mutually exclusive argu- character: { } error		errorlevel {0 1}		
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>		
	Represents code supplied by user	<pre>void main (void) { }</pre>		

APPENDIX B: REVISION HISTORY

TABLE B-1: REVISION HISTORY

Revision Level & Date	Section/Figure/Entry	Correction
DS50002901A	Initial release	
(07-16-19)		

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MilVi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-4783-2

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Fax: 317-773-5453 Tel: 317-536-2380 **Los Angeles**

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto

Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200 China - Suzhou

Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820