

AVR32717: Compatibility Note AT32UC3Ax
Revision E to Revision H or later

1 Introduction
The AT32UC3Ax revision H introduces fixes and incompatibility with the previous
revision E. This document outlines the software operations to migrate software
from an AT32UC3Ax revision E, also known as engineering sample (ES), to
AT32UC3Ax revision H and later.

The AVR®32Studio, the AVR32 GNU Toolchain and the Software Framework have
also been upgraded. The 2nd part of this document also outlines the software
operations necessary to migrate a software project from older to newer tools.

32-bit
Microcontrollers

Application Note

Rev. 32102C-AVR32-08/08

2 AVR32717
32102C-AVR32-08/08

2 Parts Concerned
Table 2-1. List of Concerned Parts

AT32UC3Ax Engineering
Samples Rev E

AT32UC3Ax Production parts Rev H and
later

AT32UC3A0512 Rev E
AT32UC3A1512 Rev E

AT32UC3A0512 Rev H and later
AT32UC3A0256 Rev H and later
AT32UC3A0128 Rev H and later
AT32UC3A1512 Rev H and later
AT32UC3A1256 Rev H and later
AT32UC3A1128 Rev H and later

2.1 How to differentiate Device Revisions

2.1.1 Package Label

• The packages of the engineering samples are labeled with “-xES”.
32UC3Axxxx-UES means it is a Rev E.

• The packages of industrial production parts (non engineering samples) are
labeled with “–U” (used for production of industrial parts).

In the following of this document, we will use the “ES” notation to designate
engineering samples parts (ie. Rev E).

2.1.2 Device Identification Register

The JTAG Device Identification register (DID) contains the device chip revision (“RN”
field, revA = 0x0 revB = 0x01 etc…).

Note: Refer to device datasheet section JTAG and Boundary Scan for the JTAGID
code description.

This is the C code to read the JTAG DID register in software, for IAR® or GCC
compiler:

For IAR compiler:

#include <avr32/io.h>
#include <intrinsics.h>
static inline unsigned int read_jtag_id(void) {

return __get_debug_register(AVR32_DID);
}

For GCC compiler:

#include <avr32/io.h>
static inline unsigned int read_jtag_id(void) {

return __builtin_mfdr(AVR32_DID);
}

 AVR32717

 3

32102C-AVR32-08/08

Table 2-2. JTAG DID Register Description

R/W
Bit
Number

Field
Name

Init.
Val. Description

R 31:28 RN
Part
specific RN – Revision Number

R 27:12 PN
Part
specific PN – Product Number

R 11:1 MID 0x01F
Manufacturer ID
0x01F = ATMEL

R 0 Reserved 1
Reserved
This bit always reads as 1.

2.1.3 Using the JTAGICEmkII or the AVR One!

Avr32program is a utility from the AVR32 GNU toolchain which can read the JTAG ID
revision from a command line window (“avr32program cpuinfo”, read the “JTAG
Revision” line).

Figure 2-3. JTAG Revision

JTAG revision: revE = 0x4, revH = 0x7, revI= 0x8.

4 AVR32717
32102C-AVR32-08/08

3 Software Migration
The errata section in the device datasheet provides the list of known issues per
revision. This migration note does not address every item of the datasheet errata.
Only the items affecting software binary compatibility are addressed in the following.

3.1 CPU Cycle Counter
On Rev E:

1. The CPU Cycle Counter does not reset the COUNT system register on
COMPARE match.

2. The COUNT register is clocked by the CPU clock, so when the CPU clock
stops, so does incrementing of COUNT.

On Rev H:

1. The CPU cycle counter reset the COUNT system register on COMPARE
match.

2. The COUNT register has a dedicated clock active only in active mode and in
the following sleep modes: IDLE, FROZEN and STANDBY.

Migration from Rev E to Rev H or later:

1. Any software which relied on the fact that the COUNT system register was
not reset on COMPARE match must be updated to reflect the fact that the
COUNT system register is now reset on COMPARE match.

2. Any software which relied on the fact that COUNT register was not
incremented in any of the sleep modes must be updated to reflect the fact
that the COUNT register is now incremented in the following sleep modes:
IDLE, FROZEN and STANDBY.

Software implementation examples can be found in the AVR32 UC3 software
framework under the directory DRIVERS/CPU/CYCLE_COUNTER/EXAMPLE.

3.2 Timer Counter
On Rev E, the following timer counter clock inputs are different than in Rev H and
later.

On Rev E:

• TIMER_CLOCK2 is connected to PBA Clock / 4

• TIMER_CLOCK4 is connected to PBA Clock / 16

• TIMER_CLOCK5 is connected to PBA Clock / 32

On Rev H:
• TIMER_CLOCK2 is connected to PBA Clock / 2

• TIMER_CLOCK4 is connected to PBA Clock / 32

• TIMER_CLOCK5 is connected to PBA Clock / 128

Migration from Rev E to Rev H or later:

 AVR32717

 5

32102C-AVR32-08/08

Any software that was relying on the previous timer clock input frequency must be
updated to match the new timer clock input frequency.

Software implementation examples can be found in the AVR32 UC3 software
framework under the directory DRIVERS/TC.

3.3 Flashc

3.3.1 General Purpose Fuse Register Low Address

On Rev E the address of the Flash General Purpose Fuse Register Low (FGPFRLO,
previously named FPGPFR) was 0xFFFE140C.
On Rev H the address of the Flash General Purpose Fuse Register Low (FGPFRLO)
is 0xFFFE1410.

Migration from Rev E to Rev H or later:

Any software that hard coded the FGPFRLO address value must be updated with the
new FGPFRLO address. If the software was relying on the flash header file definition,
FPGPFR should be renamed to FGPFRLO.

3.3.2 PAGEN Semantic Field for Program GP Fuse Byte

On Rev E, the PAGEN semantic field for Program GP Fuse Byte was WriteData[7:0],
ByteAddress[1:0].
On Rev H, the PAGEN semantic field for Program GP Fuse Byte is WriteData[7:0],
ByteAddress[2:0].

Migration from Rev E to Rev H or later:

Any software that relied on the PAGEN Rev E semantic field must be updated with
the Rev H semantic field.

Software implementation examples can be found in the AVR32 UC3 software
framework under the directory DRIVERS/FLASHC.

3.4 USB
On Rev E, the UHADDR1/2/3 registers are not available. UHCON.HADDR
(UHCON[6:0]) field register is used for the USB device address whatever the pipe.
On Rev H, the HCON.HADDR (UHCON[6:0]) field register is not available.
UHADDR1/2/3 registers are used to select one USB device address per pipe.

Migration from Rev E to Rev H or later:

Any software that relied on the UHCON.HADDR (UHCON[6:0]) field register must use
the UHADDR1/2/3.UHADDR_Px instead: fill all the UHADDRx.UHADDR_Py with the
value that was in the corresponding UHCON.HADDR.

Software implementation examples can be found in the AVR32 UC3 software
framework under the directory DRIVERS/USBB.

6 AVR32717
32102C-AVR32-08/08

3.5 Real Time Counter (RTC)
On Rev E, the RTC CLKEN bit (bit number 16) of CTRL register is not available.

On Rev H, the RTC CLKEN bit of CTRL register is available and has to be set in
order to enable the RTC.

Migration from Rev E to Rev H or later:

Any software that used the RTC on Rev E must now use in Rev H the CLKEN bit of
RTC CTRL register to enable the RTC.

Software implementation examples can be found in the AVR32 UC3 software
framework under the directory DRIVERS/RTC.

 AVR32717

 7

32102C-AVR32-08/08

4 Tools

4.1 AVR32Studio and GNU Toolchain 2.0 and later
The device header files set is different for ES parts compared with non-ES parts. To
manage it in the GNU toolchain, the following targets are supported:

4.1.1 UC3A Part Name

With GCC compiler, the ‘mpart’ option should be set to one of the following:

• UC3A0512ES: Rev E.

• UC3A1512ES: Rev E.

• UC3A0512: Rev H and later.

• UC3A0256: Rev H and later.

• UC3A0128: Rev H and later.

• UC3A1512: Rev H and later.

• UC3A1256: Rev H and later.

• UC3A1128: Rev H and later.

4.1.2 Header Files Organization

The header files addressed in this section can be found for Windows® user under the
directory: C:\Program Files\Atmel\AVR Tools\AVR32 Toolchain\avr32\include\avr32.
They are installed within the GNU Toolchain release.

• avr32/io.h file: this file is the entry point and is used to include the appropriate
other header files according to the device chosen. This file is found in the GNU
toolchain.

<snip>

elif __AVR32_UC3A0512ES__

include <avr32/uc3a0512es.h>

elif __AVR32_UC3A1512ES__

include <avr32/uc3a1512es.h>

<snip>

elif __AVR32_UC3A0512__

include <avr32/uc3a0512.h>

<snip>

• Device specific files: avr32/uc3a0512.h, avr32/uc3a0512es.h … included by

io.h according to the chosen device.
• IP specific header files: avr32/usart_319.h, avr32/usart_400.h… included by

the ‘device’.h specific header file.

8 AVR32717
32102C-AVR32-08/08

4.1.3 Project Migration from AVR32 GNU Toolchain 1.y.z to AVR32 GNU Toolchain 2.0 or later

In AVR32 GCC toolchain version 2.0 and later, some headers files definitions have
been renamed. When migrating any software from older toolchain version 1.y.z to
toolchain 2.0 and later, the following definitions must be updated:

Table 4-1. Project Migration from AVR32 GNU Toolchain 1.y.z to AVR32 GNUToolchain 2.0 or later
Old Definition in Toolchain version 1.y.z New definition in Toolchain version 2.0 or later
Interrupt Controller header file:

AVR32_INTC_IPRx_INTLEV_OFFSET
AVR32_INTC_IPRx_INTLEV_MASK
AVR32_INTC_IPRx_INTLEV_SIZE
AVR32_INTC.icr3

AVR32_INTC_IPR_INTLEV_OFFSET
AVR32_INTC_IPR_INTLEV_MASK
AVR32_INTC_IPR_INTLEV_SIZE
AVR32_INTC.icr

Flashc header file:

AVR32_FLASHC_FGPFR_GPFx
AVR32_FLASHC_FGPFR_GPFx_MASK
AVR32_FLASHC_FGPFR_GPFx_SIZE
AVR32_FLASHC_FGPFR_GPFx_OFFSET

AVR32_FLASHC_FGPFR_LOCKx
AVR32_FLASHC_FGPFR_LOCKx_MASK
AVR32_FLASHC_FGPFR_LOCKx_SIZE
AVR32_FLASHC_FGPFR_LOCKx_OFFSET

PWM header file:

AVR32_PWM_PWM_LINES_MSB
AVR32_PWM_PWM_0_PIN
AVR32_PWM_PWM_0_FUNCTION
AVR32_PWM_PWM_1_PIN
AVR32_PWM_PWM_1_FUNCTION
AVR32_PWM_PWM_2_PIN
AVR32_PWM_PWM_2_FUNCTION
AVR32_PWM_PWM_3_PIN
AVR32_PWM_PWM_3_FUNCTION
AVR32_PWM_PWM_4_0_PIN
AVR32_PWM_PWM_4_0_FUNCTION
AVR32_PWM_PWM_5_0_PIN
AVR32_PWM_PWM_5_0_FUNCTION
AVR32_PWM_PWM_4_1_PIN
AVR32_PWM_PWM_4_1_FUNCTION
AVR32_PWM_PWM_5_1_PIN
AVR32_PWM_PWM_5_1_FUNCTION
AVR32_PWM_PWM_6_PIN
AVR32_PWM_PWM_6_FUNCTION

AVR32_PWM_LINES_MSB
AVR32_PWM_0_PIN
AVR32_PWM_0_FUNCTION
AVR32_PWM_1_PIN
AVR32_PWM_1_FUNCTION
AVR32_PWM_2_PIN
AVR32_PWM_2_FUNCTION
AVR32_PWM_3_PIN
AVR32_PWM_3_FUNCTION
AVR32_PWM_4_0_PIN
AVR32_PWM_4_0_FUNCTION
AVR32_PWM_5_0_PIN
AVR32_PWM_5_0_FUNCTION
AVR32_PWM_4_1_PIN
AVR32_PWM_4_1_FUNCTION
AVR32_PWM_5_1_PIN
AVR32_PWM_5_1_FUNCTION
AVR32_PWM_6_PIN
AVR32_PWM_6_FUNCTION

Power Manager header file:

AVR32_PM_GCLK_USB

AVR32_PM_GCLK_USBB

RTC:

AVR32_RTC_RTC_IRQ

AVR32_RTC_IRQ

Note 1: The UC3 software framework version 1.1.1 is implemented with definitions from the left
column.

 AVR32717

 9

32102C-AVR32-08/08

Note 2: The UC3 software framework version 1.2.z and 1.3.z or later are implemented with
definitions from the right column.

Project Migration from Toolchain 1.y.z to Toolchain 2.0 or later:

Any software that relied on the Toolchain 1.y.z must be updated with the header
definition from the Toolchain 2.0 or later version.

4.1.4 Project Migration from UC3Ax512ES Target (Rev E) to UC3Ax512 Target (Rev H or later) in Toolchain 2.x

The UC3A0512 (Rev H and later) header files fix the errata of the new available
alternate functions on some pins. These pins were not available for UC3A0512ES
(Rev E). To migrate a project from UC3A0512ES (Rev E) to UC3A0512 (Rev H or
later), the following defines must be updated:

Table 4-2. Project Migration from UC3Ax512ES Target (Rev E) to UC3Ax512 Target (Rev H or later) in Toolchain 2.x
UC3Ax512ES (Rev E) in Toolchain 2.x UC3Ax512 (Rev H) in Toolchain 2.x
SPI0:

#define AVR32_SPI0_MISO_0_PIN 11
#define AVR32_SPI0_MISO_0_FUNCTION 0
#define AVR32_SPI0_MOSI_0_PIN 12
#define AVR32_SPI0_MOSI_0_FUNCTION 0
#define AVR32_SPI0_NPCS_0_PIN 10
#define AVR32_SPI0_NPCS_0_FUNCTION 0
#define AVR32_SPI0_NPCS_1_PIN 8
#define AVR32_SPI0_NPCS_1_FUNCTION 1
#define AVR32_SPI0_NPCS_2_PIN 9
#define AVR32_SPI0_NPCS_2_FUNCTION 1
#define AVR32_SPI0_NPCS_3_PIN 7
#define AVR32_SPI0_NPCS_3_FUNCTION 2
#define AVR32_SPI0_SCK_0_PIN 13
#define AVR32_SPI0_SCK_0_FUNCTION 0

SPI0:

#define AVR32_SPI0_MISO_0_0_PIN 11
#define AVR32_SPI0_MISO_0_0_FUNCTION 0
#define AVR32_SPI0_MOSI_0_0_PIN 12
#define AVR32_SPI0_MOSI_0_0_FUNCTION 0
#define AVR32_SPI0_NPCS_0_0_PIN 10
#define AVR32_SPI0_NPCS_0_0_FUNCTION 0
#define AVR32_SPI0_NPCS_1_0_PIN 8
#define AVR32_SPI0_NPCS_1_0_FUNCTION 1
#define AVR32_SPI0_NPCS_2_0_PIN 9
#define AVR32_SPI0_NPCS_2_0_FUNCTION 1
#define AVR32_SPI0_NPCS_3_1_PIN 7
#define AVR32_SPI0_NPCS_3_1_FUNCTION 2
#define AVR32_SPI0_SCK_0_0_PIN 13
#define AVR32_SPI0_SCK_0_0_FUNCTION 0

SPI1:

#define AVR32_SPI1_MISO_0_PIN 17
#define AVR32_SPI1_MISO_0_FUNCTION 1
#define AVR32_SPI1_MOSI_0_PIN 16
#define AVR32_SPI1_MOSI_0_FUNCTION 1
#define AVR32_SPI1_NPCS_0_PIN 14
#define AVR32_SPI1_NPCS_0_FUNCTION 1
#define AVR32_SPI1_NPCS_1_PIN 18
#define AVR32_SPI1_NPCS_1_FUNCTION 1
#define AVR32_SPI1_NPCS_2_PIN 19
#define AVR32_SPI1_NPCS_2_FUNCTION 1
#define AVR32_SPI1_SCK_0_PIN 15
#define AVR32_SPI1_SCK_0_FUNCTION 1

SPI1:

#define AVR32_SPI1_MISO_0_0_PIN 17
#define AVR32_SPI1_MISO_0_0_FUNCTION 1
#define AVR32_SPI1_MOSI_0_0_PIN 16
#define AVR32_SPI1_MOSI_0_0_FUNCTION 1
#define AVR32_SPI1_NPCS_0_0_PIN 14
#define AVR32_SPI1_NPCS_0_0_FUNCTION 1
#define AVR32_SPI1_NPCS_1_0_PIN 18
#define AVR32_SPI1_NPCS_1_0_FUNCTION 1
#define AVR32_SPI1_NPCS_2_0_PIN 19
#define AVR32_SPI1_NPCS_2_0_FUNCTION 1
#define AVR32_SPI1_SCK_0_0_PIN 15
#define AVR32_SPI1_SCK_0_0_FUNCTION 1

USART0: USART0:

10 AVR32717
32102C-AVR32-08/08

#define AVR32_USART0_CTS_0_PIN 4
#define AVR32_USART0_CTS_0_FUNCTION 0
#define AVR32_USART0_RTS_0_PIN 3
#define AVR32_USART0_RTS_0_FUNCTION 0
#define AVR32_USART0_RXD_0_PIN 0
#define AVR32_USART0_RXD_0_FUNCTION 0
#define AVR32_USART0_TXD_0_PIN 1
#define AVR32_USART0_TXD_0_FUNCTION 0

#define AVR32_USART0_CTS_0_0_PIN 4
#define AVR32_USART0_CTS_0_0_FUNCTION 0
#define AVR32_USART0_RTS_0_0_PIN 3
#define AVR32_USART0_RTS_0_0_FUNCTION 0
#define AVR32_USART0_RXD_0_0_PIN 0
#define AVR32_USART0_RXD_0_0_FUNCTION 0
#define AVR32_USART0_TXD_0_0_PIN 1
#define AVR32_USART0_TXD_0_0_FUNCTION 0

USART1:

#define AVR32_USART1_CTS_0_PIN 9
#define AVR32_USART1_CTS_0_FUNCTION 0
#define AVR32_USART1_RTS_0_PIN 8
#define AVR32_USART1_RTS_0_FUNCTION 0
#define AVR32_USART1_RXD_0_PIN 5
#define AVR32_USART1_RXD_0_FUNCTION 0
#define AVR32_USART1_TXD_0_PIN 6
#define AVR32_USART1_TXD_0_FUNCTION 0

USART1:

#define AVR32_USART1_CTS_0_0_PIN 9
#define AVR32_USART1_CTS_0_0_FUNCTION 0
#define AVR32_USART1_RTS_0_0_PIN 8
#define AVR32_USART1_RTS_0_0_FUNCTION 0
#define AVR32_USART1_RXD_0_0_PIN 5
#define AVR32_USART1_RXD_0_0_FUNCTION 0
#define AVR32_USART1_TXD_0_0_PIN 6
#define AVR32_USART1_TXD_0_0_FUNCTION 0

USART3:

#define AVR32_USART3_RXD_0_PIN 42
#define AVR32_USART3_RXD_0_FUNCTION 1
#define AVR32_USART3_TXD_0_PIN 43
#define AVR32_USART3_TXD_0_FUNCTION 1

USART3:

#define AVR32_USART3_RXD_0_0_PIN 42
#define AVR32_USART3_RXD_0_0_FUNCTION 1
#define AVR32_USART3_TXD_0_0_PIN 43
#define AVR32_USART3_TXD_0_0_FUNCTION 1

Timer Counter (TC):

#define AVR32_TC_A0_0_PIN 55
#define AVR32_TC_A0_0_FUNCTION 0
#define AVR32_TC_A1_0_PIN 57
#define AVR32_TC_A1_0_FUNCTION 0
#define AVR32_TC_A2_0_PIN 59
#define AVR32_TC_A2_0_FUNCTION 0
#define AVR32_TC_B0_0_PIN 56
#define AVR32_TC_B0_0_FUNCTION 0
#define AVR32_TC_B1_0_PIN 58
#define AVR32_TC_B1_0_FUNCTION 0
#define AVR32_TC_B2_0_PIN 60
#define AVR32_TC_B2_0_FUNCTION 0

Timer Counter (TC):

#define AVR32_TC_A0_0_0_PIN 55
#define AVR32_TC_A0_0_0_FUNCTION 0
#define AVR32_TC_A1_0_0_PIN 57
#define AVR32_TC_A1_0_0_FUNCTION 0
#define AVR32_TC_A2_0_0_PIN 59
#define AVR32_TC_A2_0_0_FUNCTION 0
#define AVR32_TC_B0_0_0_PIN 56
#define AVR32_TC_B0_0_0_FUNCTION 0
#define AVR32_TC_B1_0_0_PIN 58
#define AVR32_TC_B1_0_0_FUNCTION 0
#define AVR32_TC_B2_0_0_PIN 60
#define AVR32_TC_B2_0_0_FUNCTION 0

Interrupt Controller header file:

AVR32_INTC_IPR0_INTLEV_OFFSET
AVR32_INTC_IPR0_INTLEV_MASK

AVR32_INTC_IPR_INTLEV_OFFSET
AVR32_INTC_IPR_INTLEV_MASK

Flashc header file:

AVR32_FLASHC_FGPFR_x

AVR32_FLASHC_FGPFRLO_x

 AVR32717

 11

32102C-AVR32-08/08

To migrate a project from UC3Ax512ES (Rev E) target to UC3Ax512 (Rev H or later),
the definitions described above must be updated.

4.2 AVR32 UC3 Software Framework

4.2.1 Overview

Table 4-3. Supported Frameworks per Parts
UC3Ax Rev E UC3Ax Rev H or later

Toolchain 1.y.z Toolchain 2.0 or
later

Toolchain 1.y.z Toolchain 2.0 or
later

Software
framework 1.1.1

Software framework
1.2.0ES

Not Available Software framework
1.3.0

4.2.2 Version 1.1.1-AT32UC3A

The AVR32 software framework version 1.1.1 was dedicated to ES parts.

All drivers provided in this framework are implemented for the Rev E parts, and
include workarounds for the Rev E errata.

This framework only supports the Toolchain version 1.y.z.

Since the Toolchain 2.0 or later introduced header files definition changes, the
software framework 1.1.1 does not straight away compile with these toolchains.

4.2.3 Version 1.2.zES-AT32UC3A

The AVR32 software framework version 1.2.zES is dedicated to ES parts. All drivers
provided in this framework are implemented for the Rev E parts, and include
workarounds for the Rev E errata.

This framework only supports the Toolchain version 2.0 or later.

4.2.4 Version 1.3.z-AT32UC3A

The AVR32 software frameworks 1.3.z and later versions support UC3A Rev H and
later revisions. It does not support the Rev E version (ES).

All drivers provided in this framework are implemented for the Rev H parts, and
include workarounds for the Rev H errata.

This framework only supports the Toolchain version 2.0 or later.

4.3 USB DFU Bootloader
The pre-programmed Atmel USB DFU Bootloader implementation is different for Rev
E and Rev H, the interface remains the same.

The bootloader binary and its programming script can be found:

• On Rev E, in software framework 1.2.zES :
 \SERVICES\USB\CLASS\DFU\EXAMPLES\ISP\AT32UC3AES\Releases\

12 AVR32717
32102C-AVR32-08/08

• On Rev H and later, in software framework 1.3.z:
\SERVICES\USB\CLASS\DFU\EXAMPLES\ISP\AT32UC3A\Releases\

5 Suggested reading

5.1 Device datasheet
The device datasheet contains block diagrams of the peripherals and details about
implementing firmware for the device. The datasheet is available on
http://www.atmel.com/AVR32 in the Datasheets section.

5.2 AVR32 Software Framework
This framework provides software drivers and libraries to build any application for
AVR32 UC3 devices. It is available on http://www.atmel.com/AVR32 in the Tools &
Software section.

http://www.atmel.com/AVR32�
http://www.atmel.com/AVR32�

32102C-AVR32-08/08

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Windows® is a registered trademark of Microsoft Corporation in the US and/or other
countries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Parts Concerned
	2.1 How to differentiate Device Revisions
	2.1.1 Package Label
	2.1.2 Device Identification Register
	2.1.3 Using the JTAGICEmkII or the AVR One!

	3 Software Migration
	3.1 CPU Cycle Counter
	3.2 Timer Counter
	3.3 Flashc
	3.3.1 General Purpose Fuse Register Low Address
	3.3.2 PAGEN Semantic Field for Program GP Fuse Byte

	3.4 USB
	3.5 Real Time Counter (RTC)

	4 Tools
	4.1 AVR32Studio and GNU Toolchain 2.0 and later
	4.1.1 UC3A Part Name
	4.1.2 Header Files Organization
	4.1.3 Project Migration from AVR32 GNU Toolchain 1.y.z to AVR32 GNU Toolchain 2.0 or later
	4.1.4 Project Migration from UC3Ax512ES Target (Rev E) to UC3Ax512 Target (Rev H or later) in Toolchain 2.x

	4.2 AVR32 UC3 Software Framework
	4.2.1 Overview
	4.2.2 Version 1.1.1-AT32UC3A
	4.2.3 Version 1.2.zES-AT32UC3A
	4.2.4 Version 1.3.z-AT32UC3A

	4.3 USB DFU Bootloader

	5 Suggested reading
	5.1 Device datasheet
	5.2 AVR32 Software Framework

