B
AtmeL APPLICATION NOTE

CryptoAuthLib

Driver Support for Atmel CryptoAuthentication Devices

Introduction

The Atmel® CryptoAuthLib is a software library incorporated in firmware and
drivers designed to work with Atmel CryptoAuthentication™ devices such as the
Atmel ATECC508A and ATSHA204A CryptoAuth devices. A few of its key
attributes include:

e Ease of Use — A Basic API serves the needs of most applications

o Powerful — For sophisticated applications and developers, the full power of the
device is available through a core API.

e Portable — Runs on small processors and desktop systems alike.

o Extensible — Is architected to easily support new MCU platforms or protocols.

o X.509 Certificate Support — Has an API for storing, retrieving, and
manipulating X.509 certificates.

e TLS Integration APIs

CryptoAuthLib is a key component of any application or device driver that requires
crypto services from Atmel CryptoAuthentication devices. It is written in C and can
be executed on hosts as varied as an Atmel SAMD21 ARM® MO+ Cortex, Windows
PC, or embedded Linux platform.

This document discusses CryptoAuthLib, how to get started, how to incorporate it
into an application, general design and use patterns, and the integration details
required if CryptoAuthLib is to be ported into a hardware platform not currently
supported by CryptoAuthLib.

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

Atmel | sHART

Table of Contents

1 CryptOAULNLID OVEIVIBW ... e et e e e e e enaee s 3
O R 8 T =T 1] o= 1 (= PSP PR OTUPPTPRRN 3

O R (0] 1=To | = U1 o] o I AN o d PR PP O POTPPPRPRN 3

1.3 Flexible and OptiMIzZEd.........ooi oo e e e e e e e e e e e e e e st b e e e eeeeessnstbaaeaaeeesanees 3

1.4 APIDOCUMENES ...coiiiiiiiiieiei ettt ettt ettt ettt ettt ettt ettt ettt te e ettt ettt eeee e et eeeeeeeeeeeeeeeeenneenennnnnes 3

2 GeNEral ArCRITECTUIE .o 5
3 CryptoAuthLib “Hello World™ ... 6
3.1 CryptOAULNLID APT LEVEISoeiiiiiiei ittt e e e e et e e e e e e s et e e e e e e e s eeaaarreeaaeeaan 7
T 0Nt R = -] (o = SRR 7

N B o] (=3 L . O PP P PP UPPP TP 7

I R T = L Bl O =Y 1) o= (= AN = ISP TRPPR 7

3BLLi4 PRI = TLS AP ettt e e e e ettt e e e e e e bbbt e e e e e e s e bbb e e e e e e e rae e s 7

T T O 4/) (o I U 1111 S AN PSPPI 8

3.1.6 Hardware Abstraction Layer (HAL) APouiii oottt e e e snteeeeenes 8

3.2 CryptoAuthLib Naming CONVENLIONSccoiiiiiiiiiiiie it eieie et e et e ettt e e st e e e st eeesntee e e enneeeesnnneeeas 8

3.3 CryptoAULhLID Dir€CtOrY SITUCTUIEceiiitiie ettt e et ettt et e ettt e e st e e e st e e e e anteeeesnneeaesnnneeean 9

3.4 AP DOCUIMENESetiiiiiiiiiietetteieeeeeeeeeeseeeeesesee e et e et e e et e st st e e s e ettt st st st st st 55 e st s e et s e 52 e et e s 555 st st s e st s e st st s et et e s e s e nnnnnnnnee 9

3.5 Placing CryptoAULNLID IN YOUF PIOJECTciiiiiiiiiiieie ettt 9

3.6 Compiling CryptoAuth Hello World with Atmel StUAIOvveiiiiiiiiee e 10
3.6.1 Set Include Path to CryptOAUtNLID.......cccuuiiiiiee e 10

3.6.2 Choosing the Appropriate CryptoAUtNLID HALooiiiiiiiiiieie e 11

3.6.3 Defining Compiler SYMDOISooiiiiiiii e 12

4 CryptoAUthLib ODbJECt MOAEluuniieeeieeece e 13
A N W OF AN B 11V o] PRSP EPRRRE 14

R N 07 A) - ol PP PSP PUPPPPRPPRNt 14
T N 1 O | 7= ol =103 (o FO T PP PP T PP OPPPPPPPPN 16

4.4 How the HAL iS LINKEd t0 ATCAIFACE.uiiiiiiiiiiiieie ettt e e et e e e e e e e e aaees 17

A5 ATCACOMIMANG ...ttt et e et e ettt e e e e s e e a e b et e e e e e e e aaa bbbttt eee e e s e snbbbeeeeeeeaannbbeeeeaaeaaanntes 17

5 Porting Guide for CryptoAUthLID ..o, 18
5.1 Writing Your Own Hardware Abstraction Layer (HAL)..........eviii i 18

L T2 o Y I L SRS 19
B.2.1 IPC HAL APl ettt 19

B5.2.2 SWIHAL AP 20

5.2.3 UART HAL APl ..o 20

5.24 KITCDC USBi.....o oo, 20

5.25 KITHIDUSB ..., 20

I G I o VY I (o] Gl 1 41~ £ SR SRRR P 21

5.2.7 General HAL Development APPrOACKHciiiiiiiiiiieiiiiie ettt 21

5.3 Considerations When Writing @ HAL IMpPIementation.............cooiiiiiiiiee e 22
LR 0 A = W TS [(=] o 7= Lol = TSP PRRR P 22

B 3 2 U AR T S 22

LR I B o 11 0 LoV o SO PRRR P 22

5.3.4 Adding a Completely New Type of Physical Interfacecccccceeeivciiiieeii e 23

6 Updating an Application With New CryptoAuthLib Releases...........ccccccceiiinneen. 24
T REVISION HISTOTY .o 24

2 CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] Atmel

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

1

11

1.2

1.3

1.4

CryptoAuthLib Overview
CryptoAuthLib is divided into several API categories covering various features of crypto authentication
application needs. The primary APIs are:

e Basic API — Best for ease of use.

e Core API — Best for use of any device feature, power developer.

e PKI X.509 Certificates — PKI applications which store and retrieve X.509 certificates.

e PKITLS — Secure communication key agreement protocols.

e Crypto Utilities — General software hash implementations.

e HAL — Hardware abstraction layer integrates with physical interfaces.

Additional details regarding these APlIs are discussed in Section 3.1, “CryptoAuthLib API Levels”.

X.509 Certificates

A critical element of most applications using an ATECC CryptoAuthentication device is the ability to store and
retrieve PKI X.509 certificates from the device. CryptoAuthLib incorporates powerful certificate management
features saving the developer many hours of development time writing certificate management code for a
specific driver.

TLS Integration API

An increasingly common need and application of the ATECC508A is to help create secure communication
channels. Using the hardware abstraction API of OpenSSL, CryptoAuthLib supports the APIs needed to
integrate TLS with the ATECC508A and future ECDH-capable CryptoAuth devices.

Flexible and Optimized

CryptoAuthLib is organized so the developer may easily incorporate or exclude different types of functionality
from the driver or application. For example, the TLS implementation is not required if not creating a secure
channel with OpenSSL and TLS. If the authentication scheme doesn’t involve certificates, the certificate support
portion of the library does not need to be included.

API Documents

The CryptoAuthLib APl documentation is available as a navigable linked HTML and is contained in the
docs/html directory of the CryptoAuthLib distribution (launch index.html with a web browser).

Atmel CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 3

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

4

Figure 1-1. CryptoAuthLib Launch Index.html

CryptoAuthLib

Atmel CryptoAuthentication Library
Related Pages ‘ Modules I Data Structures Files |

¥ CryptoAuthLib « multiple environments including bare-metal, Windows, and Linux OS

« multiple chip communication protocols (I2C, SPI, UART, and SWI)

app directory - Purpose
License

basic directory - Purpose
crypto directory - Purpose

AppNotes,
hal directory - Purpose documents
» Modules
» Data Structures
: Code
> Files
Complexity Simple
Portable
A\
Most involved
Hardware
Targets

[Q" Search
All platform dependencies are contained within the HAL (hardware abstraction layer).
= = [=
UseCase#1 | | UseCase#2 |...| UseCase#N-1| | UseCase#N |

|

=

MCU XPro
SAM, AVR

Cryp

toAuth

SHA204A, ECCx08A, AES132

CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE]

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

MPU Ultra
"A" class

Atmel

2 General Architecture

Figure 2-1. General Architecture

AppNotes, I
documents Use Case #1 Use Case #2 |[...| Use Case #N-1 Use Case #N

... / |

Code Application Configuration Application Application
Complexity Simple I

I

I

3rd party crypto |
(openssl, etc) |
I

I

I

CryptoAuthLib Core ("Datasheet Commands", primitives, helpers) API

Portable

Atmel ASF Driver Atmel START Non-Atmel Driver

-

Hardware
Targets ’
MCU XPro CryptoAuth MPU Ulira
SAM, AVR SHA204A, ECCx08A, AES132 "A" class
"M" class 0OS (Linux)
Bare metal
Atmel CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 5

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

3 CryptoAuthLib “Hello World”

This “hello world” example demonstrates how easy it is to perform an operation with a CryptoAuthentication
device. In this case, generate a random number using the ATECC508A hardware random number generator
using the CryptoAuthLib Basic API. This code is excerpted from an Atmel Studio application starting with an “LED
Toggle” example for the Atmel SAM D21 and adding some CryptoAuthLib function calls to get a random number.

Hello World Example

#include <asf.h>
#include "cryptoauthlib.h"

int main(void)
{
uint8_t random_number([32];

system_init();

/*Configure system tick to generate periodic interrupts */
SysTick_Config(system_gclk_gen_get_hz (GCLK_GENERATOR_9));

config led();

// initialize CryptoAuthLib for an ECC default I2C interface
atcab_init(&cfg_ateccx@8a_i2c_default);

atcab_random(&random_number); // get a random number from the chip
// use random for challenge and authentication..

while (true) {
// your application code

}

Step 1 To start, include the cryptoauthlib.h header file.

Step 2 Call atcab_init () with a pointer for a standard default configuration for an ATECC508A 1°C
interface.

Step 3 Call atcab_random() passing a pointer to some space to receive the 32 byte random number.

This is a trivial example which demonstrates that with two basic function calls, it is easy to start exercising the
CryptoAuthentication device and be on the way to building full-fledged authentication enabled applications.

n atcab_init()needs only to be called once in the life of the application if the application will only be
communicating to one CryptoAuthentication device. There are a few other things shown later which
the compiler will need in order to build it, but this is the essence of jumping into CryptoAuthLib.

6 CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] Atmel

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

3.1

3.11

3.1.2

3.1.3

3.14

CryptoAuthLib API Levels

The CryptoAuthLib can be accessed at four levels:

e Basic APl — Convenient, simple access to CryptoAuthentication devices.
e Core API — Powerful CryptoAuthentication Datasheet Command Primitives.
e PKI API - Certificates, Crypto utilities, and TLS communication support.

e Hardware Abstraction Layer (HAL) — Communicate to a device through a HAL hiding the physical details
from the code.

Basic API

The Basic API is the easiest way to get started and is often the most convenient way to use the
CryptoAuthentication devices for most applications whether a novice or expert.

Basic APl methods manage device states such as wake, idle, and sleep to avoid built-in watchdogs, as well as
account for execution times of the device. In short, some of the lower-level details working with the device are
handled with the Basic API leaving the developer to focus on what the application is suppose to do.

Basic APl methods tend to combine a sequence of lower level commands in order to accomplish a particular
transaction type with the CryptoAuthentication device.

Core API

Using the Core API datasheet command primitives requires much more knowledge about how the
CryptoAuthentication device works and requires that other device states are managed such as wake, idle, and
sleep. If the Basic API is used, those details are managed automatically; therefore it's recommended that the
Basic APl is used until device familiarity is gained or additional functionality is required from the device that isn’t
in the basic API methods.

The datasheet command primitives expose the full power of the Atmel CryptoAuthentication devices for those

occasions when needed. With CryptoAuthLib, the Basic API and/or the datasheet command primitives are both
in the same application.

PKI - Certificate API

The CryptoAuthLib Certificate API provides the mechanisms needed to store X.509 certificates in an ATECC
device, as well as read and reconstruct the certificate in memory.

In handling certificates, a certificate can be thought of as a two-part entity.
1. The first part is the “boiler-plate”, the data that never changes regardless of the certificate specifics. As the
name suggests, the boiler-plate is effectively a template.
2. The second part is the dynamic data that changes from device to device. Dynamic data is used to drop into
the certificate to make it a valid X.509 certificate.
The Certificate API helps store the dynamic data of a certificate into the ATECC device. When the full X.509

representation is needed, the Crypto API provides function calls that can be used to reconstruct the full X.509
certificate using the template and the data read from the ATECC device.

PKI - TLS API

The TLS API provides a set of methods to implement the OpenSSL callbacks required to integrate an
ATECCS508A or future ECDH capable devices with TLS. There is a separate Application Note discussing the
details of the TLS API integration with OpenSSL. The TLS API provides the mechanism needed to create TLS
session keys using the ECDH protocol and services from the Atmel CryptoAuthentication device.

Atmel CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 7

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

3.1.5 Crypto Utilities API

The Crypto Utilities API provides various hash algorithm support on the host, in software such as SHA1 and
SHA-256. The Basic and Core APIs provide support for SHA-256 via the CryptoAuthentication devices which
support the command. The Crypto Utilities API is for application support of hosts which may not have access to a
CryptoAuthentication device or requires support such as SHAL not supported in the hardware.

3.1.6 Hardware Abstraction Layer (HAL) API

The HAL provides an extremely powerful way to separate the concerns of manipulating hardware from the
CryptoAuthentication commands and higher level application use of those commands to perform authentication
duties.

The HAL provides an interface to the CryptoAuthentication device using whatever communication mechanism it
chooses including wire-level protocols, compiler library support for the protocol, and manages multiple busses or
interface instances.

If porting CryptoAuthLib to a platform not currently supported by Atmel, it is primarily a matter of implementing the
HAL API for the specific target platform. The remaining CryptoAuthLib is written to be very portable among
various compilers and architectures.

3.2 CryptoAuthLib Naming Conventions
Methods include:

e Core Datasheet API: Start with the prefix “atca_” letters standing for “Atmel CryptoAuthentication”. This
separates the C namespace in a way unlikely to conflict with functions from all the other subsystems
typically found in an embedded applications

e Basic API: Start with “atcab_”. Anytime a method prefixed with atcab_, it came from the Basic API.

e Helpers: These methods fall into several categories. The main ones include:

— Crypto: Software implementations of various crypto algorithms such as SHA1 and SHA256.

Crypto methods are prefixed with “atcac_”.

— TLS (Transport Layer Security) Communication Protocols: TLS methods are prefixed with
“atcatls_".

— Cert: Functions related to certificate manipulations in memory and to and from the ATECC devices.
Cert functions are prefixed with “atcacert_”

— Host: Functions related to performing host-side parallel computations in order to compare with
values received from the CryptoAuthentication devices. Host functions are prefixed with “atcah_”

Table 3-1. CryptoAuthLib Naming Conventions
ot [proi |
Core Datasheet API atca_
Basic API atcab_
Helpers
Crypto atcac_
TLS atcatls_
Cert atcacert_
Host atcah_
8 CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] Atmel

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

3.3 CryptoAuthLib Directory Structure

The directory structure of CryptoAuthLib intuitively follows the basic design library as illustrated below.

Figure 3-1. CryptoAuthLib Directory Structure

L— cryptoauthlib
— app
—— docs
|: cryptoauthlib-uml
html
—— 1ib
atcacert
—— basic
—— crypto
—— hal
—— host
—— tls
—— test

|: atcacert
tls

3.4 APl Documents
The CryptoAuthLib API documentation can be accessed by going to cryptoauthlib/docs/html/index.html.

3.5 Placing CryptoAuthLib In Your Project

The CryptoAuthLib source tree can be placed just about anywhere in the project source tree as long as the
compiler is notified on how to include files required by it. (See Section 3.6, “Compiling CryptoAuth Hello World
with Atmel Studio”). However, for Atmel Studio projects, it is commonly included as a subdirectory under the ./src
folder.

Figure 3-2. CryptoAuthLib Source Tree

L—src
— ASF
common
common2
samo
thirdparty
—— config
—— cryptoauthlib
app
docs
1lib
test

Atmel CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 9

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

3.6

3.6.1

10

Compiling CryptoAuth Hello World with Atmel Studio

Of course there’s more to writing any hello-world application than tossing in a few lines of code. The compiler
must be notified on how to build the application, such as which files to include and exclude and which symbols to
define that control the behavior of the library.

This section discusses how to setup Atmel Studio to compile CryptoAuthLib. The same principles apply to other
compilers and platforms as well.

Set Include Path to CryptoAuthLib
Set the include path to the CryptoAuthLib directory: src/cryptoauthlib/1ib

Do this by going to the Project Properties > select Toolchain > select src/cryptoauthlib/lib in the directories
dialog list as highlighted in the screen shot below and add to include this path.

Most code and headers for the library can be found under the library directory.

Figure 3-3. CryptoAuthLib Path Selection

Build
Configuration: lActive (Debug) 'l Platform: lActive (ARM) -
Build Events
Toolchain Configuration Manager...
Device =
4 [Z] ARM/GNU Common | ARM/GNU C Compiler # Directories
Tool “# General
g’ i Include Device Support Header Path (-
Advanay _ “# OutputFiles _ O pp D
4 |7 ARM/GNU C Compiler
“# General Include Paths (-I)
=g Preprocessor ../src/ASF/sam0/drivers/usb/usb_sam_d_r
= S;:rmbols_ ../src/ASF/sam0/drivers/ush/stack_interface
" Directories fsrcfASF/sam0/drivers/sercom
=& Optimization ../src/ASF/samO/drivers/sercom/i2c
= Debugging ./src/ASFfsam0/drivers/sercom/i2c/i2c_sam0
_JW_armngs /src/ASF/common2/services/delay
i “# Miscellaneous /src/ASF/common2/services/delay/sam0
4 [Z] ARM/GNU Linker /src/cryptoauthlib
“# General ../src/cryptoauthlib/lib
“ Libraries
CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] Atmel

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

3.6.2 Choosing the Appropriate CryptoAuthLib HAL
Since all HAL implementations come with CryptoAuthLib, the IDE (Atmel Studio, for example) needs to be
notified to include certain HAL files and exclude others.
For example, if using I°C with an ASF application on a SAM D21, there’s a CryptoAuthLib HAL implementation for
that combination. Those files must be selected and all other HAL implementations that do not apply should be
excluded.
Figure 3-4. HAL Implementation Examples
- crypto
4 7 hal
¢] atca_hal.c
n] atca_hal.h
<] hal_samd21_i2¢c_asf.c
a] hal_samd21_i2c_asfh
<] hal_samd21_timer_asf.c
(3 host
3 tis
<l atca cfas.c
This example shows selecting the HAL for SAM D21 and ASF. The files selected are:
atca_hal.c
atca_hal.h
These are the two files that define the HAL interface for any implementation and are required regardless of which
HAL chosen. Also shown selected are:
hal_samd21_i2c_asf.c
hal_samd21_i2c_asf.h
hal_samd21_timer_asf.c
These files implement the HAL API using the ASF I°C API for SAM D21 (and SAM R21).
Atmel CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 11

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

3.6.3

12

Defining Compiler Symbols

The CryptoAuthLib is designed to be a very flexible, but easy system to use. Part of the flexibility of
CryptoAuthLib is the support for multiple types of hardware interfaces such as 1°C, Single-Wire, and UART
interfaces. In order for the CryptoAuthLib code to know what interface type to build, one or more interface
symbols must be defined.

In the example below, two compiler symbols are added to an Atmel Studio project. To add two symbols, use
Project Properties > select Toolchain > then select the two symbols from the Defined symbols (-D) list.

ATCA_HAL_I2C
ATCAPRINTF

ATCA_HAL_I2C allows the compiler to pull in a HAL implementation for I°C. Other choices include:

e ATCA_HAL_SWI Single-Wire Interface; typically bit-banged.
e ATCA_HAL_UART Used with either Kit Protocol or using the UART to encode/decode Atmel
Single-Wire Interfaces.

Figure 3-5.
Build
Configuration: lActive (Debug) vl Platform: [Active (ARM) -
Build Events
Toolchain® Configuration Manager...
Device _
4 [ARM/GNU Common ARM/GNU C Compiler = Symbals
Tool A General
= QutputFiles Defi .
Ad d o efined symbols (-D)
il 4 [ARM/GNU C Compiler
" General __SAMD21J18A__
" Preprocessor ARM_MATH_CMOPLUS=true
=g Symbols USB_DEVICE_LPM_SUPPORT
¥ Directories UDD_ENABLE
_fd’Optimization EXTINT_CALLBACK_MODE=true
=g Debugging [2C_MASTER_CALLBACK_MODE=false
& Warnings CYCLE_MODE
) “H Miscellaneous ATCA_HAL I2C
4 | ARM/GNU Linker ATCAPRINTF
" General
A Libraries Undefined symbols (-U)
_?Optimization
A Memory Settings
& Miscellaneous

ATCAPRINTF allows the compiler to build the CryptoAuthLib functions which use the sprintf family of C library
functions. For space optimization reasons, there may be an application for which is not wanted to be pulled into
the sprintf family. In that case, do not define ATCAPRINTF in the project; however, certain helper functions that
use printf will not be usable.

CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] Atmel

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

4 CryptoAuthLib Object Model

Although CryptoAuthLib is implemented in C, it follows an object-oriented design method in order to help make it
easier to develop and use. If sticking with the Basic API, the details in this section are not required.

There are three primary object types in CryptoAuthLib:

e ATCAlface
e ATCACommand
e ATCADevice

Figure 4-1. CryptoAuthLib Object Design — ATCADevice

ATCADeviceType

ATSHA204A

ATECC108A

ATECCS508A

ATAES132A

ATCACommand

CheckMac

Counter

DeriveKey

ECDH

GenDig

GenKey

HMAC

Info

ATCADevice

Lock

ATCACommand

MAC

ATCAIlFace

Nonce

Pause

PrivWrite

Random

Read

SHA

Sign

UpdateExtra

Verify

Write

execution time map

ATCAIFace

ATCAIFaceCFG

ATCAIFaceCFG

init

device type

send

12CSlaveAddress

receive

12CBusNum

sleep

12CBaud

wake

SWIBusNum

idle

UARTBaud

void *hal_data

UARTStopBits

UARTDataBits

UARTParity

These objects form the Core API of CryptoAuthLib. The Basic API uses these objects to implement higher level
functions in a simpler way so the Basic APl in that sense is a client of the Core API and these objects.

Atmel CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 13

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

42 ATCADevice

ATCADevice is a composite of ATCAlface and ATCACommand instances. There is one instance of an
ATCADevice per physical device expected to manage the system.

In the case of the Basic API, initializing the Basic API creates an ATCADevice behind the scenes which is used
for all Basic API operations. This simplifies access to the CryptoAuth device yet maintains the full power of the
object model with no redundant implementations between Basic and Core APIs.

4.3 ATCAlface

ATCAlface defines an API for a logical interface representing a channel to communicate with the physical
hardware, a CryptoAuthentication device. Its purpose is to hook associated HAL API methods so that all the
upper layers of CryptoAuthLib do not need to be concerned with the physical level details of communicating to
the device. Whether the device is a single-wire device, I°C, UART, or some other physical level of a transport
mechanism, the Core and Basic API levels do not need to know the details.

This allows applications to easily be ported to different CryptoAuthentication physical interfaces including 1°C,
Single-Wire Interface, and Kit protocol without changing the application, only the configuration of the interface to
communicate to the physical device.

An ATCAlface instance has a few basic methods which have analogs in the HAL implementation for the physical
layer.

Besides the constructor and destructor, an ATCAIface object provides the following methods to its clients:

// IFace methods

ATCA_STATUS atinit(ATCAIface caiface);

ATCA_STATUS atsend(ATCAIface caiface, uint8_ t *txdata, int txlength);
ATCA_STATUS atreceive(ATCAIface caiface, uint8_t *rxdata, uintl6_t *rxlength);
ATCA_STATUS atwake(ATCAIface caiface);

ATCA_STATUS atidle(ATCAIface caiface);

ATCA_STATUS atsleep(ATCAIface caiface);

// accessors
ATCAIfaceCfg * atgetifacecfg(ATCAIface caiface);
void* atgetifacehaldat(ATCAIface caiface);

ATCAlIface provides a way to initialize the hardware interface, send wake, idle and sleep commands, and send
and receive byte streams to the actual CryptoAuthentication device.

Each of these methods is an entry point associated with an equivalent HAL method to implement the intent of the
function at the physical layer.

The ATCAlIface is a key concept in CryptoAuthLib and provides a major mechanism used to port the library to
many different types of physical interfaces, as well as framework APIs.

14 CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] Atmel

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

Figure 4-2.

ATCAIFace

ATCAIFaceCFG

—

init

send

receive

sleep

wake

idle

void *hal_data

ATCAIFaceCFG

12CSlaveAddress

12CBusNum

12CBaud

SWIBusNum

ATCAHal_I2C

CryptoAuthLib Object Design — ATCAIFace

} Active

| hal_samd21_i2c_asf.c |
j

init

send

receive

sleep

wake

idle

void *hal_data

ATCAHal_SWiI

ATCAHal_UART

| hal_sam4s_i2c_asf.c |

[hal_samd21_swi_gpio.c |

| hal_samd21_swi_uart.c |

[hal_samd21_kit_uart.c |

| hal_START.c |

| hal_linux.c |

| hal_dsPIC33FJ.c |

From the above diagram, there could be one of many different physical HAL implementations that are compatible
with an ATCAlIface object. That is the purpose of the HAL; to implement the methods in ATCAIlface in a way that
the client of the ATAlface object is unaware of the physical implementation used to communicate to the device.

Since ATCAlface is a logical interface rather than a physical interface, it could be imagined that a HAL
implementation using a wireless technology to communicate with a remote CryptoAuth device as though it
existed locally through a hardware interface. More practically speaking, the logical interface doesn’t need to
change whether the HAL implements a bit-banged or UART-based single wire protocol.

Atmel

CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 15

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

4.3.1 ATCAIlfaceCfg

A related object is the ATCAIlfaceCfg object which describes the parameters of a logical interface. This object
instance is passed to the ATCAIlface constructor method. The ATCAlIfaceCfg is a union of several different types
of interfaces; however, only one is considered active per ATCAIlfaceCfg instance. Each interface type is a
structure within the union.

Each type of interface is defined in logical terms, not physical. For example, an I°C bus number scheme is
logically defined with an ATCAIfaceCfg object. It's the HAL implementation’s job to map the logical bus number to
the hardware it is targeting. Logical I°C bus number 1 could mean a SERCOM1 on SAM D21, but could mean
something different to a different HAL implementation.

Generally, the ATCAIfaceCfg parameters correspond to specific development boards in a way which implies
some tacit knowledge of how the HAL works. For this reason, the ATCAIFaceCFG details often change based on
the target runtime environment.

Some default configurations can be found in the core API directory, atca_cfgs.c and atca_cfgs.h.

Default I°C Configuration for Communicating to a CryptoAuth Xplained Pro board Using a SAM D21 Xplained Pro
Example

ATCAIfaceCfg cfg_ateccx@8a_i2c_default = {
.iface_type = ATCA_I2C_IFACE,
.devtype = ATECC508A,
.atcai2c.slave_address = 0xCO,
.atcai2c.bus = 2,

.atcai2c.baud = 400000,
//.atcai2c.baud = 100000,
.wake_delay = 800,
.rx_retries = 20

}s

These attributes are all valid definitions regardless of whether the I°C bus is implemented on a SAM D21 or even
a non-Atmel MCU. It can be thought of as “I°C is I°C regardless of what micro is implementing it.” Therefore,
every I°C device has an address, a baud rate, etc.

As a result, it defines various logical attributes of the I°C interface including the actual interface type, the device
type expected on the bus, the logical bus number (2), and the address of the device. The HAL implementation
maps these logical parameters to their physical implementation, so the HAL could map logical bus 2 to any I’Cc
module it knows about. In the case of Atmel SERCOM based devices, logical bus number maps to the SERCOM
number of the MCU.

16 CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] Atmel

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

4.4 How the HAL is Linked to ATCAIFace
This section covers an example showing how the HAL methods are initialized in the interface instance without
having the HAL implementation bleed into the top layers. ATCAHAL is used temporality as an intermediary object
to facilitate the connection, which at that point can be deleted.
Figure 4-3. CryptoAuthLib Object Design — HAL and ATCAIlFace
ATCAIFace
ATCAIFaceCFG
init [hal_iface_init(ifacetype, ATCAHAL *)]
send
receive
sleep
wake
idle struct_ ATCHAL
void *hal_data init
send
receive
sleep
wake
idle
void *hal_data
hal_samd?21_i2c_asf.c
myinit
mysend
myreceive
mysleep
mywake
myidle
i2c_hal_asf *
i2c_hal_asf
i2c_master_module ASF SERCOM1
i2c_packet
45 ATCACommand
The ATCACommand is an object that builds commands as an array of bytes to send to the CryptoAuthentication
device. ATCACommand does not send the command, it only builds the command. As part of that process, it
accepts a packet, ATCAPacket, which contains the parameters for the command. From that information, it
determines the expected length of the response packet and computes the CRC of the command to send.
Atmel CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 17

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

Porting Guide for CryptoAuthLib

This section covers the design of CryptoAuthLib which allows it to be adapted to numerous architectures and
platforms. The current CryptoAuthLib can be built using:

5.1

18

AtmelStudio 6 GCC / ARM / ASF 12C SERCOM HAL
AtmelStudio 7 GCC / ARM / START 12C HAL
Microsoft Visual Studio / Windows HID HAL

Linux GCC / CDC-Kit Protocol HAL

This list will continue growing over time, so check the Atmel website often for updates to CryptoAuthLib.

When it is required to write a driver for a platform for which there is not yet a HAL implementation, it is generally
very straightforward to write a new HAL implementation; implement a handful of methods to tie the device
communication hardware (ie: IZC) to CryptoAuthLib. CryptoAuthLib is unaware of the lower level implementation
details. Those details are up to the developer to decide as the HAL writer.

Writing Your Own Hardware Abstraction Layer (HAL)

CryptoAuthLib defines a hardware abstraction layer (HAL) API. The only thing required to adapt CryptoAuthLib to
a new platform is to implement the HAL API targeting the hardware. Architecture specific code is isolated to the
HAL implementation and a successful HAL implementation will not allow any architecture specific details to
“bleed” into the upper layers.

HAL implementations belong in files in the ‘hal’ folder of CryptoAuthLib lib directory. There are many more
./hal/ files published with CryptoAuthLib than will ever be used in a single application because several
architectures, frameworks, and protocols are represented in different HAL implementations and not all of them
will apply.

3 crypto
4 | hal

c] atca_hal.c
n] atca_hal.h
c] hal_samd21_i2c_asf.c
n] hal_samd21_i2c_asf.h
c] hal_samd21_timer_asf.c

[host

The file naming convention for a HAL implementation file is:

hal_[processor]_i[nterface]_[framework]

For example, the HAL for a SAMD21 I°C using the ASF is:

hal_samd21_i2c_asf.c
hal_samd21_i2c_asf.h

For HAL timer implementation of the same example:

hal_samd21_timer_asf.c

These files are then included in the application’s Makefile or IDE project file.

CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] Atmel

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

http://www.atmel.com/

52 HAL API
The API is quite simple. In general, for each major type of interface such as I°C, Single-Wire, and UART, there is
a set of HAL methods. Only the methods required to implement the particular physical interface are required. In
other words, it is not required to implement the physical interfaces on the platform chosen if that interface type will
not be used.
Each interface type has the following method types:
e Init — Called by CryptoAuthLib when a device interface is requested.
e Postinit — Called as the last step in the init to give HAL implementer an opportunity to perform any
house-keeping required after the init is complete.
e Send — Called whenever a stream of bytes needs to be sent to a CryptoAuth device.
e Receive — Called whenever CryptoAuthLib is expected to receive bytes from the CryptoAuth device.
e Wake — Called when the device is about to be accessed and must be in the wake state.
e Idle — Called when the intermediate result in the SRAM of the CryptoAuth device (TempKey) is required
and the watchdog timer of the device is likely to expire (which would erase TempKey).
o Sleep - Is for low-power applications which want to put the CryptoAuth device into sleep state.
o Release — Called when the interface usage is complete.
Each interface type has a variation on these names related to the interface name. This allows multiple types of
interfaces to be used simultaneously with CryptoAuthLib. For example, an application that is a bridge between
UART and Kit Protocol to an I°C device can be implemented.
The only other aspect of HAL besides the device interface is the timer interface used for execution delays during
CryptoAuthentication device operations.
A CryptoAuthLib ATCAIface object has exact corresponding methods that map to a specific HAL API but in the
process abstracts the physical level interface from the rest of CryptoAuthLib, so it doesn’t need to be concerned
with the physical details of communicating with the device.
5.2.1 I°C HAL API
I°C HAL declarations:
#ifdef ATCA_HAL_I2C
ATCA_STATUS hal_i2c_init(void *hal, ATCAIfaceCfg *cfg);
ATCA_STATUS hal_i2c_post_init(ATCAIface iface);
ATCA_STATUS hal_i2c_send(ATCAIface iface, uint8_ t *txdata, int txlength);
ATCA_STATUS hal_i2c_receive(ATCAIface iface, uint8 t *rxdata, uintl6_t *rxlength);
ATCA_STATUS hal_i2c_wake(ATCAIface iface);
ATCA_STATUS hal_i2c_idle(ATCAIface iface);
ATCA_STATUS hal_i2c_sleep(ATCAIface iface);
ATCA_STATUS hal_i2c_release(void *hal_data);
ATCA_STATUS hal_i2c_discover_buses(int i2c_buses[], int max_buses);
ATCA_STATUS hal_i2c_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found);
#endif
Atmel CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 19

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

5.2.2 SWIHAL API

Single-Wire Interface APl HAL declarations:

5.2.3

524

5.25

20

#ifdef ATCA_HAL_SWI

ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ftendif

UART HAL API

hal swi_init(void *hal, ATCAIfaceCfg *cfg);

hal_swi_post_init(ATCAIface iface);

hal swi_send(vATCAIface iface,, uint8_ t *txdata, int txlength);

hal swi_receive(ATCAIface iface, uint8 t *rxdata, uintl6_t *rxlength);
hal_swi_wake(ATCAIface iface);

hal _swi_idle(ATCAIface iface);

hal swi_sleep(ATCAIface iface);

hal swi_release(void *hal_data);

hal_swi_discover_buses(int swi_buses[], int max_buses);
hal_swi_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found);

#ifdef ATCA_HAL_UART

ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ftendif

KIT CDC USB
#ifdef ATCA

ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
#tendif

KIT HID USB
#ifdef ATCA_

ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
ATCA_STATUS
#tendif

CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE]

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

hal uart_init(void *hal, ATCAIfaceCfg *cfg);

hal uart_post_init(ATCAIface iface);

hal _uart_send(ATCAIface iface, uint8_t *txdata, int txlength);
hal_uart_receive(ATCAIface iface, uint8_t *rxdata, uintl6_t *rxlength);
hal_uart_wake(ATCAIface iface);

hal_uart_idle(ATCAIface iface);

hal uart_sleep(ATCAIface iface);

hal uart_release(ATCAIface iface);

hal_uart_discover_buses(int uart_buses[], int max_buses);
hal_uart_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found);

HAL_KIT_CDC

hal_kit_cdc_init(void *hal, ATCAIfaceCfg *cfg);
hal_kit_cdc_post_init(ATCAIface iface);

hal_kit_cdc_send(ATCAIface iface, uint8_ t *txdata, int txlength);
hal_kit_cdc_receive(ATCAIface iface, uint8_t *rxdata, uintl6_t *rxlength);
hal_kit_cdc_wake(ATCAIface iface);

hal_kit_cdc_idle(ATCAIface iface);

hal_kit_cdc_sleep(ATCAIface iface);

hal_kit_cdc_release(void *hal_data);

hal_kit_cdc_discover_buses(int i2c_buses[], int max_buses);
hal_kit_cdc_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found);

HAL_KIT_HID

hal_kit_hid_init(void *hal, ATCAIfaceCfg *cfg);

hal kit _hid_post_init(ATCAIface iface);

hal_kit_hid_send(ATCAIface iface, uint8_ t *txdata, int txlength);

hal _kit_hid_receive(ATCAIface iface, uint8_t *rxdata, uintl6_t *rxlength);
hal_kit_hid_wake(ATCAIface iface);

hal_kit_hid_idle(ATCAIface iface);

hal_kit_hid_sleep(ATCAIface iface);

hal_kit_hid_release(void *hal_data);

hal_kit_hid_discover_buses(int i2c_buses[], int max_buses);
hal_kit_hid_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found);

Atmel

5.2.6

5.2.7

HAL for Timers

CryptoAuthLib needs very simple timing support, primarily for execution delays while the CryptoAuth device is
performing an operation. These methods generally map easily to your platform’s delay timer library methods:
void atca_delay us(uint32_t delay);

void atca_delay_ 10us(uint32_t delay);
void atca_delay ms(uint32_t delay);

General HAL Development Approach

In creating a new HAL, the typical approach is to map each HAL API method to a library method supported by the
platform’s compiler and libraries. Most embedded systems have pre-built libraries for I°C, GPIO, and UART.
Moreover, the HAL must implement some level of interface management where it is envisioned there will be
multiple instances of a CryptoAuthentication device within the system.

Bus and device discovery implementations can relatively be complicated or simple depending upon the
developer’s needs. To get up and running quickly, it's often easiest to leave the discovery APIs stubbed out and
not used by the application until later in the application’s life-cycle as it requires it.

The main notion behind the discovery APIs is to hide the complexity of interrogating the MCU for identifiable
buses and the buses for devices that respond to the application. The result of a discovery is a list of
ATCAlfaceCfg objects that can be used to instantiate ATCADevice objects so it is easily addressed with the full
power of the CryptoAuthLib. The discovery API is primarily for dynamic hardware environments where
CryptoAuthDevices may come and go on the bus. If this use-case is unnecessary, leave the discovery API
stubbed out for another implementation as needed.

Atmel CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 21

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

5.3 Considerations When Writing a HAL Implementation

Every type of communication mechanism has various considerations based on the physical attributes of the
method.

5.3.1 Bus Interfaces

I°C, as an example, implements a bus and therefore can have multiple devices on each bus. There may be
multiple CryptoAuthentication devices on the same bus, each device having a different address. Alternativley,
there could be multiple busses, each with one or more CryptoAuthentication devices on them. The HAL
implementation must consider the architecture it wants to support.

CryptoAuthLib only knows about an abstract interface, ATCAIlface object. That interface is tied to a particular
HAL implementation. ATCAIlface maintains logical configuration information for a specific device on the bus. If
multiple devices are present on the same bus, the HAL must implement the notion of a local bus interface to
which there are multiple interfaces reference the same bus. This way, the HAL maintains the bus master while
the CryptoAuthLib maintains the notion of multiple instances of CryptoAuthentication devices.

n Please have a look at existing HAL implementations found the ../hal/ directory. For example,
hal _samd21_i2c_asf.c implements a bus master architecture where each ATCAIlface instance adds
a reference count to the bus master each time the hal_i2c_init() method is called when an
interface is instantiated. It also manages multiple busses.

53.2 UARTs

UART is a very flexible interface type. It can be used to drive a single-wire protocol or it can communicate typical
serial data of the developer’s own choosing to a remote device. An application level protocol can be layered over
a physical HAL interface type and leave it at the HAL level.

For example, various Atmel CryptoAuthentication kits such as the Atmel AT88CK101-xxx, AT88CK490, and
AT88CK590 kits use a serial communication protocol called Kit Protocol. There is an implementation of Kit
Protocol that uses UART HAL to communicate with these kits.

This allows CryptoAuthLib implementation to run with a CDC USB port talking to AT88CK101-xxx, for example,
on an Ubuntu Linux system.

Example the ./1ib/hal directory for files related to ‘kit’ and ‘cdc’.

The Kit Protocol with UART is one example of a UART protocol. Another is the Atmel Single-Wire protocol
implemented with a UART versus being bit-banged. Think of UART as a physical manifestation of a specific
serial protocol that needs to be implemented.

5.3.3 HID Devices

Similar to UART, it is possible to build HAL implementations that communicate via HID USB. Check out the
./1ib/hal directory for files related ‘hid’ for an example HAL implementation for Windows HID.

22 CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] Atmel

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

5.3.4 Adding a Completely New Type of Physical Interface
The current CryptoAuthLib supports the following interface configurations (ATCAlfaceCfg):
e I°C (most common)
Single-Wire UART (Atmel Single-Wire Protocol)

UART / CDC USB (Kit Protocol)
e HID

As mentioned, new serial protocols besides Kit can be added and still use the existing HAL implementations.

However, if there is a need for a completely new type of physical level interface, the process is straightforward.
A new embedded structure to the union of ATCAIlfaceCfg object (see atca_iface.h) that reflects the physical
interface would be needed.

Keep in mind the ATCAIFaceCFG is explicitly defined to be a “Logical” reflection of the interface type. For
example, in I°C there is a logical bus number. The HAL implementation can map that logical bus number to any
physical bus of his or her choosing. It so happens that logical bus number 0 maps to SERCOMO in a SAMD21
ASF implementation, and bus number 1 to SERCOM1, and so on. There is no rule that says this must be so.

B The configuration structure holds logical data about an interface, but the HAL is the one that maps that
to a physical manifestation of that logical device.

Atmel CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] 23

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

6 Updating an Application With New CryptoAuthLib Releases

In general, Atmel strive’s to keep the CryptoAuthLib API as stable as possible so that updating the application to
use a new release of CryptoAuthLib is simple and pain-free. Atmel build’s its own set of applications for
professional personalization services and other cases, so Atmel is sensitive to the need to keep the API stable as
possible.

In most cases, it's a simple matter of replacing the CryptoAuthLib code files in the project and recompiling
(assuming the CryptoAuthLib has not been modified directly.)

The atcab_version() method can be used to determine the current version of the library. The library is
intended to be used and released as a complete set of files; therefore, it is not advisable to modify the
CryptoAuthLib files or mix and match files from one revision to another. The atcab_version() string is a date of
the format yyyymmdd, so it is possible for the application to determine, based on the string, whether a library
implementation is up to date according to its requirements. Most developers statically link CryptoAuthLib with
their firmware, so compatibility is known at compile and test time.

From time to time, APIs may change, new features get added and bugs get fixed. The new library can be
incorporated into a project by replacing the files found in the cryptoauthlib directory of the project.

Once replaced and recompiled, insure the new CryptoAuthLib update works appropriately in the run-time
environment. The Unit test runners can be executed by adding the cryptoauthlib/test directory to the project
and rebuilding.

atca_unit_tests(ATECC508A)
atca_basic_tests(ATECC508A)
certdata_unit_tests()
certio_unit_tests()

If using a CryptoAuthentication device other than ATECC508A, substitute the appropriate device name in place
of the parameters above.

The cryptoauth-d21-host tester Atmel Studio solution can be reviewed for examples on how to kick off unit tests
and basic tests and choose to only run specific tests relevant to the application by “cherry picking” the specific
Unity tests found in the files: atca_basic_tests.c oratca_unit_tests.c.

7 Revision History

8984B 01/2016 Updated to reflect latest features and API changes. Removed SPI.
8984A 10/2015 Initial document release.
24 CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE] Atmel

Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016

CONNECTED

Atmel | Enabling Unlimited Possibilities® fIv]in]3-[o]

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com
© 2016 Atmel Corporation./ Rev.:Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, CryptoAuthentication™, and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product
names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL
WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any com mitment to update the information contained herein. Unless
specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atme| products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in conne ction with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products
are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor
intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
http://community.arm.com/community/arm-partner-directory/partner-atmel
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Introduction
	Table of Contents
	1 CryptoAuthLib Overview
	1.1 X.509 Certificates
	1.2 TLS Integration API
	1.3 Flexible and Optimized
	1.4 API Documents

	2 General Architecture
	3 CryptoAuthLib “Hello World”
	3.1 CryptoAuthLib API Levels
	3.1.1 Basic API
	3.1.2 Core API
	3.1.3 PKI – Certificate API
	3.1.4 PKI - TLS API
	3.1.5 Crypto Utilities API
	3.1.6 Hardware Abstraction Layer (HAL) API

	3.2 CryptoAuthLib Naming Conventions
	3.3 CryptoAuthLib Directory Structure
	3.4 API Documents
	3.5 Placing CryptoAuthLib In Your Project
	3.6 Compiling CryptoAuth Hello World with Atmel Studio
	3.6.1 Set Include Path to CryptoAuthLib
	3.6.2 Choosing the Appropriate CryptoAuthLib HAL
	3.6.3 Defining Compiler Symbols

	4 CryptoAuthLib Object Model
	4.2 ATCADevice
	4.3 ATCAIface
	4.3.1 ATCAIfaceCfg

	4.4 How the HAL is Linked to ATCAIFace
	4.5 ATCACommand

	5 Porting Guide for CryptoAuthLib
	5.1 Writing Your Own Hardware Abstraction Layer (HAL)
	5.2 HAL API
	5.2.1 I2C HAL API
	5.2.2 SWI HAL API
	5.2.3 UART HAL API
	5.2.4 KIT CDC USB
	5.2.5 KIT HID USB
	5.2.6 HAL for Timers
	5.2.7 General HAL Development Approach

	5.3 Considerations When Writing a HAL Implementation
	5.3.1 Bus Interfaces
	5.3.2 UARTs
	5.3.3 HID Devices
	5.3.4 Adding a Completely New Type of Physical Interface

	6 Updating an Application With New CryptoAuthLib Releases
	7 Revision History

