
ENT-AN1189

Application Note

PTP Clock Implementation Using the
Caracal Switch

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 2

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability
of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of
the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi
have been subject to limited testing and should not be used in conjunction with mission-critical equipment or
applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and
complete all performance and other testing of the products, alone and together with, or installed in, any end-products.
Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s
responsibility to independently determine suitability of any products and to test and verify the same. The information
provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights,
licenses, or any other IP rights, whether with regard to such information itself or anything described by such information.
Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any
changes to the information in this document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing
and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF
solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-
tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn
more at www.microsemi.com.

VPPD-02910

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2011–2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are registered
trademarks of Microsemi Corporation.
All other trademarks and service marks
are the property of their respective
owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 3

Revision History

The revision history describes the changes that were implemented in the document. The changes
are listed by revision, starting with the most current publication.

1.1 Revision 1.0
Revision 1.0 was the first publication of this document.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 4

Contents

Revision History .. 3
1.1 Revision 1.0 .. 3

2 Caracal PTP Hardware .. 7
2.1 ToD Counter and Delay Timer .. 7
2.2 Time Stamp Identifier .. 8
2.3 VCAP-II engine and PTP actions ... 9

3 Different PTP Clock Types .. 11

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 5

Figures

Figure 1 One-Second Timer Counter ... 7

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 6

Tables

Table 1 Delay Request-Response Mechanism with One-Step Master ... 11
Table 2 Delay Request-Response Mechanism with Two-Step Master .. 13
Table 3 One-Step End-to-End Transparent Clock with One-Step Master .. 15
Table 4 One-step End-to-End Transparent Clock with Two-Step Master .. 17
Table 5 Two-Step End-to-End Transparent Clock with One-Step Master .. 18
Table 6 Two-Step End-to-End Transparent Clock with Two-Step Master .. 20
Table 7 Peer Delay Mechanism with One-Step Responder ... 22
Table 8 Peer Delay Mechanism with Two-Step Responder ... 24
Table 9 One-Step Peer-to-Peer Transparent Clock with One-Step Master ... 26
Table 10 One-Step Peer-to-Peer Transparent Clock with Two-Step Master ... 27
Table 11 Two-Step Peer-to-Peer Transparent Clock with One-Step Master ... 28
Table 12 Two-Step Peer-to-Peer Transparent Clock with Two-Step Master ... 29

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 7

2 Caracal PTP Hardware

The Precision Time Protocol (PTP) is defined by IEEE 1588. The protocol and technology allows for
the synchronization of precise time of day and network timing through packet networks. The Caracal
Ethernet switch family from Microsemi Semiconductor provides the advanced PTP hardware engine.
Enabling customers to implement both one-step and two-step transparent clocks (end-to-end and
peer-to-peer) as well as cost-effective IEEE 1588 master and slave devices (ordinary clock).

2.1 ToD Counter and Delay Timer
The one-second timer counter as shown in the following illustration is the center of the Caracal local
clock.

Figure 1 One-Second Timer Counter

The one-second timer counter is a 28-bit counter running on a 250 MHz system clock (in steps of 4
ns). The time of day (ToD) information is comprised of a 32-bit second counter and a 28-bit
nanosecond counter. The nanosecond part of ToD is derived directly from the one-second timer
counter, the second part of ToD is obtained from a 32-bit second counter which increments on the
1PPS synchronization pulse generated by the one-second timer counter (or external 1PPS pulse).

The goal of PTP operation is for allowing a PTP slave clock device to calculate the time offset from
the master clock and correct it’s local ToD counter to synchronize it with the master clock device. A
one-time correction to the slave device’s ToD counter can be used for that purpose, once the time
offset has been calculated. If the slave clock device runs on a free running reference clock, it’s ToD
counter will drift away after the one-time correction. To solve this problem, the Caracal hardware
provides an internal clock adjustment method by using an adjustment counter. The adjustment
counter can be programmed to issue +/-1 correction to the one-second timer counter in a
programmable interval. The interval is determined by the load value of the adjustment counter,
which ranges from nanoseconds to one-second.

Each Caracal port module contains a hardware time stamping module in the MAC, this measures and
records the arrival and departure times for any PTP event frame. The time stamping is not done
using the ToD counter, it is done using a free-running delay timer. The delay timer is a 28-bit

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 8

nanosecond counter running on the 250 MHz system clock. All ports share the same delay timer.
The delay timer and the one-second timer run on the same system clock, their values are not equal
because the adjustment counter only corrects the one-second timer. There are two time domains in
the Caracal switch, the one-second timer domain and the delay timer domain. Only the one-second
timer is in sync with the master clock. The two timing domains are correlated using the PTP latch.
Software can trigger a PTP latch which enables the ToD counter value and the delay timer value to
be latched into specific registers at the same time. This makes it possible for software to translate
from the delay timer domain to the one-second timer domain (or ToD domain).

For example, when a PTP frame arrives, it is time stamped by the hardware time stamping module in
the MAC with the current value of the delay timer. The Rx_timestamp is stored in a time stamp FIFO
for software to read, the PTP frame itself is redirected or copied to the CPU. When the software
obtains the PTP frame and the associated Rx_timestamp from the FIFO it only knows the delay timer
value when the frame was time stamped. The software can perform a PTP latch to obtain the ToD
counter and the delay timer. There is a small time gap from when the frame is hardware time
stamped and when the software does the PTP latch. The software can still calculate the ToD counter
when the frame was hardware time stamped by applying the formula latched ToD counter –
(latched delay timer – Rx_timestamp).

2.2 Time Stamp Identifier
In the example above, a PTP frame is received and forwarded to the CPU, the hardware
Rx_timestamp is stored in a time stamp FIFO for the software to read. In another case, when the
software sends out a PTP frame in two-step mode it also expects the hardware time stamper to
store the Tx_timestamp in the FIFO. There must be a mechanism for the software to correlate a PTP
frame with the associated time stamp in the FIFO. This is done through the time stamp identifier
field in the internal frame header (IFH) and also in the time stamp FIFO.

An IFH is generated and inserted into the original frame by hardware for every frame received. It
provides additional information about the frame (for example, source port information) for software
to process the frame. When the CPU injects a frame into the switch an IFH is also required to inform
the switch on how to handle the frame.

A Time stamp identifier is a 6-bit field in the IFH which overloads the Differentiated Service Code
Point (DSCP) value. The time stamp identifiers can take values between 0 and 63. Values of 0
through 3 are pre-assigned to the CPU for injection of frames while values 4 through 62 are used by
the hardware. A value of 63 implies that all values 0-62 are in use.

When a PTP frame arrives a free time stamp identifier is assigned and inserted into the IFH by
hardware. The same time stamp identifier is also stored in the time stamp FIFO with the
Rx_timestamp. If the frame is destined for the CPU, the software can read the time stamp identifier
in the IFH to associate the frame with the Rx_timestamp in the FIFO. If the frame is hardware
forwarded to the egress, the IFH is also followed all the way to the egress. When the frame is
Tx_timestamped the time stamp identifier is extracted from the IFH and stored in the FIFO queue
together with the hardware calculated residence time. When the software reads the residence time
from the FIFO queue, it is able to correlate the residence time with the frame. For CPU injection of a
PTP frame the time stamp identifier is assigned by the software and inserted into the IFH. The
hardware Tx_timestamper obtains it from the IFH and stores the time stamp identifier together with
the Tx_timestamp in the same way, the software can then correlate Tx_timestamp to the correct
CPU injection frame.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 9

2.3 VCAP-II engine and PTP actions
VCAP-II is the second generation of the Microsemi Content-Aware Packet processor engine for wire-
speed packet inspection. It can be used for advanced VLAN and QoS classifications/manipulations, IP
source guarding, and security features for wireline and wireless applications. There are three stages
of VCAP-II matches implemented in Caracal: ingress stage 1 (IS1), ingress stage 2 (IS2), and egress
stage 0 (ES0). PTP frame identification with time stamping actions can be decided at IS2. PTP actions
are indicated by two bits (PTP_ENA[1:0]) in the action vectors.

Each frame will be subject to two IS2 lookups. There are numerous action fields within the action
vector indicating different actions such as: CPU copy (CPU_COPY_ENA in the action vector), redirect
to CPU (MASK_MODE and PORT_MASK in the action vector) and one-step/two-step time stamping
(PTP_ENA[1] and PTP_ENA[0]) are of particular interest for PTP implementation.

PTP_ENA[1:0] specifies whether one-step or two-step PTP time stamping must be done at egress for
a frame. The Tx time stamper generates a time stamp only if the frame has matched a VCAP-II IS2
entry with either PTP_ENA[1] or PTP_ENA[0] set.

If PTP_ENA[0] is set, the Tx time stamper will perform the following one-step PTP time stamping
process:

1. Obtain the delay timer value when the fist byte of the frame begins transmission.

2. Perform the calculation: residence time = current delay timer value – Rx_timestamp.

3. Read the correction field in the PTP frame’s header and add it with the residence time; then
write the result back into the frame’s correction field.

4. Make any necessary changes to the checksum if the PTP frame is over UDP, IPv4, or IPv6.
Update the FCS (this is actually done by the rewriter).

If PTP_ENA[1] is set, the Tx time stamper will perform the following two-step PTP time stamping
process:

1. Obtain the delay timer value when the first byte of the frame begins transmission.

2. Perform the calculation: residence time = current delay timer value - Rx_timestamp.

3. Store the residence time into the time stamp FIFO together with other information associated
with that frame (for example, the time stamp identifier obtained from the IFH and port number
frame is sent out).

Note: the term one-step or two-step PTP time stamping only specifies the behavior of the egress time stamp
module. It does not imply one-step time stamping only works for one-step PTP clocks and two-step time
stamping only works for two-step PTP clocks.

There are some exceptions to the PTP_ENA[1:0] actions as follows:

• When a PTP frame’s destination port is the CPU port, and two-step time stamping is enabled for
this PTP frame, the Rx_timestamp is stored in the FIFO queue instead of the residence time. This
is useful for software to obtain the arrival time for any PTP frame.

• When a PTP frame is inserted into the switch by software, there is no Rx_timestamp associated
with that PTP frame, thus the hardware calculated residence time will only be the current delay
timer value (Tx_timestamp). This is useful for a two-step device to get the departure time of a
PTP frame. For a one-step device, Rx_timestamp must be subtracted from the correction field
prior to the frame being injected. This will allow the residence time to be calculated correctly.
For example, when a one-step master sends out a Sync message it can do a PTP latch to obtain
the ToD and delay timer. The delay timer value can be regarded as the Rx_timestamp. The
software can put the ToD value into the original time stamp field of the Sync message and place

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 10

the Rx_timestamp into the correction field of that Sync message. When the Sync message
arrives at the egress port, the Tx_timestamp will be added to the correction field so the
correction field becomes Tx timestamp – Rx timestamp, to reflect the precise Sync message
departure time.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 11

3 Different PTP Clock Types

Caracal supports different PTP clocks with proper software—one-step/two-step ordinary clocks
(master and slave) and transparent clocks (end-to-end and peer-to peer). In this section reference
flowcharts for different PTP clocks are described one by one in detail. The reader should be aware of
the following nuances.

• There is more than one way to implement each PTP clock type. Only one solution is presented in
this section.

• Clock adjustment (both internally by programming the adjustment counter, or externally by
programming an external programmable clock) and PTP frame filtering algorithms are not
covered in this document.

Table 1 Delay Request-Response Mechanism with One-Step Master

Step Caracal as an Ordinary Clock (one-
step master)

 Caracal as an Ordinary Clock (slave)

1 Latch ToD counter and delay timer.

2 Prepare Sync message and send to
egress.
twoStepFlag = FALSE;
originTime stamp = ToD counter from
step1;
Correction = - latched delay timer from
step1.

3 IS2 set to enable one step PTP time
stamping for the Sync frame,
IS2_ACTION.PTP_ENA[0] is set.

4 Hardware time stamping is done on
the egress when the first byte of the
Sync frame begins transmission.
Residence time is calculated to be the
current delay time.
Residence time is then added to the
correction field of the Sync message.
The resulting correction field = current
delay timer – latched delay time from
step1.
Send out the sync frame with updated
FCS.

5 Sync message
transmission.

6 Hardware Rx time stamping is done
upon reception of the Sync
message.

7 IS2 is set to redirect the received
Sync message to the CPU and two-
step PTP time stamping is enabled.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 12

Step Caracal as an Ordinary Clock (one-
step master)

 Caracal as an Ordinary Clock (slave)

8 Software gets T1 from the Sync
message and Rx_timestamp from
the FIFO queue.
Note: Rx_timestamp is stored into
the FIFO instead of residence time
when the frame is destined to the
CPU.

9 Software latches ToD counter and
delay timer. T2 is calculated by
latched ToD counter – (latched
delay timer – Rx_timestamp from
step 8).

10 Software latches ToD counter and
delay timer and prepares Delay_Req
message with correctionField = 0.
originTime stamp = 0 or the latched
ToD counter value.

11 CPU sends out the Delay_Req
message and IS2 is set to enable the
Delay_Req frame for two step
processing, IS2_ACTION.PTP_ENA[1]
is set.

12 Hardware Tx_timestamping is done
when the Delay_Req is sent out and
residence time is stored in the time
stamp FIFO queue. Residence time
is the delay timer when Delay_Req
starts to transmit.
Note: Tx_timestamp is stored in the
FIFO instead of the residence time
when the frame is sourced from the
CPU.

13 Software reads Tx_timestamp for
the Delay_Req from the time stamp
FIFO queue and calculates T3 =
latched ToD counter (from step 10)
+ Tx_timestamp – latched delay
timer (from step 10).

14 Delay_Req
Transmission.

15 Hardware Rx time stamping is done
upon reception of the Delay_Req
message.

16 IS2 is set to redirect the Delay_Req to
the CPU and two-step PTP time
stamping is enabled.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 13

Step Caracal as an Ordinary Clock (one-
step master)

 Caracal as an Ordinary Clock (slave)

17 Software gets the Rx_timestamp from
the FIFO and latches ToD counter and
delay_timer. Calculate T4 = latched
ToD counter – (latched delay_timer –
Rx_timestamp).

18 Software prepares a Delay_resp
message with recieveTime stamp =
T4(from step 17) and correctField =
correctionField copied from the
received Delay_Req (the correction
field could be added by any TC
between slave and master).

19 Send out the Delay_Resp message
without IS2 action.

20 Delay_Resp
transmission.

21 IS2 is set to redirect the Delay_Resp
message to the CPU with no PTP
action.
Software calculates T4 =
receiveTime stamp of Delay_Resp –
correctionField of Delay_Resp.

22 Software calculates meanPathDelay
=((T2-T3) + (T4-T1))/2 and
timeOffset = ((T2-T1) - (T4-T3))/2

Table 2 Delay Request-Response Mechanism with Two-Step Master

Step Caracal as an Ordinary Clock
(two-step master)

 Caracal as an Ordinary Clock (slave)

1 Latch ToD counter and delay
timer

2 Prepare Sync message and
send to egress. originTime
stamp = latched ToD from
step1; Correction = 0;
twoStepFlag = TRUE.

3 IS2 is set to enable two step
PTP time stamping for the
Sync frame,
IS2_ACTION.PTP_ENA[1] is
set.

4 Hardware Tx time stamping
is done on the egress when
the first byte of the Sync
frame starts transmission.
Tx_timestamp is stored in
the time stamp FIFO queue
while the Sync message is
sent out unchanged.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 14

Step Caracal as an Ordinary Clock
(two-step master)

 Caracal as an Ordinary Clock (slave)

5 Sync
transmission.

6 Hardware Rx time stamping is done upon reception
of the Sync message.

7 IS2 is set to redirect the received Sync message to
the CPU and two-step PTP time stamping is enabled.
Software gets the Rx_timestamp from the FIFO
queue.

8 Software latches ToD counter and delay timer. T2 is
calculated by latched ToD counter – (latched delay
timer – Rx_timestamp from step 7).

9 Software reads the
Tx_timestamp of the Sync
message from the FIFO
queue and calculates T1 =
ToD counter (from step1) +
Tx_timestamp – latched
delay timer (from step 1)

10 Prepare and send a
Follow_Up message with
PreciseOriginTimestamp =
T1 (from step 9);
correctionField = 0.

11 Follow_Up
transmission.

12 IS2 is setup so that the Follow_Up message is
redirected to the CPU.

13 Software calculates T1 from fields in the Follow_Up
message combined with the Sync message received
in step 7.
T1 = PreciseOriginTime stamp of Follow_Up +
correctionField of Follow_Up + correctionField of
Sync.

14 Software latches ToD counter and delay timer and
prepares Delay_Req message with correctionField =
0,
originTime stamp = 0 or the latched ToD counter
value.

15 CPU sends out the Delay_Req message and IS2 is set
to enable the Delay_Req frame for two step
processing, IS2_ACTION.PTP_ENA[1]is set.

16 Hardware Tx_timestamping is done when the
Delay_Req is sent out and Tx_timestamp is stored in
the time stamp FIFO queue.

17 Software reads the Tx_timestamp for the Delay_Req
from the time stamp FIFO queue and calculate T3 =
latched ToD counter (from step 14) + Tx_timestamp
from FIFO – latched delay timer (from step 14).

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 15

Step Caracal as an Ordinary Clock
(two-step master)

 Caracal as an Ordinary Clock (slave)

18 Delay_Req
transmission.

19 Hardware Rx time stamping
is done upon reception of
the Delay_Req message.

20 IS2 is set to redirect the
Delay_Req to the CPU and
two-step PTP time stamping
enabled.

21 Software gets the
Rx_timestamp from the FIFO
and latches the ToD counter
and delay_timer. Calculate
T4 = latched ToD counter –
(latched delay_timer –
Rx_timestamp).

22 Software prepares a
Delay_resp message with
recieveTime stamp = T4
(from step 21); correctField
= correctionField copied
from the received
Delay_Req.

23 Send out the Delay_Resp
message without IS2 action.

24 Delay_Resp
transmission.

25 IS2 is set to redirect the Delay_Resp message to the
CPU with no PTP action.
Software calculates T4 = receiveTime stamp of
Delay_Resp – correctionField of Delay_Resp.

26 Software calculates meanPathDelay = ((T2-T3) + (T4-
T1))/2 and timeOffset = ((T2-T1) - (T4-T3))/2.

Table 3 One-Step End-to-End Transparent Clock with One-Step Master

Step Ordinary Clock
(one-step master)

Caracal as One-Step E2E
Transparent Clock

Ordinary Clock (slave)

1 Master sends out
Sync with
twoStepFlag =
FALSE.

2 Hardware Rx time stamping
is done upon reception of
the Sync message.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 16

Step Ordinary Clock
(one-step master)

Caracal as One-Step E2E
Transparent Clock

Ordinary Clock (slave)

3 Sync message is forwarded
to the egress together with
the Rx_timestamp. IS2 is
set so that one step PTP
time stamping will be
enabled.

4 Hardware Tx time stamping
is done. Residence time is
calculated by the current
delay_timer –
Rx_timestamp.

5 Residence time is added to
the correction field of the
Sync message.
Send out the sync frame
with updated FCS

6 Get T1 and T2.

7 Send out Delay_Req message with
correction field cleared and store T3.

8 Hardware Rx time stamping
is done upon reception of
the Delay_Req message.

9 Delay_Req message is
forwarded to the egress
together with the
Rx_timestamp. IS2 is set so
that one step PTP time
stamping will be enabled.

10 Hardware Tx time stamping
is done. Residence time is
calculated by the current
delay_timer –
Rx_timestamp

11 Residence time is added to
the correction field of the
Delay_Req message.
Send out the Delay_Req
frame with updated FCS

12 Get T4 upon
reception of the
Delay_Req message

13 Send Delay_Resp
message with
recieveTime stamp
= T4 (from step 12);
correctField =
correctionField
copied from the
received Delay_Req
(from step 12).

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 17

Step Ordinary Clock
(one-step master)

Caracal as One-Step E2E
Transparent Clock

Ordinary Clock (slave)

14 Forward Delay_Resp
message to egress without
IS2 action.

15 Software calculates T4 = receiveTime
stamp of Delay_Resp – correctionField
of Delay_Resp.

16 Software calculates meanPathDelay =
((T2-T3) + (T4-T1))/2 and timeOffset =
((T2-T1) - (T4-T3))/2

Table 4 One-step End-to-End Transparent Clock with Two-Step Master

Step Ordinary Clock (Two-Step
Master)

Caracal as a One-Step E2E
Transparent Clock

Ordinary Clock (Slave)

1 Master sends out Sync
with twoStepFlag = TRUE.

2 Hardware Rx time stamping is done
upon reception of the Sync message.

3 Sync message is forwarded to the
egress together with the
Rx_timestamp. IS2 is set so that one
step PTP time stamping will be
performed.

4 Hardware Tx time stamping is done
at the egress. Residence time is
calculated by the current delay_timer
– Rx_timestamp.

5 Residence time is added to the
correction field of the Sync message.
Send out the sync frame with
updated FCS

6 Redirect Sync to CPU and
get T2

7 Master sends out
Follow_Up message

8 Forward Follow_Up message to
egress without IS2 action.

9 Redirect Follow_Up
message to the CPU and
calculate T1 combined
with information from
the Sync message (Step
6) and the Follow_Up
message.

10 Send out Delay_Req
message with correction
field cleared and store
T3.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 18

Step Ordinary Clock (Two-Step
Master)

Caracal as a One-Step E2E
Transparent Clock

Ordinary Clock (Slave)

11 Hardware Rx time stamping is done
upon reception of the Delay_Req
message.

12 Delay_Req message is forwarded to
the egress together with the
Rx_timestamp. IS2 is set so that one
step PTP processing will be
performed.

13 Hardware Tx time stamping is done
at the egress. Residence time is
calculated by the current delay_timer
– Rx_timestamp.

14 Residence time is added to the
correction field of the Delay_Req
message.
Send out the Delay_Req frame with
updated FCS.

15 Get T4 upon reception of
the Delay_Req message.

16 Send Delay_Resp message
with recieveTime stamp =
T4 (from step 15);
correctionField =
correctionField copied
from the received
Delay_Req (from step 15).

17 Forward Delay_Resp message to the
egress without IS2 actions.

18 Software calculates T4 =
receiveTime stamp of
Delay_Resp –
correctionField of
Delay_Resp.

19 Software calculates
meanPathDelay = ((T2-
T3) + (T4-T1))/2 and
timeOffset = ((T2-T1) -
(T4-T3))/2.

Table 5 Two-Step End-to-End Transparent Clock with One-Step Master

Step Ordinary Clock (one-step
master)

Caracal as Two-Step E2E
Transparent Clock

Ordinary Clock (slave)

1 Master sends out Sync with
twoStepFlag = FALSE

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 19

Step Ordinary Clock (one-step
master)

Caracal as Two-Step E2E
Transparent Clock

Ordinary Clock (slave)

2 Hardware Rx time stamping is
done upon reception of the Sync
message. IS2 is set so that the Sync
message is redirected to the CPU
with Rx_timestamp in the FIFO.

3 Software checks the twoStepFlag
and prepares to send a new Sync
message with originTime stamp
and correctionField copied from
the received Sync (step 2) but with
twoStepFlag = TRUE.

4 Forward the new Sync message as
soon as possible to the egress. IS2
is set so that two step PTP
processing will be enabled.

5 Hardware Tx time stamping is
done and the Tx_timestamp is
stored in the FIFO queue.

6 Redirect Sync to the CPU
and store T2.

7 Get Tx_timestamp from the FIFO
queue and prepare a Follow_Up
message with PreciseTime stamp =
OriginTime stamp copied from the
received Sync message (from step
2);
correctionField = Tx_timestamp –
Rx_timestamp (from step 2).
Send out the Follow_Up message
with no IS2 action.

8 Redirect Follow_Up
message to the CPU and
calculate T1 based on
the Sync message (Step
6) and the Follow_Up
message time fields.

9 Send out Delay_Req
message with correction
field cleared and store
T3.

10 Hardware Rx time stamping is
done upon reception of the
Delay_Req message.

11 IS2 set to forward the Delay_Req
to the egress while at the same
time copy Delay_Req message to
CPU.
Two-step PTP time stamping
enabled.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 20

Step Ordinary Clock (one-step
master)

Caracal as Two-Step E2E
Transparent Clock

Ordinary Clock (slave)

12 IS2 set to forward the Delay_Req
to the egress while at the same
time copy Delay_Req message to
CPU.
Two-step PTP time stamping
enabled.

13 Software reads the residence time
from the FIFO queue and waits for
the associated Delay_Resp to
come.

14 Gets T4 upon reception of
the Delay_Req message.

15 Send Delay_Resp message
with recieveTimestamp = T4
(from step 14).
correctField =
correctionField copied from
the received Delay_Req
(from step 14).

16 Redirect Delay_Resp message to
the CPU. Add residence time (step
13) to the correctionField of the
received Delay_Resp and send it to
the egress without IS2 action.

17 Software calculates T4 =
receiveTimestamp of
Delay_Resp –
correctionField of
Delay_Resp.

18 Software calculates
meanPathDelay = ((T2-
T3) + (T4-T1))/2 and
timeOffset = ((T2-T1) -
(T4-T3))/2

Table 6 Two-Step End-to-End Transparent Clock with Two-Step Master

Step Ordinary Clock (two-
step master)

Caracal as a Two-Step E2E
Transparent Clock

Ordinary Clock (slave)

1 Master sends out
Sync with
twoStepFlag = TRUE.

2 Hardware Rx time stamping is done
upon reception of the Sync
message. IS2 is set so that the Sync
message is redirected to the CPU
with Rx_timestamp in the FIFO.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 21

Step Ordinary Clock (two-
step master)

Caracal as a Two-Step E2E
Transparent Clock

Ordinary Clock (slave)

3 Software checks the twoStepFlag.
When twoStepFlag = TRUE there is
no need to generate a new Sync
message. Software reads the
Rx_timestamp from the FIFO and
forwards the Sync message
unchanged to the egress. IS2 is set
to enable two-step PTP time
stamping.

4 Hardware Tx time stamping is done
when the frame is sent out.
Tx_timestamp is stored in the FIFO
queue.

5 Software reads the Tx_timestamp
from the FIFO queue and calculates
residence time = Tx_timestamp –
Rx_timestamp (from step 3) and
waits for the associated Follow_Up
message.

6 Redirect Sync to CPU and
store T2.

7 Master sends out the
Follow_Up message.

8 IS2 is set so that the Follow_Up is
redirected to the CPU. Software
adds residence time (step 5) to the
correctionField of the Follow_Up
and sends it out to the egress
without IS2 actions.

9 Redirect the Follow_Up
message to the CPU and
calculate T1 based on the
Sync message (Step 6) and
the Follow_Up message.

10 Send out Delay_Req
message with correction
field cleared and store T3.

11 Hardware Rx time stamping is done
upon reception of the Delay_Req
message.

12 IS2 is set to forward the Delay_Req
to the egress while at the same time
copying the Delay_Req message to
the CPU.
Two-step PTP time stamping is
enabled.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 22

Step Ordinary Clock (two-
step master)

Caracal as a Two-Step E2E
Transparent Clock

Ordinary Clock (slave)

13 Hardware Tx timestamping is done
on the egress. Residence time is
calculated to be the current delay
timer - Rx_timestamp (from step 11)
and stored in the FIFO.

14 Software reads the residence time
from the FIFO queue and waits for
the associated Delay_Resp to come.

15 Get T4 upon
reception of the
Delay_Req message.

16 Send Delay_Resp
message with
recieveTime stamp =
T4 (from step 15);
correctionField =
correctionField
copied from the
received Delay_Req
(from step 15).

17 Redirect Delay_Resp message to
CPU. Add residence time (step 14)
to the correctionField of the
received Delay_Resp and send it to
the egress without IS2 action.

18 Software calculates T4 =
receiveTime stamp of
Delay_Resp –
correctionField of
Delay_Resp.

19 Software calculates
meanPathDelay = ((T2-T3) +
(T4-T1))/2 and timeOffset =
((T2-T1) - (T4-T3))/2.

Table 7 Peer Delay Mechanism with One-Step Responder

Step Caracal as a Delay Requestor Caracal as a One-Step Delay
Responder

1 Latch ToD counter and delay timer.

2 Prepare Pdelay_Req message and
send to the egress. originTime stamp
= 0 or ToD counter from step1;
CorrectionField = 0;

3 IS2 should be set to enable two-step
PTP time stamping for the
Pdelay_Req frame,
IS2_ACTION.PTP_ENA[1] is set.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 23

Step Caracal as a Delay Requestor Caracal as a One-Step Delay
Responder

4 Hardware time stamping is done on
the egress when the first byte of the
Pdelay_Req starts transmission.
Tx_timestamp is stored in the time
stamp FIFO queue.

5 Software reads Tx_timestamp from
the FIFO.
T1 is calculated to be ToD counter
(from step 1) + Tx_timestamp (from
step 4) – latched delay timer (from
step 1).

6 Pdelay_Req
transmission.

7 Hardware Rx time stamping is done
and IS2 is set to redirect Pdelay_Req
to the CPU and two step PTP time
stamping is performed so that
Rx_timestamp is stored in the FIFO.

8 Software reads the Rx_timestamp
from the time stamp FIFO queue.

9 Software prepares and sends
Pdelay_Resp message as soon as
possible with:
twoStepFlag = FALSE;
requestReceiptTime stamp = 0;
correctionField = correctionField
copied from Pdelay_Req (step 7) –
Rx_timestamp (from step 8).

10 IS2 is set to enable one step PTP
processing for the Pdelay_Resp frame.

11 Hardware Tx time stamping is done
when the Pdelay_Resp is starts
transmission and residence time is
calculated to be the Tx_timestamp
because it is a CPU inserted PTP
frame.

12 Hardware adds the residence time to
the correctionField of the Pdelay_resp
message so the correction field
becomes the original correctionField +
(Tx_timestamp – Rx_timestamp) –
which is the turnaround time of T3-T2.
Hardware makes any needed
corrections to the FCS and completes
transmission of the Pdelay_Resp
message.

13 Pdelay_Resp
transmission

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 24

Step Caracal as a Delay Requestor Caracal as a One-Step Delay
Responder

14 Hardware Rx time stamping is done
upon reception of the Pdelay_Resp
message.

15 IS2 is set so that the Pdelay_Resp is
redirected to the CPU with two step
PTP time stamping so the
Rx_timestamp will be stored in the
FIFO.

16 Software reads the Rx_timestamp
from the FIFO and latches the ToD
counter and delay_timer. Calculate,
T4 = latched ToD counter – (latched
delay_timer – Rx_timestamp).

17 Software calculates meanPathDelay
(link delay) = ((T4-T1) -
correctionField of Pdelay_Resp)/2.

When the Peer Delay mechanism is used, there is no need for a slave clock to send delay request
messages anymore. The slave can calculate: the timeOffset by (T2-T1) – meanPathDelay (derived
through the peer delay mechanism). T2 and T1 can be obtained following the same steps as
described in Table 1 and Table 2.

Table 8 Peer Delay Mechanism with Two-Step Responder

Step Caracal as a Delay Requestor Caracal as a Two-Step Delay
Responder

1 Software latches the ToD
counter and delay timer.

2 Prepare Pdelay_Req message
and send it to the egress.
originTime stamp = 0 or ToD
counter from step1;
Correction = 0.

3 IS2 should be set to enable
two-step PTP time stamping
for the Pdelay_Req frame,
IS2_ACTION.PTP_ENA[1] is set.

4 Hardware time stamping is
done on the egress when the
first byte of the Pdelay_Req
starts transmission.
Tx_timestamp is stored in the
time stamp FIFO queue.

5 Software reads the
Tx_timestamp from the FIFO.
T1 is calculated = ToD counter
(from step 1) + Tx_timestamp
(from step 4) – latched delay
timer (from step 1).

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 25

Step Caracal as a Delay Requestor Caracal as a Two-Step Delay
Responder

6 Pdelay_Req
transmission.

7 Hardware RX time stamping is
done and IS2 is set to redirect
Pdelay_Req to the CPU and two
step PTP time stamping is
performed so the Rx_timestamp
is stored in the FIFO.

8 Software reads the
Rx_timestamp from time stamp
FIFO queue.

9 Software latches the ToD
counter and delay_timer. T2 =
latched ToD counter – (latched
delay timer – Rx_timestamp).

10 Prepare and send Pdelay_Resp
message as soon as possible
with:
twoStepFlag = TRUE;
requestReceiptTime stamp = 0;
correctionField = 0.

11 IS2 is set to enable two step PTP
processing for the Pdelay_Resp
frame.

12 Hardware Tx time stamping is
done when the Pdelay_Resp
starts transmission and the
Tx_timestamp is captured by
hardware and stored in the FIFO
queue.

13 Software reads the
Tx_timestamp from the FIFO
queue, latches ToD counter and
delay_timer. Calculate, T3 =
latched ToD counter +
(Tx_timestamp – latched delay
timer).

14 Pdelay_Resp
transmission.

15 Hardware RX time stamping is
done upon reception of the
Pdelay_Resp message.

16 IS2 is set so that the
Pdelay_Resp is redirected to
the CPU with two step PTP
time stamping so the
Rx_timestamp will be stored in
the FIFO.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 26

Step Caracal as a Delay Requestor Caracal as a Two-Step Delay
Responder

17 Software reads the
Rx_timestamp and latches the
ToD counter and delay_timer.
Calculate T4 = latched ToD
counter – (latched delay_timer
– Rx_timestamp).

18 Software prepares and sends the
Pdelay_Resp_Follow_Up
massage with:
responseOriginTime stamp = 0;
correctionField = correctionField
copied from Pdelay_Req (step 7)
+ (T3-T2).
No IS2 actions are set for the
Pdelay_Resp_Follow_Up
message.

19 Pdelay_Resp_Follow_Up
transmission.

20 Software calculates
meanPathDelay (link delay) =
((T4-T1)-correctionField of
Pdelay_Resp)/2.

When the Peer Delay mechanism is used there is no need for a slave clock to send delay request
messages anymore. The slave can calculate: the timeOffset by (T2-T1) – meanPathDelay (derived
through the peer delay mechanism). T2 and T1 can be obtained following the same steps as
described in Table 1 and Table 2.

Table 9 One-Step Peer-to-Peer Transparent Clock with One-Step Master

Step Ordinary Clock
(one-step master)

Caracal as a One-Step P2P Transparent Clock Ordinary Clock (slave)

1 Master sends out
Sync with
twoStepFlag =
FALSE.

2 IS2 is set to redirect the Sync message to the
CPU and two step PTP time stamping is enabled
for the Sync message.

3 Software reads the Rx_timestamp from the FIFO
and forwards the Sync message to the egress
port with link_Delay_TC (from the peer delay
mechanism) – Rx_timestamp added to the
correctionField of the Sync message.

4 Sync message is forwarded to the egress
together with one step PTP time stamping
enabled.

5 Hardware Tx time stamping is done. Residence
time is calculated to be the Tx_timestamp.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 27

Step Ordinary Clock
(one-step master)

Caracal as a One-Step P2P Transparent Clock Ordinary Clock (slave)

6 Tx_timestamp is added to the correction field of
the Sync message. So the correction field
becomes:
Original correction field + link_Delay_TC +
Tx_timestamp – Rx_timestamp.
Send out the sync frame with an updated FCS.

7 Get T1 and T2 which are
stored by software.

8 Software calculates
timeOffset = (T2-T1) -
link_Delay_Slave (from peer
delay mechanism).

One-step/two-step peer-to-peer transparent clock responses to Sync messages are similar to one-
step/two-step end-to-end transparent clock messages, the only difference being that the residence
time should also include the link delay (or the peer-to-peer meanPathDelay) from peer delay
mechanism described in Table 7and Table 8. The link delay process operates in parallel with
flowcharts seen in Table 9 and Table 12.

Table 10 One-Step Peer-to-Peer Transparent Clock with Two-Step Master

Step Ordinary Clock
(two-step
master)

Caracal as a One-Step P2P Transparent
Clock

Ordinary Clock (slave)

1 Master sends out
Sync with
twoStepFlag =
TRUE.

2 IS2 is set to redirect the Sync message to
the CPU and two step PTP time stamping is
enabled for the Sync message.

3 Software reads the Rx_timestamp from the
FIFO and forwards the Sync message to the
egress port with link_Delay_TC (from peer
delay mechanism) – Rx_timestamp added
to the correctionField of the Sync message.

4 Sync message is forwarded to the egress
together with one step PTP time stamping
enabled.

5 Hardware Tx time stamping is done.,
Residence time is calculated to be the
Tx_timestamp.

6 Tx_timestamp is added to the correction
field of the Sync message. So the correction
field becomes:
Original correction field + link_Delay_TC +
Tx_timestamp – Rx_timestamp.
Send out the sync frame with an updated
FCS.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 28

Step Ordinary Clock
(two-step
master)

Caracal as a One-Step P2P Transparent
Clock

Ordinary Clock (slave)

7 Redirect Sync to the CPU and get
T2.

8 Master sends out
a Follow_Up
message.

9 Forward Follow_Up message to the egress
without IS2 action.

10 Redirect Follow_Up message to
the CPU and calculate T1 based
on the Sync message (Step 7) and
the Follow_Up message time
fields.

11 Software calculates, timeOffset =
(T2-T1)- link_Delay_Slave (from
peer delay mechanism)

Table 11 Two-Step Peer-to-Peer Transparent Clock with One-Step Master

Step Ordinary Clock
(one-step master)

Caracal as a Two-Step P2P Transparent
Clock

Ordinary Clock (slave)

1 Master sends out
Sync with
twoStepFlag =
FALSE.

2 Hardware Rx time stamping is done
upon reception of the Sync message.
IS2 is set so that the Sync message is
redirected to the CPU with
Rx_timestamp in the FIFO.

3 Software checks the twoStepFlag and
prepares and sends a new Sync
message with originTime stamp and
correctionField copied from the
received Sync (step 2) but with
twoStepFlag = TRUE.

4 Forward the new Sync message as soon
as possible to the egress. IS2 is set so
that two-step PTP processing will be
enabled.

5 Hardware Tx time stamping is done. The
Tx_timestamp is stored in the FIFO
queue.

6 Redirect Sync to CPU and store T2.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 29

Step Ordinary Clock
(one-step master)

Caracal as a Two-Step P2P Transparent
Clock

Ordinary Clock (slave)

7 Get the Tx_timestamp from the FIFO
queue and prepare a Follow_Up
message with:
PresiceTime stamp = OriginTime stamp
copied from the received Sync message
(step 2);
correctionField = link_Delay_TC (from
peer delay mechanism) + Tx_timestamp
– Rx_timestamp (from step 2).
Send out the Follow_Up message with
no IS2 action.

8 Redirect the Follow_Up message to
the CPU and calculate T1 based on
the Sync message (Step 6) and the
Follow_Up message time fields.

9 Software calculates timeOffset =
(T2-T1)- link_Delay_Slave (from peer
delay mechanism)

Table 12 Two-Step Peer-to-Peer Transparent Clock with Two-Step Master

Step Ordinary Clock (two-
step master)

Caracal as a Two-Step P2P Transparent
clock

Ordinary Clock (slave)

1 Master sends out
Sync with
twoStepFlag = TRUE.

2 Hardware Rx time stamping is done
upon reception of the Sync message. IS2
is set so that the Sync message is
redirected to the CPU with
Rx_timestamp in the FIFO.

3 When twoStepFlag = TRUE there is no
need to generate a new Sync message.
Software reads the Rx_timestamp from
the FIFO and forwards the Sync message
unchanged to the egress. IS2 is set to
enable two-step PTP time stamping.

4 Hardware Tx time stamping is done. The
Tx_timestamp is stored in the FIFO
queue.

5 Redirect Sync to the CPU and
store T2.

6 Software reads the Tx_timestamp from
the FIFO queue and calculates the
residence time = Tx_timestamp –
Rx_timestamp (Step 3) and waits for the
associated Follow_Up message.

7 Master sends out
Follow_Up.

PTP Clock Implementation Using the Caracal Switch

 ENT-AN1189 Application Note Revision 1.0 30

Step Ordinary Clock (two-
step master)

Caracal as a Two-Step P2P Transparent
clock

Ordinary Clock (slave)

8 IS2 is set so that the Follow_Up is
redirected to the CPU. Software adds
residence time (step 6) + link_Delay_TC
(from peer delay mechanism) to the
correctionField of the Follow_Up and
sends it out to the egress without IS2
actions.

9 Redirect Follow_Up message to
the CPU and calculate T1 based
on the Sync message (step 5)
and the Follow_Up message
time fields.

10 Software calculates timeOffset =
(T2-T1)- link_Delay_Slave (from
peer delay mechanism).

	Revision History
	1.1 Revision 1.0

	2 Caracal PTP Hardware
	2.1 ToD Counter and Delay Timer
	2.2 Time Stamp Identifier
	2.3 VCAP-II engine and PTP actions

	3 Different PTP Clock Types

