

Watchdog Timer (WDT) on ATSAM E70/S70/V70/V71 Devices Using MPLAB Harmony v3

Introduction

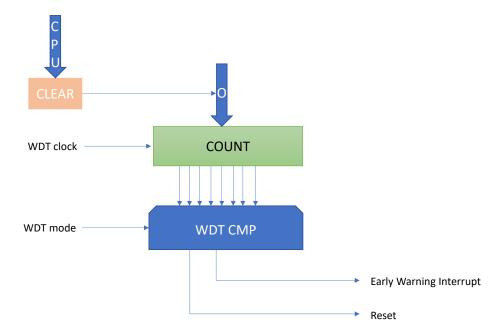
The Watchdog Timer (WDT) is used to ensure that a system can recover from unforeseen failures in firmware or hardware. The WDT can detect abnormalities in the program execution and respond by resetting the microcontroller (MCU). This brings the MCU to a well-defined and known state where normal operation can be resumed.

Based on the source clock, clock prescaler, and internal counter size (number of bits) of the WDT, the timeout period can be configured up to a specified time period mostly up to an order of tens of seconds.

This document discusses the WDT theory of operations, modes, and clock sources. It also covers configuration and code generation using MPLAB® Harmony v3.

Table of Contents

Intr	roduction	1			
1.	Acronyms	3			
2.	Theory of Operation	4			
3.	WDT Clock Source for ATSAM E70/S70/V70/V71 Devices	5			
	3.1. Modes of Operation	5			
4.	WDT Configuration for SAM E70/S70/V70/V71 Devices	7			
	4.1. WDT Global Enabling/Disabling	7			
	4.2. WDT Configuration for Normal Mode				
	4.3. WDT Configuration for Window Mode				
	4.4. WDT Restart Counter				
	4.5. Reading the WDT Status Bits	9			
5.	WDT Timeout Calculation	10			
6.	Intended Use of the Watchdog				
7.	Application Example				
8.	References				
Mic	crochip Information	14			
	The Microchip Website	14			
Product Change Notification Service					
	14				
	Microchip Devices Code Protection Feature				
	14				
	Trademarks	15			
	16				
	Worldwide Sales and Service	17			

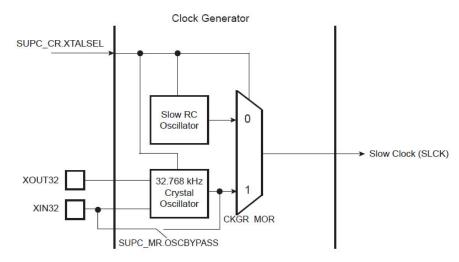

1. Acronyms

Term	Details
WDT	Watchdog Timer
CLK	Clock Source
INT	Interrupt
ISR	Interrupt Service Routine
MCU	Microcontroller
WDD	Watchdog Delta Value
WDV	Watchdog Counter Value

2. Theory of Operation

Once enabled, the WDT requires the application software to write a bit pattern to a WDT register within an allocated time period. If the WDT clear register is not updated by the application within the allotted time, a system reset signal is generated and an interrupt handler is activated.

Figure 2-1. Basic Principle of a WDT



3. WDT Clock Source for ATSAM E70/S70/V70/V71 Devices

The WDT is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the Mode Register (WDT_MR). The WDT uses the slow clock divided by 128 to establish the maximum watchdog period to be 16 seconds.

The maximum value for the WDT counter is 0xFFF (or 4095). Using a clock source of 32 kHz (or a period of 31.25 µs) and a prescaler value set to a maximum value of 128, will result in a clock period of 4 ms that it will further result in a WDT timeout period of 16.38 seconds (4095 x 4 ms).

Figure 3-1. Clock Source for WDT on SAM E70/S70/V70/V71 Devices

The clock source is fully configurable and must be used based on the system requirements and constraints. The internal RC oscillator has a faster startup time compared with the external crystal oscillator, but at the same time is characterized by a high tolerance that may vary with voltage supply, temperature, and the manufacturer process.

By default, the WDT starts by using the Slow RC Oscillator as a source. After startup the External Crystal Oscillator can be enabled, this operation is characterized as a glitch-free transition. The reverse transition for a clock source is only possible by shutting down the VDDIO power supply.

3.1 Modes of Operation

When enabled, the WDT is a timer which runs constantly, that is configured to a predefined time-out period. Before the end of the time-out period, the WDT must be set back or else a system Reset is issued. The WDT has two modes of operation, Normal mode and Window mode, both of these modes offer the option of Early Warning Interrupt generation.

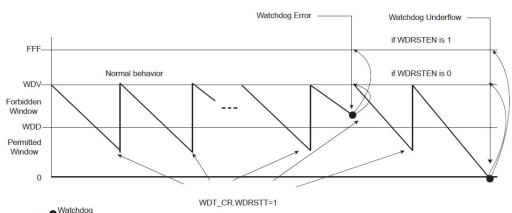


Figure 3-2. WDT Behavior

3.1.1 Normal Mode

The WDT can be used in Normal mode, which is when a single timeout period is set for the WDT. If the WDT is not reset before the timeout occurs, the WDT will cause a system reset, or it will trigger an interrupt.

For the WDT available on the SAM E70/S70/V70/V71 devices, this mode can be activated by programming a WDT_MR.WDD value greater than or equal to the WDT_MR.WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDT_MR.WDV] and does not generate an error. This is the default configuration on reset, the WDT_MR.WDD and WDT_MR.WDV values are equal.

3.1.2 Window Mode

For Window mode, the user must consider these two thresholds, and both parameters can be set within the WDR_MR register.

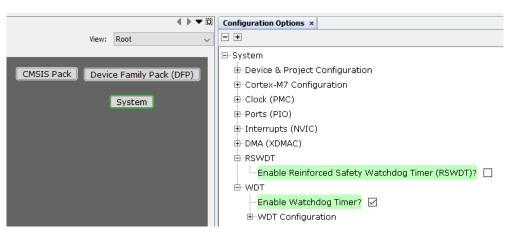
- · WDD: Watchdog Delta Value.
- · WDV: Watchdog Counter Value.

Fault

To use this Watchdog mode and to avoid errors, the reload must occur while the watchdog counter is between '0' and WDD. Trying to restart the watchdog while the internal counter is above the WDD and below the WDV will result in a fault event.

4. WDT Configuration for SAM E70/S70/V70/V71 Devices

The WDT configuration permits the activation of different reactions based on the needs of the system. The control and configuration are mostly done using the Timer Control Register (WDR_CR) and Timer Mode Register (WDT_MR). The Watchdog feedback can be read from the Status Register, WDT_SR.

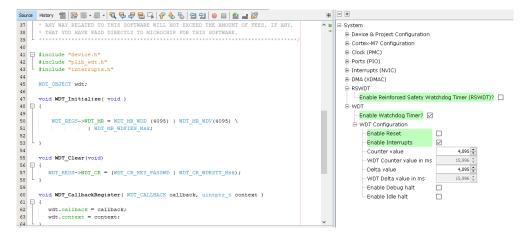

4.1 WDT Global Enabling/Disabling

After reset, the WDT is enabled by default. The user can either disable the WDT by setting the WDT_MR.WDDIS bit or reprogram the WDT to meet the maximum Watchdog period the application requires.

While the processor is in a debug state or in Sleep mode, the counter may be stopped depending on the value programmed for the WDT_MR.WDIDLEHLT and WDT_MR.WDDBGHLT bits. These bits will affect the WDT behavior only if the global WDT disable bit (WDR_MR.WDDIS) is not set.

The following figure shows the WDT global enable or disable configuration settings in the MCC project graph.

Figure 4-1. WDT Global Enable/Disable



4.2 WDT Configuration for Normal Mode

After reset, the normal mode is the default configuration on reset, the WDT_MR.WDD and WDT_MR.WDV values are equal. To avoid fault events, the Watchdog counter must be reset before reaching a zero value.

The following figure shows the WDT normal mode configuration settings in the MCC project graph and the corresponding generated code.

Figure 4-2. WDT Normal Mode

4.3 WDT Configuration for Window Mode

Reloading of the Watchdog must occur while the Watchdog counter is within a window between zero and WDT_MR.WDD. Any attempt to restart the Watchdog while the Watchdog counter is between WDT_MR.WDV and WDT_MR.WDD results in a Watchdog error, even if the Watchdog is disabled.

The following figure shows the WDT window mode configuration settings in the MCC project graph and the corresponding generated code.

Figure 4-3. WDT Window Mode

```
t Window × Start Page × Project Graph × 🖭 src\main.c × 🖭 default_wdt\nitialization.c × 🖭 wdt\plb_wdt.c ×
   -System
                                                                                           - Device & Project Configuration
  #include "device.h"
#include "plib_wdt.h"
#include "interrupts.h"
                                                                                           - Cortex-M7 Configuration
                                                                                           E-Clock (PMC)
                                                                                          ⊞-DMA (XDMAC)
  void WDT_Initialize( void )

[] {
                                                                                          E-RSWIT
                                                                                              Enable Reinforced Safety Watchdog Timer (RSWDT)?
       Enable Watchdog Timer?
                                                                                             Enable Reset
                                                                                                 Enable Interrupts
    void WDT Clear(void)
                                                                                                 Counter value
                                                                                                                          4,095
      WDT_REGS->WDT_CR = (WDT_CR_KEY_PASSWD | WDT_CR_WDRSTT_Msk);
                                                                                                 WDT Counter value in ms
                                                                                                 WDT Delta value in ms
  void WDT_CallbackRegister( WDT_CALLBACK callback, uintptr_t context )

[] {
                                                                                                 Enable Debug halt
                                                                                                 Enable Idle halt
                                                                                                                    П
```

4.4 WDT Restart Counter

The user reloads the Watchdog at regular intervals before the timer underflow occurs, by setting the WDT_CR.WDRSTT bit. The Watchdog counter is then immediately reloaded from WDT_MR and restarted.

The WDT_CR register is write-protected. As a result, writing to the WDT_CR without the correct hard-coded key has no effect.

The following figure shows the MPLAB Harmony v3 API that can be called by the user application to reload the WDT counter.

Figure 4-4. WDT Clear API from MPLAB Harmony v3

4.5 Reading the WDT Status Bits

If an underflow occur, the wdt_fault signal to the Reset Controller is asserted if the WDT_MR.WDRSTEN bit is set. In addition, the WDUNF bit is set in the Status register (WDT_SR).

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD results in a Watchdog error, even if the Watchdog is disabled. The WDT_SR.WDERR bit is updated and the wdt_fault signal to the Reset Controller is asserted.

Both status bits, WDT_SR.WDERR (Watchdog Error), and WDT_SR.WDUNF (Watchdog Underflow), are cleared on read.

5. WDT Timeout Calculation

The WDT is based on a source clock according to the configuration of the registers. For this clock a prescaler value can also be applied to extend the period. With this new derived clock and with the WDT counter configured internally, the user can calculate the final WDT timeout period.

The following table provides a basic SLCK value of 32 kHz and the resulting WDT timeout period by using various SLCK prescaler and WDT counter values.

Table 5-1. Basic SLCK Value as Related to WDT Timeout Periods

SLCK (32 KHz) SLCK Prescaler	SLCK Period (us)	Watchdog Counter Value WDT_MR[WDV]	WDT Timeout Period (seconds)			
1	31.25	511	0.016			
		2047	0.064			
		4095	0.128			
2	62.5	511	0.032			
		2047	0.128			
		4095	0.256			
4	125	511	0.064			
		2047	0.256			
		4095	0.512			
	250	511	0.128			
8		2047	0.512			
		4095	1.024			
	500	511	0.256			
16		2047	1.024			
		4095	2.048			
32	1000	511	0.511			
		2047	2.047			
		4095	4.095			
64	2000	511	1.022			
		2047	4.094			
		4095	8.190			
		511	2.044			
128	4000	2047	8.188			
		4095	16.380			
Note: WDT Timeout Period = (1/SLC	lote: WDT Timeout Period = (1/SLCK) * PRESCALER * WDT_COUNTER.					

6. Intended Use of the Watchdog

In general, it is recommended to issue a WDT reset from somewhere in the main loop of the firmware. Do not reset the WDT in interrupt service routines, unless the interrupt routine checks a series of flags that confirms the correct execution of various parts of the firmware. If these simple rules are followed, the WDT is hard to misuse.

The WDT window mode is a bit more challenging to use than the normal mode, as it involves more strict control of the WDT Reset timing. In window mode the WDT must be reset from somewhere within the main loop, never in interrupt service routines, as this will impair the closed window protection. Because the closed window defines the minimum expected duration of the main loop (or subsections of the main loop), it can be used to catch cases where parts of the main loop code is not executed, or cases where early exit from function calls occurs.

The internal clock for the WDT is not very accurate. The oscillator is designed to draw very little power to be able to use the WDT even in long-life battery powered applications. The downside of low-power oscillators is low accuracy. The internal clock source may vary over temperature and supply voltage, though this variation is significantly less than the ±30% device-to-device variations. Refer to the device data sheet for additional information.

The WDT interrupt can only be used if WDT_MR.WDRSTEN is cleared. If the reset exception has begun processing, then the WDT interrupt will not occur. To prevent the WDT from being useless when WDT_MR.WDRSTEN is disabled, the WDT_MR.WDFIEN bit is used. This allows an interrupt to be triggered on a fault or underflow. But setting this is useless as well unless the WDT IRQ is enabled using the NVIC.

Application Example

7. Application Example

The following source code example demonstrates the usage of the Watchdog Timer for the SAM E70/S70/V70/V71 family of devices.

This example describes how to configure the WDT to initiate a reset after the timeout expires. To stop the application and feed the WDT there is a switch configuration that will jump the execution into an infinite loop.

https://github.com/Microchip-MPLAB-Harmony/csp apps sam e70 s70 v71/tree/master/apps/wdt/wdt timeout

To clone or download this application from Github, go to the repository csp_apps_sam_e70_s70_v70_v7, and then click the Clone button to clone this repository or download as zip file.

Alternatively, the GitHub repository can be downloaded using the MCC content manager.

The application within the repository is in the following path <code>apps/wdt/wdt_timeout/firmware</code>. The full instructions set to build, program, and run the application is detailed in the <code>readme.md</code> file.

8. References

For additional information regarding Microchip products and services, visit the Microchip Website, or contact a local Microchip sales representative.

- The MPLAB Harmony v3 Quick Docs repository provides standalone help pages for users to get started developing applications on Microchip's 32-bit SAM and PIC32 MCUs. Start from the index.html present in the docs folder. The online version is available for download at microchip-mplab-harmony.github.io/quick docs/
- Harmony Landing page: www.microchip.com/harmony
- How to Build an Application by Adding a New PLIB, Driver, or Middleware to an Existing MPLAB Harmony v3 Project: www.microchip.com/DS90003253
- MPLAB Harmony v3 Developer Help page: microchipdeveloper.com/harmony3:start
- Various Timers in SAM Devices: http://ww1.microchip.com/downloads/en/DeviceDoc/ Various_Timers_%20on_SAM%20Device_DS90003230A.pdf

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- **Technical Support**

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded

by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/ design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW. MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-0963-6

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
ГеІ: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Ouluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
el: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
ax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Vestborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
tasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
el: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
)allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
lovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
el: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
louston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
el: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
ndianapolis	China - Xiamen	161. 04-20-3440-2100	Tel: 31-416-690399
loblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
el: 317-773-8323	China - Zhuhai		Norway - Trondheim
Eax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
el: 317-536-2380	161. 00-7 30-32 10040		Poland - Warsaw
os Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
el: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			
			Spain - Madrid Tel: 34-91-708-08-90
el: 951-273-7800			
Raleigh, NC			Fax: 34-91-708-08-91
el: 919-844-7510			Sweden - Gothenberg
lew York, NY			Tel: 46-31-704-60-40
el: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
el: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Геl: 905-695-1980			
Fax: 905-695-2078			