Altmel

SMART ARM-based Microcontrollers

AT03250: SAM D/R/L/C 12C Master Mode (SERCOM
12C) Driver

APPLICATION NOTE

Introduction

This driver for Atmel® | SMART ARM®-based microcontrollers provides an
interface for the configuration and management of the device's SERCOM I2C
module, for the transfer of data via an 12C bus. The following driver API
modes are covered by this manual:

. Master Mode Polled APIs
. Master Mode Callback APIs

The following peripheral is used by this module:
+ SERCOM (Serial Communication Interface)

The following devices can use this module:
* Atmel | SMART SAM D20/D21
* Atmel | SMART SAM R21
* Atmel | SMART SAM D09/D10/D11
* Atmel | SMART SAM L21/L22
* Atmel | SMART SAM DA1
* Atmel | SMART SAM C20/C21

The outline of this documentation is as follows:
* Prerequisites
* Module Overview
» Special Considerations
+ Extra Information
+ Examples
* API Overview

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Table of Contents

INErOAUCHION. ... e ettt e e et e e e e e e e eaa e 1
1. SOMWAIE LICEBNSE.......ccoeeeeeeeee et e et e e e e e e e e e e ee e e e eaeeeeeees 4
B o =T =0 UL (=T 5
3. MOAUIE OVEIVIEW. ...t et e e e e e e e et e e e e e e e e eeeraaa s 6
3.1, Driver Feature Macro Definition............ooii i e e 6

3.2, FUNCHONAI DESCIIPHON. ...t e e e et e e e e et e e e e e saba e e e e e senneees 6

B TR T = 10 = o] o To] o)RS SPPUPPTIN 7

1 T S I =T g 1= F= (o (o] [TN 7
341, AdAreSS PACKELS........uuiiiiiiiiiiiii ettt et e e e e e e e e eaeeans 7

I B T | v= W == (o (= TS 8

3.4.3. Transaction EXamPIES........ccoeeiiiiii oottt e e e e e e e e e e e e e s 8

O N S = Vo = A T30 To T | 8

3.4.5. REPEAIEA STaAI.......oiii i e e e e e e e raeeeas 8

BT T Y/ (1Y = (Y SRR 8

1 78 T8 R ANy o] 1 =) ([o FO U 9

3.5.2. Clock SYNCRrONIZAtioN..........oiiiiiiiiiii e 9

3.8, BUS SHALES. .o e e e e e e e e ——e e e e e e aatreeeeeaatraeeaeeaanns 9

T R = T £ 11411 T SRR 10
3.7.1. Unknown Bus State TIMEOUL...........ccoiiiiieeteeee e baaaraees 10

3.7.2. SDA HOIA TIMEOUL.......ooiiiiiiiiie et e ettt e e e e et e e e e e e eabaeeea s 10

3.8. Operation in SIEEP MOUES.......cccoiiiiiiiie et et e e e s et r e e e s e ssnraeeeeeannees 10

4. Special Considerations.............coooviiiiiiiii 12
4.1, Interrupt-driven OPEratioN..........c..iiiii ettt ettt b et e e b se e b 12

LT = = W a1 (o] 1 1= 1 (] o VTR 13
B. EXAMIPIES. 14
T APLOVEIVIEBW... ..ttt e e et e e e e e e e eeeaaaaans 15
0 P S (0o ([=30 =Y T T (o] o 15
711, Struct i2¢_mMaster_CONFig.......oooiiiiiieei e 15

7.1.2. Structi2c_master_MOAUIE..........cooiiiiiiiiie e e 16

7.1.3. Structi2c_master_packet.........cccuuiiiiiiiie e 16

A Y/ F= Yo {0 T 1= 1 011 16
7.2.1. Driver Feature DefinitioN.............uuuuiiiiiiiiiieeeeeeee et e e e e eeeaaas 16

7.3, FUNCHON DEfINITIONS. .. .eiiiiiiiiiii ettt e e e e e e e st e e e e st baeeaesessnsaeeeeeannnees 17

A Tt I o Yo 1§ o1 (o Yo RN 17

7.3.2. Configuration and INitialization..............cccoriiriiiie i 18

S TR TR (== To IF= T (o VAT | (=Y 20

7.3.4. SERCOM I2C Master with DMA INterfaCesS.........ccoovevivereeeeeceeeeeeeeee et eeeenee s 25

AR T 07 11 o =Tl TN 26

7.3.6. Read and Write, INterrupt-driVen..........cooeeiiiiii e 27

Atmel

Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

2

7.4. Enumeration DEefiNtIONS.coooi it a e e e 31
7.4.1. Enumi2c_master_baud_rate.........ccccooiiiiiiiiiiieee e 31

7.4.2. Enumi2c_master_CallDAcK..........ccuuuuiieiiiiiiiiiiiieeee e 32

7.4.3. Enumi2c_master_inactive_timeout..............coeiiiiiiiii 32

7.4.4. Enumi2c_master_interrupt_flag.........ccooeiiiiiiiii 32

7.4.5. Enumi2c_master_start_hold_time.........ccccceiiiiiiiiiii e 32

7.4.6. Enumi2c_master_transfer Speed...........ccociiiiiiiiiiiii i 33

7.47. Enumi2c_transfer_direCtion..........ccoooii i 33

8. Extra Information for SERCOM I12C DIIVET.........ceceeeeeeeeeeee e 34
< Tt R X7] 0} 4 2T USSR 34

L T B 1= o 1= o =T g o =Y SRR 34

S TR T = 1 | - F PR 34

S T /T o LU [1] (o] PSR OTPER 34

9. Examples for SERCOM I2C DFIVET.........ooeeeeeeeeeeeeeeee e 35
9.1. Quick Start Guide for SERCOM I12C Master - BaSiC...........ccceueueueurureeeeeeececerececscecceseseeesaesesnnns 35
.11, Prer@QUISITES. .. .eeiiiiiii e 35

S Tt S 1 (¥ | o F PSSP RRRS 35

9.1.3. IMPIEMENTALION.. ... e e e ———— 37

9.2. Quick Start Guide for SERCOM I12C Master - CallbacK..........c.ccueueurueueueueecerecececceeececescesennens 38
9.2.1. Prer@QUISITES.ciiiiiiiiiti e s 38

S 1= | (U o T SRSt 38

9.2.3. IMPIEMENTALION.. ... e e e e ———— 40

S 0| o T o USSR 41

9.3. Quick Start Guide for Using DMA with SERCOM 12C MaSter...........cccocveeueeeeeeeerereeseeeenenns 41
9.3.1. Prer@QUISITES. ...ccii ettt e e e e e a e e e raaeeaan 41

S TR B 1 (V] TSP S PR RRRRRRST 41

9.3.3. IMPIEMENTALION.eiiiiii e 44

10. Document RevViSioN HISTOIY........ooiieiiiiiiiie e 46

Atmel

Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

3

1. Software License

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived from this software without
specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM [2C) Driver [APPLICATION 4
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

2. Prerequisites

There are no prerequisites.

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 5
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

3. Module Overview
The outline of this section is as follows:
. Driver Feature Macro Definition
* Functional Description
* Bus Topology
* Transactions
* Multi Master
+ Bus States
* Bus Timing
* Operation in Sleep Modes
3.1. Driver Feature Macro Definition
Driver Feature Macro Supported devices
FEATURE_I2C_FAST_MODE_PLUS_AND_HIGH_SPEED SAM
D21/R21/D10/D11/L21/L22/DA1/C20/C21
FEATURE_I2C_10_BIT_ADDRESS SAM
D21/R21/D10/D11/L21/L22/DA1/C20/C21
FEATURE_I2C_SCL_STRETCH_MODE SAM
D21/R21/D10/D11/L21/L22/DA1/C20/C21
FEATURE_I2C_SCL_EXTEND_TIMEOUT SAM
D21/R21/D10/D11/L21/L22/DA1/C20/C21
Note: The specific features are only available in the driver when the selected device supports those
features.
3.2 Functional Description
The I2C provides a simple two-wire bidirectional bus consisting of a wired-AND type serial clock line
(SCL) and a wired-AND type serial data line (SDA).
The 12C bus provides a simple, but efficient method of interconnecting multiple master and slave devices.
An arbitration mechanism is provided for resolving bus ownership between masters, as only one master
device may own the bus at any given time. The arbitration mechanism relies on the wired-AND
connections to avoid bus drivers short-circuiting.
A unique address is assigned to all slave devices connected to the bus. A device can contain both master
and slave logic, and can emulate multiple slave devices by responding to more than one address.
Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 6
me

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

3.3. Bus Topology
The I2C bus topology is illustrated in Figure 3-1 12C Bus Topology on page 7. The pull-up resistors
(Rs) will provide a high level on the bus lines when none of the I2C devices are driving the bus. These are
optional, and can be replaced with a constant current source.
Figure 3-1 I2C Bus Topology
Vce | | |
Re Re 12C DEVICE 12C DEVICE oo o 12C DEVICE
#1 #2 #N
SDA - (-
SCL
Note: Rs is optional
3.4. Transactions
The 12C standard defines three fundamental transaction formats:
* Master Write
* The master transmits data packets to the slave after addressing it
* Master Read
* The slave transmits data packets to the master after being addressed
+ Combined Read/Write
* A combined transaction consists of several write and read transactions
A data transfer starts with the master issuing a Start condition on the bus, followed by the address of the
slave together with a bit to indicate whether the master wants to read from or write to the slave. The
addressed slave must respond to this by sending an ACK back to the master.
After this, data packets are sent from the master or slave, according to the read/write bit. Each packet
must be acknowledged (ACK) or not acknowledged (NACK) by the receiver.
If a slave responds with a NACK, the master must assume that the slave cannot receive any more data
and cancel the write operation.
The master completes a transaction by issuing a Stop condition.
A master can issue multiple Start conditions during a transaction; this is then called a Repeated Start
condition.
3.4.1. Address Packets
The slave address consists of seven bits. The 8t bit in the transfer determines the data direction (read or
write). An address packet always succeeds a Start or Repeated Start condition. The 8 bit is handled in
the driver, and the user will only have to provide the 7-bit address.
Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 7
me

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

3.4.2.

3.4.3.

3.4.4.

3.4.5.

3.5.

Data Packets

Data packets are nine bits long, consisting of one 8-bit data byte, and an acknowledgement bit. Data
packets follow either an address packet or another data packet on the bus.

Transaction Examples

The gray bits in the following examples are sent from master to slave, and the white bits are sent from
slave to master. Example of a read transaction is shown in Figure 3-2 12C Packet Read on page 8.
Here, the master first issues a Start condition and gets ownership of the bus. An address packet with the
direction flag set to read is then sent and acknowledged by the slave. Then the slave sends one data
packet which is acknowledged by the master. The slave sends another packet, which is not
acknowledged by the master and indicates that the master will terminate the transaction. In the end, the
transaction is terminated by the master issuing a Stop condition.

Figure 3-2 I12C Packet Read

Bit0 Bitl it 2 Bit 3 Bit6 Bit7 Bit8 Bit9 Bitl0 Bitll Bit12 Bitl3 Bitl4 Bitl5 Bitl6 Bit17 Bitl8 Bit19 Bit20 Bit2l Bit22 Bit23 Bit24 Bit25 Bit26 Bit27

START | ADDRESS READ | ACK DATA

Example of a write transaction is shown in Figure 3-3 12C Packet Write on page 8. Here, the master
first issues a Start condition and gets ownership of the bus. An address packet with the dir flag set to
write is then sent and acknowledged by the slave. Then the master sends two data packets, each
acknowledged by the slave. In the end, the transaction is terminated by the master issuing a Stop
condition.

Figure 3-3 I2C Packet Write

Bit0 Bitl Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9 Bitl0 Bitll Bitl2 Bit13 Bitl4 Bit15 Bitl6 Bit17 Bitl18 Bit19 Bit20 Bit2l Bit22 Bit23 Bit24 Bit25 Bit26 Bit27

START | ADDRESS WRITE | ACK | DATA ACK | DaTA ACK

Packet Timeout

When a master sends an I2C packet, there is no way of being sure that a slave will acknowledge the
packet. To avoid stalling the device forever while waiting for an acknowledge, a user selectable timeout is
provided in the i2c_master config struct which lets the driver exit a read or write operation after the
specified time. The function will then return the STATUS_ERR_TIMEOUT flag.

This is also the case for the slave when using the functions postfixed wait.

The time before the timeout occurs, will be the same as for unknown bus state timeout.

Repeated Start

To issue a Repeated Start, the functions postfixed no stop must be used. These functions will not
send a Stop condition when the transfer is done, thus the next transfer will start with a Repeated Start.
To end the transaction, the functions without the no stop postfix must be used for the last read/write.

Multi Master

In a multi master environment, arbitration of the bus is important, as only one master can own the bus at
any point.

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 8

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

3.5.1. Arbitration

Clock The serial clock line is always driven by a master device. However, all devices connected

stretching to the bus are allowed stretch the low period of the clock to slow down the overall clock
frequency or to insert wait states while processing data. Both master and slave can
randomly stretch the clock, which will force the other device into a wait-state until the

clock line goes high again.

Arbitration on If two masters start transmitting at the same time, they will both transmit until one

the data line master detects that the other master is pulling the data line low. When this is detected,
the master not pulling the line low, will stop the transmission and wait until the bus is
idle. As it is the master trying to contact the slave with the lowest address that will get
the bus ownership, this will create an arbitration scheme always prioritizing the slaves
with the lowest address in case of a bus collision.

3.5.2. Clock Synchronization

In situations where more than one master is trying to control the bus clock line at the same time, a clock
synchronization algorithm based on the same principles used for clock stretching is necessary.

3.6. Bus States

As the I12C bus is limited to one transaction at the time, a master that wants to perform a bus transaction
must wait until the bus is free. Because of this, it is necessary for all masters in a multi-master system to
know the current status of the bus to be able to avoid conflicts and to ensure data integrity.

« IDLE No activity on the bus (between a Stop and a new Start condition)
OWNER If the master initiates a transaction successfully

« BUSY If another master is driving the bus
« UNKNOWN If the master has recently been enabled or connected to the bus. Is forced to IDLE
after given timeout when the master module is enabled

The bus state diagram can be seen in Figure 3-4 12C Bus State Diagram on page 10.
« S: Start condition
« P: Stop condition
* Sr: Repeated start condition

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM [2C) Driver [APPLICATION 9
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Figure 3-4 I2C Bus State Diagram

BUSY
(0b11)

Write ADDR
©S)

Arbitration
Lost

Write ADDR(Sr)

3.7. Bus Timing
Inactive bus timeout for the master and SDA hold time is configurable in the drivers.

3.71. Unknown Bus State Timeout
When a master is enabled or connected to the bus, the bus state will be unknown until either a given
timeout or a stop command has occurred. The timeout is configurable in the i2c_master config struct.
The timeout time will depend on toolchain and optimization level used, as the timeout is a loop
incrementing a value until it reaches the specified timeout value.

3.7.2. SDA Hold Timeout
When using the 12C in slave mode, it will be important to set a SDA hold time which assures that the
master will be able to pick up the bit sent from the slave. The SDA hold time makes sure that this is the
case by holding the data line low for a given period after the negative edge on the clock.
The SDA hold time is also available for the master driver, but is not a necessity.

3.8. Operation in Sleep Modes
The 12C module can operate in all sleep modes by setting the run_in_standby Boolean in the
i2c_master_config or i2c_slave_config struct. The operation in slave and master mode is shown in Table
3-1 12C Standby Operations on page 11.

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 10

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Table 3-1 I2C Standby Operations

Run in standby | Slave ‘ Master ‘
false Disabled, all reception is dropped Generic Clock (GCLK) disabled when master
is idle
true Wake on address match when enabled GCLK enabled while in sleep modes
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 11
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

4. Special Considerations

41. Interrupt-driven Operation

While an interrupt-driven operation is in progress, subsequent calls to a write or read operation will return
the STATUS_BUSY flag, indicating that only one operation is allowed at any given time.

To check if another transmission can be initiated, the user can either call another transfer operation, or
use the i2c_master get job_status/i2c_slave_get_job_status functions depending on mode.

If the user would like to get callback from operations while using the interrupt-driven driver, the callback
must be registered and then enabled using the "register_callback" and "enable_callback" functions.

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 12
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

5. Extra Information

For extra information, see Extra Information for SERCOM [2C Driver. This includes:

Atmel

Acronyms
Dependencies
Errata

Module History

Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

13

6. Examples

For a list of examples related to this driver, see Examples for SERCOM |12C Driver.

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 14
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

7. API Overview

7.1. Structure Definitions

7.1.1. Struct i2c_master_config

This is the configuration structure for the 12C Master device. It is used as an argument for i2c_master init
to provide the desired configurations for the module. The structure should be initialized using the

i2c_master_get_config_defaults.

Table 7-1 Members

oo heme e

uint32_t

uint32_t

uint16_t
enum gclk_generator

enum
i2c_master_inactive_timeout

bool

uint32_t
uint32_t

bool

bool

bool

uint16_t

bool

Atmel

baud_rate

baud_rate high_speed

buffer_timeout

generator_source

inactive_timeout

master_scl_low_extend_timeout

pinmux_pad0
pinmux_pad1

run_in_standby

scl_low_timeout

scl_stretch_only_after_ack_bit

sda_scl_rise_time_ns

slave_scl_low_extend_timeout

Baud rate (in KHz) for I2C operations
in standard-mode, Fast-mode, and
Fast-mode Plus Transfers,
i2c_master_baud_rate

Baud rate (in KHz) for I2C operations
in High-speed mode,
i2c_master_baud_rate

Timeout for packet write to wait for
slave

GCLK generator to use as clock
source

Inactive bus time out

Set to enable maser SCL low extend
time-out

PADO (SDA) pinmux

PAD1 (SCL) pinmux

Set to keep module active in sleep
modes

Set to enable SCL low time-out

Set to enable SCL stretch only after
ACK bit (required for high speed)

Get more accurate BAUD,
considering rise time(required for
standard-mode and Fast-mode)

Set to enable slave SCL low extend
time-out

Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 15

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

N S

enum start_hold_time Bus hold time after start signal on
i2c_master_start_hold_time data line
enum transfer_speed Transfer speed mode
i2c_master_transfer_speed
uint16_t unknown_bus_state timeout Unknown bus state timeout
7.1.2. Struct i2c_master_module
SERCOM I2C Master driver software instance structure, used to retain software state information of an
associated hardware module instance.
Note: The fields of this structure should not be altered by the user application; they are reserved for
module-internal use only.
7.1.3. Struct i2c_master_packet
Structure to be used when transferring 12C master packets.
Table 7-2 Members
Type Name Deseripton
uint16_t address Address to slave device
uint8_t* data Data array containing all data to be transferred
uint16_t data_length Length of data array
bool high_speed Use high speed transfer. Set to false if the feature is not supported by the
device
uint8_t | hs_master_code High speed mode master code (0000 1XXX), valid when high_speed is true
bool ten_bit address Use 10-bit addressing. Set to false if the feature is not supported by the
device
7.2. Macro Definitions
7.21. Driver Feature Definition
Define SERCOM I2C driver features set according to different device family.
7.21.1. Macro FEATURE_I2C_FAST_MODE_PLUS_AND_HIGH_SPEED
#define FEATURE I2C FAST MODE PLUS AND HIGH SPEED
Fast mode plus and high speed support.
7.21.2. Macro FEATURE_I2C_10_BIT_ADDRESS
#define FEATURE I2C 10 BIT ADDRESS
10-bit address support
Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 16
me

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

7.21.3.

7.21.4.

7.21.5.

7.3.

7.3.1.

7.3.1.1.

7.3.1.2.

Macro FEATURE_I2C_SCL_STRETCH_MODE

#define FEATURE I2C_SCL_STRETCH MODE

SCL stretch mode support
Macro FEATURE_I2C_SCL_EXTEND_TIMEOUT

#define FEATURE I2C_ SCL_EXTEND TIMEOUT

SCL extend timeout support
Macro FEATURE_I2C_DMA_SUPPORT

#define FEATURE I2C DMA SUPPORT

Function Definitions
Lock/Unlock

Function i2c_master_lock()

Attempt to get lock on driver instance.

enum status_ code i2c master lock(
struct i2c master module *const module)

This function checks the instance's lock, which indicates whether or not it is currently in use, and sets the
lock if it was not already set.

The purpose of this is to enable exclusive access to driver instances, so that, e.g., transactions by
different services will not interfere with each other.

Table 7-3 Parameters

[in, out] module Pointer to the driver instance to lock

Table 7-4 Return Values

STATUS_OK If the module was locked

STATUS_BUSY If the module was already locked

Function i2c_master_unlock()
Unlock driver instance.

void i2c master unlock(
struct i2c_master module *const module)

This function clears the instance lock, indicating that it is available for use.

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 17

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Table 7-5 Parameters

[in, out] module Pointer to the driver instance to lock

Table 7-6 Return Values

STATUS_OK If the module was locked
STATUS_BUSY If the module was already locked
7.3.2. Configuration and Initialization
7.3.2.1. Function i2c_master_is_syncing()
Returns the synchronization status of the module.
bool i2c master is syncing(
const struct i2c master module *const module)
Returns the synchronization status of the module.
Table 7-7 Parameters
[in] module Pointer to software module structure
Returns
Status of the synchronization.
Table 7-8 Return Values
true Module is busy synchronizing
false Module is not synchronizing
7.3.2.2. Function i2c_master_get_config_defaults()
Gets the 12C master default configurations.
void i2c master get config defaults(
struct i2c master config *const config)
Use to initialize the configuration structure to known default values.
The default configuration is as follows:
- Baudrate 100KHz
+ GCLK generator 0
e Do not run in standby
« Start bit hold time 300ns - 600ns
« Buffer timeout = 65535
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 18

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

* Unknown bus status timeout = 65535
* Do not run in standby
+ PINMUX_DEFAULT for SERCOM pads

Those default configuration only available if the device supports it:
* High speed baudrate 3.4MHz
+ Standard-mode and Fast-mode transfer speed
* SCL stretch disabled
« Slave SCL low extend time-out disabled
* Master SCL low extend time-out disabled

Table 7-9 Parameters

[out] config Pointer to configuration structure to be initiated
7.3.2.3. Function i2c_master_init()
Initializes the requested 12C hardware module.
enum status code i2c master init(
struct i2c master module *const module,
Sercom *const hw,
const struct i2c master config *const config)
Initializes the SERCOM I2C master device requested and sets the provided software module struct. Run
this function before any further use of the driver.
Table 7-10 Parameters
[out] module Pointer to software module struct
[in] hw Pointer to the hardware instance
[in] config Pointer to the configuration struct
Returns
Status of initialization.
Table 7-11 Return Values
STATUS_OK Module initiated correctly
STATUS_ERR_DENIED If module is enabled
STATUS BUSY If module is busy resetting
STATUS_ERR_ALREADY_INITIALIZED If setting other GCLK generator than previously set
STATUS_ERR_BAUDRATE_UNAVAILABLE | If given baudrate is not compatible with set GCLK
frequency
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 19

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

7.3.24.

Function i2c_master_enable()

Enables the 12C module.

void i2c master enable (
const struct i2c_master module *const module)

Enables the requested 12C module and set the bus state to IDLE after the specified timeout period if no
stop bit is detected.

Table 7-12 Parameters

[in] module Pointer to the software module struct
7.3.2.5. Function i2c_master_disable()
Disable the 12C module.
void i2c master disable(
const struct i2c _master module *const module)
Disables the requested 12C module.
Table 7-13 Parameters
[in] module Pointer to the software module struct
7.3.2.6. Function i2c_master_reset()
Resets the hardware module.
void 12c master reset(
struct i2c_master module *const module)
Reset the module to hardware defaults.
Table 7-14 Parameters
[in, out] module Pointer to software module structure
7.3.3. Read and Write
7.3.3.1. Function i2c_master_read_packet_wait()
Reads data packet from slave.
enum status code i2c master read packet wait(
struct i2c_master module *const module,
struct i2c_master packet *const packet)
Reads a data packet from the specified slave address on the I2C bus and sends a stop condition when
finished.
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 20

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Note: This will stall the device from any other operation. For interrupt-driven operation, see
i2c_master_read_packet_job.

Table 7-15 Parameters

[in, out] module Pointer to software module struct
[in, out] packet Pointer to I12C packet to transfer
Returns

Status of reading packet.

Table 7-16 Return Values

STATUS OK The packet was read successfully
STATUS _ERR_TIMEOUT If no response was given within specified timeout period
STATUS_ERR_DENIED If error on bus

STATUS_ERR_PACKET_COLLISION If arbitration is lost

STATUS ERR_BAD_ADDRESS If slave is busy, or no slave acknowledged the address
7.3.3.2. Function i2c_master_read_packet_wait_no_stop()
Reads data packet from slave without sending a stop condition when done.
enum status code i2c master read packet wait no stop(
struct i2c master module *const module,
struct i2c master packet *const packet)
Reads a data packet from the specified slave address on the 12C bus without sending a stop condition
when done, thus retaining ownership of the bus when done. To end the transaction, a read or write with
stop condition must be performed.
Note: This will stall the device from any other operation. For interrupt-driven operation, see
i2c_master_read_packet_job.
Table 7-17 Parameters
[in, out] module Pointer to software module struct
[in, out] packet Pointer to I2C packet to transfer
Returns
Status of reading packet.
Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 21
me

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Table 7-18 Return Values

STATUS OK The packet was read successfully
STATUS ERR_TIMEOUT If no response was given within specified timeout period
STATUS _ERR_DENIED If error on bus

STATUS_ERR_PACKET_COLLISION If arbitration is lost

STATUS_ERR_BAD_ADDRESS If slave is busy, or no slave acknowledged the address
7.3.3.3. Function i2c_master_write_packet_wait()

Writes data packet to slave.

enum status_code i2c master write packet wait (

struct i2c_master module *const module,
struct i2c_master packet *const packet)

Writes a data packet to the specified slave address on the 12C bus and sends a stop condition when
finished.
Note: This will stall the device from any other operation. For interrupt-driven operation, see
i2c_master_read_packet_job.
Table 7-19 Parameters

[in, out] module Pointer to software module struct

[in, out] packet Pointer to 12C packet to transfer
Returns
Status of write packet.
Table 7-20 Return Values

STATUS_OK If packet was write successfully

STATUS BUSY If master module is busy with a job

STATUS_ERR_DENIED If error on bus

STATUS_ERR_PACKET_COLLISION | If arbitration is lost

STATUS _ERR_BAD_ADDRESS If slave is busy, or no slave acknowledged the address
STATUS _ERR_TIMEOUT If timeout occurred

STATUS_ERR_OVERFLOW If slave did not acknowledge last sent data, indicating that slave

does not want more data and was not able to read last data sent
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 22

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

7.3.3.4.

7.3.3.5.

Function i2c_master_write_packet_wait_no_stop()

Writes data packet to slave without sending a stop condition when done.

enum status code i2c master write packet wait no stop(
struct i2c_master module *const module,
struct i2c master packet *const packet)

Writes a data packet to the specified slave address on the 12C bus without sending a stop condition, thus
retaining ownership of the bus when done. To end the transaction, a read or write with stop condition or
sending a stop with the i2c_master send stop function must be performed.

Note: This will stall the device from any other operation. For interrupt-driven operation, see
i2c_master_read_packet_job.

Table 7-21 Parameters

[in, out] module Pointer to software module struct

[in, out] packet Pointer to 12C packet to transfer

Returns
Status of write packet.

Table 7-22 Return Values

STATUS_OK If packet was write successfully

STATUS_BUSY If master module is busy

STATUS _ERR_DENIED If error on bus

STATUS_ERR_PACKET_COLLISION If arbitration is lost

STATUS_ERR_BAD_ADDRESS If slave is busy, or no slave acknowledged the address
STATUS ERR_TIMEOUT If timeout occurred

STATUS_ERR_OVERFLOW If slave did not acknowledge last sent data, indicating that slave
do not want more data

Function i2c_master_send_stop()

Sends stop condition on bus.

void i2c master send stop(
struct i2c master module *const module)

Sends a stop condition on bus.

Note: This function can only be used after the i2c_master write packet wait no stop function. If a stop
condition is to be sent after a read, the i2c_master read packet wait function must be used.

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 23

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Table 7-23 Parameters

[in, out] module Pointer to the software instance struct
7.3.3.6. Function i2c_master_send_nack()
Sends nack signal on bus.
void i2c master send nack(
struct i2c_master module *const module)
Sends a nack signal on bus.
Note: This function can only be used after the i2c_master_write_packet_wait_no_nack function, or
i2c_master_read_byte function.
Table 7-24 Parameters
[in, out] module Pointer to the software instance struct
7.3.3.7. Function i2c_master_read_byte()
Reads one byte data from slave.
enum status code i2c master read byte(
struct i2c master module *const module,
uint8 t * byte)
Table 7-25 Parameters
[in, out] module Pointer to software module struct
[out] byte Read one byte data to slave
Returns
Status of reading byte.
Table 7-26 Return Values
STATUS_OK One byte was read successfully
STATUS _ERR_TIMEOUT If no response was given within specified timeout period
STATUS_ERR_DENIED If error on bus
STATUS_ERR_PACKET_COLLISION If arbitration is lost
STATUS _ERR_BAD_ADDRESS If slave is busy, or no slave acknowledged the address
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICS‘IC')I_I(_)I;\; 24

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

7.3.3.8.

7.3.3.9.

7.3.4.
7.3.4.1.

Function i2c_master_write_byte()

Write one byte data to slave.
enum status code i12c master write byte(
struct i2c_master module *const module,
uint8 t byte)

Table 7-27 Parameters

[in, out] module Pointer to software module struct

[in] byte Send one byte data to slave

Returns
Status of writing byte.

Table 7-28 Return Values

STATUS_OK One byte was write successfully
STATUS_ERR_TIMEOUT If no response was given within specified timeout period
STATUS _ERR_DENIED If error on bus

STATUS_ERR_PACKET_COLLISION If arbitration is lost

STATUS_ERR_BAD_ADDRESS If slave is busy, or no slave acknowledged the address
Function i2c_master_read_packet_wait_no_nack()

enum status code i2c master read packet wait no nack(
struct i2c_master module *const module,
struct i2c_master packet *const packet)

SERCOM I2C Master with DMA Interfaces

Function i2c_master_dma_set_transfer()

Set 12C for DMA transfer with slave address and transfer size.

void i12c master dma set transfer(
struct i2c_master module *const module,
uintleé t addr,
uint8 t length,
enum i2c transfer direction direction)

This function will set the slave address, transfer size and enable the auto transfer mode for DMA.

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 25

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Table 7-29 Parameters

[in, out] module Pointer to the driver instance to lock
[in] addr I2C slave address

[in] length I2C transfer length with DMA

[in] direction I2C transfer direction

7.3.5. Callbacks
7.3.5.1. Function i2c_master_register_callback()

Registers callback for the specified callback type.

void i2c master register callback(
struct i2c _master module *const module,
i2c master callback t callback,
enum i2c master callback callback type)

Associates the given callback function with the specified callback type.
To enable the callback, the i2c_master enable callback function must be used.

Table 7-30 Parameters

[in, out] module Pointer to the software module struct
[in] callback Pointer to the function desired for the specified callback
[in] callback_type Callback type to register

7.3.5.2. Function i2c_master_unregister_callback()

Unregisters callback for the specified callback type.

void i2c master unregister callback(
struct i2c_master module *const module,
enum i2c master callback callback type)

When called, the currently registered callback for the given callback type will be removed.

Table 7-31 Parameters

[in, out] module Pointer to the software module struct
[in] callback_type Specifies the callback type to unregister
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 26

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

7.3.5.3.

7.3.5.4.

7.3.6.
7.3.6.1.

7.3.6.2.

Function i2c_master_enable_callback()

Enables callback.

void i12c master enable callback(
struct i2c_master module *const module,
enum i2c master callback callback type)

Enables the callback specified by the callback_type.

Table 7-32 Parameters

[in, out] module Pointer to the software module struct

[in] callback_type Callback type to enable

Function i2c_master_disable_callback()

Disables callback.

void i2c master disable callback(
struct i2c master module *const module,
enum iZ2c master callback callback type)

Disables the callback specified by the callback_type.

Table 7-33 Parameters

[in, out] module Pointer to the software module struct

[in] callback_type Callback type to disable

Read and Write, Interrupt-driven
Function i2c_master_read_bytes()
enum status code i2c master read bytes(

struct i2c _master module *const module,
struct i2c master packet *const packet)

Function i2c_master_read_packet_job()

Initiates a read packet operation.

enum status code i2c master read packet job(
struct i2c master module *const module,
struct i2c master packet *const packet)

Reads a data packet from the specified slave address on the I2C bus. This is the non-blocking equivalent
of i2c_master_read_packet wait.

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 27

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Table 7-34 Parameters

[in, out] module Pointer to software module struct
[in, out] packet Pointer to I2C packet to transfer
Returns

Status of starting reading 12C packet.
Table 7-35 Return Values

STATUS_OK If reading was started successfully
STATUS_BUSY If module is currently busy with another transfer
7.3.6.3. Function i2c_master_read_packet_job_no_stop()
Initiates a read packet operation without sending a STOP condition when done.
enum status code i2c master read packet job no stop (
struct i2c_master module *const module,
struct i2c_master packet *const packet)
Reads a data packet from the specified slave address on the 12C bus without sending a stop condition,
thus retaining ownership of the bus when done. To end the transaction, a read or write with stop condition
must be performed.
This is the non-blocking equivalent of i2c_master read packet wait no stop.
Table 7-36 Parameters
[in, out] module Pointer to software module struct
[in, out] packet Pointer to I12C packet to transfer
Returns
Status of starting reading 12C packet.
Table 7-37 Return Values
STATUS_OK If reading was started successfully
STATUS BUSY If module is currently busy with another operation
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 28

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

7.3.6.4. Function i2c_master_read_packet_job_no_nack()

Initiates a read packet operation without sending a NACK signal and a STOP condition when done.

enum status code i2c master read packet job no nack(
struct i2c master module *const module,
struct i2c_master packet *const packet)

Reads a data packet from the specified slave address on the I2C bus without sending a nack and a stop
condition, thus retaining ownership of the bus when done. To end the transaction, a read or write with
stop condition must be performed.

This is the non-blocking equivalent of i2Zc_master read packet wait no stop.

Table 7-38 Parameters

[in, out] module Pointer to software module struct
[in, out] packet Pointer to I2C packet to transfer
Returns

Status of starting reading 12C packet.

Table 7-39 Return Values

STATUS_OK If reading was started successfully

STATUS_BUSY If module is currently busy with another operation

7.3.6.5. Function i2c_master_write_bytes()

enum status code i2c master write bytes(
struct i2c_master module *const module,
struct i2c_master packet *const packet)

7.3.6.6. Function i2c_master_write_packet_job()
Initiates a write packet operation.

enum status code i2c master write packet job(
struct i2c master module *const module,
struct i2c_master packet *const packet)

Writes a data packet to the specified slave address on the 12C bus. This is the non-blocking equivalent of
i2c_master_write_packet_wait.

Table 7-40 Parameters

[in, out] module Pointer to software module struct
[in, out] packet Pointer to 12C packet to transfer
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 29

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

7.3.6.7.

7.3.6.8.

Returns
Status of starting writing 12C packet job.

Table 7-41 Return Values

STATUS_OK If writing was started successfully

STATUS_BUSY If module is currently busy with another transfer

Function i2c_master_write_packet_job_no_stop()

Initiates a write packet operation without sending a STOP condition when done.

enum status code i2c master write packet job no stop(
struct i2c_master module *const module,
struct i2c_master packet *const packet)

Writes a data packet to the specified slave address on the 12C bus without sending a stop condition, thus
retaining ownership of the bus when done. To end the transaction, a read or write with stop condition or
sending a stop with the i2c_master send stop function must be performed.

This is the non-blocking equivalent of i2Zc_master write packet wait no_stop.

Table 7-42 Parameters

[in, out] module Pointer to software module struct

[in, out] packet Pointer to I12C packet to transfer

Returns
Status of starting writing 12C packet job.

Table 7-43 Return Values

STATUS_OK If writing was started successfully

STATUS BUSY If module is currently busy with another

Function i2c_master_cancel_job()

Cancel any currently ongoing operation.

void i2c master cancel job(
struct i2c_master module *const module)

Terminates the running transfer operation.

Table 7-44 Parameters

[in, out] module Pointer to software module structure

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 30

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

7.3.6.9. Function i2c_master_get_job_status()

7.4.

7.41.

Get status from ongoing job.

enum status code i2c master get job status(
struct i2c_master module *const module)

Will return the status of a transfer operation.

Table 7-45 Parameters

[in] module Pointer to software module structure

Returns
Last status code from transfer operation.

Table 7-46 Return Values

STATUS_OK No error has occurred
STATUS BUSY If transfer is in progress
STATUS_BUSY If master module is busy
STATUS _ERR_DENIED If error on bus

STATUS_ERR_PACKET_COLLISION | If arbitration is lost

STATUS_ERR_BAD_ADDRESS If slave is busy, or no slave acknowledged the address
STATUS ERR_TIMEOUT If timeout occurred
STATUS_ERR_OVERFLOW If slave did not acknowledge last sent data, indicating that slave

does not want more data and was not able to read

Enumeration Definitions

Enum i2c_master_baud_rate

Values for I2C speeds supported by the module. The driver will also support setting any other value, in
which case set the value in the i2c_master config at desired value divided by 1000.

Example: If 10KHz operation is required, give baud_rate in the configuration structure the value 10.

Table 7-47 Members

Enum value Description

I2C_MASTER_BAUD_RATE_100KHZ Baud rate at 100KHz (Standard-mode)

12C_MASTER_BAUD_RATE_400KHZ Baud rate at 400KHz (Fast-mode)

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 31

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Enum value Description

12C_MASTER_BAUD_RATE_1000KHZ Baud rate at 1MHz (Fast-mode Plus)
I2C_MASTER_BAUD_RATE_3400KHZ Baud rate at 3.4MHz (High-speed mode)
7.4.2. Enum i2c_master_callback
The available callback types for the 12C master module.
Table 7-48 Members
[2C_MASTER_CALLBACK_WRITE_COMPLETE Callback for packet write complete
[2C_MASTER_CALLBACK READ_COMPLETE Callback for packet read complete
[2C_MASTER _CALLBACK_ERROR Callback for error
7.4.3. Enum i2c_master_inactive_timeout
If the inactive bus time-out is enabled and the bus is inactive for longer than the time-out setting, the bus
state logic will be set to idle.
Table 7-49 Members
[2C_MASTER_INACTIVE_TIMEOUT_DISABLED Inactive bus time-out disabled
[2C_MASTER_INACTIVE_TIMEOUT_55US Inactive bus time-out 5-6 SCL cycle time-out
[2C_MASTER_INACTIVE_TIMEOUT _105US Inactive bus time-out 10-11 SCL cycle time-out
I2C_MASTER_INACTIVE_TIMEOUT_205US Inactive bus time-out 20-21 SCL cycle time-out
7.4.4. Enum i2c_master_interrupt_flag
Flags used when reading or setting interrupt flags.
Table 7-50 Members
[2C_MASTER _INTERRUPT_ WRITE Interrupt flag used for write
[2C_MASTER INTERRUPT_READ Interrupt flag used for read
7.4.5. Enum i2c_master_start_hold_time
Values for the possible I2C master mode SDA internal hold times after start bit has been sent.
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 32

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

7.4.6.

7.4.7.

Table 7-51 Members

Enum value Description

I2C_MASTER_START_HOLD_TIME_DISABLED Internal SDA hold time disabled

12C_MASTER_START_HOLD_TIME_50NS_100NS Internal SDA hold time 50ns - 100ns
I2C_MASTER_START_HOLD_TIME_300NS_600NS Internal SDA hold time 300ns - 600ns

|2C_MASTER_START HOLD_TIME_400NS_800NS Internal SDA hold time 400ns - 800ns

Enum i2c_master_transfer_speed

Enum for the transfer speed.

Table 7-52 Members

Enum value Description

[2C_MASTER _SPEED_STANDARD_AND_FAST | Standard-mode (Sm) up to 100KHz and Fast-mode
(Fm) up to 400KHz

|2C_MASTER_SPEED_FAST_MODE_PLUS Fast-mode Plus (Fm+) up to 1MHz

I2C_MASTER_SPEED_HIGH_SPEED High-speed mode (Hs-mode) up to 3.4MHz

Enum i2c_transfer_direction

For master: transfer direction or setting direction bit in address. For slave: direction of request from
master.

Table 7-53 Members

Enum value Description

[2C_TRANSFER_WRITE Master write operation is in progress

12C_TRANSFER_READ Master read operation is in progress

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 33

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

8.1.

8.2.

8.3.

8.4.

Extra Information for SERCOM I2C Driver

Acronyms

Table 8-1 Acronyms on page 34 is a table listing the acronyms used in this module, along with their
intended meanings.

Table 8-1 Acronyms

SDA Serial Data Line
SCL Serial Clock Line
SERCOM Serial Communication Interface

DMA Direct Memory Access

Dependencies

The 12C driver has the following dependencies:
« System Pin Multiplexer Driver

Errata

There are no errata related to this driver.

Module History

Table 8-2 Module History on page 34 is an overview of the module history, detailing enhancements and
fixes made to the module since its first release. The current version of this corresponds to the newest
version listed in Table 8-2 Module History on page 34.

Table 8-2 Module History

Changelog

* Added 10-bit addressing and high speed support in SAM D21
* Separate structure i2c_packet into i2c_master packet and i2c_slave packet

» Added support for SCL stretch and extended timeout hardware features in SAM D21
* Added fast mode plus support in SAM D21

Fixed incorrect logical mask for determining if a bus error has occurred in 12C Slave mode

Initial Release

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 34

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

9. Examples for SERCOM I2C Driver

This is a list of the available Quick Start guides (QSGs) and example applications for SAM 12C Master
Mode (SERCOM 12C) Driver. QSGs are simple examples with step-by-step instructions to configure and
use this driver in a selection of use cases. Note that a QSG can be compiled as a standalone application
or be added to the user application.

. Quick Start Guide for the 12C Master module - Basic Use Case
. Quick Start Guide for the I12C Master module - Callback Use Case
. Quick Start Guide for the 12C Master module - DMA Use Case

9.1. Quick Start Guide for SERCOM I2C Master - Basic

In this use case, the 12C will used and set up as follows:
* Master mode
* 100KHz operation speed
* Not operational in standby
* 10000 packet timeout value
* 65535 unknown bus state timeout value

9.1.1. Prerequisites

The device must be connected to an 12C slave.

9.1.2. Setup

9.1.21. Code

The following must be added to the user application:

* A sample buffer to send, a sample buffer to read:

#define DATA LENGTH 10
static uint8 t write buffer [DATA LENGTH] = {

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
}i

static uint8 t read buffer[DATA LENGTH];

- Slave address to access:
#define SLAVE ADDRESS 0x12

* Number of times to try to send packet if it fails:
#define TIMEOUT 1000

* Globally accessible module structure:

struct i2c master module i2c master instance;

* Function for setting up the module:

void configure i2c master (void)

{
/* Initialize config structure and software module. */
struct i2c master config config i2c master;

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I12C) Driver [APPLICATION 35
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

i2c master get config defaults(&config i2c master);

/* Change buffer timeout to something longer. */
config i2c master.buffer timeout = 10000;

/* Initialize and enable device with config. */
i2c master init (&i2c master instance, CONF I2C MASTER MODULE,
&config i2c master);

i2c master enable (&i2c master instance);

}

Add to user application main () :

/* Configure device and enable. */
configure i2c master();

/* Timeout counter. */
uintlé_t timeout = 0;

/* Init i2c packet. */

struct i2c master packet packet = {
.address = SLAVE ADDRESS,
.data length = DATA LENGTH,
.data = write buffer,
.ten bit address = false,
.high speed = false,
.hs master code = 0x0,

iy

9.1.2.2. Workflow

1.

Atmel

Configure and enable module.

void configure i2c master (void)

{
/* Initialize config structure and software module. */
struct i2c master config config i2c master;
i2c master get config defaults(&config i2c master);

/* Change buffer timeout to something longer. */
config i2c master.buffer timeout = 10000;

/* Initialize and enable device with config. */
i2c master init(&i2c master instance, CONF I2C MASTER MODULE,
&config i2c master);

i2c master enable (&i2c master instance);

1. Create and initialize configuration structure.

struct i2c master config config i2c master;
i2c_master get config defaults(&config i2c master);

2. Change settings in the configuration.

config i2c master.buffer timeout = 10000;

3. Initialize the module with the set configurations.

i2c master init (&i2c master instance, CONF I2C MASTER MODULE,
&config i2c master);

Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 36
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

4. Enable the module.

i2c master enable (&i2c master instance);

2. Create a variable to see when we should stop trying to send packet.

uintlé t timeout = 0;

3. Create a packet to send.

struct i2c master packet packet = {
.address = SLAVE ADDRESS,
.data length = DATA LENGTH,
.data = write buffer,
.ten bit address = false,
.high speed = false,
.hs master code = 0x0,

}i

9.1.3. Implementation

9.1.3.1. Code

Add to user application main ():

/* Write buffer to slave until success. */
while (i2c master write packet wait (&i2c master instance, é&packet) !=
STATUS OK) {
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;
}
}

/* Read from slave until success. */
packet.data = read buffer;
while (i2c master read packet wait(&i2c master instance, &packet) !=
STATUS OK) {
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;
}

9.1.3.2. Workflow

1. Write packet to slave.

while (i2c master write packet wait (&i2c master instance, &packet) !=

STATUS_OK) ({
/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {

break;

}
}
The module will try to send the packet TIMEOUT number of times or until it is successfully sent.
2. Read packet from slave.

packet.data = read buffer;
while (i2c master read packet wait(&i2c master instance, &packet)

STATUS OK) {

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 37
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

9.2.

9.2.2,

9.2.2.1.

/* Increment timeout counter and check if timed out. */
if (timeout++ == TIMEOUT) {
break;

}
}

The module will try to read the packet TIMEOUT number of times or until it is successfully read.

Quick Start Guide for SERCOM I2C Master - Callback

In this use case, the 12C will used and set up as follows:
* Master mode
* 100KHz operation speed
* Not operational in standby
* 65535 unknown bus state timeout value

Prerequisites

The device must be connected to an 12C slave.

Setup
Code

The following must be added to the user application:

A sample buffer to write from, a reversed buffer to write from and length of buffers.
#define DATA LENGTH 8

static uint8 t wr buffer [DATA LENGTH] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
i

static uint8 t wr buffer reversed[DATA LENGTH] = ({
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00
}i

static uint8 t rd buffer[DATA LENGTH];

Address of slave:
#define SLAVE ADDRESS 0x12

Globally accessible module structure:

struct i2c_master module i2c master instance;

Globally accessible packet:

struct i2c _master packet wr packet;
struct i2c master packet rd packet;

Function for setting up module:

void configure i2c(void)

{
/* Initialize config structure and software module */
struct i2c master config config i2c master;

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

i2c master get config defaults(&config i2c master);

/* Change buffer timeout to something longer */
config i2c master.buffer timeout = 65535;

/* Initialize and enable device with config */
while (i2c master init (&i2c master instance, CONF I2C MASTER MODULE,
&config i2c master) \
= STATUS OK) ;

i2c master enable(&i2c master instance);

Callback function for write complete:

void i2c write complete callback(
struct i2c_master module *const module)

{
/* Initiate new packet read */
i2c_master read packet job(&i2c master instance, &rd packet);

Function for setting up the callback functionality of the driver:

void configure i2c_callbacks (void)
{
/* Register callback function. */
i2c master register callback(&i2c master instance,
i2c write complete callback,
I2C MASTER CALLBACK WRITE COMPLETE) ;
i2c master enable callback(&i2c _master instance,
I2C_MASTER CALLBACK WRITE COMPLETE) ;

Add to user application main ():

/* Configure device and enable. */
configure i2c();

/* Configure callbacks and enable. */
configure i2c callbacks () ;

9.2.2.2. Workflow

1. Configure and enable module.

configure i2c();

1. Create and initialize configuration structure.
struct i2c master config config i2c master;
i2c master get config defaults(&config i2c master);

2. Change settings in the configuration.

config i2c master.buffer timeout = 65535;

3. Initialize the module with the set configurations.

while (i2c_master init(&i2c _master instance,

CONF_I2C MASTER MODULE, &config i2c master) \
= STATUS OK) ;

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

4. Enable the module.

i2c master enable (&i2c master instance);

2. Configure callback functionality.

configure i2c callbacks();

1. Register write complete callback.

i2c master register callback(&i2c master instance,
i2e _write complete callback,
I2C ~_MASTER CALLBACK WRITE COMPLETE)

2. Enable write complete callback.

i2c master enable callback(&i2c master instance,
12C MASTER CALLBACK WRITE COMPLETE)

3. Create a packet to send to slave.

SLAVE ADDRESS;
DATA LENGTH;
wr buffer;

wr packet.address
wr_packet.data length
wr_ packet.data

9.2.3. Implementation

9.2.3.1. Code

Add to user application main ():

while (true) {
/* Infinite loop */
if (!port pin get input level (BUTTON O PIN)) {
while (!port pin get input level(BUTTON 0 PIN)) {
/* Waiting for button steady */
}

/* Send every other packet with reversed data */

if (wr_packet.data[0] == 0x00) {
wr packet.data = &wr buffer reversed[0];
} else {

wr packet.data = &wr buffer[0];
}

i2c master write packet job(&i2c master instance, &wr packet);

9.2.3.2. Workflow

1. Write packet to slave.

wr packet.address SLAVE ADDRESS;
wr packet.data length = DATA LENGTH;
wr packet.data wr buffer;

2. Infinite while loop, while waiting for interaction with slave.

while (true) {
/* Infinite loop */
if (!port pin get input level (BUTTON O PIN)) {
while (!port pin get input level(BUTTON 0 PIN)) {
/* Waiting for button steady */
}

/* Send every other packet with reversed data */

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 40
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

if (wr packet.data[0] == 0x00) {

wr packet.data = &wr buffer reversed[0];
} else {

wr packet.data = &wr buffer[0];

}

i2c master write packet job(&i2c master instance, &wr packet);

9.24. Callback
Each time a packet is sent, the callback function will be called.
9.2.4.1. Workflow

* Write complete callback:
1. Send every other packet in reversed order.

if (wr_packet.data[0] == 0x00) {
wr packet.data = &wr buffer reversed[0];
} else {

wr packet.data = &wr buffer[0];
}

2. Write new packet to slave.

SLAVE ADDRESS;
DATA LENGTH;
wr buffer;

wr packet.address
wr packet.data length
wr packet.data

9.3. Quick Start Guide for Using DMA with SERCOM I2C Master

The supported board list:
+ SAMD21 Xplained Pro
*+ SAMR21 Xplained Pro
* SAML21 Xplained Pro
* SAML22 Xplained Pro
* SAMDA1 Xplained Pro
*+ SAMC21 Xplained Pro

In this use case, the I2C will used and set up as follows:
* Master mode
* 100KHz operation speed
* Not operational in standby
* 10000 packet timeout value
e 65535 unknown bus state timeout value

9.3.1. Prerequisites

The device must be connected to an 12C slave.

9.3.2. Setup
9.3.2.1. Code

The following must be added to the user application:

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 41
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

* A sample buffer to send, number of entries to send and address of slave:

#define DATA_LENGTH 10
static uint8 t buffer [DATA LENGTH] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

}:

#define SLAVE ADDRESS 0x12

Number of times to try to send packet if it fails:
#define TIMEOUT 1000

* Globally accessible module structure:

struct i2c master module i2c master instance;

* Function for setting up the module:

static void configure i2c master (void)

{
/* Initialize config structure and software module. */
struct i2c master config config i2c master;
i2c master get config defaults(&config i2c master);

/* Change buffer timeout to something longer. */
config i2c master.buffer timeout = 10000;

/* Initialize and enable device with config. */
i2c master init (&i2c master instance, CONF_ I2C MASTER MODULE,
&config i2c master);

i2c _master enable(&i2c master instance);

}

* Globally accessible DMA module structure:

struct dma resource example resource;

* Globally transfer done flag:

static volatile bool transfer is done = false;

* Globally accessible DMA transfer descriptor:

COMPILER ALIGNED (16)
DmacDescriptor example descriptor;

. Function for transfer done callback:

static void transfer done(struct dma resource* const resource)

{
UNUSED (resource) ;

transfer is done = true;

}

* Function for setting up the DMA resource:

static void configure dma resource (struct dma resource *resource)

{
struct dma resource config config;
dma get config defaults(&config);
config.peripheral trigger = CONF I2C DMA TRIGGER;
AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 42
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

config.trigger action = DMA TRIGGER ACTON BEAT;

dma_allocate (resource, &config);

}

* Function for setting up the DMA transfer descriptor:

static void setup dma descriptor (DmacDescriptor *descriptor)
{

struct dma descriptor config descriptor config;

dma descriptor get config defaults(&descriptor config);

descriptor config.beat size = DMA BEAT SIZE BYTE;

descriptor config.dst increment enable = false;
descriptor config.block transfer count = DATA LENGTH;
descriptor config.source address = (uint32 t)buffer + DATA LENGTH;

descriptor config.destination address =
(uint32 t) (&i2c master instance.hw->I2CM.DATA.reg);

dma_descriptor create (descriptor, &descriptor config);

}
* Add to user application main ():

configure i2c master();

configure dma resource (&example resource);
setup dma descriptor (&example descriptor);
dma add descriptor (&example resource, &example descriptor);
dma register callback(&example resource, transfer done,
DMA CALLBACK TRANSFER DONE) ;
dma enable callback (&example resource, DMA CALLBACK TRANSFER DONE) ;

9.3.2.2. Workflow

1. Configure and enable module:

configure i2c master();

1. Create and initialize configuration structure.

struct i2c master config config i2c master;
i2c_master get config defaults(&config i2c master);

2. Change settings in the configuration.

config i2c master.buffer timeout = 10000;

3. Initialize the module with the set configurations.
i2c master init (&i2c master instance, CONF I2C MASTER MODULE,
&config i2c master);

4. Enable the module.
i2c master enable(&i2c master instance);

2. Configure DMA

1. Create a DMA resource configuration structure, which can be filled out to adjust the
configuration of a single DMA transfer.

struct dma_ resource config config;

Atmel Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION 43
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

2. Initialize the DMA resource configuration struct with the module's default values.

dma get config defaults(&config);

Note: This should always be performed before using the configuration struct to ensure that

all values are initialized to known default settings.

3. Set extra configurations for the DMA resource. It is using peripheral trigger. SERCOM TX

trigger causes a transaction transfer in this example.

config.peripheral trigger = CONF I2C DMA TRIGGER;
config.trigger action = DMA TRIGGER ACTON BEAT;

4. Allocate a DMA resource with the configurations.

dma_allocate (resource, &config);

5. Create a DMA transfer descriptor configuration structure, which can be filled out to adjust the

configuration of a single DMA transfer.

struct dma descriptor config descriptor config;

6. Initialize the DMA transfer descriptor configuration struct with the module's default values.

dma_descriptor get config defaults (&descriptor config);

Note: This should always be performed before using the configuration struct to ensure that

all values are initialized to known default settings.

7. Set the specific parameters for a DMA transfer with transfer size, source address, and

destination address.

descriptor config.beat size = DMA BEAT SIZE BYTE;
descriptor config.dst increment enable = false;
descriptor config.block transfer count = DATA LENGTH;

descriptor config.source address = (uint32 t)buffer + DATA LENGTH;

descriptor config.destination address =

(uint32 t) (&12c master instance.hw->I2CM.DATA.req);

8. Create the DMA transfer descriptor.

dma descriptor create(descriptor, &descriptor config);

9.3.3. Implementation
9.3.3.1. Code

Add to user application main ():

dma start transfer job (&example resource);

i2c_master dma set transfer(&i2c master instance, SLAVE ADDRESS,

DATA LENGTH, I2C TRANSFER WRITE) ;

while (!transfer is done) {
/* Wait for transfer done */

}

while (true) {
}

AtmeL Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I2C) Driver [APPLICATION 44

NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

9.3.3.2. Workflow
1.

Atmel

Start the DMA transfer job.

dma start transfer job (&example resource);

Set the auto address length and enable flag.

i2c master dma set transfer (&i2c master instance, SLAVE ADDRESS,

DATA LENGTH, I2C TRANSFER WRITE) ;

Waiting for transfer complete.

while (!transfer is done) {
/* Wait for transfer done */

}

Enter an infinite loop once transfer complete.

while (true) {
}

Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM I12C) Driver [APPLICATION 45
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

10. Document Revision History

Doc. Rev.

42117E

Date ‘ Comments

12/2015 | Added support for SAM L21/L22, SAM DA1, SAM D09, and SAM C21

42117D

12/2014 Added support for 10-bit addressing and high speed in SAM D21. Added support
for SAM R21 and SAM D10/D11.

42117C

01/2014 Added support for SAM D21

42117B

06/2013 Corrected documentation typos. Updated 12C Bus State Diagram.

42117A

06/2013 | Initial release

Atmel

Atmel AT03250: SAM D/R/L/C 12C Master Mode (SERCOM 12C) Driver [APPLICATION
NOTE]

Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

46

Atmel | Enabiing Unlimited Possibilities’ fl¥lin]3[o]w
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42117E-SAM-12C-Bus-Driver-Sercom-12C_AT03250_Application Note-12/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected®, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Software License
	2. Prerequisites
	3. Module Overview
	3.1. Driver Feature Macro Definition
	3.2. Functional Description
	3.3. Bus Topology
	3.4. Transactions
	3.4.1. Address Packets
	3.4.2. Data Packets
	3.4.3. Transaction Examples
	3.4.4. Packet Timeout
	3.4.5. Repeated Start

	3.5. Multi Master
	3.5.1. Arbitration
	3.5.2. Clock Synchronization

	3.6. Bus States
	3.7. Bus Timing
	3.7.1. Unknown Bus State Timeout
	3.7.2. SDA Hold Timeout

	3.8. Operation in Sleep Modes

	4. Special Considerations
	4.1. Interrupt-driven Operation

	5. Extra Information
	6. Examples
	7. API Overview
	7.1. Structure Definitions
	7.1.1. Struct i2c_master_config
	7.1.2. Struct i2c_master_module
	7.1.3. Struct i2c_master_packet

	7.2. Macro Definitions
	7.2.1. Driver Feature Definition
	7.2.1.1. Macro FEATURE_I2C_FAST_MODE_PLUS_AND_HIGH_SPEED
	7.2.1.2. Macro FEATURE_I2C_10_BIT_ADDRESS
	7.2.1.3. Macro FEATURE_I2C_SCL_STRETCH_MODE
	7.2.1.4. Macro FEATURE_I2C_SCL_EXTEND_TIMEOUT
	7.2.1.5. Macro FEATURE_I2C_DMA_SUPPORT

	7.3. Function Definitions
	7.3.1. Lock/Unlock
	7.3.1.1. Function i2c_master_lock()
	7.3.1.2. Function i2c_master_unlock()

	7.3.2. Configuration and Initialization
	7.3.2.1. Function i2c_master_is_syncing()
	7.3.2.2. Function i2c_master_get_config_defaults()
	7.3.2.3. Function i2c_master_init()
	7.3.2.4. Function i2c_master_enable()
	7.3.2.5. Function i2c_master_disable()
	7.3.2.6. Function i2c_master_reset()

	7.3.3. Read and Write
	7.3.3.1. Function i2c_master_read_packet_wait()
	7.3.3.2. Function i2c_master_read_packet_wait_no_stop()
	7.3.3.3. Function i2c_master_write_packet_wait()
	7.3.3.4. Function i2c_master_write_packet_wait_no_stop()
	7.3.3.5. Function i2c_master_send_stop()
	7.3.3.6. Function i2c_master_send_nack()
	7.3.3.7. Function i2c_master_read_byte()
	7.3.3.8. Function i2c_master_write_byte()
	7.3.3.9. Function i2c_master_read_packet_wait_no_nack()

	7.3.4. SERCOM I2C Master with DMA Interfaces
	7.3.4.1. Function i2c_master_dma_set_transfer()

	7.3.5. Callbacks
	7.3.5.1. Function i2c_master_register_callback()
	7.3.5.2. Function i2c_master_unregister_callback()
	7.3.5.3. Function i2c_master_enable_callback()
	7.3.5.4. Function i2c_master_disable_callback()

	7.3.6. Read and Write, Interrupt-driven
	7.3.6.1. Function i2c_master_read_bytes()
	7.3.6.2. Function i2c_master_read_packet_job()
	7.3.6.3. Function i2c_master_read_packet_job_no_stop()
	7.3.6.4. Function i2c_master_read_packet_job_no_nack()
	7.3.6.5. Function i2c_master_write_bytes()
	7.3.6.6. Function i2c_master_write_packet_job()
	7.3.6.7. Function i2c_master_write_packet_job_no_stop()
	7.3.6.8. Function i2c_master_cancel_job()
	7.3.6.9. Function i2c_master_get_job_status()

	7.4. Enumeration Definitions
	7.4.1. Enum i2c_master_baud_rate
	7.4.2. Enum i2c_master_callback
	7.4.3. Enum i2c_master_inactive_timeout
	7.4.4. Enum i2c_master_interrupt_flag
	7.4.5. Enum i2c_master_start_hold_time
	7.4.6. Enum i2c_master_transfer_speed
	7.4.7. Enum i2c_transfer_direction

	8. Extra Information for SERCOM I2C Driver
	8.1. Acronyms
	8.2. Dependencies
	8.3. Errata
	8.4. Module History

	9. Examples for SERCOM I2C Driver
	9.1. Quick Start Guide for SERCOM I2C Master - Basic
	9.1.1. Prerequisites
	9.1.2. Setup
	9.1.2.1. Code
	9.1.2.2. Workflow

	9.1.3. Implementation
	9.1.3.1. Code
	9.1.3.2. Workflow

	9.2. Quick Start Guide for SERCOM I2C Master - Callback
	9.2.1. Prerequisites
	9.2.2. Setup
	9.2.2.1. Code
	9.2.2.2. Workflow

	9.2.3. Implementation
	9.2.3.1. Code
	9.2.3.2. Workflow

	9.2.4. Callback
	9.2.4.1. Workflow

	9.3. Quick Start Guide for Using DMA with SERCOM I2C Master
	9.3.1. Prerequisites
	9.3.2. Setup
	9.3.2.1. Code
	9.3.2.2. Workflow

	9.3.3. Implementation
	9.3.3.1. Code
	9.3.3.2. Workflow

	10. Document Revision History

