

AVR32788: AVR®32 How to use the SSC in I2S
mode

Features
• I²S protocol overview
• I²S on the AVR32
• I²S sample rate configurations
• Example of use with AT32UC3A on EVK1105 board

1 Introduction
This application note describes how the I²S protocol is handled on AVR32 devices
and gives important information about how to get the best configuration for different
sample rates.

32-bit
Microcontrollers

Application Note

Rev. 32127A-AVR32-06/09

2 AVR32788
32127A-AVR32-06/09

2 I²S protocol overview
Inter-IC Sound bus (I²S) is a serial bus interface that is used to transport digital sound
samples between different devices like A/D converters or digital signal processors.

The protocol uses 3 lines to transport the data from a device to another (clock line,
data line and word select line). As in most communication protocols, this protocol
needs a master and a slave to operate. The role of the master is to provide the clock
and word select lines.

Figure 2-1 I²S protocol signal routing

The clock is operating at a frequency which is a multiple of the sample rate of the
audio stream. This frequency depends also on the number of bits per sample and the
number of channels. For example, a stereo audio stream with samples using 16 bits
of precision and with a sampling frequency of 44.1KHz would have to use a clock
rated at 1,4112 MHz to transport this audio stream. (2 (stereo) x 16 (precision) x
44100 (Fs) = 1411200 Hz).

The data is fed on the data line at the rate of the clock line with one bit clock delay. It
is transmitted in Little-Endian format (MSB first) and there is no limitation on the
sample length but usually it uses a 16/20/24 or 32 bits format.

The word select line is used as a control signal. It tells the slave which channel the
sample is designed for (left or right channel). During the transmission of one sample
this line is either high or low with one clock ahead. This allows both the transmitting
and receiving devices to have different sample length but also to not care about the
audio precision of the remote device.

Figure 2-2 I²S protocol waveforms

Note that the word select line can have a different length (in term of bit clock), than
the data resolution (sample precision). If the word select’s length is smaller, then the

Master SlaveC

WS

D

C: Clock line, WS: Word Select line, D: Data line

The Master is the transmitter

Master SlaveC

WS

D

The Slave is the transmitter

Slave SlaveC

WS

D

The Controller is the master

Controller

 AVR32788

 3

32127A-AVR32-06/09

data will be truncated and only the most significant bits will be kept on the data line. In
opposite, if the word select’s length is greater, the rest of the data bit will be fed with
zeros, which will automatically cast the sample precision to the appropriate resolution
thanks to the endianness of the data. This feature makes it possible to mix and match
components of varying precision without reconfiguration.

Figure 2-3 I²S protocol waveforms – WS length smaller than Data length

Figure 2-4 I²S protocol waveforms – WS length greater than Data length

3 I²S interface

3.1 Basic interface
The basic interface consists of three signals:

 Bit-clock

 Data line:

 Word select line: This line has the frequency of the sample rate since it
toggles between the left and the right channel data.

This interface can be provided by the SSC module on AVR32 devices.

3.2 Systems with master clock
In addition to the basic I²S interface very often a master clock is required that must
run at a multiple of the sample rate. Common ratios are e.g. 256 and 384.

The master clock must be synchronous to the other signals of the I²S interface but
there is usually no phase relationship. This means that the clock can be generated by
other hardware modules that have no relation to the I²S protocol handling but they
their clock must be synchronous.

4 AVR32788
32127A-AVR32-06/09

4 I²S on AVR32

4.1 Basic I²S interface
The basic I²S interface can be emulated by the SSC module on the AVR32. This
module is capable to handle the I²S protocol in hardware.

4.1.1 Bit-clock generation

The bit-clock for the I²S protocol is generated in the SSC module and is based on a
counter. The input to the counter can be an internal or external source. The internal
source is provided by the bus the SSC module is connected to which is e.g. PBA on
the UC3A.

If the clock divider is used it divides the clock first by ½ and this is fed into the
counter. The pre-scaling is done to ensure a 50% duty cycle.

Figure 4-1 SSC clock generation

Following relative error rates are expected if a clock of 62.0928 MHz (5.5 *
11.2896MHz) is used as the input to the SSC module and the stereo samples are 16-
bits.

Table 4-1 Relative error rates for the bit-clock
Sample
rate (Hz)

Bit-clock (Hz) Actual
generated bit-
clock

Relative error
%

Musical
interval
(semitones

8000 256000 256582 0.23 0.039
11025 352800 352800 0 0
16000 512000 508957 -0.59 -0.130
22050 705600 705600 0 0
32000 1024000 1034880 1.06 0.138
44100 1411200 1411200 0 0
48000 1536000 1552320 1.06 0.138
88200 2822400 2822400 0 0
96000 3072000 3104640 1.06 0.138

4.2 Generating a master clock for I²S
The SSC module that is used to emulate the I²S protocol does not provide a master
clock. Because of that this clock must be generated elsewhere. Some possible clock
sources are a generic clock, a timer/counter or a PWM module.

The generic clock is the recommended way to generate the master clock since it
offers more options to choose from source clocks like oscillators and PLLs.

 AVR32788

 5

32127A-AVR32-06/09

Because the master clock must be synchronous to the sample rate both clock
sources to the generic clock and to the SSC module must have the same source.
This inflexibility leaves to a higher relative error rate as shown in. The table assumes
that the external DAC needs a master clock that is 256 times the sample rate (implies
16-bit samples) and the source clock of the SSC and the generic clock is
45.1584MHz.

Table 4-2 Relative error rates
Sample
rate (Hz)

Actual
generated
sample rate (Hz)

Relative
error %

Musical
interval
(semitones

8000 8018 0.23 0.04
11025 11025 0 0
16000 14700 -8.13 -1.47
22050 22050 0 0
32000 29400 -8.13 -1.47
44100 44100 0 0
48000 44100 -8.13 -1.47
88200 88200 0 0
96000 88200 -8.13 -1.47

Since the SSC module derives its clock internally only from the peripheral bus, a
change to other clock sources is not the best approach to provide better error rates
for other sampling rates, since the whole system clock needs to be changed. This will
affect most of the modules that are connected to the different system clocks and
these would need a re-configuration.

4.3 Generating a master clock and an I²S clock with the same oscillator
A better solution is to output the generic clock on a pin and route the clock to the “RX-
Clock” pin or even the “TX-Clock” pin (bit-clock output) of the of the SSC module. The
TX-Clock pin can only be used if the external DAC device does not need the bit-clock.
This approach makes the SSC module independent of the peripheral clock and now it
is possible to generate sample rates from different system clocks. Note that on the
AVR32, this will involve the use of 2 internal generic clocks fed by the same oscillator:
one to generate the master clock and one to feed the “RX-Clock” pin.

Figure 4-2 Optimal I²S generation with the AVR32

For example a system has the following constellation:

• Oscillator 0 (OSC0) with 12MHz

6 AVR32788
32127A-AVR32-06/09

• Oscillator 1 (OSC1) with 11.289600MHz

• PLL0 fed from OSC1 with 62.092MHz

• PLL1 fed from OSC0 with 48MHz

These settings are not optimum but they are available on the EVK1105 and shall
serve as an example.

Table 4-2 Relative error rates for the bit-clock using 12MHz (OSC0) and
11.2896MHz (OSC1) crystals
Sample
rate (Hz)

Actual
generated
sample rate (Hz)

Used clock Relative
error %

Musical
interval
(semitones

8000 8085 PLL0 1.06 0.04
11025 11025 OSC1 0 0
16000 15625 PLL1 -2.34 -0.14
22050 22050 OSC1 0 0
24000 24255 PLL0 1.06 0.04
32000 31250 PLL1 -2.34 -0.14
44100 44100 OSC1 0 0
48000 46875 PLL1 -2.34 -0.14

By replacing the 12MHz crystal by a 14.7456MHz crystal, the settings are optimum
for common sampling rates. Then the oscillators’ configuration becomes:

• Oscillator 0 (OSC0) with 14.7456MHz

• Oscillator 1 (OSC1) with 11.289600MHz

• PLL0 fed from OSC0 with 110.592 MHz

• PLL1 fed from OSC0 with 47.9232MHz

Table 4-3 Relative error rates for the bit-clock using 14.7456MHz (OSC0) and
11.2896MHz (OSC1) crystals
Sample
rate (Hz)

Actual
generated
sample rate (Hz)

Used clock Relative
error %

Musical
interval
(semitones

8000 8000 PLL0 0 0
11025 11025 OSC1 0 0
16000 16000 PLL0 0 0
22050 22050 OSC1 0 0
24000 24000 PLL0 0 0
32000 32000 PLL0 0 0
44100 44100 OSC1 0 0
48000 48000 PLL0 0 0

Note that with this configuration, the USB can be fed with a 47.9232MHz clock signal
using PLL1. The closet achievable CPU frequency which can be generated is
55.296MHz.

 AVR32788

 7

32127A-AVR32-06/09

4.4 Software configuration

4.4.1 Using the I²S driver from the Software Framework

On the AVR32, the SSC peripheral is used to emulate the I²S protocol. The SSC to
I²S driver provides a basic interface to initialize, control and send a sample through
the serial bus line. This driver is located in the Software Framework under
/DRIVERS/SSC/I2S/.

At first the module has to be initialized with the function ssc_i2s_init. This function
takes in parameters the sample frequency of the audio stream (usually 32000/44100
or 48000Hz), the data bit resolution, also called the sample precision (usually
16/20/24 or 32 bits), the frame bit resolution which is the word select bit clock count
(usually the same length as the data bit resolution) and also the PBA frequency.

An I²S mode must also be specified to configure the SSC module and it can be one of
the following modes:

• SSC_I2S_MODE_STEREO_OUT: Two output channels.

• SSC_I2S_MODE_STEREO_OUT_EXT_CLK: Two output channels sampled
with an external clock received from the “RX Clock” line. For this particular
mode, the PBA frequency passed in parameter to the ssc_i2s_init function
will be ignored.

• SSC_I2S_MODE_SLAVE_STEREO_OUT: Two output channels controlled
by the DAC.

• SSC_I2S_MODE_STEREO_OUT_MONO_IN: Two output, one input
channel. This mode uses two I²S buses.

• SSC_I2S_MODE_RIGHT_IN: Right channel in. Used because one SSC only
can manage one input channel at a time.

A simple API can be used to send a sample on the I²S bus, ssc_i2s_transfer, but it
is recommended to use a PDCA channel in order to free CPU resources. This can be
done using the following routine:

// Disable interrupts

if ((global_interrupt_enabled = Is_global_interrupt_enabled()))

Disable_global_interrupt();

// Wait for the next frame synchronization event

// to avoid channel inversion if the previous PDCA transfer

// is already completed

if (pdca_get_transfer_status(SSC_TX_PDCA_CHANNEL) &

 PDCA_TRANSFER_COMPLETE)

{

while (gpio_get_pin_value(SSC_TX_FRAME_SYNC_PIN));

while (!gpio_get_pin_value(SSC_TX_FRAME_SYNC_PIN));

}

// Load the data to be transferred onto the PDCA channel

pdca_reload_channel(SSC_TX_PDCA_CHANNEL, data, sizeof(data));

// Re-enable the interrupts

if (global_interrupt_enabled)

Enable_global_interrupt();

8 AVR32788
32127A-AVR32-06/09

For a complete list of the functions provided by this driver, please refer directly to the
ssc_i2s.h file.

4.4.2 Configuring the I²S on the EVK1105 board

The EVK1105 board uses a TLV320AIC23B I²S audio codec to output the audio
stream.

By default, the audio player application (please refer to the application note
AVR32709 for more information) is configured to use the PBA frequency in order to
generate the I²S clock signal while a generic clock is used to generate the master
clock signal to feed the I²S audio codec.

4.4.2.1 Using the TLV320AIC23B codec with the 11.2896MHz crystal

This is the default configuration. It provides optimal settings to the codec to handle
44.1 KHz sampling rates. All the other main sampling rates can be generated with a
low relative error rate (see “Table 4-3 Relative error rates for the bit-clock” for more
details).

This mode is set by using the following configuration (in /APPLICATIONS/EVK1105-AUDIO-
PLAYER-MASS-STORAGE/):

• ./CONF/conf_tlv320aic23b.h
o AIC23B_MCLK_HZ 11289600
o AIC23B_DAC_USE_RX_CLOCK DISABLED

• Use ./CLOCKS/clocks_fosc0_12000000_fosc1_11289600.c

Figure 4-3 EVK1105 default I²S clock configuration

Note that on the audio player application, this mode still requires the 12MHz crystal to
support the USB protocol.

4.4.2.2 Using the TLV320AIC23B codec in USB mode with only one crystal

The TLV320AIC23B audio codec also provides a USB mode interface, which means
it can be used directly with a 12MHz crystal. The main sampling frequency are then
supported by this mode but gives some small error on non-12MHz-multiple
frequencies such as the 44.1KHz. Therefore this mode is not optimal to play such
sampling rates but it has the advantage to use only one 12MHz crystal which can also
be used to feed other modules such as the USB IP.

This mode is set by using the following configuration (in /APPLICATIONS/EVK1105-AUDIO-
PLAYER-MASS-STORAGE/):

• ./CONF/conf_tlv320aic23b.h

 AVR32788

 9

32127A-AVR32-06/09

o AIC23B_MCLK_HZ 12000000
o AIC23B_DAC_USE_RX_CLOCK DISABLED

• Use ./CLOCKS/clocks_fosc0_12000000.c

Figure 4-4 The TLV320AIC23B audio codec used in USB mode with 1 crystal

4.4.2.3 Using the TLV320AIC23B codec in USB mode with two crystals

This mode combines the advantage of the USB mode by supporting every main
sample frequency and of the 11.2896MHz crystal to generate accurate sampling
rates.

This mode is set by using the following configuration (in /APPLICATIONS/EVK1105-AUDIO-
PLAYER-MASS-STORAGE/):

• ./CONF/conf_tlv320aic23b.h
o AIC23B_MCLK_HZ 12000000
o AIC23B_DAC_USE_RX_CLOCK DISABLED

• Use ./CLOCKS/clocks_fosc0_12000000_fosc1_11289600.c

Figure 4-5 The TLV320AIC23B audio codec used in USB mode with 2 crystals

4.4.2.4 Switching clock source with the TLV320AIC23B codec

Some DAC don’t have this USB mode feature to handle multiple frequency rates with
the same oscillator. Therefore the application must be able to switch clocks while it is
running.

The audio player application on the EVK1105 implements this feature by using 2
generic clocks to generate both the master clock and the “TX Clock”. Please read the
“Generating a master clock and an I²S clock with the same oscillator” section for more
information.

This mode is set by using the following configuration (in /APPLICATIONS/EVK1105-AUDIO-
PLAYER-MASS-STORAGE/):

• ./CONF/conf_tlv320aic23b.h
o AIC23B_DAC_USE_RX_CLOCK ENABLED

• Use one of the following files (depending on the hardware configuration):

10 AVR32788
32127A-AVR32-06/09

o ./CLOCKS/clocks_fosc0_12000000_fosc1_11289600.c
o ./CLOCKS/clocks_fosc0_14745600_fosc1_11289600.c

• PB30 (pin #21) must be linked with PA18 (pin #62).

 AVR32788

 11

32127A-AVR32-06/09

5 Table of Contents
AVR[appnote nr]: [title] .. 1
Features... 1
1 Introduction .. 1
2 I²S protocol overview... 2
3 I²S interface .. 3

3.1 Basic interface... 3
3.2 Systems with master clock .. 3

4 I²S on AVR32 .. 4
4.1 Basic I²S interface ... 4

4.1.1 Bit-clock generation... 4
4.2 Generating a master clock for I²S.. 4
4.3 Generating a master clock and an I²S clock with the same oscillator................. 5
4.4 Software configuration... 7

4.4.1 Using the I²S driver from the Software Framework.. 7
4.4.2 Configuring the I²S on the EVK1105 board ... 8

4.4.2.1 Using the TLV320AIC23B codec with the 11.2896MHz crystal............. 8
4.4.2.2 Using the TLV320AIC23B codec in USB mode with only one crystal ... 8
4.4.2.3 Using the TLV320AIC23B codec in USB mode with two crystals 9
4.4.2.4 Switching clock source with the TLV320AIC23B codec 9

5 Table of Contents... 11
Disclaimer.. 12

32127A-AVR32-06/09

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
Avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	Features
	1 Introduction
	2 I²S protocol overview
	3 I²S interface
	3.1 Basic interface
	3.2 Systems with master clock

	4 I²S on AVR32
	4.1 Basic I²S interface
	4.1.1 Bit-clock generation

	4.2 Generating a master clock for I²S
	4.3 Generating a master clock and an I²S clock with the same oscillator
	4.4 Software configuration
	4.4.1 Using the I²S driver from the Software Framework
	4.4.2 Configuring the I²S on the EVK1105 board

	5 Table of Contents
	Disclaimer

