

Using Sigma-Delta Analog-to-Digital Converter (SDADC) on a SAMC MCU with MPLAB Harmony v3

Introduction

The Sigma-Delta Analog-to-Digital Converter (SDADC) converts analog signals to digital values. The SDADC has 16-bit resolution at 1ksps and is capable of converting up to 1.5 Msps divided by the data over sampling ratio (OSR).

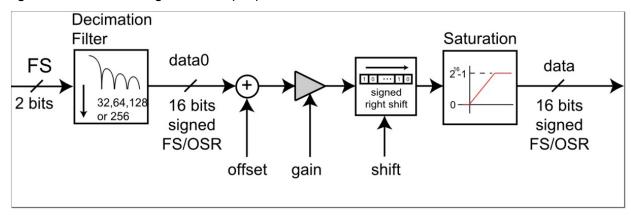
The input selection has up to three differential analog channels. The SDADC provides signed results. ADC measurements can be started by either application software or an incoming event from another peripheral in the device. ADC measurements can be started with predictable timing and without software intervention. The SDADC also integrates a Sleep mode and a conversion sequencer. These features reduce power consumption and processor intervention. A set of reference voltages are generated internally.

This document describes the SDADC in ATSAMC21N device is configured in differential mode and the SDADC results are displayed on a console. It also provides example code for both interrupt and polling methods, developed using MPLAB® X IDE and MPLAB Harmony v3 Configurator for reference.

Features

- Sigma-Delta converter with 16-bit resolution at 1 ksps
 - Three external analog differential input pairs
- · Conversion range 0V to a wide range of VREF options
 - Hardware gain, offset, and shift compensation

Table of Contents

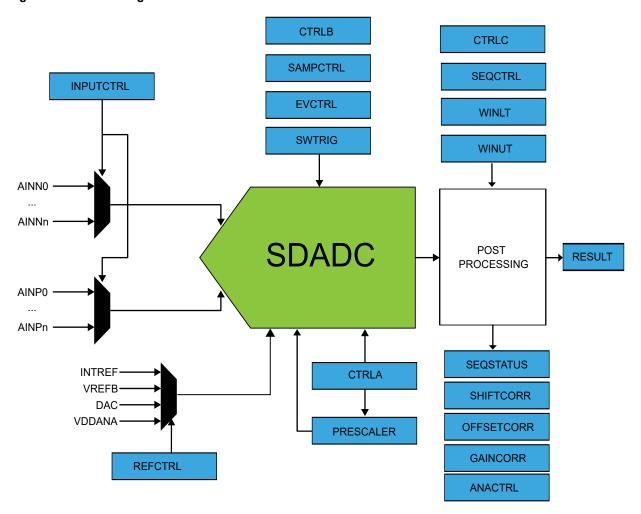

Intro	oducti	on	1		
1.	Module Overview				
	1.1.	Description	3		
	1.2.	Register Interface	4		
2.	Fund	5			
	2.1.	Basic Operation	5		
	2.2.	Usage Summary	6		
3.	Firm	8			
	3.1.	MPLAB Harmony v3 Configurator SDADC Configurations	8		
	3.2.	Peripheral Library (PLIB) APIs	9		
	3.3.	Callback APIs	9		
	3.4.	Support APIs	10		
	3.5.	SDADC Example	10		
4.	4. Conclusion				
5.	Refe	rences	13		
The	Micro	ochip Website	14		
Pro	duct (Change Notification Service	14		
Cus	tome	r Support	14		
Microchip Devices Code Protection Feature					
Leg	al No	tice	14		
Tra	demai	rks	15		
Qua	ality M	lanagement System	15		
Wo	rldwid	e Sales and Service	16		

1. Module Overview

1.1 Description

The Sigma-Delta Analog-to-Digital Converter (SDADC) converts an analog voltage to a signed 16-bit value by integrating and decimating the output of a sigma-delta modulator. The filtering and decimation are done using a sinc-based filter that has zeros placed to minimize the aliasing effects of the decimation. This is a 3rd order sinc filter with an adjustable Oversampling Ratio (OSR) to achieve higher throughput, as shown in the figure below. For example, an OSR of 64 will provide an output at 23 ksps while an OSR of 1024 will produce an output at a sample rate of 1.4 ksps.

Figure 1-1. Cascaded Integrator-Comb (CIC) Decimation Filter



The SDADC provides a signed result in a 24-bit register to allow for gain and offset correction without overflow in hardware. Because the result is in 2's complement format, the SDADC result is signed 16-bit (maximum) using ±VREF. Using the internal VREF set at 1.024V, the SDADC will produce codes for ±1.024V. The internal VREF can be configured to supply a reference of 1.024V, 2.048V, and 4.096V.

Note: The range selected in the REFSEL register must match the supplied VREF and must be set independently of the internal VREF, if not it will result in incorrect readings.

1.2 Register Interface

Figure 1-2. SDADC Register Interface

2. Functional Description

The Sigma Delta Analog-to-Digital Converter (SDADC) can be used for high-resolution ADC measurements, and these measurements can include: Temperature sensors, Thermocouples, Cold-Junction Compensation, 3-4 Wire RTD sensors, 4-20 mA current loops, current (Shunt), as well as scales and load cells. The Sigma-Delta architecture provides a low-cost solution for these precision measurements that requires only a simple R-C lo-pass filter for antialiasing.

A generic clock (GCLK_SDADC) is used to generate the CLK_SDADC through a 7-bit prescaler. The GCLK must be configured and enabled before using the SDADC. The sampling clock is derived from the CLK_SDADC/4. Therefore, the maximum CLK_SDADC is 6 MHz, as the maximum sampling frequency is 1.5 MHz. The GCLK_SDADC is asynchronous to the APB bus clock, therefore, writes to registers require synchronization. This generic clock allows configuring CLK_SDADC to run in sleep modes based on the values of RUNSTDBY (Run in Standby), ONDEMAND (On Demand Control) and ENABLE (Enable) bits of the CTRLA (Control A) register. The 7-bit prescaler enables flexible sampling frequency adjustment.

The SDADC supports differential measurements on three analog input channels which can be used sequentially. The measurements are done using any one of four references: internal bandgap, external voltage on VREFB (Voltage Reference) pin, Digital-to-Analog Converter (DAC) output, or VDD Analog (VDDANA). The voltage reference has a selectable buffer to offer higher input impedance to the external reference.

The SDADC filters and decimates the sigma-delta output bit stream at 16-bit (signed) with programmable rates of CLK_SDADC_FS (prescaled SDADC clock frequency) divided by 64 to 1024. The Output rate is set by modifying the programmable Over Sampling Ratio (OSR). The result is a 2's compliment 24-bit result with programmable gain and offset correction.

The SDADC peripheral supports three interrupts:

- Result Ready Interrupt (RESRDY) The RESRDY can trigger a DMA transfer or event.
- Overrun Interrupt (OVERRUN) The OVERRUN flag is set when the previous result is not read before a new result is ready.
- Window Monitor Interrupt (WINMON) The WINMON can generate an event by setting the WINMONEO bit in the EVCTRL register.

Automatic sequences can be configured to enable multiple samples from a single start of conversion request. The order of this conversion is from the lower positive input pair to the upper positive input pair (AINN0, AINP0, AINN1, AINP1 ...).

Note: If the SEQCTRL register has no bits set to '1', the conversion is done with the selected INPUTCTRL input (MUXSEL). Window Monitor can be used to define a threshold and trigger the WINMON flag (or interrupt).

2.1 Basic Operation

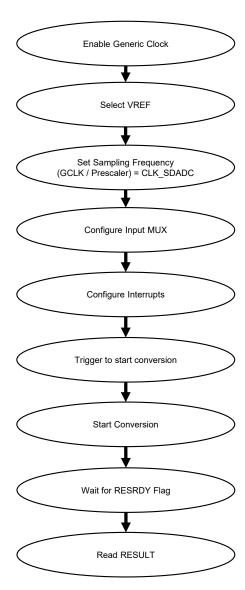
2.1.1 Initialization

The SDADC must be configured with the peripheral disabled. The register setting sequence to configure and enable the SDADC is as follows where the notations are stated in the form <register.bit(s)>:

- · Enable the Generic Clock
- Select the Voltage Reference and Range
 - REFCTRL.REFRANGE
 - REFCTRL.REFSEL
- · Set the Conversion Rate and Resolution
 - GCLK SDADC
 - CTRLB.PRESCALER (SDADC CLK)
 - CTRLB.OSR (Over Sampling Ratio)
- Select trigger source or interrupts
 - SWTRIG.START (Software Trigger)
 - Free Run Mode

- DMA/Event
- Timers
- Sequence Control
 - Automatic Sequences (SEQCTRL)
 - Lower-to-Upper Positive Pairs
 - The SEQSTATUS.SEQBUSY bit will be set when a conversion is initiated and cleared when sequence is complete
 - The input number is stored with the RESULT
- · Window Monitor Control
 - RESULT compared to threshold
 - WINUT/WINLT (Upper and Lower Thresholds)
 - WINCTRL.WINMODE (Inside/Outside window)
 - INTFLAG.WINMON (Interrupt flag)
- · Configure Input Pins
 - INPUTCTRL.MUXSEL[3:0]
- · Configure Interrupts
 - INTENSET.RESRDY (Conversion ready)
 - INTENSET.WINMON (Threshold reached)
 - INTENSET.OVERRUN (previous result not read)

2.1.2 Reading the Results


The SDADC result ready flag (RESRDY) will be set when a conversion is complete. When the peripheral is first initialized, the results are only valid after the 3rd conversion. To automate this limitation in hardware, the register set includes the skip count field in CTRLB register (CTRLB.SKPCNT[3:0]) to automatically skip the first 'n' results. When in free running mode, the application must read the result prior to the next result being ready. If this does not happen, the overrun flag will be set.

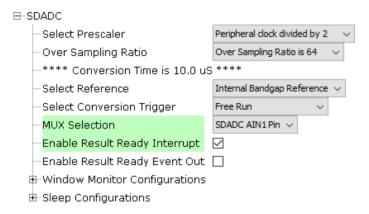
The result is read from the RESULT register.

2.2 Usage Summary

The following flowchart explains the procedure of configuring the SDADC for reading the SDADC Result.

Figure 2-1. Reading the SDADC Result Flow Chart

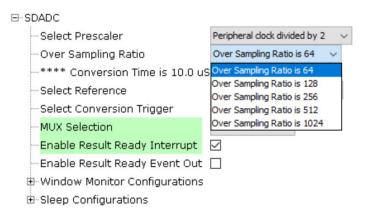
3. Firmware Implementation


With the MPLAB Harmony Configurator (MHC), the required peripheral library (PLIB) files are generated by configuring the respective components. Easy to use APIs have been provided to use the peripheral. This example demonstrates the basic use of the SDADC in interrupt and polling modes.

3.1 MPLAB Harmony v3 Configurator SDADC Configurations

The default configurations made in the MPLAB Harmony Configurator for the SDADC peripheral are as follows, and it is shown in the following figure.

- Over Sampling Ratio = 64
- Internal Bandgap Reference = 4.096V
- · Interrupts Enabled


Figure 3-1. SDADC Configurations in MPLAB Harmony v3 Configurator

The above default configurations can be changed in the MPLAB Harmony v3 Configurator, by following these steps:

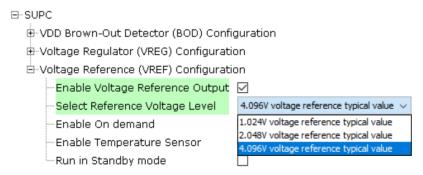

- 1. In MPLAB X IDE, navigate to the Tools > Embedded > MPLAB Harmony v3 Configurator.
- To change the Over Sampling Ratio, click on the SDADC module and select the desired value from the Over Sampling Ratio drop-down list as shown in the following figure.

Figure 3-2. OSR Drop-Down List in MPLAB Harmony v3 Configurator

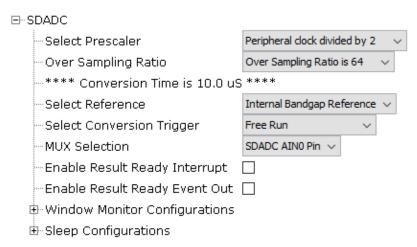

- 3. To change the Interval Voltage Reference value, in the Project Graph, click on the SUPC module.
- 4. Select the desired voltage reference value from the Select Reference Voltage Level drop-down list as shown in the following figure.

Figure 3-3. Reference Voltage Level Drop-Down List in MPLAB Harmony v3 Configurator

5. The interrupt can be disabled to work with polling method. Click on the **SDADC** module and clear the **Enable Result Ready Interrupt** option and generate the code.

Figure 3-4. SDADC Result Ready Interrupt Disabled in MPLAB Harmony v3 Configurator

- 6. In the plib_sdadc.c file generated for polling mode, the bool SDADC_ConversionResultIsReady(void) function will be added. This API returns a Boolean value as a status to confirm if the results are ready.
- 7. In the main.c file, check for this status and proceed to read when the results are ready. Refer to the polling mode project, where this has been implemented.
- 8. Save the configurations and generate the code by selecting MHC > Generate Code.
- 9. Update the plib files with appropriate changes taken into consideration.

3.2 Peripheral Library (PLIB) APIs

MPLAB Harmony v3 provides the PLIB APIs for the SDADC in plib_sdadc.c. The following APIs allow for the configuration, initialization, and reading the SDADC:

- void SDADC_Initialize(void)
- int16 t SDADC ConversionResultGet(void)
- bool SDADC_ConversionResultIsReady (void);

3.3 Callback APIs

In addition to the PLIB APIs, the following callback APIs are included:

void SDADC_CallbackRegister(SDADC_CALLBACK callback, uintptr_t context)

3.4 Support APIs

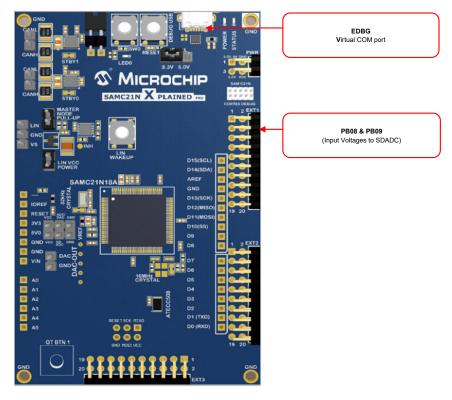
The SAMC21N supports a variety of voltage references to support different measurement requirements when using the SDADC peripheral. The following support API provides the application of the examples.

- void App SDADC Config(void)
- For more information on SDADC APIs, refer to: microchip-mplab-harmony.github.io/csp/frames.html?frmname=topic&frmfile=06665.html

3.5 SDADC Example

This document is accompanied by example firmware, which is listed as follows.

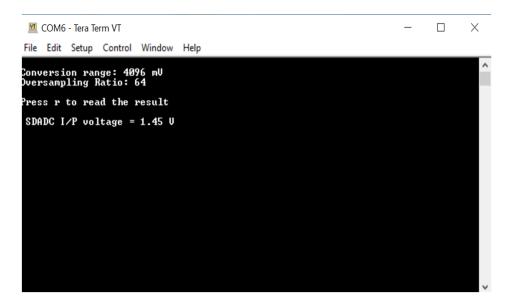
- sdadc conversion polling: Demonstrates the SDADC conversion in polling mode
- sdadc conversion interrupt: Demonstrates the SDADC conversion in interrupt mode


3.5.1 Requirements

- MPLAB X IDE version 5.40 or higher www.microchip.com/mplab/mplab-x-ide
- MPLAB X C32 Compiler v2.41 or higher www.microchip.com/mplabx/compilers
- MPLAB Harmony Configurator Plugin v3.5.0 or higher
- MPLAB Harmony v3 "csp" repo v3.7.1 or higher github.com/Microchip-MPLAB-Harmony/csp/releases/tag/v3.7.1
- MPLAB Harmony v3 "dev_packs" repo v3.7.0 or higher github.com/Microchip-MPLAB-Harmony/dev packs
- MPLAB Harmony v3 "mhc" repo v3.4.0 or higher github.com/Microchip-MPLAB-Harmony/mhc
- SAMC21N Xplained Pro evaluation kit www.microchip.com/DevelopmentTools/ProductDetails/PartNO/ATSAMC21N-XPRO
- Stable Voltage Source to INN[1] and INP[1] pins, or PB08 and PB09.

3.5.2 Description

The example firmware initializes the SDADC on the SAMC21N Xplained Pro board to use Input Channel one . This is a differential measurement, therefore ensure that both the positive (INP) and negative (INN) pins are connected to a voltage source. The firmware also initializes the USART to communicate with a terminal program through the on-board EDBG Virtual COM port. Settings are 115200, 8, N, 1.


Figure 3-5. SAMC21N Xplained Pro Evaluation Kit

The SDADC is configured to use the internal VREF, and the range is set to 4.096 V full scale and the default setting of the OSR is 64.

Pressing the 'r' key will read the result and display it in a form scaled to mV.

Figure 3-6. Output Displayed on Terminal Window

4. Conclusion

This document was intended to emphasize the usage of MPLAB Harmony v3 Configurator and has described the procedure for configuring the SDADC of the ATSAMC21N. The Differential mode of this 16-bit resolution SDADC has been used and the results are displayed on a console. The user can directly program the code to the device and view the result on the terminal console.

5. References

- MPLAB Harmony v3: www.microchip.com/mplab/mplab-harmony
- SAM C20/C21 Family Data Sheet: ww1.microchip.com/downloads/en/DeviceDoc/SAMC20_C21_%20Family_Data_%20Sheet_DS60001479D.pdf
- SAM C21N Xplained Pro: ww1.microchip.com/downloads/en/DeviceDoc/70005318A.pdf
- AT10294: Using the Sigma-Delta Analog to Digital Converter on SAMC MCU (SDADC): ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42467-Using-the-Sigma-Delta-Analog-to-Digital-Converter-on-SAMC-MCU-(SDADC) ApplicationNote AT10294.pdf
- SAM C21 Getting Started Training Module: microchipdeveloper.com/harmony3:samc21-getting-started-training-module
- Clock System Configuration Technical Brief: ww1.microchip.com/downloads/en/DeviceDoc/Clock_System_Configuration_Usage_on_SAMC2x(Cortex %20M0+)_%20Devices_DS90003227A.pdf

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Embedded Solutions Engineer (ESE)
- · Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these
 methods, to our knowledge, require using the Microchip products in a manner outside the operating
 specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of
 intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6529-4

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380	15 55 155 52 155 15		Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			1 da. 77-110-321-3020
Fax: 905-695-2078			
I an. 300-030-20/0			