
AT91 ARM
Thumb
Microcontrollers

Application Note

 6253A–ATARM–07-Sep-06
Safe and Secure Firmware Upgrade for
AT91SAM Microcontrollers

1. Introduction
Microcontrollers are used increasingly in a variety of electronic products. The devices
are becoming more flexible, thanks to the reprogrammable memory (typically Flash)
often used to store the firmware of the product. This means that a device which has
been sold can still be upgraded in-field, e.g., to correct bugs or add new functional-
ities. Figure 1-1 illustrates this concept.

Figure 1-1. In-field Upgrading Principle

1. Manufacturer designs a device and an initial firmware

2. Devices are sold to customers

3. Manufacturer develops a new version of the firmware

4. New firmware is distributed to customers

5. Customer patches his device with the new firmware

However, two major issues arise from this. First, the device must not be rendered use-
less because of an error during the update process. Common problems include power
loss and connection loss during the transmission of the new firmware. We will refer to
this concern as the safety of the device.

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Device

1

+

Manufacturer

Device

New firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

5

2

New firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

3

4

Customer

Figure 1-2. Safety Problems of In-field Upgrading

1. Manufacturer designs a device and an initial firmware

2. Devices are sold to customers

3. Manufacturer develops a new version of the firmware

4. New firmware is distributed to customers

5. Customer patches his device with the new firmware

6. An error occurs during the transmission (e.g., the device batteries run out), rendering
the device unable to operate

Security is the other problem. One of the main concerns is that firmware developers do not want
their work to be disclosed and used by competitors; therefore, the new application must be pro-
tected from unauthorized access on its way to the target product.

Figure 1-3. Security Problems of In-field Upgrading

1. Manufacturer releases a new firmware for a device

2. Competitor obtains new firmware

3. Firmware is reverse-engineered to retrieve original code

“In-field Upgrading” on page 3 explains how a traditional update mechanism works; the different
problems associated with it will then be described, as well as our solutions to address them.
Finally, we discuss several important design points.

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Device

1

+

Manufacturer

Device

New firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

5

2

New firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

3

4

Customer

Non-working
device

6

Manufacturer

New firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

New firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

1

Competitor

2

Code

/*******
 * Program entry point
 *******/
int main(void) {

 /* Local variables */
 int var1, var2;

 /* Initialize the system */
 initialize();

 /* Perform some tests */
 test1();
 test2();

 /* Shutdown everything */
 close();

 return 1;
}

3

2
6253A–ATARM–07-Sep-06

Application Note

Application Note
2. In-field Upgrading
Programming a microcontroller is easy with a testbench. Developers have access to a variety of
tools to get their code into the device. This includes debugging ports such as JTAG, hardware
programmers, and so on.

However, to be able to write a new firmware on a final product, the previous solutions cannot be
used: debugging support is disabled, ports are not available, the end-user may be inexperi-
enced, etc. Thus, in-field upgrading typically uses another technique to get the new code onto
the device.

2.1 The Bootloader
Many modern microcontrollers use NOR Flash memory to store their application code. The main
advantage of Flash is that the memory can be modified by the software itself. This is the key to
in-field programming: a small piece of code is added to the main application to provide the ability
to download updates, replacing the old firmware of the device. This code is often called a boot-
loader, as its role is to load a new program at boot.

A bootloader always resides in memory to make it possible for the device to be upgraded at any
time. Therefore, it must be as small as possible; one does not want to waste a large amount of
memory on a piece of code which does not add any direct functionality for the user.

Figure 2-1. Memory Organization with a Bootloader

To download a new firmware onto the device, there must be a way to tell the bootloader to pre-
pare for the transfer. There are two types of trigger conditions: hardware and software. A
hardware condition might be a pressed button during a reset, whereas a software condition
could be the lack of a valid application in the system.

When the system starts, the bootloader checks the predefined conditions: if one of them is true,
it tries to connect to a host and wait for a new firmware. This host can theoretically be any
device; however, a standard PC with the appropriate software is most often used. The transmis-
sion of the firmware can be done via any media supported by the target, i.e., RS232, USB, CAN
and so forth.

Flash

Bootloader

Application
3
6253A–ATARM–07-Sep-06

Figure 2-2. Firmware Upgrade Using a Bootloader

1. Manufacturer releases a new firmware version

2. New firmware is distributed to users

3. Boot condition is triggered by customer

4. Bootloader connects to host

5. Host sends the new firmware

6. Existing application is replaced

7. New application is run

Once the transfer is finished, the bootloader replaces the old firmware with the new version. This
new application is then loaded.

There are several other ways of carrying out in-field programming of a product. For example, the
main application may do the upgrade itself: for a device using an external memory storage, the
new firmware could be written on it as a file. The main advantage of using a bootloader is that
you do not have to design your application in a different way. Therefore, while modifying your
application to include an upgrade mechanism can be tedious, a bootloader can always be used
without additional programming (providing the bootloader is readily available, of course).

2.2 Issues
There are several issues associated with using such a simple bootloader, as described in the
previous section. They are presented according to which area they are related, i.e., to the safety
of the device or to the security of the firmware.

Those issues may happen at two points of the upgrading flow: either during the transport of the
firmware from the manufacturer to the customer, or during the download on the target device.
Below is a diagram showing several issues which are discussed in following sections.

Device

3
Host

Bootloader

2
Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

5
4

Application

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

6

7
Code

/*******
 * Program entry point
 *******/
int main(void) {

 /* Local variables */
 int var1, var2;

 /* Initialize the system */
 initialize();

 /* Perform some tests */
 test1();
 test2();

 /* Shutdown everything */
 close();

 return 1;
}

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

1

Manufacturer
4
6253A–ATARM–07-Sep-06

Application Note

Application Note
Figure 2-3. Upgrading Flow Issues

Section 2.2.1 ”Safety” on page 5 and Section 2.2.2 ”Security” on page 6 describe the following
concerns:

• Safety

– Transmission error

– Transmission failure

– Information loss

• Security

– Firmware reverse-engineering

– Use of unauthorized firmware

– Firmware modification

– Use of a firmware on an unauthorized device

2.2.1 Safety

Figure 2-4. Safety Problems with a Basic Bootloader

Code

/*******
 * Program entry point
 *******/
int main(void) {

 /* Local variables */
 int var1, var2;

 /* Initialize the system */
 initialize();

 /* Perform some tests */
 test1();
 test2();

 /* Shutdown everything */
 close();

 return 1;
}

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Manufacturer

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Customer

Transport

Device

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Download

Reverse-engineering

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Code

/*******
 * Program entry point
 *******/
int main(void) {

 /* Local variables */
 int var1, var2;

 /* Initialize the system */
 initialize();

 /* Perform some tests */
 test1();
 test2();

 /* Shutdown everything */
 close();

 return 1;
}

Firmware alteration

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Modified
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Third-party firmware

Unauthorized
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Code

/*******
 * Program entry point
 *******/
int main(void) {

 /* Local variables */
 int var1, var2;

 /* Initialize the system */
 initialize();

 /* Perform some tests */
 test1();
 test2();

 /* Shutdown everything */
 close();

 return 1;
}

Unauthorized device

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Transmission error

Corrupted
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
01001X1011110010101000101011010010
1101010010111101101X10100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
110101001XX11101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
11010100101111011010X0100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
11010100101111X1101010100101111010
1010101011110101010101011110100011
010010101111001010100010XXX1010010
1101010010111101101010100101111010
101010101X110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Security issues

Transmission failure

Truncated
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Information loss

Incomplete
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011Safety issues

Code

/*******
 * Program entry point
 *******/
int main(void) {

 /* Local variables */
 int var1, var2;

 /* Initialize the system */
 initialize();

 /* Perform some tests */
 test1();
 test2();

 /* Shutdown everything */
 close();

 return 1;
}

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Manufacturer

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Customer

Transport

Device

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Download

Transmission error

Corrupted
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
01001X1011110010101000101011010010
1101010010111101101X10100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
110101001XX11101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
11010100101111011010X0100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
11010100101111X1101010100101111010
1010101011110101010101011110100011
010010101111001010100010XXX1010010
1101010010111101101010100101111010
101010101X110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Transmission failure

Truncated
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Information loss

Incomplete
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

1 2 3
5
6253A–ATARM–07-Sep-06

It is critical for most devices to have a working firmware embedded in them at all times, since
they probably cannot function properly or at all without it. However, the use of a bootloader can
result in the problematic situation where the new firmware has not been installed properly, com-
promising the behavior of the system.

An obvious problem arises if the device suddenly loses power during the update process. The
application area would then be corrupted and unusable. This may be considered as a transfer
failure (issue #2).

Same result (or almost) if the connection to the host is lost during the transmission. Since the
firmware is downloaded and upgraded at the same time, the product would end up with part of
both the new and old firmwares. Although there is a small chance that the system remains func-
tional (i.e., in the case that only unmodified parts between the old and new firmwares have been
written), it is unlikely to happen.

Alternatively, if a transmission error occurs during the transfer (e.g., a bit is flipped in a block of
data, issue #1), part of the code is corrupted. The result may vary from a small computation
error to a crash when that code is executed (depending on the instruction which is modified and
how it is changed).

Lastly, some data may be lost while transmitting the firmware (issue #3). This would completely
corrupt the code after the missing part. Likewise, some media might reorder blocks of data, mak-
ing it necessary to check which block is received or not and where it belongs.

2.2.2 Security

Figure 2-5. Security Problems with a Basic Bootloader

Securing a system means enforcing several features: privacy, integrity and authenticity.

Privacy means that a piece of data cannot be read by unauthorized users or devices. A major
concern of firmware developers is to ensure that the application they have designed cannot be
leaked by competitors. They thus want their code to be private, the target devices being the only
authorized “users”.

Microcontrollers typically provide a mechanism making it impossible for malicious users to read
the program code written in the device. However, for in-field firmware upgrading, the manufac-
turer has to give the new code image to customers so they can patch their devices themselves.
This means that a skilled person could potentially de-compile it to retrieve the original code
(issue #4).

Code

/*******
 * Program entry point
 *******/
int main(void) {

 /* Local variables */
 int var1, var2;

 /* Initialize the system */
 initialize();

 /* Perform some tests */
 test1();
 test2();

 /* Shutdown everything */
 close();

 return 1;
}

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Manufacturer

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Customer

Transport

Device

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Download

Reverse-engineering

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Code

/*******
 * Program entry point
 *******/
int main(void) {

 /* Local variables */
 int var1, var2;

 /* Initialize the system */
 initialize();

 /* Perform some tests */
 test1();
 test2();

 /* Shutdown everything */
 close();

 return 1;
}

Firmware alteration

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Modified
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Third-party firmware

Unauthorized
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Code

/*******
 * Program entry point
 *******/
int main(void) {

 /* Local variables */
 int var1, var2;

 /* Initialize the system */
 initialize();

 /* Perform some tests */
 test1();
 test2();

 /* Shutdown everything */
 close();

 return 1;
}

Unauthorized device

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

1 2 3 4
6
6253A–ATARM–07-Sep-06

Application Note

Application Note
Authenticity makes it possible to verify that the firmware is from the manufacturer itself, not
anybody else. Indeed, another problem of reprogrammability is that a device could be given a
firmware which has not been designed by the original manufacturer, but by a third-party (issue
#2). This may be especially problematic if that firmware has been developed for malicious use,
i.e., to bypass security protections, illegally use critical functions of the device, and so forth.

A genuine firmware could also be used on a different device than the one it is intended for
(issue #1). This could be an unauthorized hardware copy of the product, or a device designed
for hacking purpose. This is again an authenticity concern, this time regarding the target
device.

Finally, integrity is required to detect a modification of the data. For example, an authorized
firmware may be slightly modified (issue #3). It would appear as genuine, but attacks similar to
those described in the previous paragraph could be achieved in this way.

Without any kind of security feature, a firmware will be subject to all attacks regarding privacy,
integrity and authenticity. Therefore, some techniques are needed to enforce those three
aspects.
7
6253A–ATARM–07-Sep-06

3. Proposed Solution
This document offers a practical solution to the issues we have identified. However, most of the
techniques to circumvent those problems present a trade-off between the level of security and
safety and the size and speed of the system. As such, the safest and most secure solution is
also probably the biggest and slowest one. This means that one must first carefully analyze what
is needed in terms of security and safety in a system, to implement only the required
functionalities.

Several techniques for enforcing safety and security are presented in the following sections.
Please note that no software solution can give perfect security. Indeed, there are many hard-
ware-based attacks (like micro-probing, power analysis, timing analysis, etc.) which enable a
malicious user to break software protections. These attacks are best solved by using a dedi-
cated secure chip. However, using soft protection is not inappropriate, as they make it more
costly (both in time and money) to attack your system.

3.1 Safety
The following techniques are ways to prevent a safety-related errors to happen. However, it is
interesting to note that since the bootloader should never be compromised (as it cannot be
updated), the user can simply try upgrading his device again if there is a failure. Naturally, this
may not always be a desirable alternative, which is why we present the following solutions.

3.1.1 Protocol Stack
A protocol stack is used in most communication standards to offer, among other features, reli-
able transfers. This reliability is important for a bootloader, as the firmware must not be
corrupted during the download (see issues #2 and #3 on figure 2-4).

In the OSI standard model, a communication system is divided into seven layers, which form the
protocol stack. Each layer is responsible for providing a set of features. For example, the physi-
cal layer is responsible for the physical interconnection of the devices. Reliability is typically
implemented at the transport layer.

Transport reliability is usually obtained by using several techniques: error detection/correction
codes, block numbering and packet acknowledgement. They are presented below. Existing
protocols for the media available on Atmel® ARM® Thumb® based AT91SAM microcontrollers
are then described in Section 3.1.1.4 ”Existing Protocols” on page 10.

3.1.1.1 Error Detection/Correction
It is common to use error detection and error correction codes for transmitting data. Indeed,
many operations cannot handle receiving a corrupted piece of data: loading a new firmware,
sending a file across a network, and so on. Therefore, several codes have been designed to
make it possible to detect and even correct transmission errors.

Detection codes use simple mathematical properties to compute a value over the data which is
to be sent. That value is then transmitted along with the original data. When the target receives
the data, it recomputes the value and compares it to the one it has been given. If both are equal,
the transfer was successful; otherwise, there are one or more invalid bits.

Correction codes work in the same way, except that they are able to detect errors, as well as to
recover some of them. This is useful to avoid requesting the sender to retransmit the erroneous
data.
8
6253A–ATARM–07-Sep-06

Application Note

Application Note
To be useful, error detection/correction cannot be carried out on the whole firmware. Since it is
written into the memory as it is transmitted, it would be pointless to detect an error only when the
file has been completely received. Instead, the firmware is transmitted in small pieces called
frames. A code is calculated and checked for each frame; if an error is detected, it is either cor-
rected via the code (if possible), or the frame is retransmitted.

Figure 3-1. Error Detection During Firmware Transmission

However, there are limitations to error detection/correction codes. Depending on how they are
mathematically constructed, they will have a maximum number of detectable/correctable errors.
As such, a thorough analysis of the system must be carried out prior to selecting the method to
use, to avoid choosing an inappropriate code.

Finally, error correction is not really necessary in this particular case. It is most suited when it is
unpractical to resend the erroneous data, which is not a concern here. Since error correction
codes typically incur a bigger overhead than error detection ones, they should be implemented
with good reasons.

3.1.1.2 Block Numbering
The purpose of block numbering is to avoid losing a block of data or having two blocks arrive in
the wrong order. This is critical in a file-oriented transfer such as firmware downloading: those
errors would render the received code unusable.

As its name suggests, block numbering is simply about adding a sequence number to each
transmitted block. This number increases by one for each block. Therefore, the receiver can
easily detect that two blocks have been swapped if it gets block #3 before block #2. Likewise, if
the sequence goes straight from #3 to #5, then block #4 was lost.

Figure 3-2. Block Numbering

3.1.1.3 Packet Acknowledgement
Packet acknowledgement works in the following way. Each time the sender transmits a block of
data, it waits for the receiver to acknowledge it, i.e., reply that it has been correctly received. If

Frame
to transmit

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

1010101011110101010101011110100011
0100101011110010101000101011010010

CRC

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

1010101011110101010101011110100011
0100101011110010101000101011010010

Frame + CRC
Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

HostBootloader

Received
frame

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

1010101011110101010101011110100011
0100101011110010101000101011010010

CRC#2
1010101011110101010101011110100011
0100101011110010101000101011010010

Received
CRC

Compare

Request retransmission

Emitter

Expecting block #1
Transmitting block #1

Expecting block #2Transmitting block #2

Transmitting block #3

Transmitting block #4
Lost !

Expecting block #3

Wrong block received

Transmitting block #3

Expecting block #4Transmitting block #4

Expecting block #5

Receiver
9
6253A–ATARM–07-Sep-06

nothing comes back after a fixed amount of time, then the sender assumes that the packet has
been lost, and retransmits it.

Figure 3-3. Packet Acknowledgement

No other data is sent by the emitter while it is waiting for an acknowledgement. Therefore, pack-
ets cannot be received out-of-order since only one is sent at a time.

3.1.1.4 Existing Protocols
A communication medium (such as RS-232 or Ethernet) is rarely used as is. A protocol stack is
most often required to make full use of it.

TCP/IP is the most widely used protocol stack on top of Ethernet. The Transport Control Proto-
col (TCP) implements reliability by using a packet sequence number as well as a checksum (a
simple error detection code). It also uses a variant of packet acknowledgment, but since several
packets can be sent as once, they can arrive out-of-order (thus block numbering is still needed).

Figure 3-4. TCP Frame Structure

The USB protocol uses a Cyclic Redundancy Check (CRC) for error detection. There is no
sequence number on the packets, but a receiver acknowledges each block of data. This is the
same for the CAN bus.

Emitter

Transmit block

Acknowledge block

Receiver

Transmit block
Lost !

Retransmit block

Acknowledge block

Wait for acknowledge

Wait for acknowledge

Wait for acknowledge

Data offset

Source port Destination port

Sequence number

Acknowledgement number

Options

Data

Checksum Urgent pointer

Reserved Flags Window

Bits

0

32

64

96

128

160

160/192

0-3 4-9 10-15 16-31
10
6253A–ATARM–07-Sep-06

Application Note

Application Note
Figure 3-5. CAN Frame Structure

Lastly, there are several file-oriented communication protocols for the RS-232 interface. One of
them is X-MODEM, which was developed in the 1970’s. It features a simple single byte check-
sum, block numbering and packet acknowledgment.

Figure 3-6. XMODEM Frame Structure

3.1.2 Memory Partitioning
The main idea of memory partitioning is to have, at all times, a copy of a working firmware
somewhere in memory. Achieving this means that even if anything goes wrong during an
update, it is still possible to revert back to that firmware.

The solution we present here takes a little twist on that technique. The memory is partitioned at
all times in two distinct regions (excluding the bootloader region):

• the application code (region A)

• a buffer for the new firmware (region B)

Figure 3-7. Memory Organization with Memory Partitioning

Region B is used as a buffer for the new firmware, to download it entirely before programming it
in region A. This method ensures that there is always a working firmware on a device after an
upgrade, whether it was successful or not.

1

Start-of-frame

Size 11 bits

Identifier

1 1 1 1 1 14 bits 0-8 bytes 15 bits 7 bits

Remote
transmission

request

Identifier
extension bit

Reserved Data length
code

Data

Cyclic redundancy
check

CRC delimiter ACK delimiter

ACK slot End-of-frame

1

Start-of-frame

Size 8 bits

Block number

128 bytes

Block number complement

Data

8 bits

Checksum

8 bits

Firmware

Buffer zone

Flash

Region B

Region A

Bootloader

Same size
11
6253A–ATARM–07-Sep-06

3.1.3 Summary
Error detection and correction

• Pros

– Detects transmission errors

• Cons

– Code must be chosen wisely

– Slightly increased code size

– Slightly reduced speed (during upgrade only)

Memory partitioning

• Pros

– Solves all safety-related issues

• Cons

– The required memory size is doubled

– Slightly increased code size

– Reduced execution speed (during upgrade only)

3.2 Security
Several security-related techniques to solve the aforementioned issues (see Section 2.2.2 on
page 6) are presented in this section. See Section 5.2 on page 20 for in-depth information about
security considerations.

3.2.1 Integrity
Verifying integrity means checking the following:

• Purposeful modification of the firmware

• Accidental modification of the firmware

Accidental modification is a safety problem, and has been already discussed. It is typically
solved by using error detection codes (see Section 3.1.1.1 on page 8).

There are several ways to check that a firmware has not been voluntarily modified by a mischie-
vous user. They are presented in the following paragraphs, and make it possible to solve
problem #3 described in Figure 2-5 on page 6.

3.2.1.1 Hash function
Conceptually, the goal of a hash function is to produce a digital “fingerprint” of a piece of data.
This means that, conversely to an error detection code, every piece of data must have its own
unique fingerprint.

To verify the integrity of a firmware, its fingerprint is calculated and attached to the file. When the
bootloader receives both the firmware and its fingerprint, it recomputes the fingerprint and com-
pares it to the original ones. If both are identical, then the firmware has not been altered.

In practice, a hash function takes a string of any length has an input and produces a fixed-size
output called a message digest. It also has several important properties, e.g., a good diffusion
(the ability to produce a completely different output even if only one bit of the input is flipped).
12
6253A–ATARM–07-Sep-06

Application Note

Application Note
Figure 3-8. Firmware Hashing

Since the output length is fixed (regardless of the input), it is not possible to generate a different
digest for every piece of data imaginable. However, hash functions ensure that it is almost
impossible to find two different messages which will have the same digest. This achieves almost
the same result as uniqueness, at least in practice.

The downside of simply hashing the firmware is that anybody can do it. This means that an
attacker could modify the file and recompute the hash. The bootloader would thus not be able to
tell that an alteration was made.

However, a hash function alone can still be used to verify the firmware integrity at runtime, to
avoid running a damaged application.

3.2.1.2 Digital Signature
Since a hash can be easily recomputed, the solution is to encrypt it. This is the basis of a digital
signature: the digest of a firmware is computed (using a hash function) and then encrypted
using public-key cryptography. This produces a digital signature, akin to the signatures used
in the everyday life.

Public-key (or asymmetric) encryption relies on the use of two keys. The manufacturer uses his
private key (secret) to encrypt the signature, while the device uses the corresponding public
key to decrypt it.

Figure 3-9. Digital Signature Creation and Verification

Since only the private key can encrypt data, nobody except the manufacturer can produce the
signature. Thus, a malicious user would not be able to perform the attack described in the previ-
ous section. But anybody can verify the signature using the public key of the manufacturer.

3.2.1.3 Message Authentication Codes
Message Authentication Codes (MACs) provide the same functionality as digital signatures,
except they use private key cryptography. Modern private key encryption algorithms (also
called ciphers) are mostly block ciphers (i.e., they work on a block of data of a fixed size), as
opposed to stream ciphers (which work on a stream of data).

Firmware +
digest

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Bootloader

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Firmware
Digest

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Digest#2

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Host

Received
digest

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Compare

Manufacturer

Digest#1

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Private key

Signature

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Firmware +
signature

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Bootloader Manufacturer

Encrypt

Digest#2

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Public key
Signature

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Decrypt

Compare

Digest#1

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Host
13
6253A–ATARM–07-Sep-06

Figure 3-10. Message Authentication Code Verification

Private key encryption relies on only one secret key, which is shared between the manufacturer
and the devices. This has several implications, compared to a digital signature:

• Anybody who can verify a MAC can also produce it.

• If the private key inside the device gets exposed, then the security of the system is
completely compromised.

The first point is not a concern in practice, as a device will not use its private key to produce
MACs, only to verify them. The second implication means that if an attacker manages to retrieve
the key from the bootloader (which is supposed to be locked using security bits), then he will be
able to modify a firmware and still have it accepted as unmodified by a target. Depending on
your requirements, this may or may not be an issue.

It should be noted that since private-key cryptography is much faster than public-key, a MAC will
be computed and verified faster than a digital signature. But since only one MAC/signature is
required for the firmware, it would probably not make up a big difference in practice.

3.2.2 Authentication
Authentication is about verifying the identity of the sender and the receiver of a message. In the
case of the bootloader, this means verifying that the firmware has been issued by the manufac-
turer, and that the target is a genuine one. It solves problems #1 and #2 described in Figure 2-
4 on page 5.

It happens that the methods which provide authentication also provide integrity: digital signa-
tures and MACs. Since they have already been described from the integrity point-of-view (see
Section 3.2.1 on page 12), this section will only discuss their authentication properties.

This section only discuss firmware authentication; authentication of the target device will be
treated further.

3.2.2.1 Digital Signature
Only the manufacturer is supposed to possess the private key used to produce the signature
attached to a firmware. This means that any valid signature (once decrypted using the corre-
sponding public key) will certify that the signed data comes from the manufacturer and not from
anyone else.

However, since the signature is freely decipherable by anyone possessing the public key (which
is not supposed to be secret), the computed hash of the firmware can be obtained by anyone.
This means that an attacker could find a collision in the hash function used, i.e. two different
texts giving the same hash. The signature would also authentify this data as produced by the
original sender.

Digest#1

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Private key

MAC

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Firmware +
MAC

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Bootloader Manufacturer

Encrypt

Digest#2

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Private key
MAC

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Decrypt

Compare

Digest#1

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Host
14
6253A–ATARM–07-Sep-06

Application Note

Application Note
This may not be a problem in practice however, as a collision is extremely hard to find and it is
unlikely that it would result in a valid program. It would only enable a malicious user to create a
fake firmware which would render the device unusable.

3.2.2.2 Message Authentication Code
Conversely to a signature, a MAC cannot be used to certify that it is the sender who created the
message. Indeed, since the receiver also has the private key used to compute the MAC, he may
have generated it. The advantage is that only the two parties can decrypt the MAC, preventing
anyone else from verifying that the message is indeed valid.

In practice, this does not create an issue as only the firmware would be MAC’ed. The bootloader
would not use its private key to generate any other MAC, thus achieving the same authenticity
verification as a digital signature.

The additional concern of a MAC compared to a digital signature is that an attacker should never
be able to retrieve the private key inside the bootloader. If he manages to do that, he would be
able to create or modify a firmware, issuing the associated MAC needed to authentify it as a
genuine one to any target.

3.2.3 Privacy
Data privacy is enforced using encryption: the data is processed using a cryptographic algo-
rithm along with an encryption key, generating a cipher text which is different from the (plain)
original one. Without the required decryption key, the data will look like complete nonsense,
preventing anyone unauthorized from reading it. This takes care of problem 4, as described in
Figure 2-4 on page 5.

In practice, a private-key algorithm is used to generate the encrypted firmware. It is obvious
that a public-key system cannot be used, as the firmware would then be decipherable by any-
one. The encryption and decryption keys are thus identical and shared between the bootloader
and the manufacturer.

Figure 3-11. Firmware Encryption

Note that code encryption does not solve every security issue all by itself. For example, the firm-
ware may still be modified, even if it is quite difficult. An attacker could manage to pinpoint the
location in the code of an important variable and tweak it until he gets the desired result.

Code encryption also combines itself well with a message authentication code. Since they both
use a symmetric encryption algorithm, they can use the same one to save code size. There are
also secure modes to combine both a block cipher and a MAC while using the same key (see
Section 5.2.1.2 on page 22).

FirmwareEncrypted
firmware

Private key

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Encrypted
firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Encrypted
firmware

Firmware

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011
0100101011110010101000101011010010
1101010010111101101010100101111010
1010101011110101010101011110100011

Private key

Decrypt

ManufacturerHostBootloader

Encrypt
15
6253A–ATARM–07-Sep-06

3.2.4 Target Device Authentication
There are two ways of verifying that a device is genuine. The first one is passive, i.e., no special
functionality is added to perform the verification. Instead, the authenticity of the device is implic-
itly checked by other security mechanisms.

In this particular case, encrypting the firmware will also authentify the device. Indeed, it will need
the private key to decrypt the firmware. As only genuine devices have them embedded in their
bootloader, an unauthorized target will not be able to recover the original code and run the
application.

This is especially applicable as target authentication cannot be achieved without encrypting the
code anyway; otherwise, it could be simply downloaded to the device.

An active authentication method would involve adding an authentication technique for the tar-
get. Since the device identity would be verified during the upgrade process by the host, a
message authentication code cannot be used. Indeed, since it would require the host to have
the private key, an attacker could easily retrieve it.

Adding such a mechanism would also incur a significant overhead, both in terms of bootloader
size (for storing the additional key and the digital signature encryption algorithm) and upgrade
speed (because of the transactions needed to identify the device). In addition, the host upgrad-
ing program could be modified to get rid of that additional mechanism anyway.

3.2.5 Summary
Hash function

• Pros

– Detects accidental and voluntary changes

– Can be used to check firmware integrity at run-time

• Cons

– Can be recomputed by a malicious user

– Slightly increased code size

– Slightly reduced execution speed

Digital signature

• Pros

– Detects third-party and modified firmwares

– If the key inside the bootloader is compromised, the system remains safe

• Cons

– Slower than a MAC

– Requires a large key length

– Increased code size

– Reduced execution speed (during upgrade only)

Message authentication code

• Pros

– Detects third-party and modified firmwares

– Faster than a digital signature

• Cons
16
6253A–ATARM–07-Sep-06

Application Note

Application Note
– If the key inside the bootloader is compromised, the system is broken

– Increased code size

– Slightly reduced execution speed (during upgrade only)

Code encryption

• Pros

– Prevents reverse-engineering

– Authenticates the target

• Cons

– If the key inside the bootloader is compromised, the system is broken

– Increased code size

– Reduced execution speed (during upgrade only)
17
6253A–ATARM–07-Sep-06

4. Examples of Use
In this section, several possible uses and requirements for a bootloader are presented. The pos-
sible solutions to each scenario are discussed in term of safety & security advantages versus
code size & speed performance.

4.1 Security

4.1.1 Scenario 1

4.1.1.1 Requirements
The only requirement of this first basic scenario is to prevent competitors/malicious users to
obtain access to the firmware code.

4.1.1.2 Core Solution
The first step is to use code encryption to protect the firmware. This requires the implementation
of a symmetric cipher, as well as the generation and inclusion in the bootloader of a private key.

On the manufacturer side, the same private key needs to be secured. It will be used to encrypt
new firmware versions as they come along.

4.1.1.3 Options
Since you have to include a symmetric cipher for encryption, it can be reused to implement a
message authentication code (such as OMAC/CMAC). The MAC will make it possible for the
bootloader to check that the firmware has not been modified (either accidentally or voluntarily).

4.1.2 Scenario 2

4.1.2.1 Requirements
A customer must never have his device compromised by a modified or third-party malicious
firmware.

4.1.2.2 Core Solutions
Authenticity and integrity are needed in this case. But while theoretically both digital signatures
and message authentication codes can be used to provide them, the former is much more
secure.

Consider the case when the bootloader code (containing the private or public key needed for
authentication) is dumped (using an hardware attack, for example). Now, in the case of a digital
signature, the attacker has no more power: he cannot create valid signatures with only the public
key. Whereas with a MAC, he will be able to do so.

However, a digital signature algorithm will probably be more size & speed consuming than a
MAC. If the requirement is very strict, then opt for digital signatures. If you do not expect people
to have access to advanced hardware hacking tools, than a MAC might be acceptable.

4.1.2.3 Options
If a MAC based on a symmetric cipher is used (such as OMAC/CMAC), than you might consider
encrypting the firmware. Since the same algorithm (and even the same key) can be reused, the
size overhead will be small.
18
6253A–ATARM–07-Sep-06

Application Note

Application Note
4.1.3 Scenario 3

4.1.3.1 Requirements
Maximum security is required:

• Firmware code cannot be read by users

• A customer must not be able to download a non-genuine firmware

• Non-authorized targets must not be able to use the firmware

4.1.3.2 Core Solutions
This scenario requires privacy, authenticity and integrity. Only code encryption can provide pri-
vacy; a symmetric cipher will thus have to be implemented. Code encryption will also prevent
unauthorized device from loading the code (see Section 3.2.4 on page 16).

Authenticity and integrity can be provided both by either a MAC or a digital signature. Using a
MAC in this case will keep the code size down (by reusing the block cipher added for code
encryption). A digital signature will provide a better security margin.

Note that combining a MAC and a digital signature has no added security benefit over simply
using a signature.
19
6253A–ATARM–07-Sep-06

5. Design Considerations
There are several choices and problems which arise when designing a bootloader such as the
one described in this application note. This section gives an overview of the major topics.

5.1 Transmission Media
AT91 microcontrollers provide a wide variety of peripherals to communicate with an external
host, such as:

• USB

• CAN

• RS232

• Ethernet

• External memory (e.g., DataFlash®)

Choice should be made on the implementation priority (and relevance) of each method. Given
the simplest to implement is probably RS232, it could be used to get the system ready. Other
interfaces could then be added in an easier way.

It should be noted that there is a USB device class geared toward firmware upgrading. This
class, referred to as Device Firmware Upgrade (DFU), may be used to implement the boot-
loader functionality. Please note however that since it is not supported by Microsoft® Windows®,
it may not be easy to do so.

Finally, media such as CAN or Ethernet have the potential to allow for batch programming, i.e.,
programming several devices at once. The host could broadcast all the messages it sends,
enabling every connected device to receive them and upgrade their firmwares.

5.2 Cryptographic Algorithms
The secure part of the bootloader relies on different types of cryptographic primitives (hash func-
tions, MACs, digital signature algorithms, block ciphers,etc.). But for every type of primitive,
there are many different algorithms to choose from.

This section tries to give a brief overview of the choices available for the following: symmetric
block ciphers, hash functions, message authentication codes, digital signature algorithms and
pseudo-random number generators (PRNG). While the latter has not been introduced before
because it is not a security method by itself, it is critical to the design of a secure system.

For further recommendations, you may also look at those made by committees such as CRYP-
TREC or NESSIE, which carefully analyze existing and new algorithms.

Note: While developing a custom cryptographic algorithm has the advantage of hiding how it is imple-
mented, it is preferable to apply standards. Indeed, the standards have been thoroughly tested
and attacked, making the knowledge of which of them is used irrelevant. Similarly, avoid (when
possible) implementing a standard algorithm yourself and try to use standard implementations to
avoid bugs which will weaken the encryption.

5.2.1 Symmetric Ciphers
Symmetric (or private key) ciphers are used both for computing MACs and encrypting the pro-
gram code. Thus, they are an important part of the bootloader security and must be chosen
wisely.
20
6253A–ATARM–07-Sep-06

Application Note

Application Note
5.2.1.1 Choosing an Algorithm
A symmetric encryption algorithm can be defined by several characteristics:

• Key length in bits

• Block length in bits

• Security

• Size & speed

The key length used by an algorithm is an important parameter. The larger it is, the more diffi-
cult it is to perform a brute-force attack, i.e., trying all possible keys until one works. As
computers become faster and faster, longer keys are required. A reasonable length seems to be
128 bits at the moment, as it is the one key length selected for the Advanced Encryption Stan-
dard (AES) cipher.

A large block length is needed to avoid a “codebook attack”, i.e., someone getting enough
blocks of plain text and their corresponding cipher text to build a table, enabling him to decipher
further information.

In this scenario (firmware upgrading), an attacker is very unlikely to get access to any plain text
at all. Therefore, the block length can be of any (but still reasonable) size. Most block ciphers will
use at least 64 bits, with modern ciphers using at least 128 bits.

The security of the cipher is, of course, critical. If the algorithm has flaws, then it may be easily
breakable. Old ciphers like DES have been found flawed over time and thus abandoned. As
cryptanalysis evolves, new methods may be found to break ciphers which are currently consid-
ered secure.

Breaking a cipher does not mean that it becomes instantly decryptable; it may mean that instead
of searching through 2128 keys, only 2100 searches are necessary. Many attacks on and
breaches of ciphers are thus quite unusable, even for old algorithms like DES.

Finally, different algorithms have different speeds and sizes, depending on the techniques they
use. Some ciphers are especially suited for embedded systems, as they require less memory
(both in code and data). Similarly, some algorithms may be more suited to fast encryption, fast
decryption, efficient hardware implementation and so on.

The table below gives an overview of several popular ciphers. Note that if the target platform has
hardware acceleration available, the resulting code size will be much smaller, and the system
much faster.

Table 5-1. Symmetric Encryption Algorithms

Algorithm Key Length Block Length Security Speed & Size

AES 128 to 256 bits 128 bits Secure Fast, small code, small RAM footprint

Blowfish 32 to 448 bits 64 bits Secure Fast, large RAM footprint

DES 56 bits 64 bits Broken Slow

Triple-DES 168 bits 64 bits Secure Very slow

RC6 128 to 256 bits 128 bits Secure Small code, large RAM footprint

Serpent 128 to 256 bits 128 bits Secure Slow, small code, small RAM footprint

Twofish 128 to 256 bits 128 bits Secure Small RAM footprint
21
6253A–ATARM–07-Sep-06

Note that block ciphers can also be used (with modifications) as hash functions and message
authentication codes. This can be useful to save code size when several primitives are needed
(by reusing the same algorithm more than once).

Figure 5-1. Block Cipher as Hash Function

5.2.1.2 Modes of Operation
Several modes of operations are possible when using a symmetric cipher:

• Electronic codebook (ECB)

• Cipher block chaining (CBC, CFB, OFB, CTR)

• Authenticated encryption (EAX, CCM, OCB)

The basic mode of operation is ECB: each block of plain text is encrypted using the key and the
chosen algorithm, resulting in a block of cipher text. However, this mode is very insecure, as it
does not hide patterns. Indeed, two identical blocks of plain text will be encrypted to the same
cipher text block.

To solve this issue, cipher block chaining modes are used. Encryption is not only done with
the current block of plain text, but also with the last encrypted block. This means that each block
depends on the previously encrypted data, making everything interdependent.

The first block is encrypted using a random Initialization Vector (IV). While this vector can be
transmitted in clear text, the same vector shall never be used more than once with the same key.
It is likely that a manufacturer will produce more than one firmware upgrade for a product in its
lifetime. This means that the IV cannot be stored in the chip in the same way the key is. There-
fore, it will have to be transmitted by the host.

Figure 5-2. CBC Mode of Operation

Lastly, authenticated encryption modes are used to provide privacy, integrity and authentica-
tion at once. They are basically the combination of a MAC algorithm and a symmetric block
cipher. They are useful when the three components are needed, as using a mode such as EAX
will be faster and have less overhead than applying a MAC and a symmetric cipher separately.

Initial value

Text block#1

Hash #1

Block cipher

XOR

Text block#2

Hash #2

Block cipher

XOR

Text block#n

Digest

Block cipher

XOR

IV

Plain text block#1

Key

Plain text block#2

Ciphertext block#1 Ciphertext block#2

Block cipher

XOR

Block cipher

XOR

Block cipher

XOR

Plain text block#3

Ciphertext block#3
22
6253A–ATARM–07-Sep-06

Application Note

Application Note
Figure 5-3. EAX Mode of Operation

5.2.1.3 Performances on an AT91SAM7XC
Several of the aforementioned ciphers and modes have been tested using different implementa-
tions on a AT91SAM7XC. This section presents the results obtained.

The AES cipher has been tested using three different implementations. The first one uses the
libTomCrypt library, freely available from http://libtomcrypt.com. The second one is based on a
standard implementation provided by Paulo Baretto and Vincent Rijmen, while the last one uses
the hardware peripheral provided by the SAM7XC chip.

Triple-DES was tested using the libTomCrypt implementation as well as the hardware accelera-
tion of the SAM7XC.

Key Key#2

Plain text Cipher text

MAC

Tag

Cipher text + tag

CMAC

Block cipher

CMAC

XOR

Table 5-2. Performance Measurement of AES (128-bit key and 128-bit blocks)

Encryption Mode Implementation Source Size Overhead (bytes) Decryption Time for a 128 KB File (ms)

ECB

libTomCrypt 7,280 1089.9

Reference implementation 2,744 2654.9

Hardware acceleration 364 19.4

CBC

libTomCrypt 7,372 1206.4

Reference implementation 2,804 2624.4

Hardware acceleration 432 19.4

CTR

libTomCrypt 7,520 1278

Reference implementation 2,084 2674.6

Hardware acceleration 432 19.4

Table 5-3. Performance Measurement of Triple-DES (168-bit key and 64-bit blocks)

Encryption Mode Implementation Source Size Overhead (bytes) Decryption Time for a 128 KB File (ms)

ECB
libTomCrypt 6,280 2998

Hardware acceleration 344 61.2

CBC
libTomCrypt 6,376 3110.6

Hardware acceleration 424 61.2
23
6253A–ATARM–07-Sep-06

http://libtomcrypt.com

5.2.2 Hash Functions
A hash function has three defining characteristics:

• Output length

• Security

• Size & speed

The output length of a hash needs to be large enough. It must make it almost impossible to find
collisions, i.e., two different files having the same digest. This also prevent someone from finding
a piece of data producing a specific hash. In practice, most modern hash functions will have at
least a 160-bit output (like SHA-1). Note that the standard is quickly moving towards 512 bits.

But the security of the hash function is much more critical than the length of its output. Indeed,
MD5 (which only has a 128-bit output) would still be secure if it did not have serious design flaws
in it. Similarly to block ciphers, finding a flaw in a hash does not mean it becomes completely
cracked; most attacks are still not feasible without gigantic computational power. Still, newer
designs which are considered secure for the moment should be preferred over depreciated
algorithms.

When deciding on a hash function, its size & speed performances should also be evaluated.
However, the stronger algorithms are often the slowest ones (which is not true for block ciphers),
so there will be a security/speed trade-off.

Table 5-4 details several commonly used hash algorithms.

5.2.3 Message Authentication Codes
MACs are constructed by using other cryptographic primitives. Therefore, the choice of which
type of MAC to use is mostly dictated by which algorithms are used by other functionalities. Of
course, some MAC algorithms have been found faulty; care should be taken to avoid them.

Here are the different types of (secure) MACs available:

• HMAC: a hash function along with a private key

• UMAC: many hash functions and a block cipher

• OMAC/CMAC: block cipher in CBC mode

• PMAC: block cipher in CBC mode

For example, if you are already using a hash function (to check the firmware integrity at startup),
then using a HMAC will not have a high overhead.

Table 5-4. Hash Algorithms

Algorithm Hash Length Security Speed & Size

MD5 128 bits Broken Fast

RIPEMD-160 160 bits Secure Slow

SHA-1 160 bits Broken Slow

SHA-256 256 bits Secure Slow

WHIRLPOOL 512 bits Secure Very slow

Tiger 192 bits Secure Fast

HAVAL 128 to 256 bits Broken Moderately fast
24
6253A–ATARM–07-Sep-06

Application Note

Application Note
Note that UMAC might not be usable in practice, as it requires many different hash algorithms.
The incurred size overhead would thus be far too important for a bootloader.

Figure 5-4. CMAC Message Authentication Code

5.2.4 Digital Signature Algorithms
There are basically two main systems for generating and verifying digital signatures:

• the Digital Signature Standard (DSS)

• a system based on the Rivest-Shamir-Adleman (RSA) public-key algorithm

DSS is, as its name implies, specifically designed for digital signatures. It is based on a public-
key algorithm known as the ElGamal scheme. The key length required to have a strong enough
security is at least 1024 bits.

The most popular method is using RSA with a padding scheme. RSA is originally a public-key
(or asymmetric) encryption algorithm, and does not directly support encrypting an input which is
smaller than the key length. Since a key is often more than 1024 bits long, the resulting digest of
a hash function falls in this category.

Therefore, digital signing with RSA requires the use of a padding scheme. The goal is to
append additional data (or pad) to the message to encrypt, making the system secure. There
are three commonly used padding schemes:

• Full-domain hashing

• Optimal Asymmetric Encryption Padding (OEAP)

• Probabilistic Signature Scheme (PSS)

Full-domain hashing is not really a padding scheme, since it involves using a hash function
having an output size equals to the RSA key length. That way, the message digest can repre-
sented any value between 0 and 2k (k being the key length used), making the system secure.
However, it is not really usable in practice since currently no hash function can produce an out-
put longer than 512-bits.

OEAP and PSS both rely on adding a quantity of random data to convert RSA into a probabilistic
encryption scheme. These two algorithms, combined with RSA, show strong security properties
(which are provable). The drawback is that they require the use of a random number generator
to add salt (randomness) to the message. However, this is only needed to sign a message, not
to verify it; it has no impact on the code size of the decryption algorithm.

5.2.5 Pseudo-random Number Generators
There are many things in a secure system which are “random” or need some kind of randomized
value. Secret keys are the most basic example. Thus there must be a method to generate those
random values in a secure way, to avoid weakening the whole system. A chain is as strong as its
weakest link, so even indirect security issues should not be overlooked.

Plain text block#1

Key

Plain text block#2

Block cipher Block cipher

XOR

Block cipher

XOR

Plain text block#n

MAC tag
25
6253A–ATARM–07-Sep-06

Note however that a PRNG is not needed by the target. It is only used on the manufacturer
side, for the following operations:

• Generating private keys

• Generating initialization vectors

• Padding data when using RSA/OEAP or RSA/PSS

This means that in practice, there is no real speed nor size constraint on the PRNG algorithm.
Only its security matters.

PRNGs work by using a starting seed to generate successive random values. Initializing that
seed is a core problem, which is referred to as gathering entropy. Consider the case where the
current date & time are used to seed the PRNG. An attacker could obtain that information and
thus reconstruct every random number generated using that seed: private keys, nonces, etc.
Operating systems usually provide a mechanism to provide entropy, e.g., /dev/random on Unix
systems. They use, for example, the response time of devices such as hard disks to gather the
required entropy.

Most PRNGs then rely on another cryptographic primitive (such as a block cipher or a hash func-
tion) to generate pseudo-random outputs.

Here is a list of several secure PRNGs:

• Any block cipher in CTR mode

• Yarrow

• Fortuna

• Blum-Blum-Shub random number generator

5.2.6 Available Implementations
This section lists web sites providing libraries and/or reference implementations of several of the
cryptographic primitives described in this document. Those are all open-source or freely avail-
able implementations.

5.2.6.1 Libraries in C
libTomCrypt (http://libtomcrypt.com/)

• Symmetric ciphers: AES, DES/Triple-DES, Blowfish, RC6, Twofish

• Modes of operation: ECB, CBC, OFB, CFB, CTR, EAX, OCB, CCM

• Hash functions: MD5, SHA-1, SHA-256, TIGER-192, RIPEMD-160, WHIRLPOOL

• Message authentication codes: HMAC, CMAC, PMAC

• Digital signatures: DSA, RSA/OEAP, RSA/PSS

• Pseudo-random number generators: Yarrow, Fortuna

Catacomb (http://www.excessus.demon.co.uk/misc-hacks/#catacomb)

• Symmetric ciphers: Blowfish, DES/Triple-DES, AES, Serpent, Twofish

• Modes of operation: ECB, CBC, CFB, OFB, CTR

• Hash functions: MD5, SHA-1, SHA-256, Tiger

• Message authentication codes: HMAC

• Digital signatures: DSA, RSA/OEAP, RSA/PSS
26
6253A–ATARM–07-Sep-06

Application Note

http://libtomcrypt.com/
http://www.excessus.demon.co.uk/misc-hacks/#catacomb

Application Note
OpenSSL crypto (http://www.openssl.org/)

• Symmetric ciphers: Blowfish, DES/Triple-DES

• Modes of operation: ECB, CBC, CFB, OFB

• Hash functions: MD5, RIPEMD-160, SHA-1

• Message authentication codes: HMAC

• Digital signatures: DSA, RSA/OEAP

5.2.6.2 Libraries in C++
Crypto++ (http://www.eskimo.com/~weidai/cryptlib.html)

• Symmetric ciphers: AES, RC6, Twofish, Serpent, DES/3DES, Blowfish

• Modes of operation: ECB, CBC, CFB, OFB, CTR

• Hash functions: MD5, HAVAL, RIPEMD-160, Tiger, SHA-1, SHA-256, WHIRLPOOL

• Message authentication codes: HMAC, CMAC

• Digital signatures: RSA/OAEP, RSA/PSS, DSA

• Pseudo-random numbers generators: Blum Blum Shub

5.2.6.3 Separate Implementations in C
Brian Gladman (http://fp.gladman.plus.com/cryptography_technology/index.htm)

• Symmetric ciphers: AES, Serpent

• Modes of operation: ECB, CBC, CFB, OFB, CTR, CCM, EAX

• Hash functions: SHA-1, SHA-256

• Message authentication codes: HMAC, OMAC

5.3 Error Detection Codes
Since AT91 microcontrollers are based on a 32-bit architecture, it seems logical to implement
codes which are at least as long. They will not cost more in terms of speed and size than an 8-bit
or 16-bit variant.

Originally, simple checksums where used to detect errors. They operate by simply adding all
the bytes in a piece of data to get a final value. However, they are very limited: they cannot, for
example, detect that null bytes (0x00) have been appended or deleted. More reliable techniques
are now available, so very simple checksums should be avoided.

There are two algorithms which are worth mentioning here. The first one is the well-known Cyclic
Redundancy Check (CRC), which has strong mathematical properties and is quite fast. The 32-
bit version, called CRC-32, is used in the IEEE® 802.3 specification.

Adler-32 is a slightly less reliable than CRC-32 but significantly faster algorithm. It has a weak-
ness for very short messages (< 100 bytes), but this is not a concern if a whole page of data (≥
256 bytes) is transmitted at once.

5.4 Firmware File Format
Compilers support a wide variety of output file formats. The most basic of them is the binary for-
mat (.bin): it is simply a binary image of the firmware. Several formats include additional
27
6253A–ATARM–07-Sep-06

http://www.openssl.org/
http://www.eskimo.com/~weidai/cryptlib.html
http://fp.gladman.plus.com/cryptography_technology/index.htm

information, such as linking addresses (Motorola s-record, Intel® .hex) or debug information
(Executable and Linking Format .elf).

Since no information apart from the application code is required, the firmware can simply be
transmitted in binary format and directly written to memory by the bootloader. Since using other
formats would mean adding the necessary code on the bootloader side to handle them, this may
not be worth it.

5.5 Target Chips
Some of the chips in the AT91SAM family have different IPs, e.g., for the Flash controller. This
means that they are programmed differently; therefore, several versions of the code must be
written to accommodate all the microcontrollers. This is already done with the “Basic” series of
applications offered by Atmel for the AT91SAM family.

Thus, the bootloader will be developed for a particular chip first, but in a modular way. This
means that functions which are chip-dependent are wrapped in an abstraction layer. Porting the
software to another chip is easy: only the necessary low-level functions have to be coded, with-
out touching the bootloader core.

A good “first-chip” candidate seems to be the AT91SAM7XC, since it embeds cryptographic
accelerators. This will allow testing of both the software and hardware version of AES (and
DES/3DES) without using two different microcontrollers.
28
6253A–ATARM–07-Sep-06

Application Note

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High-Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

6253A–ATARM–07-Sep-06

© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, DataFlash® and others are reg-
istered trademarks, and others are trademarks, of Atmel Corporation or its subsidiaries. ARM® and the ARMPowered® logo are registered trade-
marks and others are trademarks of ARM Ltd. Windows® and others are the registered trademarks or trademarks of Microsoft Corporation in the
US and/or other countries. Other terms and product names may be trademarks of others.

	1. Introduction
	2. In-field Upgrading
	2.1 The Bootloader
	2.2 Issues
	2.2.1 Safety
	2.2.2 Security

	3. Proposed Solution
	3.1 Safety
	3.1.1 Protocol Stack
	3.1.1.1 Error Detection/Correction
	3.1.1.2 Block Numbering
	3.1.1.3 Packet Acknowledgement
	3.1.1.4 Existing Protocols

	3.1.2 Memory Partitioning
	3.1.3 Summary

	3.2 Security
	3.2.1 Integrity
	3.2.1.1 Hash function
	3.2.1.2 Digital Signature
	3.2.1.3 Message Authentication Codes

	3.2.2 Authentication
	3.2.2.1 Digital Signature
	3.2.2.2 Message Authentication Code

	3.2.3 Privacy
	3.2.4 Target Device Authentication
	3.2.5 Summary

	4. Examples of Use
	4.1 Security
	4.1.1 Scenario 1
	4.1.1.1 Requirements
	4.1.1.2 Core Solution
	4.1.1.3 Options

	4.1.2 Scenario 2
	4.1.2.1 Requirements
	4.1.2.2 Core Solutions
	4.1.2.3 Options

	4.1.3 Scenario 3
	4.1.3.1 Requirements
	4.1.3.2 Core Solutions

	5. Design Considerations
	5.1 Transmission Media
	5.2 Cryptographic Algorithms
	5.2.1 Symmetric Ciphers
	5.2.1.1 Choosing an Algorithm
	5.2.1.2 Modes of Operation
	5.2.1.3 Performances on an AT91SAM7XC

	5.2.2 Hash Functions
	5.2.3 Message Authentication Codes
	5.2.4 Digital Signature Algorithms
	5.2.5 Pseudo-random Number Generators
	5.2.6 Available Implementations
	5.2.6.1 Libraries in C
	5.2.6.2 Libraries in C++
	5.2.6.3 Separate Implementations in C

	5.3 Error Detection Codes
	5.4 Firmware File Format
	5.5 Target Chips

