B
AtmeL APPLICATION NOTE

Node Authentication Example Using Asymmetric PKI

ATECCS508A

Introduction

The node-auth-basic.atsln projectis an all-in-one example which
demonstrates the various stages of the node authentication sequence using public
key, asymmetric techniques of Atmel® CryptoAuthentication™ devices such as the
Atmel ATECC508A.

The node authentication stages demonstrated are:

e Provisioning the ATECC508A with Device and Signer Certificates and Keys
e Reconstruct X.509 Certificates from Data Stored in the ATECC508A

e Chain Verify — Verify Device Certificate Linkage to the Root of Trust (RoT)
e Send Challenge to the Device

e Device Signs Challenge

o Verify Authenticity of Signed Challenge

Overview

The combined result of the chain verify stage and the device challenge/signature
verify phase indicates if the node is authentic and can prove it is an original OEM
device. It also shows an example of how a device may be provisioned to hold
critical data for an X.509 certificate.

Prerequisites

o Software:
— Atmel Studio 6.2 or 7.0
e Hardware:
— Atmel SAM D21 Xplained Pro Evaluation Kit
— Atmel AT88CK101 Development Board with Socket or
Atmel CryptoAuth Xplained Pro Evaluation and Development Kit

Plug the CryptoAuthXplained Pro kit into the SAM D21 Extl1 or Ext2 header. The
I’c pins of the SAM D21 Xplained Pro kit automatically connects to the CryptoAuth
Xplained Pro. Along with the firmware required in this project, the example is ready
to run.

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

Table of Contents

1 Forthelmpatient — Where to DIVe IN? 3
A 1= L= T o T 1 3
3 What does “all-in-0ne” MEANT..........ccooiiiiiiiieeeeee e 3
4 What are the roles demonstrated in this example?........ccoiiiiii i, 3
5 Stages of AUtheNtiCAtiONccoooeiiee e 4
LI R o (0 1V/ 1= o] o1 Vo T PP PSP PPP 4

5.2 RECONSIIUCTION ...ttt sttt ettt e et et e et e b et et e e e b e e e be e beeene e e 4

5.3 Chain Verify, ROOT OF TIUSLuuiiiiiiiie ittt et e ettt e et e e et e e e st e e e estee e e enneeeesnnneeean 4

5.4 Signature Verify of ChallENge........c..eiiiiiiiiii et 4

5.5 Building the EXample SOUICE COUE..........eiiiiiiiiiiiiee ittt e e e bt e e s nree s 4

5.6 Using the Node Authentication BasiC EXAMPIEccoiiiiiiiiiiieiiie et 5

[(=110 T @0 4] =T o PSR 5

Check ATECCS08A CONNMECTIVITYeeiiitiieeitiieeeiiieeeesteeeeaitee e s st eeesnteeeesteeeessnbeeeeanteeeesnneeeesssneeeesnsneeesnns 6

Step 1 Provision the ATECCS508A: c1ient-provisSion ... 6

Step 2 Read ATECCS508A Certificates: c1ient-buildcccccciiiiiiiiiiiiiiiiieee e 8

Step 3 Verify the Certificate Chain: host-chain-verify........ e 9

Step 4 Generate a challenge from the Host: host-gen-chalccccooviiiiiiiii i 9

Step 5 Generate Response to Challenge (Signature): client-gen-respccccoiiiiiiiniieeenninenn, 10

Step 6 Verify the Signature: host-Verify -reSp .. 10

B REVISION HISTOMY .o 11

2 ATECC508A: Node Authentication Example Using Asymmetric PKI [APPLICATION NOTE] Atmel

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

1 For the Impatient — Where to Dive In?

For the impatient reader, the code that implements each of the stages kicks off in node_auth.c. The code uses
the Atmel CryptoAuthLib library, a portable device driver to communicate with the ATECC508A. With this project
example, a walk through of the entire sequence from top to bottom down to the driver level can be completed.

The HTML documentation for this example can be found in the node-auth-basic/docs directory. Load
index.html with the browser to view the documentation for the node-auth-basic project.

The HTML documentation for CryptoAuthLib, the core crypto library for Atmel CryptoAuthentication devices, can
be found in node-auth-basic/src/cryptoauthlib/docs/. Load index.html in the browser to begin the
viewing of the API docs for CryptoAuthLib.

2 What is a Node?

“Node” in this use case refers to the device to be authenticated. It could be an accessory or even a sensor in a
network.

3 What does “all-in-one” mean?

The “all-in-one” phrase implies that these stages are often not executed on the same device. For example, a
node might be a 6LOWPAN device on a wireless network and the host is in a remote data-center. However, there
are use cases where all runtime stages will be executed on the same host. For example, in a consumables use
case such as a printer/printer-cartridge, the host in the printer would perform all stages shown here and the
ATECC508A is in the cartridge which is in direct electrical contact with the host.

The “all-in-one” example is a convenient way to watch how all the roles work together in a system similar to the
printer/print-cartridge use case. All-in-one minimizes hardware and is the easiest way to trace all the code paths
from one tool, Atmel Studio.

The example will clearly differentiate which roles are being performed at each stage.

4 What are the roles demonstrated in this example?
The all-in-one example demonstrates the following roles:
e Provisioner The role that configures and programs the ATECC508A for runtime use.

e Client The device to be authenticated, such as an accessory.

e Host The device which would perform the authentication and verification steps to insure the
device is authentic.

Atmel ATECC508A: Node Authentication Example Using Asymmetric PKI [APPLICATION NOTE] 3

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

5 Stages of Authentication

5.1 Provisioning

Typically, the ATECC508A factory stage is carried out at the production facility, but is included here to
demonstrate the basic process used to store certificates in the device.

5.2 Reconstruction

Reconstruction is the method used to take a small amount of data which is dynamically created as part of the
certificate, stored within the ATECC508A, and reconstitute that data into a fully valid X.509 valid certificate.

5.3 Chain Verify, Root of Trust

Elliptic Curve Digital Signature Algorithm (ECDSA) verifies the Root of Trust (RoT) is one phase of a full
verification process which insures that this device has been properly signed into the manufacturer's chain of
certificates. This chain will fail if any certificate were invalid or contained an incorrect signer's signature or public
key.

a This verification process guards against an attacker forging a certificate within the chain to the RoT.

5.4 Signature Verify of Challenge

ECDSA verify of the signed challenge involves the host sending a challenge, a random number, to the
ATECCS508A to be cryptographically signed. A signature incorporates the private key held securely by the
ATECCS508A and the private key cannot be read from the hardware. The signature of the challenge is then
verified using the public key of the device, the signature, and the challenge data itself. Once all verifications are
complete, the device is determined to be authentic or not authentic, and the host can take an appropriate course
based on that result.

8 Signing the random challenge from the host proves that the device really does own the private key
associated with the public key of its certificate.

5.5 Building the Example Source Code
If using Atmel Studio 6.2, load the project file: node-auth-basic_6 2.atsln
If using Atmel Studio 7.0, load the project file: node-auth-basic.atsln

Once the project has been loaded, build it with Rebuild Solution under the Build menu. Flash the SAM D21
Xplained Pro kit using the standard Atmel Studio device programming tools.

4 ATECC508A: Node Authentication Example Using Asymmetric PKI [APPLICATION NOTE] Atmel

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

5.6 Using the Node Authentication Basic Example

There are two USB ports on the SAM D21 Xplained Pro. One is labeled, “EDBG USB” and is used to flash the
code into the MCU with Atmel Studio. The second USB port is labeled “Target USB”, a CDC USB port and is
used for the console interface to the example.

1. Connect the host computer to the EDBG USB to program it.

2. Connect the host computer to the Target USB CDC port in order to see a console interface you can use to
exercise the example after it has been programmed.

3. Use aterminal program on the host and connect it to the virtual COMM port of the SAM D21 Xplained Pro
which should be created when the Target USB CDC port is plugged into your PC, Linux, or OS X machine.
This particular step will vary on each computer and operating system.

The communication parameters are:

115,200 baud
8 bit word
No parity
1 stop bit

Help Command

Once connected to the serial USB, type help and the command line console will list as follows:

1

Atmel

$ help
Usage:
client-provision - Configure and load certificate data onto ATECC device.
client-build - Read certificate data off ATECC device and rebuild full

signer and device certificates.
host-chain-verify - Verify the certificate chain from the client.

host-gen-chal - Generate challenge for the client.
client-gen-resp - Generate response to challenge from host.
host-verify-resp - Verify the client response to the challenge.

Utility functions:

| lockstat - zone lock status

| lockcfg - lock config zone

| lockdata - lock data and OTP zones

| info - get the chip revision

| sernum - get the chip serial number

|

|3

ATECC508A: Node Authentication Example Using Asymmetric PKI [APPLICATION NOTE] 5

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

Check ATECC508A Connectivity

Using the command console, use the info or sernum command to display the device’s revision and serial
numbers. These are both good tests to insure your board and ATECC508A can communicate with each other.

Below is an example session of what to expect. Your serial number will be different, of course.

| $ info

| revision:

| 00 00 50 00

| $ sernum

| serial number:

| 01 23 61 12 D9 2C A5 71 EE
| %

NoupbwbNER

You must be able to perform this step successfully before proceeding to the next steps.

8 If you do not see identical revision or similar serial number, then check your connections to the
CryptoAuthXplained Pro extension board or the socketed top-board connected to the I°C pins of the
SAM D21 Xplained Pro Kit.

Step 1 Provision the ATECC508A: client-provision

Type the command: client-provision

This is a one-time step which generates the keys in the ATECC508A, as well as construct the certificates
required later to complete the verification steps. The certificates created and stored in this step are the device's
certificate and the signer's certificate.

Once the command is complete, all the certificates and keys will be stored and locked in the device. The device
cannot be changed thereafter.

Example: client-provision Session

An example session with client-provision might look similar to this. Don't worry about the exact bytes shown,
yours will be different; the main point is that you see the various components have been created and have data.

1 | Signer CA Public Key:
2 | 02 54 9E 50 2F 7C 13 1E C5 DA 7A 8B BF 5E @D @5
3 | E1l 3D 8E 11 F4 F1 04 D2 F6 CE 41 44 FA 40 E6 D4
4 | 02 3C Ao 80 30 B1 DE F1 4A A7 CE A3 FF 12 4B 4B
5 | A5 91 EQ F1 59 EF 67 A9 68 E5 CC 5C OB FD E8 7A
6 | Signer Public Key:
7 | A3 AC Co 2F 35 17 15 08 68 B1 10 43 24 F9 EA 30
8 | 17 2C B1 11 AB Al FO B5 0B 4B 85 77 2B F3 14 08
9 | 70 CoO 69 8E AF AA 6A 58 F9 8E 22 OF 3A 9E F8 35
10 | CoO 6A 5D FB C5 25 F4 56 5A A7 AB A9 E9 Bl 44 E6
11 | Device Public Key:
12 | B9 17 F9 9F BA A0 AF 3C 67 61 B8 DB D8 2F 8E 6B
13 | Cl CB Do CF 87 82 08 OE 2B D3 EC EF E8 E9 C5 3B
14 | E2 1C 2E 5D CC Al 92 A5 Al 22 68 EA FF 94 68 F5
15 | C0 54 DD 32 40 F9 F6 C2 9B AF @D 46 36 EC 5F 26
16 | Signer Certificate:
17 | 30 82 @1 B1 30 82 @1 57 A@ 03 02 01 02 02 03 40
6 ATECC508A: Node Authentication Example Using Asymmetric PKI [APPLICATION NOTE] Atmel

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

18 | C4 8B 30 OA 06 08 2A 86 48 CE 3D 04 03 02 30 36
19 | 31 1@ 30 OE 06 03 55 04 OA eC 07 45 78 61 6D 70
20 | 6C 65 31 22 30 20 06 03 55 04 @3 oC 19 45 78 61
21 | 6D 7@ 6C 65 20 41 54 45 43 43 35 30 38 41 20 52
22 | 6F 6F 74 20 43 41 30 1E 17 oD 31 34 30 38 30 32
23 | 32 30 30 30 30 30 5A 17 oD 33 34 30 38 30 32 32
24 | 30 30 30 30 30 S5A 30 3A 31 10 30 OE 06 03 55 04
25 | ©A oC @7 45 78 61 6D 70 6C 65 31 26 30 24 06 @3
26 | 55 @4 03 ©C 1D 45 78 61 6D 70 6C 65 20 41 54 45
27 | 43 43 35 30 38 41 20 53 69 67 6E 65 72 20 43 34
28 | 38 42 3@ 59 30 13 06 07 2A 86 48 CE 3D 02 01 06
29 | ©8 2A 86 48 CE 3D 03 01 ©7 03 42 00 04 A3 AC Co
30 | 2F 35 17 15 08 68 B1 10 43 24 F9 EA 30 17 2C B1
31 | 11 AB Al FO B5 OB 4B 85 77 2B F3 14 08 70 (O 69
32 | 8E AF AA 6A 58 F9 8E 22 @F 3A 9E F8 35 C@ 6A 5D
33 | FB C5 25 F4 56 5A A7 AB A9 E9 Bl 44 E6 A3 50 30
34 | 4E 30 oC 06 03 55 1D 13 @4 ©5 30 03 01 01 FF 30
35 | 1D @6 @3 55 1D OF 04 16 ©4 14 BB 5C 3D F7 4D 4C
36 | 93 D4 2B 50 D1 7F B3 23 C3 3A BO 2C 27 BA 30 1F
37 | ©6 ©3 55 1D 23 04 18 30 16 80 14 14 Be 97 8A 1D
38 | 57 50 FF 52 F9 DF A8 90 60 77 60 C5 3C 6B 50 30
39 | ©A 06 @8 2A 86 48 CE 3D 04 03 02 03 48 00 30 45
40 | @2 21 00 FB 08 10 99 B3 FO A8 E5 D5 19 3F 1A A2
41 | 20 94 06 Al 63 D9 4A CE 18 6A 80 C6 6A E7 91 42
42 | 6C 58 7D @2 20 46 85 5F 9D 71 F2 B9 48 84 75 2E
43 | 49 2F D7 58 AD 1B EB BD 36 A5 74 64 2B 6B EA 02
44 | 26 5A 72 13 3F
45 | Device Certificate:
46 | 30 82 @1 8A 30 82 01 30 AO 03 02 01 02 02 PA 40
47 | @1 23 6F 12 D9 2C A5 71 EE 30 QA 06 @8 2A 86 48
48 | CE 3D 04 03 02 30 3A 31 10 30 OF 06 ©3 55 04 A
49 | @C @7 45 78 61 6D 70 6C 65 31 26 30 24 06 03 55
50 | ©4 83 @C 1D 45 78 61 6D 70 6C 65 20 41 54 45 43
51 | 43 35 30 38 41 20 53 69 67 6E 65 72 20 43 34 38
52 | 42 30 1E 17 oD 31 35 30 39 30 33 32 31 30 30 30
53 | 3@ 5A 17 oD 33 35 30 39 30 33 32 31 30 30 30 30
54 | 5A 30 35 31 10 30 OFE 06 ©3 55 04 QA OC 07 45 78
55 | 61 6D 70 6C 65 31 21 30 1F 06 03 55 04 03 oC 18
56 | 45 78 61 6D 70 6C 65 20 41 54 45 43 43 35 30 38
57 | 41 20 44 65 76 69 63 65 30 59 30 13 06 07 2A 86
58 | 48 CE 3D 02 01 06 08 2A 86 48 CE 3D 03 01 07 03
59 | 42 00 04 B9 17 F9 9F BA A@ AF 3C 67 61 B8 DB D8
60 | 2F 8E 6B C1 CB DO CF 87 82 ©8 @OFE 2B D3 EC EF ES8
61 | E9 C5 3B E2 1C 2E 5D CC Al 92 A5 Al 22 68 EA FF
62 | 94 68 F5 CO 54 DD 32 40 F9 F6 C2 9B AF @D 46 36
63 | EC 5F 26 A3 23 30 21 30 1F 06 ©3 55 1D 23 04 18
64 | 30 16 80 14 BB 5C 3D F7 4D 4C 93 D4 2B 50 D1 7F
65 | B3 23 C3 3A BO 2C 27 BA 30 OA 06 08 2A 86 48 CE
66 | 3D 04 03 02 @3 48 00 30 45 @2 20 35 96 2E 3F F4
67 | 1A 3A DA E7 6F E1 FE 9D 7A 83 BE 36 FA 06 C5 01
68 | 79 55 F2 2C 8C FE 1D 43 38 19 CC 02 21 00 E8 53
69 | 87 83 A6 98 21 8E 43 A@ 08 73 B3 FD B4 4B 7E 1C
70 | EC FB 61 33 52 59 99 DF B1 E1 79 3E D7 8B
71| %

Atmel ATECC508A: Node Authentication Example Using Asymmetric PKI [APPLICATION NOTE] 7

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

Step 2 Read ATECC508A Certificates: client-build

Type the command: client-build

client-build reads the certificate data from the ATECC508A and reconstructs them into X.509 DER format
certificates. For this demonstration, you won't have to parse the full certificate; the demo code will use the X.509
DER formats for its verification and validation steps.

Example: A typical client-build session would look like this.

Optionally, compare this output to the certificates shown during the client provisioning step. They should be the
same. In this step, the certificate data was read from the device and reconstructed to match what was intended
when the part was provisioned.

1 | CLIENT: Rebuilt Signer Certificate:

2 | 30 82 01 B1 30 82 01 57 AO 03 02 01 02 02 03 40
3| C4 8B 30 OA 06 08 2A 86 48 CE 3D 04 03 02 30 36
4 | 31 10 30 OE 06 03 55 04 OA 0C 07 45 78 61 6D 70
5 | 6C 65 31 22 30 20 06 03 55 04 03 0C 19 45 78 61
6 | 6D 70 6C 65 20 41 54 45 43 43 35 30 38 41 20 52
7 | 6F 6F 74 20 43 41 30 1E 17 oD 31 34 30 38 30 32
8 | 32 30 30 30 30 30 5A 17 @D 33 34 30 38 30 32 32
9 | 30 30 30 30 30 5A 30 3A 31 10 30 OE 06 03 55 o4
10 | ©A oC 07 45 78 61 6D 70 6C 65 31 26 30 24 06 03
11 | 55 04 03 oC 1D 45 78 61 6D 70 6C 65 20 41 54 45
12 | 43 43 35 30 38 41 20 53 69 67 6E 65 72 20 43 34
13 | 38 42 30 59 30 13 06 07 2A 86 48 CE 3D 02 01 06
14 | ©8 2A 86 48 CE 3D 03 01 07 @3 42 00 04 A3 AC Co
15 | 2F 35 17 15 @8 68 Bl 1@ 43 24 F9 EA 30 17 2C B1
16 | 11 AB Al Fo B5 @B 4B 85 77 2B F3 14 08 70 C@ 69
17 | 8E AF AA 6A 58 F9 8E 22 OF 3A 9FE F8 35 C@ 6A 5D
18 | FB C5 25 F4 56 S5A A7 AB A9 E9 Bl 44 E6 A3 50 30
19 | 4E 30 0C @6 @03 55 1D 13 04 @5 30 03 01 01 FF 30
20 | 1D @6 ©3 55 1D OF @4 16 04 14 BB 5C 3D F7 4D 4C
21 | 93 D4 2B 50 D1 7F B3 23 C3 3A BO 2C 27 BA 30 1F
22 | @6 03 55 1D 23 @4 18 30 16 80 14 14 B@ 97 8A 1D
23 | 57 5@ FF 52 F9 DF A8 90 60 77 60 C5 3C 6B 50 30
24 | ©A 06 08 2A 86 48 CE 3D 04 03 02 03 48 00 30 45
25 | ©2 21 00 FB @8 10 99 B3 F@ A8 E5 D5 19 3F 1A A2
26 | 20 94 06 Al 63 D9 4A CE 18 6A 80 C6 6A E7 91 42
27 | 6C 58 7D ©2 20 46 85 S5F 9D 71 F2 B9 48 84 75 2E
28 | 49 2F D7 58 AD 1B EB BD 36 A5 74 64 2B 6B EA 02
29 | 26 5A 72 13 3F

30 | CLIENT: Rebuilt Device Certificate:

31 | 30 82 01 8SA 30 82 01 30 AQ 03 02 01 02 02 °A 40
32 | @1 23 6F 12 D9 2C A5 71 EE 30 @A 06 08 2A 86 48
33 | CE 3D 04 03 02 30 3A 31 10 30 OF 06 03 55 04 A
34 | @eC @7 45 78 61 6D 70 6C 65 31 26 30 24 06 03 55
35 | ©4 83 @C 1D 45 78 61 6D 70 6C 65 20 41 54 45 43
36 | 43 35 30 38 41 20 53 69 67 6E 65 72 20 43 34 38
37 | 42 30 1E 17 oD 31 35 30 39 30 33 32 31 30 30 30
38 | 3@ 5A 17 @D 33 35 30 39 30 33 32 31 30 30 30 30
39 | 5A 30 35 31 10 30 OFE 06 ©3 55 @04 QA OC 07 45 78
40 | 61 6D 70 6C 65 31 21 30 1F 06 03 55 04 @3 OC 18
41 | 45 78 61 6D 70 6C 65 20 41 54 45 43 43 35 30 38

8 ATECC508A: Node Authentication Example Using Asymmetric PKI [APPLICATION NOTE] Atmel

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

42

41 20 44 65 76 69 63 65 30 59 30 13 06 07 2A 86

|

43 | 48 CE 3D 02 01 06 08 2A 86 48 CE 3D 03 01 07 03
44 | 42 @0 @04 B9 17 F9 9F BA A@ AF 3C 67 61 B8 DB D8
45 | 2F 8E 6B C1 CB Do CF 87 82 08 OE 2B D3 EC EF E8
46 | E9 C5 3B E2 1C 2E 5D CC Al 92 A5 Al 22 68 EA FF
47 | 94 68 F5 CO 54 DD 32 40 F9 F6 C2 9B AF @D 46 36
48 | EC 5F 26 A3 23 30 21 30 1F 06 03 55 1D 23 04 18
49 | 30 16 80 14 BB 5C 3D F7 4D 4C 93 D4 2B 50 D1 7F
50 | B3 23 C3 3A BO 2C 27 BA 30 OA 06 08 2A 86 48 CE
51 | 3D 04 03 02 03 48 00 30 45 @2 20 35 96 2E 3F F4
52 | 1A 3A DA E7 6F E1 FE 9D 7A 83 BE 36 FA 06 C5 01
52 | 79 55 F2 2C 8C FE 1D 43 38 19 CC 02 21 00 E8 53
53 | 87 83 A6 98 21 8E 43 A@ @8 73 B3 FD B4 4B 7E 1C
54 | EC FB 61 33 52 59 99 DF B1 E1 79 3E D7 8B
55 [%

Step 3 Verify the Certificate Chain: host-chain-verify

Type the command: host-chain-verify

host-chain-verify retrieves the device certificate and the signer certificate from the ATECC508A,
reconstructs the certificates, and then performs a chain verify which verifies that the device certificate is valid and
has been signed into the chain leading to a RoT.

Example: A typical host-chain-verify session will look like this:

1 | $ host-chain-verify
2 | HOST: Signer certificate verified against signer certificate authority (CA)
public key!
3 | HOST: Device certificate verified against signer public key!
Step 4 Generate a challenge from the Host: host-gen-chal

Type the command: host-gen-chal

host-gen-chal generates a random challenge and asks the ATECC508A to sign it using the private key stored
in the ATECC508A corresponding to the device certificate.

This is one half of the typical “challenge/response” pattern. After the response has been received (Step 5), an
ECDSA verification can be performed which does the math to determine if the signature was valid.

Example: A challenge will look similar to this:

$ host-gen-chal

HOST: Generated challenge:

14 84 E8 89 41 D5 9A 1C AD 1F 68 44 3A 09 C6 45
30 BF 27 38 D2 28 56 B7 DD D6 98 CF 92 AB 3D 69

A wN PR

Atmel ATECC508A: Node Authentication Example Using Asymmetric PKI [APPLICATION NOTE] 9

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

Step 5 Generate Response to Challenge (Signature): client-gen-resp

Type the command: client-gen-resp

client-gen-resp generates the signature of the challenge performed in Step 4. It requests the ATECC508A
sign the challenge and return the signature it generated. This signature is used in the next verification steps.

Example: The generation of the signature will look similar to this:

$ client-gen-resp

CLIENT: Calculated response to host challenge:
BB BD 18 73 C3 88 86 E7 86 4A 53 CF 8F 18 4D EC
1A 39 A2 B9 FC @B FE 73 CE 51 42 oC FB 81 26 F9
63 C1 A0 AF A8 67 58 FB 3B 9D 19 6B FE 86 98 47
©C 13 C9 95 8D 37 C9 47 57 61 A@ F7 D4 52 42 45

auvih wWwnNn PR

Step 6 Verify the Signature: host-verify-resp

Type the command: host-verify-resp
host-verify-resp performs an ECDSA verification to determine if the signature is valid. ECDSA verification
requires three pieces of data:

o Public key of the device.

¢ Challenge given to the device to sign.

e Signature of the challenge.

If the ECDSA verification step verifies the device, the device has proven that it has the private key associated
with the public key that is in its device certificate and signed into the certificate chain. That's a long way of saying
that it has proven that it owns the public key and if its certificate with the same public key passes the chain
verification, then the device is considered fully verified and an authentic OEM device.

Example: Final device verification step:

$ host-verify-resp

|

|

| BB BD
| 1A 39
| 63 cC1
| ec 13
| HOST:
| B9 17
| C1cB
E2 1C
Ce 54
HOST:

VWoONOTUVDS WNBR

=
(]

[
N R

ATECCS508A: Node Authentication Example Using Asymmetric PKI [APPLICATION NOTE]

18 73 C3 88 86 E7
A2 B9 FC OB FE 73
AO AF A8 67 58 FB
C9 95 8D 37 C9 47
Device public key
FS9 9F BA A@ AF 3C
Do CF 87 82 08 OE
2E 5D CC A1 92 AS
DD 32 40 F9 F6 C2

86 4A 53 CF 8F 18
CE 51 42 oC FB 81
3B 9D 19 6B FE 86
57 61 A@ F7 D4 52
from certificate:
67 61 B8 DB D8 2F
2B D3 EC EF E8 E9
Al 22 68 EA FF 94
9B AF ©D 46 36 EC

4D
26
98
42

8E
c5
68
5F

Device response to challenge verified!

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

CLIENT: Calculated response to host challenge:

EC
Fo9
47
45

6B
3B
F5
26

Atmel

6 Revision History

| 8983A | 09/2015 |Initia| document release. |

Atmel ATECC508A: Node Authentication Example Using Asymmetric PKI [APPLICATION NOTE] 11

Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015

Altmel | Enabling Unlimited Possibilities’ v lin]3 [0

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com
© 2015 Atmel Corporation. / Rev.:Atmel-8983A-CryptoAuth-ATECC508A-Node-Example-Asymmetric-PKI-ApplicationNote_092015.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, CryptoAuthentication™, and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND COND ITIONS OF SALES LOCATED ON THE ATMEL
WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless
specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nucle ar facilities and weapons systems. Atmel products
are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor
intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Introduction
	Overview
	Prerequisites
	Table of Contents
	1 For the Impatient – Where to Dive In?
	2 What is a Node?
	3 What does “all-in-one” mean?
	4 What are the roles demonstrated in this example?
	5 Stages of Authentication
	5.1 Provisioning
	5.2 Reconstruction
	5.3 Chain Verify, Root of Trust
	5.4 Signature Verify of Challenge
	5.5 Building the Example Source Code
	5.6 Using the Node Authentication Basic Example
	Help Command
	Check ATECC508A Connectivity

	Step 1 Provision the ATECC508A: client-provision
	Step 2 Read ATECC508A Certificates: client-build
	Step 3 Verify the Certificate Chain: host-chain-verify
	Step 4 Generate a challenge from the Host: host-gen-chal
	Step 5 Generate Response to Challenge (Signature): client-gen-resp
	Step 6 Verify the Signature: host-verify-resp

	6 Revision History

