Safe and Secure Bootloader Implementation

1. Introduction

This document describes various aspects of the implementation of a safe & secure
bootloader, such as the one presented in the Atmel® application note Safe and Secure
Firmware Upgrade for AT91SAM Microcontrollers, literature no. 6253. The application
note discusses several design considerations when developing this kind of software
and the reader is thus expected to refer to it when consulting this document.

A correct bootloader implementation poses several challenges, such as correctly
remapping the chip memory with the new loaded program. Those issues will be
described and solved in the following chapters, with focus on the Atmel AT91SAM
ARM® Thumb® based microcontroller family specificities. An example software is also
provided along with this application note.

2. Related Documents

[1] Atmel Corp., 2006, Safe and Secure Firmware Upgrade for AT91SAM Microcon-
trollers, literature no. 6253.

ATMEL

Y ()

AT91 ARM
Thumb
Microcontrollers

Application Note

6282A—-ATARM-07-Dec-06

http://www.atmel.com/dyn/products/app_notes.asp?family_id=605
http://www.atmel.com/dyn/products/app_notes.asp?family_id=605

ATMEL

3. Bootloader Implementation

This section details several issues one may encounter while implementing a safe & secure boot-
loader, along with some insight on how to approach them. Example code from a working
implementation is given to illustrate the solutions.

3.1 Bootloader Flow

3.1.1 Boot Sequence
The startup sequence of the bootloader is as follows:
¢ |nitialization
e Trigger condition check
— Firmware upgrade (if trigger condition is set)
¢ Firmware verification (optional)
* Firmware loading (if verification ok or disabled)

Figure 3-1. Boot Sequence Diagram

set? ok?
Yes

\[e}

Star upgrace

Here is the corresponding code in C:

// Bootloader initialization
trigger init () ;

memory init () ;

media_init();
communication init () ;

encryption init();

// Check trigger condition
if (trigger poll()) {

// Upgrade firmware
bootloader load (APP_START ADDRESS) ;

}

// Verify firmware

if (integrity check() != OK) {

!/

return APP_START ADDRESS;

2 Application Note m—————
6282A—-ATARM-07-Dec-06

EEE————————————sssssssmmm A pplication Note

The next instruction uses the return value of this routine to load the firmware.

3.1.2 Upgrade Sequence
The basic upgrade flow starts with the host sending the firmware to the target, which then pro-
grams it in memory. Once the programming is done, the new application is loaded.

While, in theory, the “download” and “programming” steps are different, this is not the case in
practice. Indeed, AT91SAM microcontrollers usually have 4x more Flash memory than RAM.
Thus, they cannot store the whole firmware in RAM before writing it permanently to the Flash.

This means that the code must be written to the memory while it is received, and not after. Since
a Flash write operation takes approximately 6 ms (with a page erase), a communication protocol
is needed to halt the transfer when the memory is being written and resume it afterwards.

Note also that the Flash memory is split up into fixed-size blocks called pages. Depending on the
quantity of Flash in the microcontroller, the page size can be between 64 and 512 bits. A mem-
ory write operation can upgrade one page (or less) at a time; thus it seems logical to send
packets containing one full page.

Finally, there are several optional post-processing features to take into account. If code encryp-
tion is activated, then each page must be decrypted before being written. If a digital signature or
a message authentication code is present, it must be verified once the download is complete.

Figure 3-2. Firmware Upgrading Process

End of
transfer
?

\[e]
Data
received
?

Here is some sample C code implementing the upgrade flow:

Delete firmware

Firmware
ok?

Write last page |—>| Verify firmware

Page
received
?

Mor data Store data

Decrypt page |—>| Write page

// Receive and write firmware

pCurrent = APPLICATION_ STARTING_ADDRESS;

do {

bytes = communication_ receive (page) ;

// If at least one byte is received, write the page

if (bytes > 0) {

// Decrypt firmware

encryption decrypt (page, page, bytes);

ATMEL ;

6282A—-ATARM-07-Dec-06

ATMEL

// Pad page data

while (bytes < MEMORY PAGE SIZE) ({
page [bytes] = OxFF;
bytes++;

}

// Write page
memory write (pCurrent, page);
pCurrent += MEMORY PAGE_SIZE;

}

} while (bytes > 0);

In this example, the communication_receive function waits for a whole page of data while detect-
ing the transfer end. A returned value of 0 means that the transfer is finished.

3.1.3 Memory Partioning
Using memory partioning makes it possible to have at least one working version of the firmware
in the device at any time. This is useful to avoid firmware corruption if a problem occurs during
an upgrade, e.g. a power loss or a connection loss.

To do that, the Flash memory is divided into two distincts regions, A and B (excluding the boot-
loader region). The first one, A, is located right above the bootloader and contains the code
which to be loaded. B acts as a buffer during an upgrade: the code is first downloaded to that
region, verified, and finally, recopied to the first region if valid.

The boot and upgrade sequences are thus slightly modified. During the upgrade, the code is
written to region B (the buffer zone). Several steps are then added to the boot sequence, regard-
less of whether or not a firmware upgrade has been requested. The bootloader first checks if the
two codes present in regions A and B are identical. If they are, then the code in region A is
loaded.

If two codes are not the same, this means that either an upgrade has just taken place, or that
there has been an error during a previous upgrade. The validity of the code in region B is veri-
fied. If it is indeed valid, then it is copied over region A. If not, it is deleted.

Memory partitioning also makes it possible to use a slightly different bootloading strategy. Since
there is always a working firmware embedded in the device, some functionalities of the boot-
loader can be moved to the user application. By doing this, they can be upgraded as well.

For example, the firmware transfer can be delegated to the user firmware. It simply downloads
the new code in the buffer region and resets the chip. The bootloader then performs the remain-
ing operations, i.e., verify region B and copy it over region A.

4 Application Note m—————
6282A—-ATARM-07-Dec-06

Application Note

Figure 3-3. Boot Sequence with Memory Partitioning

Compare A&B

No
Trigger
set?
Yes

Start upgrade

Figure 3-4. Memory Content during Upgrade Process

Before upgrade Buffer erased After download After recopy

Verify B

?
\[o]

| Delete B I

' e
U?#Pngvv\\;grgz;ta No data New firmware New firmware
empty?)
Old firmware Old firmware Old application New firmware
(.
Bootloader
-

3.2 Bootloader Programming on AT91SAM Chips

3.21 Flash Programming
The Flash memory of AT91SAM microcontrollers cannot be read and written at the same time.
This is because it is single plane. Therefore, a program executing from the Flash cannot per-
form a memory write. Since the bootloader is located inside the Flash, it must first be copied to
the RAM prior to execution.

There are two ways to perform this step. The first one is available for certain toolchains such as
IAR Embedded Workbench®. Using the __ramfunc attribute for a function will tell the compiler
that it is supposed to run from the RAM, not the Flash. The C-initialization routine copies the
function at runtime. Note that you must disable interrupts during a Flash write if this solution is
used, since exception vectors will still be read from the Flash by the ARM core.

Example function performing a Flash command using the __ramfunc attribute:

__ramfunc void flash cmd(unsigned int fcr)

// Start Flash operation and wait for completion
// ITs are masked during this.

while (! (AT91C BASE MC->MC_FSR & AT91C_MC_FRDY)) ;
mask = AT91C BASE AIC->AIC IMR;

AT91C_BASE AIC->AIC IDCR = OxFFFFFFFF;

AT91C BASE MC->MC_FCR = fcr | AT91C _MC_FCMD START PROG |

ATMEL ;

6282A—-ATARM-07-Dec-06

ATMEL

AT91C_MC_CORRECT KEY;
while (! (AT91C_BASE MC->MC_FSR & AT91C MC FRDY));

}

The second solution is to recopy the above function into the RAM as well as exception vectors.
We then use the memory remap feature of AT91SAM chips to map the RAM at virtual address
0x0, enabling proper execution of the code. This solution is slightly more complex to code com-
pared to the first one, but has the benefit that interrupts can still work while writing the Flash.

The following code carries out the RAM copy and remap of the bootloader:

;-- Copy bootloader in RAM

LDR r0, =_ ramstart
LDR rl, = bootloaderend
IDR r2, =0

copy:

LDR r3, [r2]

STR r3, [r2, ro0]
ADD r2, r2, #4
CMP r2, rl

BNE copy

;-- Perform a RAM remap
LDR r0, =AT91 BASE MC
LDR rl, =AT91 MC RCB
STR rl, = [r0, #MC_RCR]

Do not forget to undo the remap before executing the firmware, using the same last 3 lines of
code.

3.2.2 Exception Vectors Remapping
Atmel AT91SAM chips are based on an ARM core (either ARM7™ or ARM9™). When the core
boots, it always starts to fetch code at address 0x0. Since at runtime the memory remap com-
mand is not active, the Flash is located both at adress 0x100000 and address 0x0. Therefore,
the bootloader code must be located there to be executed.

In addition, the ARM core will also look for exception vectors starting at address 0x0 (the first
one being the reset vector). Since the bootloader cannot be upgraded, its exception vectors will
always be loaded at the beginning of the Flash. This can be a problem if the user firmware
needs custom exception vectors.

The AT91SAM series offer a convenient mechanism to circumvent this problem. At all times,
either the internal Flash (0x0010 0000 - 0x001F FFFF) or the internal SRAM (0x0020 0000 -
0x002F FFFF) is mirrored at address 0x0. A remap command makes it possible to toggle the
memory which is currently mirrored. When the chip resets, the Flash is automatically mirrored
(i.e., no remapping is done).

6 Application Note m—————
6282A—-ATARM-07-Dec-06

Application Note

Figure 3-5. Memory Organization Before and After Exception Vectors Copy and Remap
~
m_ Data Data

0x0020 0000 > Reserved space Application vectors
Application code Application code
Application vectors Application vectors
Bootloader code Bootloader code

0x0010 0000 > Bootloader vectors Bootloader vectors ~
Application code

Mirrored flash Mirrored RAM

Application vectors
Bootloader code Data

0x0000 OOOO\ Bootloader vectors Application vectors | _/

Using this mechanism, the new exception vectors can be copied to the RAM. A memory remap
is then performed to have the RAM available at both address 0x0020 0000 and address 0x0.
This operation can be done by the firmware itself (after being loaded by the bootloader), during
its initialization. Below is a code snippet to do that:

;-- Copy firmware exception vectors in RAM
LDR r0, =INTERRUPT VECTORS_ START
LDR rl, =INTERNAL RAM START
LDR r2, =INTERRUPT_ VECTORS_ END

copy:
LDR r3, [r0], #4
STR r3, [rl], #4
CMP r0, r2
BNE copy

;-- Remap SRAM to have new exception vectors at address 0x0
LDR r0, =AT91C_BASE MC
LDR rl, =AT91C MC_RCB
STR rl, [r0, #MC RCR]

To be able to do that, some space needs to be reserved in the data segment. Otherwise, the
compiler might link variables at the beginning of the RAM, which causes problems. This can be
done by modifying the linker script used by the compiler. This operation is similar to the one
described in the following section.

ATMEL 7

6282A—-ATARM-07-Dec-06

3.2.3

3.24

ATMEL

Application Code Linking

Ordinarily, the code segment of a user application is linked at the beginning of the Flash. This is
because the ARM core of AT91SAM microcontrollers starts fetching program code at address
0x0. However, this cannot be the case when using a bootloader, since it will be itself located at
address 0x0.

There are two possible solutions to this. The first one is to have the linker generate position-
independent (Pl) code. In a Pl program, each reference to a function or variable is done rela-
tively to the current executing instruction. This means that the code can be relocated anywhere
in memory and still work perfectly.

ARM linkers can generate Pl code, but only in ARM (32-bits) mode. This is because the BX
instruction (used to switch between ARM and Thumb mode) is linked using the absolute address
of the function. Therefore, PI code is only a solution if you do not use any Thumb code in your
application.

The other way is to modify the address at which the application is linked, depending on the boot-
loader size. To do that, you have to modify the linker script of your project. Simply define a
“bootloader_size” constant equals to the size of the compiled bootloader, and the first available
ROM address to “flash_start+bootloader_size”. Here is an example using IAR Embedded
Workbench:

//--

// Size of bootloader region

//--
-DBOOTSIZE=2000

//--
// Read-only segments

//--
-DROMSTART=(00000000+BOOTSIZE)

-DROMEND=0003FFFF

Code segments are then defined between ROMSTART and ROMEND.

Boot Region Locking

To avoid having the bootloader region accidentally erased by the user application, it is safe to
lock it with the Flash controller. Any write to a locked Flash region will be aborted automatically.

A command is available in the Embedded Flash Controller (EFC) for locking a specified memory
region. The problem is that a region is quite large: between 4K and 16K bytes. Since only the
bootloader region must be locked, this means that the application will have to start at the begin-
ning of the next region.

In practice, you have to set the bootloader segment size to a multiple of a region size. This effec-
tively means that you waste the region space not used by the bootloader.

The security bit, used to protect the internal memory (Flash + SRAM) from external access, can
also be set in the EFC.

Application Note m—————

6282A-ATARM-07-Dec-06

EEE————————————sssssssmmm A pplication Note

4. Example Implementation

4.1

411

41.2

6282A—-ATARM-07-Dec-06

Here we describe a sample implementation of the safe & secure bootloader presented in this
document. It is made up of three programs: the bootloader itself and two helper programs. One
is used to transfer the firmware between a PC and the bootloader. The other one is necessary to
encrypt the firmware before sending it. Those three pieces of software are detailed below.

Bootloader

Features

The following features have been implemented:
* Basic bootloading capabilities using a USART to transmit the firmware
* XON/XOFF protocol for flow control during download/Flash programming
* Boot region locking
» Code encryption using AES or Triple DES
* Memory partitioning

The software has been developed for IAR Embedded Workbench.

Configurability
The bootloader has been designed in a way which makes it easy to add new components to it,
like a new media or a new communication protocol.

The /inc/config.h file controls the configuration of both mandatory components (such as which
media to use) and optional ones (security, safety). A particular component can be selected by
defining the following constant:

#define USE COMPONENTNAME
Where COMPONENTNAME is the name of the component (e.g.USARTO0). Note that only one
component can be selected for each mandatory category, which are:

e Communication protocol

— XON/XOFF (USE_XON_XOFF)
* Media layer

— USART (USE_USARTO)
¢ Debug

— DBGU (USE_DBGU)
* Memory type

— Flash (USE_Flash)
* Trigger condition

— Dummy (USE_DUMMY)

— Switches (USE_SWITCHES)
¢ Timing measurement

— Timer0 (USE_TIMERO)

Both the debug and timing categories are not truly mandatory. If no debug driver is defined, for
example, then the bootloader does not output debug messages. The timing module can be used
to perform benchmarks on several features.

ATMEL ;

ATMEL

Three optional parameters are available:

* Boot region locking (USE_BOOT_REGION_LOCKING)
¢ Code encryption (USE_ENCRYPTION)
* Memory partitioning (USE_MEMORY_PARTITIONING)

41.3 Code Location
Main Bootloader Algorithm

The /src/main.c file contains the core bootloader algorithm. This includes the boot sequence
(Section 3.1.1 on page 2), the upgrade sequence (Section 3.1.2 on page 3) as well as the modi-
fied boot & upgrade sequence for memory partitioning (Section 3.1.3 on page 4).

Memory locking of the bootloader region is also done during initialization of this bootloader.

Exception Vectors Remapping

The remapping of exception vectors is done directly during the startup of the user firmware. The
code is thus located in the /resources/firmware_remap_startup_ SAMxxxx.s79.

Flash Programming

Algorithms for programming the Flash as well as locking/unlocking memory regions are located
in the /src/media/flash.c file. Note that the __ramfunc attribute is used for these functions to
work properly. The bootloader can be modified to use RAM remapping to avoid using this com-
piler-specific attribute. To do that, replace the following files:
* /resources/bootloader_startup.s79
— /resources/bootloader_startup_remap.s79
» /resources/bootloader_linkscript XXX.xcl
— /resources/bootloader _linkscript XXX_remap.xcl
e /src/media/flash.c
— /src/media/flash_remap.c
Linking and Startup Code
All the files used for both bootloader and user application linking and startup are located in the
/resources directory. It includes:
¢ Startup and linker file for the bootloader
* Startup and linker file for a firmware without remapped exception vectors
e Startup and linker file for a firmware with remapped exception vectors

4.2 Firmware Updater

This helper program is used to transmit the firmware between the host PC and the bootloader.
Since only a RS232 (through a PC COM port) link is implemented at the moment, a standard ter-
minal application (like HyperTerminal) could be used to perform the same operation. However, it
will be necessary to develop a program if another media or communication protocol is imple-
mented and not supported by standard programs.

10 Application Note m—————
6282A—-ATARM-07-Dec-06

EEE————————————sssssssmmm A pplication Note

Figure 4-1. Firmware Updater Main Window

=0
— Firmware
I j Browse ... I
— Media

[ComM1 > [115200 bauds >

INn parity j |1 stap bit j

r— Communication pratocal

 =OM/X0FF

I parade | E «it |

& Serial port;

The main window of the application enables the user to perform the following operations:

* Choose the firmware file to send to the bootloader

* Select the media and associated parameters

 Select the communication protocol and associated parameters
¢ Launch an upgrade

Note that you must select the same parameters in the Firmware Updater as the ones which have
been selected for the bootloader. For example, if the bootloader is configured to connect using a
USART configured at 115000 bps, no parity and 1 stop bit, select those parameters in the Firm-
ware Updater.

4.3 Firmware Packager

The firmware packager is used to prepare the firmware prior to sending it to customers. This
include encrypting it, generating a signature or MAC tag, etc.

Figure 4-2. Firmware Packager Main Window

e

— Filez

rect [- |
Output; I j Browse ... |

— Encryption

Algorithm: ¢ AES © 3DES

Maode: @ ECB CBC (CTR { E&x

Kew I

Iy |

Fackage | E «it |

Currently, the following functionalities are implemented:

ATMEL y

6282A—-ATARM-07-Dec-06

ATMEL

* Select the firmware file to package

¢ Select the output file

* Select an encryption method (AES or Triple DES) with associated parameters
— Encryption mode, key and initialization vector

* Launch the firmware packaging

Note that you must select the same parameters in the Firmware Packager as the ones selected
for the bootloader. For example, if the bootloader is configured to accept a firmware encryption
in AES-CBC with a particular key and IV, enter the same parameters in the Firmware packager.

12 Application Note m—————
6282A—-ATARM-07-Dec-06

EEE————————————sssssssmmm A pplication Note

5. Revision History

Table 5-1.
Document Ref. Comments Change Request Ref.
6282A First issue.

ATMEL i

6282A—-ATARM-07-Dec-06

AIMEL

I 7

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza

Atmel Operations

Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle

RF/Automotive

Theresienstrasse 2
Postfach 3535

74025 Heilbronn, Germany
Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Biometrics

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-47-50

Fax: (33) 4-76-58-47-60

77 Mody Road Tsimshatsui
East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA

Japan)
. Tel: 1(719) 576-3300
9F, Tonetsu Shinkawa Bldg. Fax: 1(719) 540-1759

1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Scottish Enterprise Technology Park
Maxwell Building

East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000

Fax: (44) 1355-242-743

Literature Requests
www.atmel.com/literature

=)
o,
oc
w
=
)
[
|

ARM

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others are registered trade-
marks or trademarks of Atmel Corporation or its subsidiaries. ARM®, the ARMPowered® logo, Thumb® and others are the registered trademarks
or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

6282A—-ATARM-07-Dec-06

	1. Introduction
	2. Related Documents
	3. Bootloader Implementation
	3.1 Bootloader Flow
	3.1.1 Boot Sequence
	3.1.2 Upgrade Sequence
	3.1.3 Memory Partioning

	3.2 Bootloader Programming on AT91SAM Chips
	3.2.1 Flash Programming
	3.2.2 Exception Vectors Remapping
	3.2.3 Application Code Linking
	3.2.4 Boot Region Locking

	4. Example Implementation
	4.1 Bootloader
	4.1.1 Features
	4.1.2 Configurability
	4.1.3 Code Location

	4.2 Firmware Updater
	4.3 Firmware Packager

	5. Revision History

