

42368A-MCU-06/2016

RELEASE NOTES

GNU Toolchain for Atmel ARM Embedded
Processors

Introduction

The Atmel ARM GNU Toolchain (5.3.1.487) supports Atmel ARM® devices.
The ARM toolchain is based on the free and open-source GCC. This toolchain
is built from sources published by ARM's "GNU Tools for ARM Embedded
Processors" project at launchpad.net (https://launchpad.net/gcc-arm-embedded).
The toolchain includes compiler, assembler, linker, binutils (GCC and binutils),
GNU Debugger (GDB with builtin simulator) and Standard C library (newlib,
newlib nano).

https://launchpad.net/gcc-arm-embedded

GNU Toolchain for Atmel ARM Embedded Processors [RELEASE NOTES]
42368A-MCU-06/2016

2

Table of Contents

Introduction .. 1

1. Supported Configuration ... 3
1.1. Supported Hosts ... 3
1.2. Supported Targets ... 3

2. Downloading, Installing, and Upgrading 4
2.1. Downloading/Installing on Windows .. 4
2.2. Downloading/Installing on Linux ... 4
2.3. Downloading/Installing on Mac OS ... 4
2.4. Upgrading .. 4

3. Layout and Components ... 5
3.1. Layout ... 5
3.2. Components ... 5

4. Toolset Background .. 6
4.1. Compiler .. 6
4.2. Assembler, Linker, Librarian .. 6
4.3. C Library ... 7
4.4. Debugging ... 7
4.5. Source Code .. 7

5. New and Noteworthy .. 8
5.1. Supported Architectures ... 8

6. Contact Information and Disclaimer .. 9
6.1. Contact ... 9
6.2. Disclaimer .. 9

GNU Toolchain for Atmel ARM Embedded Processors [RELEASE NOTES]
42368A-MCU-06/2016

3

1. Supported Configuration

1.1 Supported Hosts
This release includes the following:

● Bare metal EABI pre-built binaries for running on a Windows host

● Bare metal EABI pre-built binaries for running on a Linux host

● Bare metal EABI pre-built binaries for running on a Mac OS X host

1.2 Supported Targets

● Bare metal ARM EABI only (Use rdimon specs for semi-hosting enviroment)

GNU Toolchain for Atmel ARM Embedded Processors [RELEASE NOTES]
42368A-MCU-06/2016

4

2. Downloading, Installing, and Upgrading
The ARM GNU toolchain provided by Atmel is available for download. Use one of the following ways for
installation.

2.1 Downloading/Installing on Windows

● to try the Atmel ARM GNU toolchain alone, you can download it from here1

● If you want to try the Atmel ARM GNU Toolchain along with Atmel studio, you can download and install
Atmel Studio version 6.0 or later which will also install the Atmel ARM GNU toolchain. See Atmel studio
release notes for more details.

2.2 Downloading/Installing on Linux
For Linux, the Atmel ARM GNU Toolchain is available as tar.gz archive which can be extracted using the tar
utility. In order to install, simply extract to the location, from where you want to execute. The Linux builds are
available here2.

Note 64-bit version of libncurses and libc are required to run the tools.

2.3 Downloading/Installing on Mac OS
For Mac, the Atmel ARM GNU Toolchain is available as tar.gz archive which can be extracted using the tar
utility. To install, extract to the location, from where you want to execute. MAC builds are available here3

2.4 Upgrading
If the Atmel ARM GNU Toolchain is installed by Atmel Studio installation, refer Atmel Studio documentation for
more details.

If the toolchain is installed separately using one of the (Windows, Linux, Mac) installers, upgrading is not
supported. You can install the new package side-by-side of the old package and use it.

1 http://www.atmel.com/tools/atmel-arm-toolchain.aspx
2 http://www.atmel.com/tools/atmel-arm-toolchain.aspx
3 http://www.atmel.com/tools/atmel-arm-toolchain.aspx

http://www.atmel.com/tools/atmel-arm-toolchain.aspx
http://www.atmel.com/tools/atmel-arm-toolchain.aspx
http://www.atmel.com/tools/atmel-arm-toolchain.aspx
http://www.atmel.com/tools/atmel-arm-toolchain.aspx
http://www.atmel.com/tools/atmel-arm-toolchain.aspx
http://www.atmel.com/tools/atmel-arm-toolchain.aspx

GNU Toolchain for Atmel ARM Embedded Processors [RELEASE NOTES]
42368A-MCU-06/2016

5

3. Layout and Components
Listed below are some of the directories that you might want to look, to have a high level understanding of what
is packaged inside the Atmel ARM GNU Toolchain. The layout is identical in Windows, Linux and Mac OS X.

3.1 Layout
The layout of the installation is as follows.

● INSTALLDIR
The directory where the ARM GNU Toolchain is installed in the target machine.

● INSTALLDIR\bin
The ARM software development programs. This directory should be in your PATH environemnt
variable. (Note : If you are using this toolchain from within Atmel Studio, please configure Atmel studio
appropriately). This includes

● GNU Binutils

● GCC

● GDB

● INSTALLDIR\arm-none-eabi\lib
The directory which have the ARM newlib libraries, startup files and linker scripts.

● INSTALLDIR\arm-none-eabi\include
ARM-newlib header files. This is where the system include files will be searched for by the toolchain.

● INSTALLDIR\lib
GCC libraries, other libraries and headers.

● INSTALLDIR\libexec
GCC program components.

3.2 Components
The components used to build this toolchain along with their version number can be found here1.

1 http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1

http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1
http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1

GNU Toolchain for Atmel ARM Embedded Processors [RELEASE NOTES]
42368A-MCU-06/2016

6

4. Toolset Background
ARM GNU toolchain is a collection of executable software development tools for the Atmel ARM processors.
These software development tools include:

1. Compiler

2. Assembler

3. Linker

4. Archiver

5. File converter

6. Other file utilities

7. C Library

8. Debugger

4.1 Compiler
The compiler is the GNU compiler collection, or GCC. This compiler is incredibly flexible and can be hosted on
many platforms, it can target many different processors/operating systems(backends), and can be configured
for multiple different languages (frontends).

The GCC included is targeted for the ARM processor, and is configured to compile C, and C++.

Because this GCC is targeted for the ARM, the main executable that is created is prefixed with the target
name: `arm-none-eabi-gcc`. It is also referred to as ARM GCC.

`arm-none-eabi-gcc` is just a driver program. The compiler itself is called cc1.exe for C, or cc1plus.exe for C
++. Also the preprocessor cpp.exe will usually automatically be prefixed with the target name arm-none-eabi-
cpp.exe. The actual set of component programs called is usually derived from the suffix of each soruce code
file being processed.

GCC compiles a high-level computer lanugage into assembly, and that is all. It cannot work alone. GCC is
coupled with another project, GNU Binutils, which provides the assembler, linker, librarian and more. Since
GCC is just a driver program, it can automatically call the assembler and linker directly to build the final
program.

4.2 Assembler, Linker, Librarian
GNU Binutils is a collection of binary utilities. This also includes the assembler,as. Sometimes you will see it
referenced as GNU as or gas. Binutils includes the linker, ld; the librarian or archiver, ar. There are many other
programs included that provide various functionality.

Binutils is configured for the ARM target and each of the programs is prefixed with the target name. So you
have programs such as:

● arm-none-eabi-as: The GNU Assembler

● arm-none-eabi-ld: The GNU Linker

● arm-none-eabi-ar: The GNU Archiver, Create, modify, and extract from archives (libraries)

● arm-none-eabi-ranlib:Generate index of archive (library) contents

● arm-none-eabi-objcopy:Copy and translate object files

● arm-none-eabi-objdump:Display information from object files including disassembly

● arm-none-eabi-size:List section size, total size

● arm-none-eabi-nm:List symbol from object files.

● arm-none-eabi-strings:List printable strings from files

● arm-none-eabi-strip:Discard symbols

GNU Toolchain for Atmel ARM Embedded Processors [RELEASE NOTES]
42368A-MCU-06/2016

7

● arm-none-eabi-readelf:Display the contents of ELF file formats

● arm-none-eabi-addr2line:Convert addresses to file and line

● arm-none-eabi-c++filt:Filter to demangle encoded C++ symbols

● arm-none-eabi-gdb:Debugger to debug the target

See the binutils user manual for more information on what each program can do.

4.3 C Library
Newlib is the Standard C Library for ARM GCC. Newlib is the C library intended for use on embedded systems.
It is a conglomeration of sevaral library parts. The library is ported to support ARM processor.

In addition to standard C library, newlib-nano also added to the toolchain package. Newlib-nano is newlib
branch optimized for code size by ARM (https://launchpad.net/gcc-arm-embedded). To use newlib-nano, users
should provide additional gcc link option "--specs=nano.specs". For more details, refer to the readme from
here1.

4.4 Debugging

● The toolchain distribution ships the `arm-none-eabi-gdb` which can be used for debugging purposes.

● Atmel Studio provides faclities to debug the executable produced by this toolchain. Note that `Atmel
Studio` is currently free to the public, but it is not Open Source.

4.5 Source Code
This toolchain is built using the source from ARM's gcc-arm-embedded project 5-2016-q1-update2 release. For
Atmel's modification on source and build scripts, refer SOURCES.README from here3.

1 http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1
2 https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q1-update
3 http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1

http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1
https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q1-update
http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1
http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1
https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q1-update
http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1

GNU Toolchain for Atmel ARM Embedded Processors [RELEASE NOTES]
42368A-MCU-06/2016

8

5. New and Noteworthy
Read ARM's gcc-arm-embedded project 5-2016-q1-update1 release for updates and fixes. This section lists
Atmel's modifications to that release.

● Default debug information is set to DWARF-2, which is supported by Atmel software debugger tools.

● Added object file wise memory usage details to map file. This shall be enabled using '--detailed-mem-
usage' linker option.

● Multilib for armv7-a architecture with float variants Neon-vfpv4 and vfpv4-d16 FPUs.

Please read section "Architecture options usage" of gcc-arm-embedded project's readme (also available here)2

for more information about multilib selections. Please refer below table for Atmel's modification to armv7-a
multilibs.

Table 5-1.

ARM Core Command Line Options multilib

armv7-a thumb mode and Soft/
Softfp float-abi

-march=armv7-a -mthumb -
mfloat-abi=soft -mfpu=vfpv4-d16

armv7-a/thumb-softfp-vfpv4-d16

armv7-a arm mode and soft/softfp
float-abi

-march=armv7-a -mfloat-abi=soft
-mfpu=vfpv4-d16

armv7-a/arm-softfp-vfpv4-d16

armv7-a thumb mode, hard float-
abi, neon-vfpv4

-march=armv7-a -mthumb -
mfloat-abi=hard -mfpu=neon-
vfpv4

armv7-a/thumb-neon-vfpv4

armv7-a arm mode, hard float-
abi, neon-vfpv4

-march=armv7-a -mfloat-abi=hard
-mfpu=neon-vfpv4

armv7-a/arm-neon-vfpv4

armv7-a thumb mode, hard float-
abi, vfpv4-d16

-march=armv7-a -mthumb -
mfloat-abi=hard -mfpu=vfpv4-d16

armv7-a/thumb-vfpv4-d16

armv7-a arm mode, hard float-
abi, vfpv4-d16

-march=armv7-a -mfloat-abi=hard
-mfpu=vfpv4-d16

armv7-a/arm-vfpv4-d16

5.1 Supported Architectures
armv2 armv5e armv6z armv8-a+crc
armv2a armv5t armv6zk armv8-m.base
armv2 armv5te armv7 armv8-m.main
armv2a armv6 armv7-a armv8-m.main+dsp
armv3 armv6-m armv7-m iwmmxt
armv3m armv6j armv7-r iwmmxt2
armv4 armv6k armv7e-m native
armv4t armv6s-m armv7ve
armv5 armv6t2 armv8-a

Refer ARM-Options3 for more details about ARM architecture and processors

Please refer Atmel Studio documentation for the supported Atmel ARM devices.

1 https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q1-update
2 http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1/readme.txt
3 https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q1-update
http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1/readme.txt
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html
https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q1-update
http://distribute.atmel.no/tools/opensource/Atmel-ARM-GNU-Toolchain/5.3.1/readme.txt
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

GNU Toolchain for Atmel ARM Embedded Processors [RELEASE NOTES]
42368A-MCU-06/2016

9

6. Contact Information and Disclaimer

6.1 Contact
For support on Atmel ARM GNU Toolchain, visit design support1.

Users of ARM GNU Toolchain are also welcome to discuss on the AT91SAM Community website2 forum.

6.2 Disclaimer
Atmel ARM GNU toolchain is distributed free of charge for the purpose of developing applications for Atmel
SAM devices. Atmel ARM GNU Toolchain comes without any warranty.

1 http://www.atmel.com/design-support/
2 http://www.at91.com/

http://www.atmel.com/design-support/
http://www.at91.com/
http://www.atmel.com/design-support/
http://www.at91.com/

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: 42368A-MCU-06/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR®, XMEGA®, megaAVR® SAM®, and others are registered trademarks or

trademarks of Atmel Corporation in U.S. and other countries. Windows®, and others, are registered trademarks of Microsoft Corporation in U.S. and or other countries.

ARM®, Cortex® are registered trademark of ARM Holdings in U.K. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted
by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE,
ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION,
OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products
descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable
for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure
of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent. Safety-Critical
Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed
nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military- grade. Atmel products are not designed nor intended for use in
automotive applications unless specifically designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com

	Introduction
	Table of Contents
	1. Supported Configuration
	1.1. Supported Hosts
	1.2. Supported Targets

	2. Downloading, Installing, and Upgrading
	2.1. Downloading/Installing on Windows
	2.2. Downloading/Installing on Linux
	2.3. Downloading/Installing on Mac OS
	2.4. Upgrading

	3. Layout and Components
	3.1. Layout
	3.2. Components

	4. Toolset Background
	4.1. Compiler
	4.2. Assembler, Linker, Librarian
	4.3. C Library
	4.4. Debugging
	4.5. Source Code

	5. New and Noteworthy
	5.1. Supported Architectures

	6. Contact Information and Disclaimer
	6.1. Contact
	6.2. Disclaimer

