

Atmel AVR2059: BitCloud Porting Guide

Features
• Instructions on porting Atmel® BitCloud® to a custom board
• Description of BitCloud build process
• Porting a reference application to another development board and to a custom

board
• Instructions for creating board support package from scratch

Introduction
This document explains how to run BitCloud on a custom board which is different
from evaluation and reference boards not included in supported kits. Such
instructions may be particularly useful when the application development moves
from prototyping to field trials and real-world deployments or whenever the
application is moved to real-world devices considerably different from evaluation
kits.

Assuming that the BitCloud SDK supports the MCU and the radio chip combination
used on a custom board, the stack and the application can be hosted on such a
board with little difficulty. However, moving to a non-standard board may require
minor re-configuration and/or modification of stack components that deal with
hardware, especially the Hardware Abstraction Layer (HAL) and the Board Support
Package (BSP). The following chapters outline common modifications that may be
required as well as cover related topics such as application build process.

8-bit Atmel
Microcontrollers

Application Note

Rev. 8430A-AVR-08/11

2 Atmel AVR2059
8430A-AVR-08/11

1 Basic principles

1.1 Architecture
The Atmel BitCloud stack is the Atmel full-feature implementation of ZigBee® PRO
protocol. BitCloud supports a number of Atmel development and evaluation boards;
for complete list refer to [1] or [2]. Applications images provided with the SDKs or
compiled from sample application sources can run on these boards without any
additional changes. User’s custom applications can also be developed, compiled, and
used with the boards without any changes to BitCloud configuration.

Still, most user applications are eventually ported and run on custom boards different
from the standard development and evaluation boards provided with the kits. Since
custom boards often feature different interfaces, pins and peripherals configuration,
the standard BitCloud configuration needs to be adjusted to fit the hardware platform.

In general this is possible as long as BitCloud libraries support the MCU and radio
chip combination used on the custom board.

Figure 1-1. BitCloud stack architecture.

BitCloud architecture is shown on Figure 1-1. Two main components interacting
directly with the hardware are Hardware Abstraction Layer (HAL) and Board Support
Package (BSP). The hardware-dependent part of the MAC layer also contains some
board specific configuration, but these configurations are exposed in HAL and can be
modified without recompiling the BitCloud library.

In the above architecture, HAL and BSP serve slightly different purposes. While HAL
manages MCU’s interfaces enabling interaction over particular pins, BSP is used to

Atmel AVR2059

 3
8430A-AVR-08/11

control board peripherals. Both HAL and BSP are provided in source code and can be
easily modified by the user. Source code is also provided for Persistent Data Server
(PDS), Configuration Server (CS), as well as drivers.

1.2 Application build process
To simplify the building process all sample applications provided with Atmel BitCloud
SDK are equipped with necessary configuration and project files for two supported
toolchains:

• Atmel AVR Studio® and the GCC compiler. Applications are compiled by invoking
the make utility which relies on the application makefile

• IAR Embedded Workbench® and supporting compiling tools. Within this toolchain
two approaches are possible. The user can compile applications:

o from the command line by running the make utility which relies on the
application makefile

o directly from IAR Embedded Workbench (by setting compile options
with IAR™ Workbench integrated configuration tools)

The following two sections explain in detail how different compilation methods are
structured. The toolchains supported by each platform are listed in [1] and [2].

Whatever the toolchain used all reference applications’ additional configuration
parameters are collected in the configuration.h file located in the root application
directory. This file is commonly used to set values for Configuration Server
parameters and is referred to throughout this document.

The standard application build process automatically compiles BSP, PDS,
ConfigServer, and drivers. The HAL component shall be compiled separately as
described in Section 2.1.2.

1.2.1 Building applications using makefiles

Each sample application is provided with makefiles for the most typical application
configurations. Makefiles are located in the \makefiles directory inside
subdirectories corresponding to different supported boards. In addition to these low-
level makefiles each application includes high-level makefile located in the application
root folder.

The high-level makefile is used to specify the low-level makefile that will be used to
build the application. The choice depends on the values assigned to special variables
inside the high-level makefile:

• PROJECT_NAME: specifies the subdirectory name of the \makefiles directory
where the target file is located

• CONFIG_NAME: used to obtain the target makefile name by adding CONFIG_NAME to
Makefile_

For example, if makefile contains the following lines:

PROJECT_NAME = MeshBean

CONFIG_NAME = All_ZigBit_Atmega1281_Rf230_8Mhz_Gcc

then the compilation instructions will be extracted from the makefile located at

\makefiles\MeshBean\Makefile_All_ZigBit_Atmega1281_Rf230_8Mhz_Gcc

The application structure is illustrated in Figure 1-2. A high-level makefile for sample
applications already contains commented lines for all configurations provided, so the
user just has to uncomment appropriate lines.

4 Atmel AVR2059
8430A-AVR-08/11

Figure 1-2. Application build structure with makefiles.

After desired configuration is chosen in the makefile, the application can be built by
executing make clean all from the command line in the application root folder or by
selecting the Build command in the context menu in Atmel AVR Studio.

1.2.1.1 Low-level makefile name structure

The name of a low-level makefile consists of parts showing which configuration the
file specifies. These include specification of

• Device type (All, Coordinator, Router, or EndDevice); All means that this
configuration can be used for any device type

• Module or board (ZigBit®, STK®600, etc.)
• MCU (Atmega1281, Atmega128rfa1, etc.)
• Radio chip (Rf230, Rf212, or Rf231)
• Compiler (IAR or GCC)

NOTE Not all combinations make sense for a given platform. Makefiles are provided only for
supported configurations.

The image names for pre-built reference applications follow similar a naming
convention (see platform specific chapters in [1]).

Atmel AVR2059

 5
8430A-AVR-08/11

1.2.2 Building applications with IAR Embedded Workbench

IAR Embedded Workbench can be used to develop and build Atmel BitCloud
applications. All reference applications include IAR project files located in the
\iar_projects subdirectory of the application root directory. IAR projects come
complete with a set of configurations, which correspond to the configurations given by
low-level makefiles.

IAR Embedded Workbench GUI allows the user to select an appropriate configuration
from the list of available configurations and to modify any given configuration. For
details on compilation and editing configurations refer to IAR Embedded Workbench
documentation.

As mentioned above, BSP, PDS, CS stack components, and drivers are compiled
with the application. For convenience reasons, source files for these components are
included in the IAR projects, so they are effectively a part of the application.

NOTE Additional configuration parameters including ConfigServer parameters are still
contained in the configuration.h file in the application root directory.

For compilation from the command line with the IAR compiler, makefiles are used in
exactly the same way as described in Section 1.2.1.

6 Atmel AVR2059
8430A-AVR-08/11

2 Modifying HAL walkthrough

2.1 Overview and general instructions
The Hardware Abstraction Layer (HAL) is the main stack component responsible for
interfacing the stack and the application with the hardware. Therefore, porting the
stack to a new platform typically requires modifications to HAL. This chapter
describes the most common types of HAL modifications and how to perform them.

• Section 2.2 describes configuration of the MCU and the RF chip interface, that is,
how to correctly assign pins and RF interrupts when connecting the MCU and the
RF chip

• Section 2.3 describes handling a node’s unique ID which is used as the extended
address in a ZigBee network. In standard stack configuration UID is read from the
external UID chip when the stack is initialized

• Section 2.4 covers various HAL parameters configuration such as main clocks and
fuse bits

• Section 2.5 describes how to modify the external flash driver to work with custom
devices. The flash driver’s primary use is in the applications relying on OTAU
functionality

• Finally, Section 2.6 deals with IO pins and external interrupts

2.1.1 HAL structure

By definition, HAL code is platform dependent, so separate implementation is
provided for each microcontroller. Directory structure inside the HAL root folder
reflects the division of microcontrollers into families and particular types. For example,
Atmel ATmega1281 sources reside in <Stack-root>\Components\HAL\avr\
atmega1281. The directory containing microcontroller-specific code in turn contains
subdirectories for specific board or module configurations. For example, for
ATmega1281 there are such subdirectories as rcb230, rcb231_212 and zigBit
corresponding to specific supported platforms where ATmega1281 is used. Common
source file may also be found at each directory level.

A separate subdirectory inside HAL root directory contains sources for drivers,
namely <Stack-root>\Components\HAL\drivers.

A recommended method to make changes to HAL is to use existing directory
structure, modifying contents of existing header and source files.

2.1.2 Compiling HAL

Before any HAL modifications can be used by an application, the HAL component
needs to be recompiled separately. Once that is done the user application can be
built with new HAL library. Note that all other stack components for which source
code is provided (BSP, PDS, CS, and drivers) are compiled with the application.

HAL sources are located in the <Stack-root>\Components\HAL directory. Files in
the directory include Makefile and Makerules, which specify HAL compilation
options. It is not recommended to change these files. Additional configuration options
can be found in the Configuration file. Changing HAL options to fit the specifics of a
target board is described in Section 2.4.

Atmel AVR2059

 7
8430A-AVR-08/11

To compile HAL run the command line in the <Stack-root>\Components\HAL
directory and execute the following command:

make clean all

Assuming the parameters in the Configuration file are selected correctly, the
command will compile a HAL library based on the combined configuration contained
in Configuration, Makefile and Makerules files. Once the HAL compilation is
complete, application build process will make use of just created HAL libraries.

2.2 MCU/RF interface
The list below outlines major steps of configuring MCU and RF interface on a custom
board:

1. Properly assign pins interconnections including pins for radio chip interrupts and
pins enabling the SPI interface operation. These pins are defined in the
halRfPio.h file using the HAL_ASSIGN_PIN (name, port, pin) macros. Note
that name in pin assignments should never be changed.

2. Modify source code implementing data transmission in the halRfCtrl.c file.
3. Configure interrupt vectors.

NOTE Specific microcontroller pins and ports may not support all the features required by
the transceiver interface. To find out which pins are suitable, please refer to the
microcontroller’s datasheet.

IMPORTANT Atmel BitCloud requires that the data exchange between an MCU and a radio
chip is performed through pure SPI. Hence, the MCU pins used for
communication with the RF chip shall support (and not emulate) SPI
connection.
The following subsections provide detailed guide for different microcontrollers.

2.2.1 ATmega1281 specifics

The HAL sources for Atmel ATmega1281 are located in the HAL\avr\atmega1281
directory. Move to a board-specific folder inside \atmega1281 that is chosen as the
basement for the customized sources. All paths below in this section are given as
relative to the directory you have moved to.

Proceed with the following instructions:

1. Modify pin assignments in the include\halRfPio.h:
a. RF pins: RF_SLP_TR, RF_RST, and RF_IRQ. The RCB230 board also

requires the RF_TST pin to be defined.
For example, on RCB230 the RF_SLP_TR pin is set with the
HAL_ASSIGN_PIN(RF_RST_TR, B, 5); line, while on ZigBit with
HAL_ASSIGN_PIN(RF_SLP_TR, A, 7);

b. SPI pin assignments (SPI_CS, SPI_SCK, SPI_MOSI, and SPI_MISO)
shall not be changed, because ATmega1281 provides only four pins
for SPI connection with the radio chip (B0, B1, B2, and B2).

2. Configure the RF interrupt handler in the src\halMacIsr.c file (the last routine in
the file). Specify external interrupt in the argument of the ISR routine. For
example, on Atmel ZigBit it is done by the following line:
 ISR(INT5_vect)

The body of the handler can be left unchanged.

8 Atmel AVR2059
8430A-AVR-08/11

3. Modify code for controlling RF IRQ in the src\halRfCtrl.c file. Check that
appropriate changes are made in the following functions implemented in the file:
 HAL_ClearRfIrqFlag()

 HAL_EnableRfIrq()

 HAL_DisableRfIrq()

 HAL_InitRfPins()

 HAL_InitRfIrq()

If you change the pin used for RF interrupt, you may need to modify MCU
registers accordingly. Also note the following:

a. HAL_EnableRfIrq() and HAL_DisableRfIrq() functions involve the
same MCU register (EIMSK on Atmel ZigBit, TIMSK1 on RCB230).

b. Give a special attention to initialization functions. For instance, on
RCB230 as compared to ZigBit the HAL_InitRfPins() function
contains two additional lines configuring RF_TST pin, namely:
GPIO_RF_TST_make_out();

GPIO_RF_TST_clr();

4. If pin assignments and interrupts are changed, the user must make sure that the
new pins involved are not used by stack components (BSP, HAL) and in the
application for controlling LEDs, DTR, etc.

5. To apply changes recompile HAL as described in Section 2.1.2.

2.2.2 XMEGA specifics

HAL sources for various Atmel AVR® XMEGA® microcontrollers are located in
subdirectories of the HAL\xmega directory. Move to a board-specific subdirectory of
the folder corresponding to your MCU. For example, if you use Atmel
ATxmega256A3, move to the HAL\xmega\atxmega256a3\stk600 directory. All paths
below in this section are given as relative to the directory you have moved to.

Proceed with the following instructions:

1. Modify pin assignments in the include\halRfPio.h:
a. RF pins: RF_SLP_TR, RF_RST, and RF_IRQ.
b. SPI pins: SPI_CS, SPI_SCK, SPI_MOSI, and SPI_MISO.

For example, you may want to change the port for connection from C
to D, thus the line HAL_ASSIGN_PIN(SPI_CS, D, 4); will replace
HAL_ASSIGN_PIN(SPI_CS, C, 4); and so on.

2. In case you have changed the port of the RF_IRQ pin:
a. In \HAL\xmega\Makefile in the RF_PORT_LETTER=C line replace C

with the desired port name. For example, RF_PORT_LETTER=D.
b. In src\halMacIsr.c in the ISR(PORTC_INT0_vect) line put

PORT<port_letter> instead of PORTC. For example,
ISR(PORTD_INT0_vect).

c. In src\halMacIsr.c modify line
ISR(TCC1_CCB_vect)

and in ..\common\src\halAppClock.c modify lines
#if defined(RF_PORT_LETTERC)

ISR(TCC1_OVF_vect)

#elif defined(RF_PORT_LETTERD)

ISR(TCD1_OVF_vect)

Atmel AVR2059

 9
8430A-AVR-08/11

#endif

so that the routines they declare use the same port letter. That is,
change the line from src\halMacIsr.c to
ISR(TC<RF_port_letter>1_CCB_vect)

and replace the above conditional expression from
..\common\src\halAppClock.c with a single line
ISR(TC<RF_port_letter>1_OVF_vect)

3. In case you have changed the pin of the RF_IRQ pin assignment:
a. In src\halRfCtrl.c in the HAL_InitRfIrq() function in the

following lines
RF_PORT.PIN2CTRL = PORT_ISC0_bm | PORT_OPC_PULLDOWN_gc;

...

RF_PORT.INT0MASK = PIN2_bm;

put PIN<RF_pin_number> instead of PIN2.
4. In case you have changed the port for SPI pins:

a. In the include\halRfSpi.h file replace all occurrences of SPIC with
SPI<port_letter>. For example, replace with SPID if the port has
been changed to D.

b. In the src\halRfSpi.c file replace all occurrences of SPIC with
SPI<port_letter> For example, replace with SPID if the port has
been changed to D.

5. If pin assignments and interrupts are changed, the user must make sure that new
pins involved are not used by stack components (BSP, HAL) and in the application
for controlling LEDs, DTR, etc.

6. To apply changes recompile HAL as described in Section 2.1.2.

NOTE For SPI pin assignments you can only change the port, but not the pin numbers. The
port must be changed for all SPI pins at once.

2.2.3 SAM3S specifics

HAL sources for Atmel SAM3S are located in the HAL\cortexm3\at91sam3s4c folder.
The stack supports only the Atmel SAM3S-EK board by default; therefore move to the
HAL\cortexm3\at91sam3s4c\sam3sEK folder.

Proceed with the following instructions:

1. Modify RF pin assignments in the include\halRfPio.h file:
a. Skip to the definition of IRQ_RF_PIN and set it to the pin number for

the RF interrupt. For example:
#define IRQ_RF_PIN 17

b. Skip to the definition of IRQ_RF_PORT and set it to the port letter for
the RF interrupt. For example:
#define IRQ_RF_PORT IRQ_PORT_A

2. Modify SPI pin assignments in the include\halRfPio.h file:
a. Skip to the lines:

#define SPI_RF_NPC PIO_PB2

...

#define SPI_RF_SLP PIO_PA15

10 Atmel AVR2059
8430A-AVR-08/11

...

#define SPI_RF_RST PIO_PA18

b. Set SPI_RF_NPC, SPI_RF_SLP, and SPI_RF_RST to values of the
following format:
PIO_P<port_letter><port_number>

For example, to specify a GPIO on port B under number 11 use the
PIO_PB11 value.

3. If pin assignments and interrupts are changed, the user must make sure that new
pins involved are not used by stack components (BSP, HAL) and in the application
for controlling LEDs, DTR, etc.

4. To apply changes recompile HAL as described in Section 2.1.2.

2.3 Extended address assignment

2.3.1 Assigning the extended address

For correct network operation all devices in a ZigBee network must have unique 64-
bit extended addresses (also called IEEE® addresses). The extended address value
is stored in the CS_UID parameter of the Configuration Server and assigned each time
the device is powered on.

If the parameter is not set to a non-zero value in the configuration.h file, the stack
tries to load it from the internal EEPROM. If after this the external address still equals
0, the stack attempts to read it from an external UID chip with the help of the
HAL_ReadUid() function. If the stack fails to read the value, the extended address will
equal 0 and the device will not be able to join any network. In this case the application
must set the extended address at run time explicitly.

2.3.2 Options for specifying the extended address

The user can rely on external resources to set the extended address at run time (for
example a UID chip or commands from a host MCU) or assign it at compile time in
the configuration.h file of the application. The only rule is that the extended
address must be set to a non-zero value before a device joins the network, and all
devices in the same network must have different addresses.

There are four options for specifying the extended address:

1. Duplicate the Atmel development board setup on a custom board, that is, use the
same UID chip connected to the MCU in the same way as on one of the supported
boards.

2. Implement the HAL_ReadUid() function for your custom platform.
3. Assign a non-zero value to the CS_UID parameter in configuration.h.
4. Set the CS_UID value at run time before the device performs network start.

NOTE If the CS_UID parameter is specified at compile time, then the application shall be
compiled separately for each device.

Atmel AVR2059

 11
8430A-AVR-08/11

2.3.3 The HAL_ReadUid() function

The HAL_ReadUid() function is intended to read the value of the external address
from an external UID chip. For each supported platform configuration this function has
separate implementation. If you would like the stack to read the UID value from an
external UID chip, you may need to modify this function implementation to fit your
custom hardware configuration.

HAL_ReadUid() is defined in the halUid.c file located in the board-specific directory
(see Section 2.1.1). For example, for Atmel ZigBit this file is located on the <Stack-
root>\Components\HAL\avr\atmega1281\zigBit\src\halUid.c path. In some
implementations the HAL_ReadUid() function only returns the value obtained earlier
by the halReadUid() function inaccessible from outside HAL. In such cases do not
change HAL_ReadUid() implementation, but modify halReadUid().

2.4 Configuring HAL parameters
HAL configuration parameters are declared in the Configuration file located in
<Stack-root>\Components\HAL.

Most of the parameters make sense only for some of the platforms. Parameters
values are specified for those platforms where there is a choice among multiple
possible values and, which require different code to be executed. That is why
possible values for the parameters are used as defines for conditional compilation of
the source code. For example, the lines below add the value of the HAL_FREQUENCY
as a macro, provided the parameter itself is defined:

ifdef HAL_FREQUENCY

 CFLAGS += -D$(HAL_FREQUENCY)

endif

Table 2-1 describes major configuration parameters.

Table 2-1. HAL configuration parameters.
Parameter Description

BUILD_CONFIGURATION In order to debug HAL set this parameter to DEBUG,
otherwise to RELEASE.

PLATFORM Platform selection.

HAL Microcontroller selection. Some boards support
several MCU types so a particular MCU shall be
specified for them. The parameter is used in HAL
Makefile (see Section 2.1.2) to point to a specific
directory containing files for this type of the MCU.

HAL_FREQUENCY Frequency at which the MCU will operate.

HAL_CLOCK_SOURCE Main clock source for the MCU core.

HAL_ASYNC_CLOCK_SOURCE Clock source for sleep timeouts.

RF_EXTENDER Radio extender type. The information is used for
connection between the MCU and the radio chip

HAL_USE_USART_ERROR_EVENT Set to True to enable USART error callbacks.

HAL_RF_RX_TX_INDICATOR Enables/disables support of Rx/Tx indication on the
RF chip via DIG3/DIG4 pins.

HAL_ANT_DIVERSITY Turning on/off the antenna diversity feature.

12 Atmel AVR2059
8430A-AVR-08/11

Table 2-2. Atmel HAL configuration parameters and platforms.

Platform HAL
HAL_
FREQUENCY HAL_CLOCK_SOURCE HAL_ASYNC_CLOCK_SOURCE RF_EXTENDER

ZigBit
ATMEGA1281
ATMEGA2561

HAL_4MHz
HAL_8MHz n/a n/a n/a

Raven n/a
HAL_4MHz
HAL_8MHz n/a n/a n/a

USB dongle n/a n/a n/a n/a n/a

STK600

ATXMEGA128A1
ATXMEGA256A3
ATXMEGA256D3
ATMEGA128RFA1
(1)

HAL_4MHz
HAL_8MHz
HAL_12MHz
HAL_16MHz
HAL_32MHz

CRYSTAL_16MHz
RC_INTERNAL_2MHz
RC_INTERNAL_32MHz

RC_ULP
RC_32K
CRYSTAL_32K n/a

SAM-7X EK n/a n/a n/a n/a n/a

RCB n/a
HAL_4MHz
HAL_8MHz n/a n/a n/a

AVR32
EK1105 n/a n/a n/a n/a n/a

SAM3S EK n/a

HAL_4MHz
HAL_8MHz
HAL_12MHz
HAL_64MHz

CRYSTAL_12MHz
RC_INTERNAL

RC_ASYNC
CRYSTAL_ASYNC n/a

REB CBB n/a

HAL_4MHz
HAL_8MHz
HAL_12MHz
HAL_16MHz
HAL_32MHz

RC_INTERNAL_2MHz
RC_INTERNAL_32MHz

RC_ULP
RC_32K
CRYSTAL_32K

REB230
REB231
REB212

Notes: 1. For ATMEGA128RFA1 valid HAL_FREQUENCY values are HAL_4MHz and HAL_8MHz only,
HAL_CLOCK_SOURCE and HAL_ASYNC_CLOCK_SOURCE values are ignored.

Table 2-2 indicates availability of parameters that are not valid for all platforms as well
as supported values for the parameters.

NOTE If a parameter is not available on a given platform, then it just shall not be specified in
the Configuration file. Such parameters are set to a fixed value in Makerules.

Parameters not mentioned in Table 2-2 shall be set for all platforms except for the
parameters that are unique for a particular platform (see Table 2-3).

Table 2-3. Parameters unique for a particular platform.
Platform Parameter Values

HAL_TINY_UID
TRUE to read UID from ATtiny13A MCU
FALSE to read UID from DS2411

ZigBit

HAL_USE_AMPLIFIER
TRUE for ATZB-A24-UFL/U0 devices
FALSE for other ATZB devices

RCB

PLATFORM_REV

RCB_ATMEGA128RFA1, RCB230_V31,
RCB230_V32, RCB230_V331,
RCB231_V402, RCB231_V411,
RCB212_V532

Atmel AVR2059

 13
8430A-AVR-08/11

2.5 Flash driver modification

2.5.1 Modifying drivers when porting BitCloud

Drivers implement logic of higher level than serial interfaces and can make use of
certain interfaces while communicating with external devices. A driver usually
implements a specific protocol over the serial connection. When porting Atmel
BitCloud to a custom platform, the user may need to modify drivers that will be used
by the stack and the application. Necessary modifications include both proper pin
assignments and changes of the source code of the driver.

The sources for drivers are located in the <Stack-root>\Components\HAL\drivers
directory.

2.5.2 The Flash driver and OTAU

The Flash driver is intended to exchange data with an external Flash memory device
during the Over-the-Air Upgrade process. OTAU functionality is enabled on a single
device by the OTAU client cluster. Upon receiving pieces of a new firmware image
the OTAU client cluster transfers these pieces to the external Flash device, employing
the Flash driver API.

The Flash driver public API is defined in the ofdExtMemory.h header file located in
<Stack-root>\Components\HAL\drivers\include.

BitCloud provides implementation of the Flash driver for Atmel AT25F2048 and Atmel
AT45DB041 devices. A custom board may not use supported Flash devices or
external Flash devices at all, but rather store application images in some different
way. The only requirement for OTAU is to implement the Flash driver public API.

The easiest way to build a driver for a custom Flash memory device is to follow the
design of the drivers provided by BitCloud as described in Section 2.5.4.

2.5.3 Fake Flash driver

Sometimes OTAU should be tested without sending data to the external Flash device
or even on test boards without external Flash. To provide such possibility BitCloud
allows using fake Flash driver which implements the same API as a normal driver with
functions that respond correctly to the caller but do nothing.

To use the fake Flash driver set APP_USE_FAKE_OFD_DRIVER to 1 in the application
configuration.h file as follows:

#define APP_USE_FAKE_OFD_DRIVER 1

By default APP_USE_FAKE_OFD_DRIVER is present in configuration.h and set to 0.

2.5.4 Implementing the Flash driver for a custom Flash memory device

2.5.4.1 Changing build configuration

BitCloud allows switching between different Flash devices (provided the devices are
supported) in the configuration.h file of the application. To support this feature:

1. In case you use makefiles to build the application, in all low-level makefiles that
enable OTAU under the \makefiles directory:

a. Add the definition of the custom Flash device name to the DEFINES
section. For example: -D_CUSTOM_EXT_FLASH_NAME. Use this name
in source files to mark the code corresponding to your custom Flash.

14 Atmel AVR2059
8430A-AVR-08/11

b. Add paths to custom source code files to the SRCS section.
2. In case you use IAR Embedded Workbench, modify project settings in the IDE:

a. Add the definition of the custom Flash device name as a define. Use
this name in source files to mark the code corresponding to your
custom Flash.

b. Add paths to custom source code files.
3. In configuration.h comment lines containing the EXTERNAL_MEMORY definition

and add the following line:
#define EXTERNAL_MEMORY CUSTOM_EXT_FLASH_NAME

2.5.4.2 Flash driver parameters and pin assignments

1. Place your custom Flash driver parameters in ofdMemoryDriver.h located under
\Components\HAL\drivers\OFD\include before lines
#else

 #error 'Unknown memory type.'

#endif

as follows:
#elif defined(CUSTOM_EXT_FLASH_NAME)

 //Custom parameters go here

2. Configure the pin named EXT_MEM_CS at the bottom of ofdMemoryDriver.h by
modifying the line of type
HAL_ASSIGN_PIN(EXT_MEM_CS, <port_letter>, <pin_number>);

corresponding to your MCU.

2.5.4.3 Where to place source code

Consider all files mentioned in this section to be located at the following path:

<Stack-root>\Components\HAL\drivers\OFD\src

Flash driver public API is implemented in the ofdCommand.c file. This file should not
be changed, because it only provides high-level implementation independent of a
particular external Flash device and relying on a number of functions defined
separately for each device type.

ofdAt25fDriver.c and ofdAt45dbDriver.c contain specific source code for Atmel
AT25F2048 and Atmel AT45DB041 devices, accordingly. The source code for a
custom external Flash device should also be put to a separate file based on one of
these two files.

NOTE Standard driver implementation uses the SPI interface for communication with an
external Flash memory device. A custom driver can be connected to the MCU
through a different interface. In this case use the HAL API corresponding to this
interface to communicate with the Flash memory device.

2.6 Interfaces and external interrupts

2.6.1 Modifying interfaces

For each platform Atmel BitCloud provides API for certain IO interfaces. The set of
supported interfaces depends on the MCU type. Table 2-4 indicates interfaces for
which API is provided in BitCloud. The HAL component registers all necessary
interrupt vectors binding them to particular MCU pins.

Atmel AVR2059

 15
8430A-AVR-08/11

The general guidelines for the user who needs to modify interface implementation are

• To follow existing design
• To use already registered interrupt vectors
• To modify existing HAL routines containing interrupt vectors’ implementation

Table 2-4. Interfaces supported in Atmel BitCloud on different Atmel MCUs.
Interface ATxmega256A3/D3 ATmega1281 ATmega128RFA1 SAM3S SAM7X UC3

UART x x x x x x

USART x x x x x x

DTR x

SPI x x(1) x x

TWI x x x

ADC x x x

WDT x x x

IRQ x x x x x x

SLEEP x x x

GPIO x x x x x x

PWM x x

USB n/a n/a n/a x x

EEPROM x x x x(2) n/a n/a

1-wire x(3) x

Notes: 1. UART operating in the SPI mode
2. Emulated in Flash
3. Implemented in software

NOTE For SPI, TWI, and 1-wire only master mode is supported, except for Atmel
ATmega128RFA1. On ATmega128RFA1 slave mode for SPI is also supported.

2.6.2 Using external interrupts

To register a handler for an external interrupt, which is a callback function executed
when the interrupt occurs, use the HAL_RegisterIrq() function. The function binds
the provided handler to a specific pin and a signal type. The application cannot use a
pin already occupied by the stack.

The API is available not for all platforms. On those platforms, for which the API is
unavailable, the user has to write platform-specific code to add a handler manually for
a particular interrupt. For more detail and to explore other API functions refer to [3].

16 Atmel AVR2059
8430A-AVR-08/11

3 Implementing a custom BSP

3.1 Overview
The Board Support Package (BSP) is the software component that provides
application interfaces for controlling board peripherals, that is, buttons, LEDs, etc.
BSP composition depends on the hardware development or evaluation board, which
is targeted by the SDK (see Table 3-1). Since custom board periphery can vary
significantly from the evaluation board, it is quite common for the user to implement a
custom BSP. This chapter describes the main steps in the process.

Table 3-1. BSP APIs implemented for different boards.
API MeshBean STK600 SAM7X-EK SAM3S-EK RCB AVR32 EK1105 REB CBB

LEDs x x x x x x x

Buttons x x x(1) x

Sliders x

Temperature sensor x

Light sensor x

Joystick x

Notes: 1. On AVR32 EK115 buttons API is supported for touch buttons only.

3.2 Disable existing BSP
To disable standard BSP which comes with Atmel BitCloud set the APP_DISABLE_BSP
constant to 1 in the configuration.h file of the application. By default
APP_DISABLE_BSP is defined and set to 0, thus a BSP implementation is enabled.

Disabling of BSP replaces implementations of all BSP API functions with stubs, which
generally do nothing and return the success status when called. More precisely, if
BSP is disabled:

• Functions supporting LEDs do nothing
• Functions supporting buttons do nothing (while a real function eventually invokes

the callback)
• Functions supporting sensors invoke callbacks which report zero values
• Functions supporting sliders return zero as a slider value
• Functions supporting joysticks do nothing
With such empty BSP the stack can run on any custom board with supported MCU
and RF chip, provided the HAL component has been modified and compiled
accordingly. It should be also noted that this does not break any sample application
as they can be still be safely compiled with the BSP disabled.

3.3 The BSP structure
BSP sources for a particular platform are located in a corresponding folder inside the
<Stack-root>\Components\BSP directory. Like all other stack components the BSP
operation is managed by the BSP task handler, which is a function named
BSP_TaskHandler(). The BSP task handler is called by the stack to process pending
BSP tasks. For details on task management in BitCloud refer to [4].

Files required by typical BSP implementation are shown in Table 3-2.

Atmel AVR2059

 17
8430A-AVR-08/11

Table 3-2. A BSP implementation’s file structure.
File(s) Comment

\include\bspTaskManager.h
Defines BSP task flag and enumerates
peripherals.

\src\bspTaskManager.c Contains implementation of the BSP task handler.

Header and source files implementing
support of a particular peripheral

The files should use HAL API for communication
with a peripheral through a particular serial
interface.

3.4 Posting tasks
The stack keeps track of a special bit indicating whether there is a task associated
with the BSP. Posting a task means turning this bit to 1. This will force the stack to
call the BSP task handler. To post a task for BSP call SYS_PostTask(BSP_TASK_ID).

A typical BSP implementation involves a special variable in which each bit is
associated with the presence of task(s) related to a particular peripheral. A
convenience function can be used to post tasks from a given peripheral.

For example, consider a board that has buttons, a light sensor, and a temperature
sensor. First, declare an enumeration of peripherals defined in bspTaskManager.h as
follows:

enum

{

 BSP_BUTTONS = (uint8_t)1 << 0,

 BSP_LIGHT = (uint8_t)1 << 1,

 BSP_TEMPERATURE = (uint8_t)1 << 2,

};

Posting a task from BSP can be performed conveniently via a special function:

extern volatile uint8_t bspTaskFlags0;

INLINE void bspPostTask0(uint8_t flag)

{

 bspTaskFlags0 |= flag;

 SYS_PostTask(BSP_TASK_ID);

}

bspTaskFlags0 is a variable holding the task flags. If it equals 0, then there are no
BSP tasks. The bspPostTask0() function can be called upon certain events like
pressing or releasing a button in the following way:

bspPostTask0(BSP_BUTTONS);

18 Atmel AVR2059
8430A-AVR-08/11

3.5 Implementing the BSP task handler
The BSP component must implement its task handler which is a function named
BSP_TaskHandler(). The stack calls this function whenever there is a task to be
executed by BSP.

Provided that task posting is implemented as described in the previous section, the
task handler can check whether there is a task associated with each given peripheral
and call the corresponding handler.

For example, given a board containing buttons, a light sensor, and a temperature
sensor the BSP task handler might look like this:

void BSP_TaskHandler(void)

{

 if (bspTaskFlags0 & BSP_BUTTONS)

 {

 bspTaskFlags0 &= (~BSP_BUTTONS); //Clear the buttons’ flag

 bspButtonsHandler(); //Call a special handler

 }

 ... //Processing other peripherals in exactly

 //the same manner

}

3.6 Setting build configuration
The BSP component is compiled with the application. Paths to BSP sources are
already given in applications makefiles, and the whole BSP is included in the IAR
projects. Application configuration also refers to Makefile and BoardConfig.h files
residing in the BSP root folder. These files include build configuration corresponding
to all supported boards.

Typically a user would use one of the predefined configurations modifying it to fit the
needs of the application. Generally Makefile should not be changed, but
BoardConfig.h can be easily altered by commenting out unnecessary lines referring
to peripherals that are not present on the custom board or are not used by the
application.

When implementing a totally new configuration corresponding to a custom board,
consider changes in both Makefile and BoardConfig.h.

Atmel AVR2059

 19
8430A-AVR-08/11

4 Porting sample applications
Most of the sample applications are available not for all platforms. However,
application source code is designed to be independent of the platform by eliminating
conditional compilation related to the platform type. Thus the source code can be
easily ported to any platform. Actually, only build configuration and ConfigServer
parameter require modifications to make a sample application work on the platform it
does not support.

To port a sample application to another development board for which the application
is not provided, the user shall

• Take the source code of the application for the source platform
• Add makefiles or IAR build configurations from any sample application provided

for the destination platform
• Modify node and network parameters along with hardware-related options in the

configuration.h file
• Build the application, program devices, and test the application
This simple scenario is described in detail in Section 4.2, while Section 4.1 provides
an example step-by-step tutorial on porting the LowPower application from Atmel
ZigBit to Atmel XMEGA.

Porting a sample application to a custom board is not that much different. If the HAL
and BSP stack components have been modified as described in chapters 2 and 3,
then an application available for the your source development board should work on a
custom board as well, perhaps with slight changes like selecting another UART
channel (see Section 4.3).

4.1 Tutorial: Porting the LowPower application
The LowPower application is provided with BitCloud packages for ZigBit and Atmel
AVR Raven (in BitCloud versions older than 1.12.0). So the user might need to use
this demo on another development board and build a custom application using it as a
template.

This tutorial deals with a particular case of porting the LowPower application to
XMEGA on the Atmel STK600 board and compiling the application with makefiles.
However, the instructions are significantly generic and might be useful for porting any
sample applications to other boards as well.

4.1.1 LowPower application overview

The LowPower application demonstrates deferred message delivery to sleeping end
devices via the polling mechanism. The application involves one coordinator node
and several end devices. After joining the coordinator, an end device sends sensor
information to the coordinator and falls asleep for 10 seconds, then wakes up and
repeats the process. The coordinator periodically sends requests to change the
sensor type to its children. Messages are buffered on the coordinator and retrieved by
the end devices through the polling mechanism. The coordinator is also connected to
a PC with a serial link and transfers information received from end devices to UART.
This information can be observed in the terminal window, for example, in Windows®
Hyper Terminal.

20 Atmel AVR2059
8430A-AVR-08/11

4.1.2 Tutorial part 1: prepare application files

The first step you have to do is to prepare application files: source and header files
and build configuration files (makefiles or IAR project files). Proceed with the following
steps:

1. Copy the LowPower folder from an Atmel BitCloud for Atmel ZigBit package to the
Applications directory in the BitCloud for Atmel XMEGA package root (or
whatever other package you have).

2. Move to the copied version of the LowPower directory and delete the makefiles
directory, Makefile, and the linkerSrc directory.

3. Copy the makefiles directory, Makefile (located in the root application folder),
and the linkerSrc directory from any sample application provided with the
BitCloud for XMEGA package to the target LowPower directory.

4. In the copied Makefile, select build configuration corresponding to your hardware
(MCU and radio) by uncommenting lines with appropriate PROJECT_NAME and
CONFIG_NAME.

Now you should be able to compile the application by executing the make clean all
command in the command line in the context of the LowPower directory, although this
will not produce a valid application image, because your should first configure
application parameters in the configuration.h file.

4.1.3 Tutorial part 2: configure application parameters

Once you have prepared files for your ported application, it is time to configure
application parameters in the configuration.h file located in the root application
directory (<SDK-root>\Applications\LowPower).

4.1.3.1 Configure node parameters

Before a network join, each device shall set the short address, the device type, and
the extended address. The LowPower application uses static addressing, which
means that the short address shall be specified manually in the configuration.h file
as the value of the APP_NWK_NODE_ADDRESS parameter, and the application shall be
compiled separately for each device. The device type is deduced from a short
address value: the device with short address 0x0000 becomes the coordinator, while
other devices become end devices.

If the UID chip is present on the board, the extended address is assigned
automatically (see Section 2.3), otherwise the extended address must be assigned in
the configuration.h file to the CS_UID parameter. For simplicity, consider that the
latter case takes place.

Proceed with the following steps:

1. For the coordinator set APP_NWK_NODE_ADDRESS to 0x0000.
2. For other nodes set APP_NWK_NODE_ADDRESS to a non-zero value.
3. For all nodes set the CS_UID parameter to distinct 64-bit values, for example,

0x1234567890ABCDEFLL.

4.1.3.2 Configure target network parameters

Configure the channel mask and the extended PAN ID for the target network. These
parameters must be the same for all devices. It is assumed that you specify the
channel not used by other ZigBee networks around.

Atmel AVR2059

 21
8430A-AVR-08/11

1. Set CS_CHANNEL_MASK to an appropriate value.
2. Set CS_EXT_PANID to an arbitrary 64-bit value.

4.1.3.3 Configure hardware-specific parameters

Hardware-specific parameters include configuration of the UART interface which is
used to transfer data from the coordinator to a PC. You shall configure the
APP_INTERFACE and APP_USART_CHANNEL parameters as described below:

1. Make sure the configuration.h file contains the following line, informing the
application that UART is going to be used.
#define APP_INTERFACE APP_INTERFACE_USART

NOTE For most of the supported platforms the same port can work as both UART and
USART port. By default, Atmel BitCloud uses it as UART, although some application
parameters names may contain USART.

2. Set the UART channel by replacing the
#define APP_USART_CHANNEL USART_CHANNEL_1

line with
#define APP_USART_CHANNEL USART_CHANNEL_F0

4.1.3.4 Compile the application

You need different applications images for all devices in the network: on for the
coordinator and one for each end device.

1. Set parameters for the coordinator.
2. Build the application by executing make clean all from the command line in the

root application directory.
3. Rename the output LowPower.hex file to LowPowerCoord.hex or any other

appropriate name. Otherwise, it will be rewritten during the next compilation.
4. Set parameters for an end device.
5. Build the application for each end device, changing short and extended addresses

in configuration.h and renaming the image after each compilation.

4.1.4 Tutorial part 3: prepare hardware and program devices

At this point you have ready firmware images of the LowPower application. You shall
now prepare hardware and program devices. In steps 4 and 5 below you can enable
LEDs and buttons. If you do this LEDs will indicate application activity and the SW0
button can be used to force the coordinator to issue an additional request to switch
the sensor type to its children.

1. Connect the radio device to the Atmel STK600 board (make sure you have chosen
the correct makefile corresponding to the radio device used) to port C.

2. On the coordinator, connect RXD/TXD pins to the PF2/PF2 MCU’s pins,
respectively (because you have specified F0 as a UART channel), to enable
USART.

3. (Optional) connect LED0 – LED7 and nearby GND and VTG pins to the MCU’s
PORTE to enable LEDs.

4. (Optional) connect SW0, SW1, and SW2 pins to the MCU’s F0, F1, and F5 pins,
respectively, to enable first three buttons.

22 Atmel AVR2059
8430A-AVR-08/11

NOTE You can change pin assignments for buttons in BSP. In case of Atmel XMEGA on
Atmel STK600 the code configuring pins to use with buttons is located in the
bspInitButtons() function in <SDK-
root>\BitCloud\Components\BSP\ATML_STK600\src\buttons.c.

5. Program devices with JTAG as described in [1]. Each device must be
programmed with a different application image.

4.1.5 Tutorial part 4: observe application operation

You are now ready to test the ported LowPower application:

1. Connect the coordinator device to a COM port on a PC.
2. Launch Windows HyperTerminal. Select COM1 in the Connect using field.
3. In port settings set Bit per second to 38400 and Flow control to None, leaving

other parameters unchanged.
4. Power on the coordinator and then end devices.
5. After several seconds you will start receiving messages from end devices with the

sensor type and zero values, which will appear in the terminal window. Sensors
will report zeros, because there are no sensors on the STK600 board, and the
BSP provides empty implementation of the sensors API, which simply returns zero
at any time.

If something goes wrong, check that all steps described in the tutorial are performed
correctly.

4.2 Porting to another development board
Since all reference applications are not available for all platforms, the user may need
to port a reference application to a platform that does not support this application. As
seen from Table 4-1, only WSNDemo and Blink are included in all Atmel BitCloud
packages. Fortunately, BitCloud reference applications are almost completely
generic, so it takes only few steps to port an application from one platform to another.

Table 4-1. Reference applications.

Application Brief description

Zi
gB

it

m
eg

aR
F

U
C

3

XM
EG

A

SA
M

7X

SA
M

3S

WSNDemo Featured SDK application demonstrating network functionality of software and
additional network visualization with WSNMonitor. x x x x x x

Blink Introduces the simplest application that uses timer and LEDs. When started,
the application makes all the LEDs blink synchronously with a certain period. x x x x x x

Lowpower Shows how to collect data from low-power, sleeping devices employing the
simplest power management strategy. x

Peer2peer Shows how to organize the simplest peer-to-peer link. A simple buffering
strategy is employed to avoid byte-by-byte data transfer. x x x

PingPong Shows how to process multiple, simultaneous data transmissions. Each node is
waiting for a wireless message, and then passes it to the next node. x x

ThroughputTest Measures wireless UART bandwidth. x x

ZDPDemo Demonstrates ZDP requests to reveal properties of remote devices. x

Application source code does not require modifications except the configuration.h
file containing application parameters. Build configuration can be borrowed from any

Atmel AVR2059

 23
8430A-AVR-08/11

other reference application provided for the destination board. Makefiles can be used
without any modifications, while for IAR projects, the user must specify manually the
files included into the project.

4.2.1 Overall porting process

To port an application the user shall consider the following steps:

• Copy the source application folder to the <SDK-root>\Applications\ directory of
the target Atmel BitCloud package

• Set hardware-related parameters in the application’s configuration.h file
• Prepare build configuration: makefiles or IAR projects
• Compile, program devices, and test the application

NOTE Reference applications use LEDs to indicate the application status and sometimes
buttons, for additional actions. If buttons are not supported on the board to which the
application is ported, the application will still work correctly, because the buttons API
for such board is implemented with stubs, which do nothing.

4.2.2 Application parameters configuration

The user must properly configure hardware-related parameters and the extended
address in the configuration.h file as described below:

• If the target board does not have a UID chip, from which the stack can extract an
extended address value, set the CS_UID parameter to a 64-bit non-zero value
unique throughout the network (and so build a separate image for each device).
Otherwise, the CS_UID can equal zero (0x0LL)

• Configure the serial interface that should be used by the application, namely:
o Specify the interface type in the APP_INTERFACE parameter, for

example, if UART is going to be used:
#define APP_INTERFACE APP_INTERFACE_USART

o Specify the channel and the mode (master/slave for SPI). For
example, to use UART channel F0 on Atmel STK600:
#define APP_USART_CHANNEL USART_CHANNEL_F0

o Note that these parameters can be under an #ifdef condition
checking what board is used. In this case, specify the target board
name or simply remove the condition checking.

• Configure network parameters that may be radio-dependent, namely,
CS_CHANNEL_MASK and CS_CHANNEL_PAGE

The second step (setting parameters for serial connection) can be skipped, if the
application does not use the serial interface.

4.2.3 Using makefiles

Makefiles can be taken from any other reference application available for the board to
which the application is being ported. To launch the application in order to
demonstrate BitCloud features, makefiles does not require modifications. The user
shall just copy the whole makefiles directory, the high-level Makefile, and the
linkerSrc directory from any reference application already supported by the target
platform to the root folder of the application being ported.

24 Atmel AVR2059
8430A-AVR-08/11

4.2.4 Using IAR projects

The easiest way to get IAR project files for the ported application is to copy and
modify IAR project files from another application for the target platform as the
following steps describe:

1. Replace the iar_projects folder in the target application folder with the
iar_projects folder from any reference application available for the target
platform (for example, WSNDemo).

2. Rename the .eww file giving it the name of your ported application.
3. For each .ewp file:

a. Open the file in a text editor.
b. Skip to the <group> tag containing the <name>src</name> field and

enumerate all application’s source (.c) files. For example,
 <group>

 <name>src</name>

 <file>

 <name>$PROJ_DIR$/../src/portedApp.c</name>

 </file>

 <file>

 <name>$PROJ_DIR$/../src/boardAbstraction.c</name>

 </file>

 </group>

c. Skip to the <group> tag containing the <name>include</name> field
and enumerate all application’s header (.h) files from the include
directory. For example,
 <group>

 <name>include</name>

 <file>

 <name>$PROJ_DIR$/../src/portedApp.h</name>

 </file>

 </group>

Once the instructions above are executed, open the .eww file via IAR Embedded
Workbench to browse and choose among available configurations.

4.2.5 Further customization

This section briefly describes some common steps for customizing a sample
application to fit custom user requirements.

4.2.5.1 Adding and removing files

Put additional source and header files to the src and include directories of the
application, respectively.

If makefiles are used for compilation, all files from these two directories are compiled,
so makefiles does not require changes.

If the application is compiled from IAR Embedded Workbench, to compile additional
files with the application add them to the IAR project from IAR Embedded Workbench.

To remove a file from the application, delete it from the project in whatever IDE you
use and then delete the physical file (from the src or include directory).

Atmel AVR2059

 25
8430A-AVR-08/11

4.2.5.2 Renaming an application

If an application is compiled from IAR Embedded Workbench, the user can safely
rename the .eww file in the iar_projects and the application folder. But this will not
change the name of the output .hex file and names of other output files. Names for
output images are specified in Options > Linker > Output and Extra Output in
the IDE.

If an application is compiled from the command line with the help of makefiles, to
rename the application specify a different value for the APP_NAME variable in the high-
level Makefile. But note, that the high-level Makefile resets the value of APP_NAME
defined in each low-level makefile, so if the application is compiled directly via a low-
level makefile, specify the right value for APP_NAME in the low-level makefile as well.

To debug a renamed application from Atmel AVR Studio, the user also needs to
specify the right name of the .elf file in the AVR Studio project file (the .aps file in the
root application folder). To do this, open the .aps file in a text editor and modify the
<ObjectFile> field.

4.3 Porting to a custom board
If the reference application is not provided with the SDK for the user’s platform, then
its sources can be taken from an Atmel BitCloud package supporting this application
(see Table 4-1). The application should then be ported to the development board
supported by the user’s platform as described in Section 4.2. Once the application is
available on the evaluation board (either it has been ported or is provided in the
SDK), the user should modify HAL and BSP as shown in chapters 2 and 3 addressing
a custom board configuration.

From that moment, the reference application should work correctly on the custom
board. The user may only need to change the UART channel used by the application
(see Section 4.2.2) and disable BSP, if buttons and LEDs API is not implemented for
the custom board. To disable BSP, in the configuration.h file set
APP_DISABLE_BSP to 1 (see Section 3.2 for detail).

26 Atmel AVR2059
8430A-AVR-08/11

5 References
[1] AVR2052: BitCloud Quick Start Guide

[2] AVR2055: BitCloud Profile Suite Quick Start Guide

[3] BitCloud Stack API Reference

[4] AVR2050: BitCloud Developer Guide

http://atmel.com/dyn/resources/prod_documents/doc8200.pdf�
http://atmel.com/dyn/resources/prod_documents/doc8348.pdf�
http://www.atmel.com/dyn/resources/prod_documents/doc8199.pdf�

Atmel AVR2059

 27
8430A-AVR-08/11

6 Table of contents
Features... 1
Introduction ... 1
1 Basic principles ... 2

1.1 Architecture ... 2
1.2 Application build process... 3

1.2.1 Building applications using makefiles .. 3
1.2.2 Building applications with IAR Embedded Workbench .. 5

2 Modifying HAL walkthrough ... 6
2.1 Overview and general instructions .. 6

2.1.1 HAL structure .. 6
2.1.2 Compiling HAL .. 6

2.2 MCU/RF interface.. 7
2.2.1 ATmega1281 specifics .. 7
2.2.2 XMEGA specifics... 8
2.2.3 SAM3S specifics ... 9

2.3 Extended address assignment .. 10
2.3.1 Assigning the extended address ... 10
2.3.2 Options for specifying the extended address... 10
2.3.3 The HAL_ReadUid() function.. 11

2.4 Configuring HAL parameters... 11
2.5 Flash driver modification ... 13

2.5.1 Modifying drivers when porting BitCloud ... 13
2.5.2 The Flash driver and OTAU... 13
2.5.3 Fake Flash driver... 13
2.5.4 Implementing the Flash driver for a custom Flash memory device.......................... 13

2.6 Interfaces and external interrupts.. 14
2.6.1 Modifying interfaces... 14
2.6.2 Using external interrupts.. 15

3 Implementing a custom BSP... 16
3.1 Overview.. 16
3.2 Disable existing BSP ... 16
3.3 The BSP structure ... 16
3.4 Posting tasks ... 17
3.5 Implementing the BSP task handler.. 18
3.6 Setting build configuration ... 18

4 Porting sample applications ... 19
4.1 Tutorial: Porting the LowPower application... 19

4.1.1 LowPower application overview .. 19
4.1.2 Tutorial part 1: prepare application files... 20
4.1.3 Tutorial part 2: configure application parameters .. 20
4.1.4 Tutorial part 3: prepare hardware and program devices.. 21

28 Atmel AVR2059
8430A-AVR-08/11

4.1.5 Tutorial part 4: observe application operation.. 22
4.2 Porting to another development board.. 22

4.2.1 Overall porting process.. 23
4.2.2 Application parameters configuration .. 23
4.2.3 Using makefiles ... 23
4.2.4 Using IAR projects... 24
4.2.5 Further customization .. 24

4.3 Porting to a custom board ... 25
5 References.. 26
6 Table of contents ... 27

8430A-AVR-08/11

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chou-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3523-3551
Fax: (+81) 3523-7581

 © 2011 Atmel Corporation. All rights reserved. / Rev.: CORP072610

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, BitCloud®, STK®, XMEGA®, ZigBit®, and others are registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of
Microsoft Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

	1 Basic principles
	1.1 Architecture
	1.2 Application build process
	1.2.1 Building applications using makefiles
	1.2.2 Building applications with IAR Embedded Workbench

	2 Modifying HAL walkthrough
	2.1 Overview and general instructions
	2.1.1 HAL structure
	2.1.2 Compiling HAL

	2.2 MCU/RF interface
	2.2.1 ATmega1281 specifics
	2.2.2 XMEGA specifics
	2.2.3 SAM3S specifics

	2.3 Extended address assignment
	2.3.1 Assigning the extended address
	2.3.2 Options for specifying the extended address
	2.3.3 The HAL_ReadUid() function

	2.4 Configuring HAL parameters
	2.5 Flash driver modification
	2.5.1 Modifying drivers when porting BitCloud
	2.5.2 The Flash driver and OTAU
	2.5.3 Fake Flash driver
	2.5.4 Implementing the Flash driver for a custom Flash memory device

	2.6 Interfaces and external interrupts
	2.6.1 Modifying interfaces
	2.6.2 Using external interrupts

	3 Implementing a custom BSP
	3.1 Overview
	3.2 Disable existing BSP
	3.3 The BSP structure
	3.4 Posting tasks
	3.5 Implementing the BSP task handler
	3.6 Setting build configuration

	4 Porting sample applications
	4.1 Tutorial: Porting the LowPower application
	4.1.1 LowPower application overview
	4.1.2 Tutorial part 1: prepare application files
	4.1.3 Tutorial part 2: configure application parameters
	4.1.4 Tutorial part 3: prepare hardware and program devices
	4.1.5 Tutorial part 4: observe application operation

	4.2 Porting to another development board
	4.2.1 Overall porting process
	4.2.2 Application parameters configuration
	4.2.3 Using makefiles
	4.2.4 Using IAR projects
	4.2.5 Further customization

	4.3 Porting to a custom board

	5 References
	6 Table of contents

