
 SMART ARM-based Microcontrollers

 AT12863: Interfacing LCD Controllers for SAM
S70/E70/V70

 APPLICATION NOTE

Preface

The Atmel® | SMART ARM® Cortex®-M7 based MCUs deliver the highest
performing Cortex-M7 based MCUs to the market with exceptional memory
and connectivity options for design flexibility making them ideal for the
automotive, IoT, and industrial connectivity markets. The Atmel | SMART
ARM Cortex-M7 architecture, while enhancing performance, keeps cost, and
power consumption in check.

Liquid Crystal Displays (LCDs) offer several advantages over traditional
cathode-ray tube displays that make them ideal for several applications.

This application note provides how Atmel SAM S70/E70/V70 ARM Cortex -
M7 based microcontroller can be used to interface with external LCD
controllers using EBI or SPI peripheral.

Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

Table of Contents

Preface.. 1

1. Abbreviations...3

2. Introduction..4

3. Prerequisites..5

4. Application Demonstration...8
4.1. EBI – Extended Bus Interface.. 8

4.1.1. Hardware Setup...8
4.1.2. Software Setup.. 9

4.2. SPI – Serial Peripheral Interface.. 15
4.2.1. Hardware Setup...15
4.2.2. Software Setup.. 16

4.3. Memory Footprint... 22

5. References.. 23

6. Revision History...24

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

2

1. Abbreviations
DMA Direct Memory Access

EBI External Bus Interface

FFC Flexible Flat cable

GPIO General Purpose Input Output

I2C Inter Integrated Circuit

IM Interface Mode

IoT Internet of Things

LCD Liquid Crystal Display

MCU Micro Controller Unit

PWM Pulse Width Modulation

RAM Random Access Memory

SMC Static Memory Controller

SPI Serial Peripheral Interface

USB Universal Serial Bus

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

3

2. Introduction
This application note explains interfaces with external LCD controllers on SAM S70/E70/V70 family
devices. It uses External Bus Interface (EBI), Static Memory Controller (SMC), and Serial Peripheral
Interface (SPI) features. The software examples mentioned in this document are provided in Atmel’s
Software Package.

For more details on EBI, SMC, and SPI peripherals, refer to SAM S70/E70/V70 device complete
datasheet.

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

4

3. Prerequisites
• Hardware Prerequisites

– Atmel | SMART SAM V71 Xplained ULTRA Kit
– Atmel maXTouch Xplained Pro Kit
– Interfacing Cables

• One Micro USB B cable
• One 50-way Flexible Flat Cable (FFC)
• One 20-way Ribbon Cable

• Software Prerequisites
– Atmel Studio 6.2 or later
– Software Package 1.4 or later

Atmel | SMART SAM V71 Xplained ULTRA

The Atmel | SMART SAM V71 Xplained Ultra evaluation kit is a hardware platform to evaluate the
ATSAMV71Q21 and other Atmel ARM Cortex-M7-based micro controllers in the SAM V70, SAM S70, and
SAM E70 series. Supported by the Atmel Studio integrated development platform, the kit provides easy
access to the features of the Atmel ATSAMV71Q21 and explains how to integrate the device in a custom
design. The Xplained Ultra series evaluation kits include an on-board Embedded Debugger, and no
external tools are necessary to program or debug the ATSAMV71Q21. The Xplained Pro extension kits
offers additional peripherals to extend the features of the board and ease the development of custom
designs.

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

5

Figure 3-1. SAM V71 Xplained ULTRA Board

Atmel | maXTouch Xplained Pro

Atmel maXTouch Xplained Pro is an extension board for the Xplained Pro platform with a 320x480 RGB
LCD and a capacitive touch sensor with a maXTouch controller. The LCD can be controlled via different
interfaces, including 3- and 4-wire SPI, Parallel and RGB Parallel interface mode using the DIP-switch to
select the interface. The maXTouch Xplained Pro kit connects to any Xplained Pro standard extension
header on any Xplained Pro MCU board using the 20-pin header, but is limited to 3- and 4-wire SPI
mode. Atmel maXTouch Xplained Pro also features a standard Xplained Pro LCD connector (FFC), which
enables use of the parallel interfaces. Both connections features SPI interface for the LCD and I2C for the
maXTouch device.

The ILI9488 controller is used to drive LCD on this board.

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

6

Figure 3-2. maXTouch Xplained Pro

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

7

4. Application Demonstration
This section demonstrates interfacing LCD controllers with SAM V71 using EBI (Extended Bus Interface)
and SPI (Serial Peripheral Interface). EBI is demonstrated using lcd_ebi and SPI is demonstrated using
lcd example projects. Both these projects are developed for ILI9488 controller.

This section is divided into EBI and SPI to describe about the interface details and software modules.

4.1. EBI – Extended Bus Interface

4.1.1. Hardware Setup
The External Bus Interface (EBI) is designed to ensure the successful data transfer between several
external devices and the embedded Memory Controller of an ARM-based device. Static Memory
Controller (SMC) is part of EBI. This can handle several types of external memory and peripheral devices.
The SMC generates signals that control access to these devices. It has 4 chip selects, a 24-bit address
bus, a configurable 8 or 16-bit data bus and separate read and write control signals.

Along with SMC, 3 GPIOs are used to control Reset, Command/Data Signal, and Back light.

Test Setup

The application demonstration needs following setup:

1. Atmel maXTouch Xplained Pro features a 3-way DIP-switch that is used for configuring the display
Interface Mode (IM). Setting the switch positions to ON, will result in a high level (1) for the IMx line.
To enable 16-bit parallel bus interface with maXTouch, set IM2=OFF, IM1=ON, IM0=OFF, refer
Figure 4-2 IM2, IM1, IM0 Settings for EBI on page 9.

2. Connect SAM V71 Xplained board to maXTouch Xplained board on “EXT4 LCD” connector.
3. Connect SAM V71 Xplained DEBUG USB to PC. This provides power to target as well as interface

to debug/download application image.

Following graphic shows connection setup.

Figure 4-1. Xplained ULTRA and maXTouch Interface on EBI

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

8

Figure 4-2. IM2, IM1, IM0 Settings for EBI

Interface Details

Figure 4-3. EBI Connections between MCU and LCD Controller

Data Bus

D/CX

CABC_PWM

RESX

WRX

RDX

CSX

EBI D[15:0]

PC30 GPIO

PC9 PWMC0

PC13 GPIO

NWE

NRD

NCS3

MCU
SPIO_SS

LCD Controller

Data Bus
Chip Select

Reset

CMD / DATA

Write

Backlight

Read

4.1.2. Software Setup
The lcd_ebi project is developed using Software Package to demonstrate EBI interfacing with LCD
controller. This section describes software modules and their interfaces in this project. Intention of this
project is to show how LCD controllers can be interfaced with SAM V71 using EBI. The complete project
solution can be found at Software Package Install Directory\Atmel
\samv71_Xplained_Ultra\examples\lcd_ebi\build\studio\lcd_ebi.atsln.

On executing lcd_ebi project, LCD should look as shown in following graphic.

Figure 4-4. LCD Screen on Running lcd_ebi Project

This application splits LCD into 4 equivalent regions to draw a Sine Wave, a “SAMV71” string, an Image
(Atmel logo) and a histogram graph (Histogram is a graphical representation of the distribution of
numerical data) on individual regions.

This application contains:
• Hardware Init

– LCD Initialization

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

9

– System Tick Timer Initialization
• Screens Update

– Screens Initialization
– Screens Refresh

Following figure depicts how application is interfaced with LCD controller using SMC modules. Whenever
application requires to send information to LCD controller, it first updates to Xmit buffer (referred as
canvas_region_buffer in the code) and then triggers DMA. DMA transfers this data to SMC
controller which in turn communicates with LCD controller via EBI.

Figure 4-5. Application Architecture - EBI

4.1.2.1. Hardware Init

LCD Initialization
The LCDD_Initialize function initializes EBI hardware pins, SMC configuration, DMA for Memory to
Memory transfers among SMC, transmit buffer and receive buffer and register configurations on LCD
controller (ILI9488). Following table explains various function calls associated with this function and their
description.

Table 4-1. LCDD_Initialize

Function Description

ILI9488_EbiInitial
ize

Initializes ILI9488 interface in SMC mode

_ILI9488_EbiHW_Ini
tialize

Pin configurations for ILI9488 hardware, includes 16-bit data bus, Chip select,
Write, Read, Reset, Command/Data, and Back light signals (PWM)

ILI9488_EbiInitial
izeWithDma

Initializes ILI9488 driver with DMA support

_ILI9488_Configure
Smc

Configures SMC to assign NCS3 for ILI9488 interface along with Setup,
Pulse, and Cycle timings for static memory. This also enables 16-bit width
data bus, Read and write modes, extended wait disabled and data float
timings

_ILI9488_EbiDmaIni
tialize

Initializes ILI9488 DMA structure and corresponding DMA driver

_ILI9488_EbiDmaCon
figChannels

Initializes DMA TX & RX channels for Memory to Memory transfer and call
back routines for DMA driver

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

10

Function Description

_ILI9488_EbiDmaCon
figureRxTx

Configures DMA TX channel with
• Destination address as SMC base address
• Transfer type as Memory to Memory
• Single Micro block with chunk size as 1
• Data width as 16-bits
• Incremented start address and Fixed destination address

Same way RX channel with
• Source address as SMC based address
• Transfer type as Memory to Memory
• Single Micro block with chunk size as 1
• Data width as 16-bits
• Fixed start address and Incremented destination address

TX channel source address and RX channel destination address will be
updated in run time

ILI9488_EbiSendCom
mand

This function will be called multiple times based on required register settings
on LCD controller

System Tick Timer Initialization
The TimeTick_Configure function initializes System tick timer to perform various timings related
activities like individual region refresh rates and wait times based on need. A timer event is created for
each of the 4 regions.

4.1.2.2. Screens Update

Screens Initialization
Screens initialization includes defining coordinates for all 4 regions, updating COLUMN ADDRESS SET
and PAGE ADDRESS SET registers of LCD controller and updating individual regions data to LCD
controller.

Table 4-2. Screens Initialization

Function Description

init_canvas_region Initializes coordinates for individual regions and
LCD size parameters like Coordinates X, Y and
Height, Width of LCD.

LCDD_SetUpdateWindowSize Updates LCD size parameters to LCD controller
registers.

Updating regions data depends on information to display and controller. In this case, it requires to set
region size, update regions display information and issue CMD_MEMORY_WRITE to LCD controller along
with data.

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

11

Table 4-3. Sine Wave – 1st Region

Step Function Description

Set regions size LCDD_SetUpdateWindowSize Updates COLUMN ADDRESS and
PAGE ADDRESS registers of LCD
controller with this region
coordinates.

Update regions information LCDD_DrawRectangleWithFi
ll

Updates this region’s canvas
buffer as Rectangle and fills with
chosen color (COLOR_BLUE).

draw_coordinate_axis Updates this region’s canvas
buffer to draw X and Y axis’s with
chosen color (COLOR_WHITE).

draw_sin_wave Updates this region’s canvas
buffer for Sine wave by using
predefined (sin_xy array)
pixel coordinates.

Send regions information to LCD
controller

LCDD_UpdatePartialWindow Triggers CMD_MEMORY_WRITE to
LCD controller with this region
data.

Table 4-4. Custom String – 2nd Region

Step Function Description

Set regions size LCDD_SetUpdateWindowSize Updates COLUMN ADDRESS and
PAGE ADDRESS registers of LCD
controller with this region
coordinates

Update regions information LCDD_DrawRectangleWithFi
ll

Updates this region’s canvas
buffer as Rectangle and fills with
chosen color (COLOR_GREEN)

LCD_DrawString Updates this region’s canvas
buffer with string to be displayed
with chosen font
(pCharset10x14 table) and
color (COLOR_BLACK)

Send regions information to LCD
controller

LCDD_UpdatePartialWindow Triggers CMD_MEMORY_WRITE to
LCD controller with this region
data

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

12

Table 4-5. Image – 3rd Region

Step Function Description

Set regions size LCDD_SetUpdateWindowSize Updates COLUMN ADDRESS and
PAGE ADDRESS registers of LCD
controller with this region
coordinates.

Update regions information LCDD_DrawRectangleWithFi
ll

Updates region’s canvas buffer
as Rectangle and fills with
chosen color (COLOR_MAGENTA).

LCDD_BitBltAlphaBlend Updates this region’s canvas
buffer with source image data
(gImageBuffer).

Send regions information to LCD
controller

LCDD_UpdatePartialWindow Triggers CMD_MEMORY_WRITE to
LCD controller with this region
data.

Table 4-6. Random Histogram – 4th Region

Step Function Description

Set regions size LCDD_SetUpdateWindowSize Updates COLUMN ADDRESS and
PAGE ADDRESS registers of LCD
controller with this region
coordinates.

Update regions information LCDD_DrawRectangleWithFi
ll

Updates this region’s canvas
buffer as Rectangle and fills with
chosen color (WHITE).

draw_random_histogram Updates this region’s canvas
buffer with randomly generated
rectangle sizes and filled with
chosen color (RED).

Send regions information to LCD
controller

LCDD_UpdatePartialWindow Triggers CMD_MEMORY_WRITE to
LCD controller with this region
data.

Screens Refresh
When application contains information that needs update at regular interval, it is required to send such
information periodically to LCD controller. Screen Refresh depends on display information and refresh
rate.

Sine Wave – 1st Region

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

13

There is pointer moving along Sine Wave path. It is configured to update pointer location on every system
tick by treating it as a small rectangle filled with YELLOW. Following snippet in
update_region1(uint32_t pos) helps in displaying the moving pointer.

/* pos offset is incremented or decremented before calling update_region1 */
LCDD_DrawRectangleWithFill(cavas_region_buf, 4 + pos - 2, 155 - sin_xy[pos] - 2, 3,
3, COLOR_CONVERT(COLOR_YELLOW));

Custom String – 2nd Region

Custom string location and color is set to update on every 500 ticks. Random generator is used to
generate position and color code. Following snippet in while(1) helps in updating string location and
color.

case 2:
 /* Enabling Random generator module and wait for number generation */
 TRNG->TRNG_CR = TRNG_CR_KEY_PASSWD | TRNG_CR_ENABLE;
 while(!(TRNG->TRNG_ISR & TRNG_ISR_DATRDY));
 i = TRNG->TRNG_ODATA; /* Use random number for position coordinates */
 j = (i >> 16) & 0x1F; /* Use random number for color choice */
 /* Update coordinates and color code using random number and send information
to LCD */
 region2_x =i & 0xFF;
 region2_y =(i >> 8)&0xFF;
 region2_x = region2_x * (canvas_region[1].width - 80) / 0xFF;
 region2_y = region2_y * (canvas_region[1].height - 20) / 0xFF;
 update_region2(region2_x,region2_y,COLOR_CONVERT(gColorArray[j]));

Image – 3rd Region

Custom image (Atmel logo) location is set to update on every 20 ticks. It is configured to create an offset
of 4 steps. Following snippet in while(1) helps in updating image location.

case 3:
 /* Update region with preset offset */
 update_region3(alpha);
 /* adjust offset based on its current position */
 alpha += alpha_direction;
 if(alpha >= 255)
 alpha_direction = -4;
 else if(alpha <= 0)
 alpha_direction = 4;

Random Histogram – 4th Region

Random histogram is set to update on every 300 ticks. It is configured to create histogram with varying
size rectangles. Random number generator is used to create varying size rectangles. Following snippet in
draw_random_histogram helps in generating histogram.

/* Use random number to create offset */
 for(i = 0; i < 8; i++) {
 TRNG->TRNG_CR = TRNG_CR_KEY_PASSWD | TRNG_CR_ENABLE;
 while(!(TRNG->TRNG_ISR & TRNG_ISR_DATRDY));
 p_val[i] = TRNG->TRNG_ODATA;
 }
 /* Use random numbers to create rectangle offsets */
 for(i = 0; i< 32; i++) {
 rand_val[i] = offset_y - rand_val[i] * offset_y / 255;
 }
 /* Update rectangle coordinates and color code in to region buffer */
 for(i =0; i< 32; i++) {
 LCDD_DrawRectangleWithFill(cavas_region_buf, offset_x+i*w,rand_val[i] , 6,

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

14

offset_y-rand_val[i], color);
 }

Refer to lcd_ebi solution for complete details.

4.2. SPI – Serial Peripheral Interface

4.2.1. Hardware Setup
The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides communication
with external devices in Master or Slave mode. The SPI system consists of two data lines and two control
lines:

• Master Out Slave In (MOSI) - This data line supplies the output data from the master to into
slave(s).

• Master In Slave Out (MISO) - This data line supplies the output data from a slave to master.
• Serial Clock (SPCK) - This control line is driven by the master and regulates the flow of the data

bits.
• Slave Select (NSS) - This control line allows slaves to be turned ON and OFF by hardware.

Along with SPI in Master mode, 2 GPIOs and 1 PWM is used to control Reset, Command/Data Signal,
and Back light.

Test Setup

The application demonstration needs following setup:

1. maXTouch Xplained Pro features a 3-way DIP-switch that is used for configuring the display
Interface Mode(IM). Setting the switch positions to ON, will result in a high level (1) for the IMx line.
To enable 4-wire SPI interface with maXTouch, set IM2=ON, IM1=ON, IM0=ON, refer Figure 4-7 
IM2, IM1, and IM0 Settings for SPI on page 16 .

2. Connect SAM V71 Xplained board to maXTouch Xplained board on EXT2 connector.
3. Connect SAM V71 Xplained debug USB to PC. This provides power to target as well as interface to

download application executable.

Following graphic shows connection setup.

Figure 4-6. Xplained ULTRA and maXTouch Interface on SPI

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

15

Figure 4-7. IM2, IM1, and IM0 Settings for SPI

Interface Details

Figure 4-8. SPI Connections between MCU and LCD Controller

CSX

D/CX

CABC_PWM

RESX

SDA

SDO

SCL

SPIO_SS

PA06 GPIO

PC19 PWMC0

PA24 GPIO

SPIO_MOSI

SPIO_MISO

SPIO_SPCK

MCU
SPIO_SS

LCD Controller

Chip Select
Serial Clock

Reset

CMD / DATA

Data In

Backlight

Data Out

4.2.2. Software Setup
The lcd project is developed using Software Package to demonstrate SPI interfacing with LCD controller.
This section describes software modules and their interfaces in this project. Intention of this project is to
show how LCD controllers can be interfaced with SAM V71 using SPI. The complete project solution can
be found at Software Package Install Directory\Atmel\samv71_Xplained_Ultra
\examples\lcd\build\studio\lcd.atsln.

On executing lcd project, LCD should look as shown in following graphic.

Figure 4-9. LCD Screens on Running lcd Project

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

16

This application uses ¾ of LCD available on maXTouch Xplained Pro. It demonstrates LCD functionality
with a single region buffer in RAM. Based on available RAM this limits total region to ¾ of LCD size. This
application draws various patterns sequentially and in the end displays Atmel logo at various positions.

It contains the following:
• Hardware Init

– LCD Initialization
– System Tick Timer Initialization

• Screens Update
• Screens Refresh

Following diagram explains how application is interfaced with LCD controller using SPI modules.
Whenever application requires to send information to LCD controller, it first updates to Xmit buffer
(referred as gLcdCavas in the code) and then triggers DMA. DMA transfers this data to LCD controller
via SPI.

Figure 4-10. Application Architecture – SPI

4.2.2.1. Hardware Init

LCD Initialization
The LCDD_Initialize function initializes IO pins, SPI configuration, DMA for Memory to Peripheral
transfers among SPI, transmit buffer and receive buffer and performs register configurations on LCD
controller (ILI9488). Following table explains various function calls associated with this function.

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

17

Table 4-7. LCDD_Initialize

Function Description

ILI9488_EbiInitialize Initializes ILI9488 interface in SPI mode

_ILI9488_Spi_HW_Initialize Pin configurations for ILI9488 hardware, includes
SPI CS, MISO, MOSI, SCLK, Reset, Command/
Data and Back light signals (PWM)

ILI9488_SpiInitializeWithDma Initializes ILI9488 driver with DMA support

_ILI9488_SpiDmaInitialize Initializes ILI9488 DMA structure and
corresponding DMA driver

_ILI9488_SpiDmaConfigChannels Initializes DMA TX & RX channels for Peripheral
transfers and call back routines to Process DMA
driver

_ILI9488_SpiDmaConfigureRxTx Configures DMA TX channel with
• Destination address as SPI TDR address
• Transfer type as Peripheral transfer
• Single Micro block with chunk size as 1
• Data width as 16-bits
• Incremented start address and Fixed

destination address

Same way RX channel with
• Source address as SPI RDR address
• Transfer type as Peripheral transfer
• Single Micro block with chunk size as 1
• Data width as 16-bits
• Fixed start address and Incremented

destination address

TX channel source address and RX channel
destination address will be updated in run time.

ILI9488_SpiSendCommand This module will be called multiple times based on
required register settings on LCD controller.

System Tick Timer Initialization
The TimeTick_Configure function initializes System tick timer to perform various timings related
activities and wait times based on need.

4.2.2.2. Screens Update
Screen initialization includes defining canvas region buffer, buffer size, updating COLUMN ADDRESS
SET and PAGE ADDRESS SET registers of LCD controller.

LCDD_SetCavasBuffer /* Initializes canvas region buffer and its size */
LCDD_SetUpdateWindowSize /* Updates LCD size parameters to LCD controller
registers */

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

18

On completing initialization, application continues displaying patterns on the LCD.

#define CANVAS_LCD_WIDTH 240 /* 3/4 of LCD Width i.e. 320 * (3/4) = 240 */
#define CANVAS_LCD_HEIGHT 360 /* 3/4 of LCD Height i.e. 480 * (3/4) = 360 */

Snippet Description

LCDD_DrawRectangleWithFill(0, 0, 0,
ANVAS_LCD_WIDTH - 1,
CANVAS_LCD_HEIGHT - 1,
COLOR_CONVERT(COLOR_WHITE));LCDD_Upda
teWindow();

Draws a rectangle on full LCD and fills with chosen
color

LCDD_DrawRectangleWithFill(0, 0, 0,
CANVAS_LCD_WIDTH - 1,
CANVAS_LCD_HEIGHT - 1,
COLOR_CONVERT(COLOR_BLUE));
LCDD_UpdateWindow();

Redraws a rectangle on full LCD and fills with
different color

LCD_DrawString(0, 50, 5, String,
RGB_24_TO_18BIT(COLOR_BLACK));
LCDD_UpdateWindow();

Draws a string “LCD Example” starting from
mentioned coordinates with chosen color

LCDD_DrawRectangleWithFill(0, 0,
HEADLINE_OFFSET, CANVAS_LCD_WIDTH -
1, CANVAS_LCD_HEIGHT - 1
HEADLINE_OFFSET,
COLOR_CONVERT(COLOR_WHITE));
LCDD_UpdateWindow();

Draws a rectangle below Header string with
chosen color

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

19

Snippet Description

LCDD_DrawRectangleWithFill(0, 4, 4 +
HEADLINE_OFFSET, CANVAS_LCD_WIDTH - 5
- 4, CANVAS_LCD_HEIGHT - 5 -
HEADLINE_OFFSET,
COLOR_CONVERT(COLOR_BLACK));
LCDD_UpdateWindow();

Draws a rectangle starting from mentioned
coordinates with chosen color

LCDD_DrawRectangleWithFill(0, 8, 8 +
HEADLINE_OFFSET, CANVAS_LCD_WIDTH - 9
- 8, CANVAS_LCD_HEIGHT- 9 - 8 -
HEADLINE_OFFSET,
COLOR_CONVERT(COLOR_BLUE));
LCDD_UpdateWindow();
LCDD_DrawRectangleWithFill(0, 12, 12
+ HEADLINE_OFFSET, CANVAS_LCD_WIDTH -
13 - 12,CANVAS_LCD_HEIGHT - 13 - 12 -
HEADLINE_OFFSET,
COLOR_CONVERT(COLOR_RED));
LCDD_UpdateWindow();
LCDD_DrawRectangleWithFill(0, 16, 14
+ HEADLINE_OFFSET, CANVAS_LCD_WIDTH -
17 - 16,CANVAS_LCD_HEIGHT - 17 - 14 -
HEADLINE_OFFSET,
COLOR_CONVERT(COLOR_GREEN));
LCDD_UpdateWindow();
LCDD_DrawLine(0, 0,
CANVAS_LCD_HEIGHT / 2,
CANVAS_LCD_WIDTH -1,
CANVAS_LCD_HEIGHT / 2,
COLOR_CONVERT(COLOR_RED));
LCDD_UpdateWindow();

Draws a horizontal line between mentioned
coordinates with chosen color

LCDD_DrawLine(0, CANVAS_LCD_WIDTH /
2, HEADLINE_OFFSET,
CANVAS_LCD_WIDTH / 2,
CANVAS_LCD_HEIGHT-1,
COLOR_CONVERT(COLOR_RED));
LCDD_UpdateWindow();
LCDD_DrawLine(0, 0, 0 ,
CANVAS_LCD_WIDTH -1,
CANVAS_LCD_HEIGHT - 1,
RGB_24_TO_RGB565(COLOR_RED));
LCDD_UpdateWindow();
LCDD_DrawLine(0, 0, CANVAS_LCD_HEIGHT
- 1, CANVAS_LCD_WIDTH - 1, 0,
RGB_24_TO_RGB565(COLOR_RED));
LCDD_UpdateWindow();

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

20

Snippet Description

LCDD_DrawRectangle(0,
CANVAS_LCD_WIDTH / 4,
CANVAS_LCD_HEIGHT / 4,
CANVAS_LCD_WIDTH * 3 / 4 -
CANVAS_LCD_WIDTH / 4,
CANVAS_LCD_HEIGHT * 3 / 4 -
CANVAS_LCD_HEIGHT / 4,
COLOR_CONVERT(COLOR_RED));
LCDD_UpdateWindow();

Draws a rectangle starting from mentioned
coordinates with chosen color

LCDD_DrawRectangle(0,
CANVAS_LCD_WIDTH / 3,
CANVAS_LCD_HEIGHT / 3,
CANVAS_LCD_WIDTH * 2 / 3 -
CANVAS_LCD_WIDTH / 3,
CANVAS_LCD_HEIGHT * 2 / 3 -
CANVAS_LCD_HEIGHT / 3,
COLOR_CONVERT(COLOR_RED));
LCDD_UpdateWindow();
LCD_DrawFilledCircle(0,
CANVAS_LCD_WIDTH * 3 / 4,
CANVAS_LCD_HEIGHT * 3 / 4,
CANVAS_LCD_WIDTH / 4,
COLOR_CONVERT(COLOR_BLUE));
LCDD_UpdateWindow();

Draws a circle with radius CANVAS_LCD_WIDTH /
4 of and fills with chosen color

LCD_DrawFilledCircle(0,
CANVAS_LCD_WIDTH / 2,
CANVAS_LCD_HEIGHT / 2,
CANVAS_LCD_HEIGHT / 4,
COLOR_CONVERT(COLOR_WHITE));
LCDD_UpdateWindow();
LCD_DrawFilledCircle(0,
CANVAS_LCD_WIDTH / 4,
CANVAS_LCD_HEIGHT * 3 / 4,
CANVAS_LCD_HEIGHT / 4,
COLOR_CONVERT(COLOR_RED));
LCDD_UpdateWindow();
LCD_DrawFilledCircle(0,
CANVAS_LCD_WIDTH * 3 / 4,
CANVAS_LCD_HEIGHT / 4,
CANVAS_LCD_WIDTH / 4,
COLOR_CONVERT(COLOR_YELLOW));
LCDD_UpdateWindow();

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

21

4.2.2.3. Screens Refresh
At the end, application continuously moves image across the screen.

/* Draws a rectangle and fills with chosen color */
LCDD_DrawRectangleWithFill(0, 0, 0, CANVAS_LCD_WIDTH - 1, CANVAS_LCD_HEIGHT - 1,
COLOR_CONVERT(COLOR_BLACK));

/* Draws a pre-loaded image (Atmel logo) at varying offsets */
LCDD_DrawImage(0, i, j, (LcdColor_t *)gImageBuffer, (i + DEMO_IMAGE_WIDTH), (j +
DEMO_IMAGE_HEIGHT));
LCDD_UpdateWindow();

Refer to lcd solution for complete details.

4.3. Memory Footprint
This sections provides information about memory utilization in both EBI and SPI projects.

Note: 
• This is just an information and not for comparison. Because these two projects are implemented in

different way to illustrate functionality.
• Optimization is not enabled for both projects.
• ARM/GNU C Compiler version : 4.9.3

Table 4-8. Footprints for EBI and SPI Interface Modules

Interface
Modules

Program Memory Usage Data Memory Usage

EBI 85784 bytes (4.1 % Full) 92704 bytes (23.6 % Full - LCD Split into 4 blocks of
160x280 each)

SPI 83824 bytes (4.0 % Full) 274568 bytes (69.8 % Full (Reduced to 3/4th i.e.
240x360)

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

22

5. References
SAMV71 Xplained Ultra User Guide - http://www.atmel.com/images/atmel-42408-samv71-xplained-
ultra_user-guide.pdf

maXTouch Xplained Pro User Guide - http://www.atmel.com/Images/Atmel-42350-maXTouch-Xplained-
Pro_User-Guide.pdf

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

23

http://www.atmel.com/images/atmel-42408-samv71-xplained-ultra_user-guide.pdf
http://www.atmel.com/images/atmel-42408-samv71-xplained-ultra_user-guide.pdf
http://www.atmel.com/Images/Atmel-42350-maXTouch-Xplained-Pro_User-Guide.pdf
http://www.atmel.com/Images/Atmel-42350-maXTouch-Xplained-Pro_User-Guide.pdf

6. Revision History
Doc. Rev. Date Comments

42646A 01/2016 Initial document release.

Atmel AT12863: Interfacing LCD Controllers for SAM S70/E70/V70 [APPLICATION NOTE]
Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

24

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42646A-SAM-S70/E70/V70-Interfacing-LCD-Controllers-AT12863_Application Note-01/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, Cortex® and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Preface
	Table of Contents
	1. Abbreviations
	2. Introduction
	3. Prerequisites
	4. Application Demonstration
	4.1. EBI – Extended Bus Interface
	4.1.1. Hardware Setup
	4.1.2. Software Setup
	4.1.2.1. Hardware Init
	4.1.2.1.1. LCD Initialization
	4.1.2.1.2. System Tick Timer Initialization

	4.1.2.2. Screens Update
	4.1.2.2.1. Screens Initialization
	4.1.2.2.2. Screens Refresh

	4.2. SPI – Serial Peripheral Interface
	4.2.1. Hardware Setup
	4.2.2. Software Setup
	4.2.2.1. Hardware Init
	4.2.2.1.1. LCD Initialization
	4.2.2.1.2. System Tick Timer Initialization

	4.2.2.2. Screens Update
	4.2.2.3. Screens Refresh

	4.3. Memory Footprint

	5. References
	6. Revision History

