Altmel

Atmel SHART

SMART ARM-based Microcontrollers

AT13481: SAM Frequency Meter (FREQM) Driver

APPLICATION NOTE

Introduction

This driver for Atmel® | SMART ARM®-based microcontrollers provides an
interface for the configuration and management of the device's Frequency
Meter functionality.
The following driver APl modes are covered by this manual:

* Polled APIs

» Callback APIs

The following peripheral is used by this module:
* FREQM (Frequency Meter)

The following devices can use this module:
* Atmel | SMART SAM L22
+ Atmel | SMART SAM C20
* Atmel | SMART SAM C21

The outline of this documentation is as follows:
* Prerequisites
* Module Overview
* Special Considerations
» Extra Information
« Examples
* API Overview

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

Table of Contents

INEFOAUCTION. ... 1
1. SOMWAIE LICEBNSE.......ccoeeeeeeeee et e et e e e e e e e e e e ee e e e eaeeeeeees 4
B o =T =0 UL (=T 5
3. MOAUIE OVEIVIEW.euiiiiiiie ettt e e e e et e e e e e e e e st e e e e e e e e e e annnnnneeeeeens 6
4. Special ConSIdErations...........cciiiuiiiiiiiie et e e e e e e e e e e e areee s 7
5. EXtra Information.o e 8
B, EXAMIDIES e 9
T APLOVEIVIEW. ... 10
7.1. Variable and Type Definitions.........cccuiiiiiiiie e 10
711, Type fregm_cCallDack _t...........oooiiiiiiiiiiiiie s 10

7.1.2. Variable _fregm_inStancCe...........ooiiiiiiiii e 10

7.2, Structure DefinitioNS..........cooiiiiiiiii e e 10
2% TS o 0 =T [o T oo T T OSSR 10

7.22. Struct fregm_mOGUIE.c.ciiiiiiiiiii s 10

7.3, FUNCHON DEfINITIONS.ciiiiiiee ettt e e e e et e e e e et e e e e e e snnneeeaeeannees 10
7.3.1. Driver Initialization and Configuration..............ccccoeeiiiii i 10

7.3.2. Read FREQM RESUIL.........coiiiiiiiie ettt e e e e 12

7.3.3. Callback Configuration and Initialization...............cccooieiiiniiiniii e 13

7.3.4. Callback Enabling and DiSabling...........c.ccocuiiiiiiiiiiiiiiee e 14

7.3.5. Function fregm_iS_SYNCING().....cuveeeeeiiiiiiiiee ettt e e s e e e 15

7.4, Enumeration DEfiNItIONS.cooiiiiiiiiie et e et e e enaeeas 15
741, Enum fregm_callDack.........cccooiiiiiiiiii e 15

7.4.2. Enum fregm_callback_type.......ccceiiiiiiiiiiii e 16

7.4.3. ENUM fregm_status.......cuiiiiieiiee ettt a e 16

8. Extra Information for FREQM DFIVET.........ccuuiiiiiieee e 17
< T R X o] (o] 1) 4 1 PP TP P TSP PPPRRO 17

L I B 1= o 1= g To [T o Tor = PSSRSO 17
SR R | c- SRR 17

< T /[To [N [1] (o] A PSSR 17

9. Examples for FREQM DIiVEN........cooiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeee et e e 18
9.1. Quick Start Guide for FREQM - BaSIC........cccouiiiiiiiiiiiieieeiee e 18

S Tt I O 1 (¥ o F TSP SRRSO 18

9.1.2. IMPIEMENTALION.eiiiiie i 19

9.2. Quick Start Guide for FREQM - CallbackK..........coocuiiiieiiiiiiie et 20
Sy B = (o J PR PPROTSRE 20

9.2.2. IMPIEMENTALION.... ... e e e e e e e 22

Atmel

Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE]

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

2

10. Document ReViSioN HIiSTOIY........oooouiiiiiiiiiii e 24

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 3

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

1. Software License

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived from this software without
specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 4

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

2. Prerequisites

There are no prerequisites for this module.

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 5

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

3. Module Overview

The module accurately measures the frequency of a clock by comparing it to a known reference clock as
soon as the FREQM is enabled. Two generic clocks are used by the FREQM. The frequency of the

measured clock is:

_ VALUE
feik_msr = RErnum = feLk_rer

Ratio can be measured with 24-bit accuracy.

The FREQM has one interrupt source, which generates when a frequency measurement is done. It can
be used to wake up the device from sleep modes.

This driver provides an interface for the FREQM functions on the device.

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 6

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

4. Special Considerations

There are no special considerations for this module.

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 7

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

5. Extra Information

For extra information see Extra Information for FREQM Driver. This includes:

Atmel

Acronyms
Dependencies
Errata

Module History

Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE]

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

8

6. Examples

For a list of examples related to this driver, see Examples for FREQM Driver.

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 9

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

7. API Overview
71. Variable and Type Definitions
711. Type freqm_callback_t
typedef void(* fregm callback t) (void)
Type definition for a FREQM module callback function.
7.1.2. Variable _fregqm_instance
struct fregm module * fregm instance
7.2. Structure Definitions
7.21. Struct fregm_config
Configuration structure for a Frequency Meter.
Table 7-1 Members
Type [Name [Descripton
enum gclk_generator msr_clock_source GCLK source select for measurement
uint16_t ref_clock_circles ' Measurement duration in number of reference clock cycles.
Range 1~255
enum gclk_generator | ref_clock_source A GCLK source select for reference
7.2.2. Struct fregm_module
FREQM software instance structure, used to retain software state information of an associated hardware
module instance.
Note: The fields of this structure should not be altered by the user application; they are reserved for
module-internal use only.
7.3. Function Definitions
7.3.1. Driver Initialization and Configuration
7.3.1.1. Function fregm_init()
Initializes a hardware FREQM module instance.
enum status code fregm init(
struct fregm module *const module inst,
Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 10
me

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

Fregm *const hw,
struct fregm config *const config)

Enables the clock and initializes the FREQM module, based on the given configuration values.

Table 7-2 Parameters

[in, out] module_inst Pointer to the software module instance struct
[in] hw Pointer to the FREQM hardware module

[in] config Pointer to the FREQM configuration options struct
Returns

Status of the initialization procedure.

Table 7-3 Return Values

STATUS_OK The module was initialized successfully
7.3.1.2. Function freqm_get_config_defaults()
Initializes all members of a FREQM configuration structure to safe defaults.
void fregm get config defaults(
struct fregm config *const config)
Initializes all members of a given Frequency Meter configuration structure to safe known default values.
This function should be called on all new instances of these configuration structures before being
modified by the user application.
The default configuration is as follows:
* Measurement clock source is GCLKO
» Reference clock source is GCLK1
* Frequency Meter Reference Clock Cycles 127
Table 7-4 Parameters
[in] config Configuration structure to initialize to default values
7.3.1.3. Function freqm_enable()
Enables a FREQM that was previously configured.
void fregm enable (
struct fregm module *const module inst)
Enables Frequency Meter that was previously configured via a call to fregm_init().
AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 11

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

7.3.1.4.

Table 7-5 Parameters

[in] module_inst Software instance for the Frequency Meter peripheral

Function freqm_disable()
Disables a FREQM that was previously enabled.

void fregm disable (
struct fregm module *const module inst)

Disables Frequency Meter that was previously started via a call to freqm_enable().

Table 7-6 Parameters

[in] module_inst Software instance for the Frequency Meter peripheral
7.3.2. Read FREQM Result
7.3.2.1. Function freqm_start_measure()
Start a manual measurement process.
void fregm start measure (
struct fregm module *const module)
Table 7-7 Parameters
[in] module Pointer to the FREQM software instance struct
7.3.2.2. Function freqm_clear_overflow()
Clears module overflow flag.
void fregm clear overflow (
struct fregm module *const module)
Clears the overflow flag of the module.
Table 7-8 Parameters
[in] module Pointer to the FREQM software instance struct
7.3.2.3. Function freqm_get_result_value()
Read the measurement data result.
enum fregm status fregm get result value(
struct fregm module *const module inst,
uint32 t * result)
Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 12
me

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

7.3.3.
7.3.3.1.

Reads the measurement data result.

Table 7-9 Parameters

[in] module_inst Pointer to the FREQM software instance struct

[out] result Pointer to store the result value in
Note: If overflow occurred, configure faster reference clock or reduce reference clock cycles.

Returns
Status of the FREQM read request.

Table 7-10 Return Values

FREQM_STATUS_MEASURE_DONE Measurement result was retrieved successfully
FREQM_STATUS_MEASURE_BUSY Measurement result was not ready

FREQM_STATUS_CNT_OVERFLOW Measurement result was overflow

Callback Configuration and Initialization
Function freqm_register_callback()

Registers a callback.

enum status code fregm register callback(
struct fregm module *const module,
fregm callback t callback func,
enum fregm callback callback type)

Registers a callback function which is implemented by the user.

Note: The callback must be enabled by freqm_enable _callback, in order for the interrupt handler to call
it when the conditions for the callback type is met.

Table 7-11 Parameters

[in] module Pointer to FREQM software instance struct
[in] callback_func Pointer to callback function

[in] callback_type Callback type given by an enum

Table 7-12 Return Values

STATUS_OK The function exited successfully

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 13

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

7.3.3.2.

7.3.4.
7.3.41.

Function fregm_unregister_callback()

Unregisters a callback.

enum status code fregm unregister callback(
struct fregm module * module,
enum fregm callback callback type)

Unregisters a callback function implemented by the user. The callback should be disabled before it is
unregistered.

Table 7-13 Parameters

[in] module Pointer to FREQM software instance struct

[in] callback_type Callback type given by an enum

Table 7-14 Return Values

STATUS_OK The function exited successfully

Callback Enabling and Disabling
Function freqm_enable_callback()

Enable an FREQM callback.

enum status code fregm enable callback(
struct fregm module *const module,
const enum fregm callback type type)

Table 7-15 Parameters

[in, out] module Pointer to the software instance struct

[in] type Callback source type

Returns
Status of the callback enable operation.

Table 7-16 Return Values

STATUS OK The callback was enabled successfully

STATUS _ERR_INVALID_ARG If an invalid callback type was supplied

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 14

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

7.3.4.2.

7.3.5.

7.4.

7.41.

Function freqm_disable_callback()

Disable an FREQM callback.

enum status code fregm disable callback (
struct fregm module *const module,
const enum fregm callback type type)

Table 7-17 Parameters

[in, out] module Pointer to the software instance struct
[in] type Callback source type
Returns

Status of the callback enable operation.

Table 7-18 Return Values

STATUS_OK The callback was enabled successfully

STATUS_ERR_INVALID_ARG If an invalid callback type was supplied

Function freqm_is_syncing()
Determines if the hardware module(s) are currently synchronizing to the bus.
bool fregm is syncing(void)

Checks to see if the underlying hardware peripheral module(s) are currently synchronizing across multiple
clock domains to the hardware bus. This function can be used to delay further operations on a module
until such time that it is ready, to prevent blocking delays for synchronization in the user application.

Returns
Synchronization status of the underlying hardware module(s).

Table 7-19 Return Values

false If the module has completed synchronization

true If the module synchronization is ongoing

Enumeration Definitions

Enum fregm_callback

Enum for possible callback types for the FREQM module.

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 15

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

Table 7-20 Members

Enum value Description

FREQM_CALLBACK_DONE Callback for measurement done
7.4.2. Enum freqm_callback_type
FREQM callback type.
Table 7-21 Members
Enum value Description
FREQM_CALLBACK_MEASURE_DONE Measurement done callback.
7.4.3. Enum freqm_status
Enum for the possible status types for the FREQM module.
Table 7-22 Members
Enum value Description
FREQM_STATUS_MEASURE_DONE FREQM measurement is finish
FREQM_STATUS_MEASURE_BUSY FREQM measurement is ongoing or not
FREQM_STATUS_CNT_OVERFLOW FREQM sticky count value overflow
AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 16

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

8. Extra Information for FREQM Driver
8.1. Acronyms
Below is a table listing the acronyms used in this module, along with their intended meanings.
Acronym Description
FREQM Frequency Meter
8.2. Dependencies
This driver has no dependencies.
8.3. Errata
There are no errata related to this driver.
8.4. Module History
An overview of the module history is presented in the table below, with details on the enhancements and
fixes made to the module since its first release. The current version of this corresponds to the newest
version in the table.
Changelog
Initial Release
AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 17

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

9.1.

9.1.1.

9.1.1.1.

9.1.1.2.

9.1.1.3.

Examples for FREQM Driver

This is a list of the available Quick Start guides (QSGs) and example applications for SAM Frequency
Meter (FREQM) Driver. QSGs are simple examples with step-by-step instructions to configure and use
this driver in a selection of use cases. Note that a QSG can be compiled as a standalone application or
be added to the user application.

* Quick Start Guide for FREQM - Basic
* Quick Start Guide for FREQM - Callback

Quick Start Guide for FREQM - Basic

In this use case, the Frequency Meter (FREQM) module is configured for:
* The FREQM peripheral will not be stopped in standby sleep mode.

This use case will read measurement data in polling mode repeatly. After reading a data, the board LED
will be toggled.

Setup

Prerequisites
There are no special setup requirements for this use-case.
Code

Copy-paste the following setup code to your user application:

/* FREQM module software instance (must not go out of scope while in use)
=)

static struct fregm module fregm instance;

void configure fregm(void)

{

/* Create a new configuration structure for the FREQM settings
* and fill with the default module settings. */

struct fregm config config freqm;

fregm get config defaults(&config fregm);

/* Alter any FREQM configuration settings here if required */

/* Initialize FREQM with the user settings */
fregm init (&fregm instance, FREQM, &config fregm);
}
Add to user application initialization (typically the start of main ()):

system init();
configure fregm();
fregm enable (&fregm instance);

Workflow

1. Create an FREQM device instance struct, which will be associated with a FREQM peripheral
hardware instance.

static struct fregm module fregm instance;

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 18

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

Note: Device instance structures shall never go out of scope when in use.

2. Create a new function configure fregm (), which will be used to configure the overall FREQM
peripheral.

void configure fregm(void)

3. Create an FREQM peripheral configuration structure that will be filled out to set the module
configuration.

struct fregm config config fregm;

4. Fill the FREQM peripheral configuration structure with the default module configuration values.

fregm get config defaults(&config fregm);

5. Initialize the FREQM peripheral and associate it with the software instance structure that was
defined previously.

fregm init (&fregm instance, FREQM, &config fregm);

6. Enable the now initialized FREQM peripheral.

fregm enable (&fregm instance);

9.1.2. Implementation
9.1.2.1. Code

Copy-paste the following code to your user application:

uint32 t measure result;
enum fregm status status;

fregm start measure (&fregm instance);

while_((status = fregm get result value (&fregm instance, &measure result))

== FREQM STATUS MEASURE BUSY) ({
}i
switch (status) {
case FREQM STATUS MEASURE DONE:
LED On(LED O PIN);
while (true) {
}
case FREQM STATUS CNT OVERFLOW:
fregm clear overflow(&fregm instance);
while (true) {
LED Toggle (LED 0 PIN);
volatile uint32 t delay = 50000;
while (delay--) {
}
}
default:
Assert (false);
break;

9.1.2.2. Workflow

1. Start FREQM measurement and wait until measure done then read result data.

fregm start measure (&fregm instance);
while ((status = fregm get result value (&fregm instance,
&measure result))

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE]

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

2.

3.

== FREQM STATUS MEASURE BUSY) {

}i

The board LED is on to indicate a measurement data is read.

case FREQM_STATUS_MEASURE_DONE:
LED On (LED 0 PIN);
while (true) {
}

The board LED is toggle to indicate measurement is overflow.

case FREQM STATUS CNT OVERFLOW:
fregm clear overflow(&fregm instance);
while (true) {
LED Toggle (LED 0 PIN);
volatile uint32 t delay = 50000;
while (delay--) {
}

9.2. Quick Start Guide for FREQM - Callback

In this use case, the Frequency Meter (FREQM) module is configured for:

The FREQM peripheral will not be stopped in standby sleep mode.

This use case will read measurement data in interrupt mode repeatly. After reading specific size of buffer
data, the board LED will be toggled.

9.21. Setup

9.2.1.1. Prerequisites

There are no special setup requirements for this use-case.

9.2.1.2. Code

Copy-paste the following setup code to your user application:

bool volatile fregm read done = false;

void configure fregm(void) ;
void configure fregm callback(void) ;
void fregm complete callback (void);

/* FREQM module software instance (must not go out of scope while in use)

*/

static struct fregm module fregm instance;

void configure fregm(void)

{

Atmel

/* Create a new configuration structure for the FREQM settings
* and fill with the default module settings. */

struct fregm config config freagm;

fregm get config defaults(&config fregm);

config fregm.ref clock circles = 255;

/* Alter any FREQM configuration settings here if required */
/* Initialize FREQM with the user settings */

fregm init (&fregm instance, FREQM, &config fregm);

Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE]

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

20

}

void fregm complete callback (void)

{

fregm read done = true;

}

void configure fregm callback (void)

{

fregm register callback(&fregm instance, fregm complete callback,
FREQM CALLBACK MEASURE DONE) ;
fregm enable callback(&freqm instance, FREQM CALLBACK MEASURE DONE) ;

}
Add to user application initialization (typically the start of main ()):

system init();
configure fregm();
configure fregm callback();

fregm enable (&fregm instance);

9.2.1.3. Workflow

1. Create an FREQM device instance struct, which will be associated with an FREQM peripheral
hardware instance.

static struct fregm module fregm instance;

Note: Device instance structures shall never go out of scope when in use.
2. Create a new function configure freqgm (), which will be used to configure the overall FREQM
peripheral.

void configure fregm(void)
3. Create an FREQM peripheral configuration structure that will be filled out to set the module
configuration.

struct fregm config config freqgm;

4. Fill the FREQM peripheral configuration structure with the default module configuration values.

fregm get config defaults(&config fregm);
config fregm.ref clock circles = 255;

5. Initialize the FREQM peripheral and associate it with the software instance structure that was
defined previously.

fregm init (&fregm instance, FREQM, &config fregm);

6. Create a new callback function.

void fregm complete callback(void)

{

fregm read done = true;

}

7. Create a callback status software flag.

bool volatile fregm read done = false;

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 21

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

8. Let the callback function set the flag to true when read job done.

fregm read done = true;

9. Create a new function configure fregm callback (), which will be used to configure the
callbacks.

void configure fregm callback(void)
{
fregm register callback(&fregm instance, fregm complete callback,
FREQM CALLBACK MEASURE DONE) ;
fregm enable callback(&fregm instance,
FREQM CALLBACK MEASURE DONE) ;
}

10. Register callback function.

fregm register callback(&fregm instance, fregm complete callback,
FREQM CALLBACK MEASURE DONE) ;

11. Enable the callbacks.
fregm enable callback(&fregm instance, FREQM CALLBACK MEASURE DONE) ;

12. Enable the now initialized FREQM peripheral.

fregm enable (&fregm instance);

Note: This should not be done until after the FREQM is setup and ready to be used.

9.2.2. Implementation
9.2.21. Code

Copy-paste the following code to your user application:

uint32 t measure result;
enum fregm status status;
fregm start measure (&fregm instance);

while (!fregm read done) {
}
status = fregm get result value(&fregm instance, &measure result);
switch (status) {
case FREQM STATUS MEASURE DONE:
LED On (LED 0 PIN); N
while (true) {
}
case FREQM STATUS CNT OVERFLOW:
fregm clear overflow(&fregm instance);
while (true) {
LED Toggle (LED 0O PIN);
volatile uint32 t delay = 50000;

while (delay—--) {
}

}

default:
Assert (false);
break;
}
AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE]

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

22

9.2.2.2. Workflow

1. Start an asynchronous FREQM read job, to store measurement data into the global buffer and
generate a callback when complete.

fregm start measure (&freqm instance);

2. Wait until the asynchronous read job is complete.

while (!fregm read done) {
}

status = fregm get result value (&fregm instance, &measure result);

3. The board LED on to indicate measurement data read.

case FREQM STATUS MEASURE DONE:
LED On(LED 0 PIN);
while (true) {

}

4. The board LED toggled to indicate measurement overflow occous.

case FREQM STATUS CNT OVERFLOW:
fregm clear overflow(&fregm instance);
while (true) {
LED Toggle (LED 0 PIN);
volatile uint32 t delay = 50000;
while (delay—--) {
}

AtmeL Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 23

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

10. Document Revision History

Doc. Rev. Comments
42506A 08/2015 Initial document release
Atmel Atmel AT13481: SAM Frequency Meter (FREQM) Driver [APPLICATION NOTE] 24

Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

/Itmel_ Enabling Unlimited Possibilities® numa

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42506A-SAM-Frequency-Meter-(FREQM)-Driver_AT13481_Application Note-08/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected®, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Software License
	2. Prerequisites
	3. Module Overview
	4. Special Considerations
	5. Extra Information
	6. Examples
	7. API Overview
	7.1. Variable and Type Definitions
	7.1.1. Type freqm_callback_t
	7.1.2. Variable _freqm_instance

	7.2. Structure Definitions
	7.2.1. Struct freqm_config
	7.2.2. Struct freqm_module

	7.3. Function Definitions
	7.3.1. Driver Initialization and Configuration
	7.3.1.1. Function freqm_init()
	7.3.1.2. Function freqm_get_config_defaults()
	7.3.1.3. Function freqm_enable()
	7.3.1.4. Function freqm_disable()

	7.3.2. Read FREQM Result
	7.3.2.1. Function freqm_start_measure()
	7.3.2.2. Function freqm_clear_overflow()
	7.3.2.3. Function freqm_get_result_value()

	7.3.3. Callback Configuration and Initialization
	7.3.3.1. Function freqm_register_callback()
	7.3.3.2. Function freqm_unregister_callback()

	7.3.4. Callback Enabling and Disabling
	7.3.4.1. Function freqm_enable_callback()
	7.3.4.2. Function freqm_disable_callback()

	7.3.5. Function freqm_is_syncing()

	7.4. Enumeration Definitions
	7.4.1. Enum freqm_callback
	7.4.2. Enum freqm_callback_type
	7.4.3. Enum freqm_status

	8. Extra Information for FREQM Driver
	8.1. Acronyms
	8.2. Dependencies
	8.3. Errata
	8.4. Module History

	9. Examples for FREQM Driver
	9.1. Quick Start Guide for FREQM - Basic
	9.1.1. Setup
	9.1.1.1. Prerequisites
	9.1.1.2. Code
	9.1.1.3. Workflow

	9.1.2. Implementation
	9.1.2.1. Code
	9.1.2.2. Workflow

	9.2. Quick Start Guide for FREQM - Callback
	9.2.1. Setup
	9.2.1.1. Prerequisites
	9.2.1.2. Code
	9.2.1.3. Workflow

	9.2.2. Implementation
	9.2.2.1. Code
	9.2.2.2. Workflow

	10. Document Revision History

