
 SMART ARM-based Microcontrollers

 Atmel AT13723:Getting Started with FreeRTOS on
Atmel SAMV/S/E MCUs

 APPLICATION NOTE

Introduction

This application note illustrates the basic functionality of the FreeRTOS™

Real Time Operating System and shows how to use it on Atmel® | SMART
SAM V/S/E microcontrollers.

This application note covers:
• What is a Real-Time application and a real time operating system?
• How to create and configure a FreeRTOS project
• How to make use of FreeRTOS basic functionality in an embedded

project

The description is based on FreeRTOS port available for SAM V71 Xplained
Ultra board in FreeRTOS.org™ website. All the processes illustrated in this
document is explained with an example from SAMV71-XULT Atmel Studio
Software Package 1.3.

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

Table of Contents

Introduction..1

1. Introduction..3
1.1. What is a Real-time Application?..3
1.2. Real-time Operating System and Multitasking... 3
1.3. FreeRTOS Introduction.. 3

1.3.1. The FreeRTOS Kernel... 4
1.3.2. FreeRTOS Taks Management Mechanism..5
1.3.3. FreeRTOS Memory Management..6

2. FreeRTOS Kernel Inclusion and Configuration... 7
2.1. SAMV71-XULT Atmel Studio Software Package..7
2.2. Add the FreeRTOS Library to Software Package...8
2.3. Include the Added FreeRTOS files in an Example Project...9
2.4. Configuring the Kernel according to Application Requirement... 11

2.4.1. System and Tick Frequency.. 13

3. Tasks Creation and Scheduling... 14
3.1. Task Structure...14
3.2. Task Creation and Deletion.. 14

3.2.1. xTaskCreate Function.. 14
3.2.2. xTaskDelete Function.. 15

3.3. Task Management.. 16
3.4. Priority Settings and Round Robin... 18

4. Kernel Objects... 21
4.1. Software Timer Usage..21
4.2. Semaphore Usage..23
4.3. Queue Management...26

5. Hook Functions..31
5.1. Idle Hook Function..31
5.2. Tick Hook Function...31
5.3. Malloc Failed Hook Function.. 31

6. References.. 32

7. Revision History...33

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

2

1. Introduction

1.1. What is a Real-time Application?
The main difference between a standard application and a real-time application is the time constraint
related to actions to perform. In a real-time application the time by which tasks will execute can be
predicted deterministically on the basis of knowledge about the system’s hardware and software.
Typically, applications of this type include a mix of both hard and soft real-time requirements.

Soft real-time requirements: are those that state a time deadline but breaching the deadline would not
render the system useless. For example, responding to keystrokes too slowly may make a system seem
annoyingly unresponsive without actually making it unusable.

Hard real-time requirements: are those that state a time deadline and breaching the deadline would
result in absolute failure of the system. For example, a driver’s airbag would be useless if it responded to
crash sensor inputs too slowly.

To adhere to these time requirements, the usage of a real time operating system (RTOS) is often
required.

1.2. Real-time Operating System and Multitasking
The most basic feature, common to all operating system is the support for multitasking. Additional
features that support the essential components such as networking, peripheral interfacing, user interface
and printing can be added

An embedded system may not require all of these components. The types of operating systems used in
real time embedded system often have only the fundamental function of support for multitasking. These
operating systems can vary in size from 300bytes to 10KB. So they are small enough to fit inside internal
microcontroller flash memory.

Embedded systems usually have access to only one processor, which serve many input and output
paths. Real time operating system must divide time between various activities such that all the deadlines
(requirements) are met.

A real time operating system always includes:
• Support of multiple task running concurrently
• A scheduler to determine which task should run
• Ability for the scheduler to pre-empt a running task
• Support for inter-task communication

1.3. FreeRTOS Introduction
FreeRTOS is a real-time kernel (or real-time scheduler) on top of which Cortex®-M7 microcontroller
applications can be built to meet their hard real-time requirements. It allows Cortex-M7 microcontroller
applications to be organized as a collection of independent tasks to be executed. As Cortex-M7
microcontrollers from Atmel have only one core, only one task can be executed at a time. The kernel
decides which task should be executing by examining the priority assigned to each by the application
designer. In the simplest case, the application designer could assign higher priorities to tasks that
implement hard real-time requirements and lower priorities to tasks that implement soft real-time
requirements. This would ensure that hard real-time tasks are always executed ahead of soft real-time
one.

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

3

1.3.1. The FreeRTOS Kernel
FreeRTOS kernel is target independent. This kernel is ported for many microcontrollers and distributed
through FreeRTOS website itself as well as from the microcontroller vendors separately. For SAM V7
Xplained Ultra kit, this FreeRTOS kernel is ported and also a demo is available in FreeRTOS website.
This kernel files can be added manually in the software package so that this RTOS based application can
be developed easily.

Figure 1-1  FreeRTOS Module Organization

The Cortex-M7 port include all the standard FreeRTOS features:
• Pre-emptive or co-operative operation
• Very flexible task priority assignment
• Software timers
• Queues
• Binary semaphores
• Counting semaphores
• Recursive semaphores
• Mutexes
• Tick hook functions
• Idle hook functions
• Stack overflow checking
• Trace hook macros

FreeRTOS can be configured to exclude unused functionality from compiling and thereby reducing its
memory footprint.

Note:  The FreeRTOS kernel is released under GPL with exception, allowing user applications to stay
closed source. The BSP part is a mix of GPL with exception license and code provided by the different
hardware manufacturers

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

4

1.3.2. FreeRTOS Taks Management Mechanism
FreeRTOS allows to handle multiple concurrent tasks, but only one task can be run at a time (single core
processor). Thus the system requires a scheduler to time slice the execution of concurrent tasks. The
scheduler is the core of the FreeRTOS kernel; it selects the task to be executed according to priority and
state of the task. The various task states are illustrated in following figure.

Figure 1-2 Various Tasks of the FreeRTOS Kernel

At application level there are two possible states for a task: Running and Not Running. At scheduler
level, Not Running state is divided in to three categories:

1. Suspend: Task has been suspended (deactivated) by the application
2. Blocked: Task is blocked and waiting for synchronization event
3. Ready: Ready to execute, but a task with higher priority is running

Task scheduling aims to decide which task in Ready state has to be run at a given time. FreeRTOS
achieves this purpose with priorities given to tasks while they are created. Priority of a task is the only
element the scheduler takes into account to decide which task has to be switched in. Every clock tick
makes the scheduler to decide which task has to be woken up.

Figure 1-3 RTOS Tick and a Task State

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

5

1.3.3. FreeRTOS Memory Management
FreeRTOS allows unlimited number of tasks to be executed as long as hardware and memory can handle
them. As a real time operating system, FreeRTOS is able to handle both cyclic and acyclic tasks.

The memory allocation of tasks in RAM is illustrated in the following figure.

Figure 1-4 The Memory Allocation of Tasks in RAM

The RTOS kernel allocates RAM each time a task or a kernel object is created. The section allocated to a
task or an object is called a stack. The size of this stack is configurable at task creation. The stack
contains the Task File and the Task Control Board (TCB) that allows the kernel to handle the task. All
stacks are stored in a section called HEAP. The heap management is done according the Heap_x.c file
included with the kernel the selection of Heap_x.c file should be done according to application
requirement.

• Heap_1.c: This is the simplest implementation of all. It does not permit memory to be freed once it
has been allocated.

• Heap_2.c: This scheme uses a best fit algorithm and, unlike scheme 1, allows previously allocated
blocks to be freed. It does not however combine adjacent free blocks into a single large block.

• Heap_3.c: This implements a simple wrapper for the standard C library malloc() and free()
functions that will, in most cases, be supplied with your chosen compiler. The wrapper simply
makes the malloc() and free() functions thread safe.

• Heap_4.c: This scheme uses a first fit algorithm and, unlike scheme 2, does combine adjacent free
memory blocks into a single large block (it does include a coalescence algorithm).

• Heap_5.c: This scheme uses the same first fit and memory coalescence algorithms as heap_4, and
allows the heap to span multiple non adjacent (non-contiguous) memory regions.

In all cases except Heap_3.c, the total amount of available heap space is set by
configTOTAL_HEAP_SIZE defined in FreeRTOSConfig.h. In case of scheme 3, the heap size is
configured in linker script.

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

6

2. FreeRTOS Kernel Inclusion and Configuration
This section describes the inclusion and configuration of FreeRTOS kernel in an Atmel studio 6.2 project.
The following aspects are covered:

• Opening example project from SAMV71-XULT Atmel Studio Software Package
• Manually adding the FreeRTOS kernel in an existing project
• Configure FreeRTOS kernel according to product specification
• Optimize kernel size according to application requirements

The FreeRTOS Website (Version 8.2.1 and above) contains a Demo project for SAM V71 Xplained Ultra
board in Atmel Studio, IAR and Keil platforms. This demo is useful to get started with FreeRTOS and
SAM V71 device. The above mentioned steps will be helpful in adding FreeRTOS library in software
package. This process explains the steps involved in making existing example projects into a RTOS
based application.

2.1. SAMV71-XULT Atmel Studio Software Package
Peripheral drivers, middleware libraries, and example projects for SAMV71-XULT board are available in
the software package. In Atmel Studio website, software packages for SAM V71 Xplained Ultra board are
available for IAR, Keil, GCC, and Atmel Studio platforms.

All example projects uses common drivers available in the libraries folder. All driver files are added in the
project as links. Opening an example project from this software package will display the folder and file
structure. The following figure displays the files and folder structure of the getting started example project.

Figure 2-1 Example Project Folder Structure

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

7

FreeRTOS source files, include files, and configuration files must be manually taken from the FreeRTOS
port and added into this software package. Then these FreeRTOS files can be manually included (like
other library files already included) in any project, if needed.

For example, getting started example project from Atmel Studio software package is used in this
application note to demonstrate the addition of FreeRTOS files. Software package has example projects
for many peripherals. Getting started example is available in following path in software package.

$Install_Directory$\samv71_softpack_1.3_for_astudio_6_2\studio\Atmel
\samv71_Xplained_Ultra\examples\getting-started\build\studio

2.2. Add the FreeRTOS Library to Software Package
The FreeRTOS kernel and port for Cortex-M7 is available from FreeRTOS Version 8.2.1. Downloaded
source files from FreeRTOS website contains port and examples for many devices. Support for Cortex-
M7 is added from version 8.2.1 and basic example is available for SAM V71 Xplained Ultra board. So we
can identify the source files required for SAM V71 device from FreeRTOS library. Add a folder for
FreeRTOS in software package libraries folder and add the required FreeRTOS files in that folder in the
same folder structure available in FreeRTOS source. The following figure shows the folder structure that
has to be created in software package libraries folder.

Figure 2-2 FreeRTOS Library Folder in Software Package

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

8

Figure 2-3 FreeRTOS Folder and File Structure

2.3. Include the Added FreeRTOS files in an Example Project
In an Example project, FreeRTOS files can be included as link. Add the same FreeRTOS folder structure
in the Atmel Studio project first. In each folder add the recently added freertos files available from
software package. While adding the files, option Add as Link is used so that libraries files are only
available in a single place and no redundant copies are created inside the project folder.

Figure 2-4 Including a File in a Project

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

9

Figure 2-5 Adding Files as Link in Atmel Studio Project

After including all FreeRTOS files, compiler directories should be updated with relative path for each
FreeRTOS folder to avoid errors while compiling. Add compiler flag -mfpu=fpv5-sp-d16 -mfloat-abi=softfp
in compiler Miscellaneous option in Project Settings. This compiler flag is the same flag used in
FreeRTOS Demo project for Atmel Studio.

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

10

Figure 2-6 FreeRTOS Folder and File Structure

The kernel configuration is performed through a dedicated header file FreeRTOSConfig.h. This file is
application dependent as each application might have different kernel requirement. This file can be added
along with other configuration files in project or can be placed along with main file.

This file is available in ARM_CortexM7 Example FreeRTOS folder in following path
FreeRTOSV8.2.1\FreeRTOS\Demo\CORTEX_M7_SAMV71_Xplained_IAR_Keil
Note:  FreeRTOS source code is licensed by the modified GNU General Public License (GPL). A license
agreement is required to use the kernel in an commercial project. Information about this license can be
read in the license agreement window that appears when adding the kernel.

2.4. Configuring the Kernel according to Application Requirement
The kernel configuration is performed through a dedicated header file FreeRTOSConfig.h available in
the project. The kernel configuration is achieved by modifying some predefine config and INCLUDE
definitions. By default these definition are already configured.

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

11

Figure 2-7 FreeRTOSConfig.h file

Taking time to adapt the kernel to application needs allows reducing the footprint of the kernel in memory.
Following table lists the FreeRTOS kernel configuration and customization definitions that can be found in
the FreeRTOSConfig.h. FreeRTOS website has dedicated webpage for explaining the
FreeRTOSConfig.h parameters. This webpage gives information on all configuration parameters. Based
on the configurations defined, sometime dummy or valid definition needs to be added in main for
configurations like vApplicationTickHook(), vApplicationMallocFailedHook() etc. Demo
application for Atmel Studio in FreeRTOS website is also a useful reference for this

Table 2-1 FreeRTOS Configuration and Customization Definitions

Config definition Description

configUSE_PREEMPTION Set to 1 to use the preemptive RTOS scheduler, or 0 to use
the cooperative RTOS scheduler

configUSE_IDLE_HOOK Enable/disable IDLE Hook (callback when system has no
active task)

configUSE_TICK_HOOK Enable/disable TICK Hook (callback on every tick)

configCPU_CLOCK_HZ Defines CPU clock for tick generation

configTICK_RATE_HZ Defines Tick Frequency in Hertz

configMAX_PRIORITIES Defines the number priority level that kernel need to
manage

configMINIMAL_STACK_SIZE Defines the minimal stack size allocated to a task

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

12

http://www.freertos.org/a00110.html

Config definition Description

configTOTAL_HEAP_SIZE Defines the size of the system heap

configMAX_TASK_NAME_LEN Defines the Maximum Task name length (used for debug)

configUSE_TRACE_FACILITY Build/omit Trace facility (used for debug)

configUSE_16_BIT_TICKS 1: portTickType = uint_16; 0: portTickType = uint_32

Improve performance of the system, but Impact the
maximum time a task can be delayed

configIDLE_SHOULD_YIELD The users application creates tasks that run at the idle
priority

configUSE_MUTEXES Build/omit Mutex support functions

configQUEUE_REGISTRY_SIZE Defines the maximum number of queues and semaphores
that can be registered

configCHECK_FOR_STACK_OVERFLOW Enables stack over flow detection

configUSE_RECURSIVE_MUTEXES Build/omit Recursive Mutex support functions

configUSE_MALLOC_FAILED_HOOK Build/omit Malloc failed support functions

configUSE_APPLICATION_TASK_TAG Build/omit Task tag functions

configUSE_COUNTING_SEMAPHORES Build/omit counting semaphore support functions

configUSE_CO_ROUTINES Build/omit co-routines support functions

configMAX_CO_ROUTINE_PRIORITIES Defines the maximum level of priority for coroutines

configUSE_TIMERS Build/omit timers support functions

configTIMER_TASK_PRIORITY Defines timer task priority level

configTIMER_QUEUE_LENGTH Sets the length of the software timer command queue

configTIMER_TASK_STACK_DEPTH Sets the stack depth allocated to the software timer service/
daemon task

2.4.1. System and Tick Frequency
An important point to take in account when using an RTOS is the system frequency and more particularly
the kernel tick frequency (Time base information of the RTOS). The kernel tick frequency is defined in the
FreeRTOSConfig.h and is based by default on the MCU frequency. The tick frequency can be set
according to following definitions: MCU Frequency is 64MHz and tick rate is 1kHz for example shown
here.

 #define configCPU_CLOCK_HZ ((unsigned
long)64000000)
 #define configTICK_RATE_HZ ((portTickType)1000)

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

13

3. Tasks Creation and Scheduling
This section describes the basic tasks creation, scheduling, and handling processes:

• Task structure
• Task creation
• Task scheduling
• Priority setting

All steps are illustrated by graphic trace kind of application to visualize the impact of the different kernel
function calls and settings.

3.1. Task Structure
A task is implemented by a function that should never return. They are typically implemented as a
continuous loop such as in the vATaskFunction shown in the following example:

void vATaskFunction(void *pvParameters)
{
 for(;;)
 {
 /* Task application code here.*/
 }
}

Since there is no value to be returned, the task should be of a void type. A specific structure
pvParameters can be used to pass information of any type into the task:

typedef struct {
 const char Parameter1;
 const uint32_t Parameter2;
 /*...*/
} pvParameters;

A task must be created (Memory allocation + add to Scheduling list). During creation, a handler ID is
assigned to each task. This ID is used as parameter for all kernel task management function.

xTaskHandle task_handle_ID;

3.2. Task Creation and Deletion
The task creation and deletion are performed by kernel function xTaskCreate() and xTaskDelete()

3.2.1. xTaskCreate Function
The xTaskCreate function creates a task by allocating RAM to it (creation of the task stack). It’s
parameters allows to set the name, stack depth, and priority of the task, and also to retrieve task identifier
and pointer to RAM function where the task code is implemented. After the creation a task is ready to be
executed. The xTaskCreate function call should be done prior to scheduler call

Function Prototype:
void xTaskCreate(pvTaskCode,pcName, usStackDepth, pvParameters,
uxPriority, pxCreatedTask;

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

14

Function Parameters:
• pvTaskCode:Pointer to the function where the task is implemented
• pcName: Given name of the task. Intended for debugging purpose only
• usStackDepth: Length of the stack for this task in words
• uvParameters: Pointer to Parameter structure given to the task
• uxPriority: Priority given to the task, a number between 0 and MAX_PRIORITIES – 1 (see Kernel

configuration)
• pxCreatedTask: Pointer to an identifier that allows handling the task. If the task does not have to

be handled in the future, this can be NULL

3.2.2. xTaskDelete Function
To use this function, INCLUDE_vTaskDelete must be defined as 1 in FreeRTOSConfig.h. The
vTaskDelete function is used to remove a task from the scheduler management (removed from all
ready, blocked, suspended, and event lists). The identifier of the task to delete should be passed as
parameter.

Function Prototype:
void vTaskDelete(xTaskHandlepxTask);

Function Parameters:
• pxTask: Pointer to identifier that allows handling the task to be deleted. Passing NULL will cause

the calling task to be deleted.

Note:  When a task is deleted, it is the responsibility of idle task to free all allocated memory to this task
by kernel. Note that all memory dynamically allocated must be manually freed.Task deletion should be
avoided in majority of RTOS apps in order to avoid HEAP actions, heavy in CPU cycles. It is preferable to
have a task put in sleep mode and awakens on events for regular actions to obtain deterministic timings.

The following code example illustrates a simple task definition and creation:

#include <asf.h>
/* Task handler declaration*/
xTaskHandle worker1_id;

static void worker1_task(void *pvParameters)
{
 for(;;)
 {
 /* task application*/
 }
 /* Should never go there */
 vTaskDelete(NULL);
}

int main (void)
{
 Sysclk_init();
 Board_init();
 /* Create Worker 1 task */
 xTaskCreate(worker1_task,"Worker 1",configMINIMAL_STACK_SIZE
+1000,NULL, 2,& worker1_id);
 /*Start Scheduler*/
 vTaskStartScheduler()

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

15

 while(1);
}

TIP: As any code in infinite loop can fail and exit this loop, it is safer even for a repetitive task, to invoke
vTaskDelete() before its final brace.

3.3. Task Management
FreeRTOS kernel offers various functions for task management. These functions allow setting tasks in
different states and also obtain information on their status. The list of available functions are:

• vTaskDelay /* Delay a task for a set number of tick */
• vTaskDelayUntil /* Delay a task for a set number of tick */
• vTaskPrioritySet /* Set task priority */
• uxTaskPriorityGet /* Retrieve Task priority setting */
• vTaskSuspend /* Suspend a Task */
• vTaskResume /* Resume a Task */
• eTaskStateGet /* Retrieve the current status of a Task */
• vTaskDelete /* Delete a Task */

Most of these functions are used and described in the various examples in this document.

The following example illustrates the management of task:

#include <asf.h>
xTaskHandle worker1_id;
xTaskHandle worker2_id;

static void worker1_task(void *pvParameters)
{
 static uint32_t idelay;
 static uint32_t Delay;
 Delay = 100000;
 /* Worker task Loop. */
 for(;;)
 {
 /* Simulate work */
 for (idelay = 0; idelay < Delay; ++idelay);
 /* Suspend Task */
 vTaskSuspend(worker1_id);
 }
 /* Should never go there */
 vTaskDelete(worker1_id);
}

static void worker2_task(void *pvParameters)
{
 static uint32_t idelay;
 static uint32_t Delay;
 Delay = 100000;
 /* Worker task Loop. */
 for(;;)
 {

 /* Simulate CPU work */
 for (idelay = 0; idelay < Delay; ++idelay);
 /* Suspend Task */

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

16

 vTaskSuspend(worker2_id);
 }
 /* Should never go there */
 vTaskDelete(worker2_id);
}

int main (void)
{
 Sysclk_init();
 Board_init();
 xTaskCreate(worker1_task,"Worker 1",configMINIMAL_STACK_SIZE
+1000,NULL, 1,& worker1_id);
 /* Create Worker 2 task */
 xTaskCreate(worker2_task,"Worker 2",configMINIMAL_STACK_SIZE
+1000,NULL, 2,& worker2_id);
 /*Start Scheduler*/
 vTaskStartScheduler();
 while(1);
}

In this code example, two tasks with different priority are created. Each task simulates a CPU workload by
performing a loop of a certain time (idelay). After the execution of this loop, the task is suspended using
the vTaskSuspend. Since the task is not resumed in the program the tasks are executed only one time.

Figure 3-1 Illustration for Execution of Tasks

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

17

3.4. Priority Settings and Round Robin
FreeRTOS allows developer to set different level of priority for each task to be executed. The task priority
setting is performed during task creation (xTaskCreate, uxPriority parameter). See the following snippet
from the previous chapter example:

int main (void)
{
 Sysclk_init();
 Board_init();
 xTaskCreate(worker1_task,"Worker 1",configMINIMAL_STACK_SIZE
+1000,NULL, 1,& worker1_id);
 /* Create Worker 2 task */
 xTaskCreate(worker2_task,"Worker 2",configMINIMAL_STACK_SIZE
+1000,NULL, 2,& worker2_id);
 /*Start Scheduler*/
 vTaskStartScheduler();
 while(1);
}

Using various priority combinations will cause different impact on the tasks scheduling and execution. In
the current example, the “worker 1 task has a higher priority than the worker 2 one. This results in the
execution of “worker 1” task prior to “worker 2”.

Figure 3-2 Illustration for Execution of Tasks with Different Priority

By modifying the code to set a higher priority on worker 2 task, allows to execute it prior to “worker 1”
task:

int main (void)
{
 Sysclk_init();
 Board_init();
 xTaskCreate(worker1_task,"Worker 1",configMINIMAL_STACK_SIZE
+1000,NULL, 2,& worker1_id);

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

18

 /* Create Worker 2 task */
 xTaskCreate(worker2_task,"Worker 2",configMINIMAL_STACK_SIZE
+1000,NULL, 1,& worker2_id);
 /*Start Scheduler*/
 vTaskStartScheduler();
 while(1);
}

Figure 3-3 Illustration for Execution of Tasks with Switched Priority

When two or more tasks share the same priority, the scheduler will reduce their execution in time slice of
one tick period and alternate their execution at each tick. This method of executing task is also called as
round robin.

int main (void)
{
 Sysclk_init();
 Board_init();
 xTaskCreate(worker1_task,"Worker 1",configMINIMAL_STACK_SIZE
+1000,NULL, 1,& worker1_id);
 /* Create Worker 2 task */
 xTaskCreate(worker2_task,"Worker 2",configMINIMAL_STACK_SIZE
+1000,NULL, 1,& worker2_id);
 /*Start Scheduler*/
 vTaskStartScheduler();
 while(1);
}

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

19

Figure 3-4 Illustration for Execution of Tasks with Equal priority

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

20

4. Kernel Objects
In addition to the standard task scheduling and management functionality, FreeRTOS provides kernel
objects that allow tasks to interact with each other. Upcoming sections describe the following standard
kernel object.

• Software Timer
• Binary semaphores
• Queues

4.1. Software Timer Usage
A software timer allows a specific function to be executed at a preset duration in the future. The function
executed by the timer is called the timer’s callback function. The time between a timer being started and
its callback function being executed, is called the timer’s period. In short, the timer's callback function is
executed when the timer period expires.

A timer can be linked to tasks using a specific handle ID. It also has a dedicated priority setting. Refer
FreeRTOS config file.

xTimerHandle Timer_handle;

Different functions are used for creating and managing timers. Most of these functions require a timeout
value of type xBlockTime. This timeout represents the maximum tick latency for the function to be taken
into account. As the timer is like a task, it needs to have a higher priority, to be allowed to run when
command is called. The xBlockTime is a time-out, in case the timer function is not handled on time. This
provides the reason for this function to have one of the highest priorities in the system. A list of all these
function are:

• xTimerCreate:
Description: Function used to create a timer object

Prototype: xTimerHandle xTimerCreate(*pcTimerName, xTimerPeriodInTicks, uxAutoReload,
pvTimerID, pxCallbackFunction);

Parameters: pcTimerName: Given name to the timer, for debugging purpose only

xTimerPeriodInTicks: Number of tick in timer period

uxAutoReload: If set to 1, activate timer auto reload feature

pvTimerID: Pointer to pre defined timer ID (xTimerHandle)

pxCallbackFunction: Pointer to callback function to be executed when the timer's period expires

• xTimerStart:
Description: Function used to start a timer

Prototype: void xTimerStart(xTimer, xBlockTime)

Parameters: xTimer: targeted timer ID

xBlockTime: Timeout for function to be handled by timer object

• xTimerStop:
Description: Function used to stop a timer

Prototype: void xTimerStop(xTimer, xBlockTime)

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

21

Parameters: xTimer: targeted timer ID

xBlockTime: Timeout for function to be handled by timer object

Returning to the contextual example, the inclusion of code formatted in bold in the following example,
illustrates the process to initialize a 500 ticks software timer.

 #include <asf.h>
 xTaskHandle worker1_id;
 xTaskHandle worker2_id;
 xTimerHandle Timer_id;

 static void worker1_task(void *pvParameters)
 {
 static uint32_t idelay;
 static uint32_t Delay ;
 Delay = 100000;
 for(;;)
 {
 /* Simulate work */
 for (idelay = 0; idelay < Delay; ++idelay);
 /* Suspend Task */
 vTaskSuspend(worker1_id);
 }
 /* Should never go there */
 vTaskDelete(NULL);
 }
 static void worker2_task(void *pvParameters)
 {
 static uint32_t idelay;
 static uint32_t Delay ;
 Delay = 100000;
 for(;;)
 {
 /* Simulate CPU work */
 for (idelay = 0; idelay < Delay; ++idelay);
 /* Suspend Task */
 vTaskSuspend(worker2_id);
 }
 /* Should never go there */
 vTaskDelete(NULL);
 }
 void TimerCallback(xTimerHandle pxtimer)
 {
 /* Timer Callback section*/
 }

 int main (void)
 {
 board_init();
 sysclk_init();

 /*Create 2 Worker tasks. */
 xTaskCreate(worker1_task,"Worker1",configMINIMAL_STACK_SIZE
+1000,NULL,tskIDLE_PRIORITY+1,&worker1_id);
 xTaskCreate(worker2_task,"Worker 2",configMINIMAL_STACK_SIZE
+1000,NULL,tskIDLE_PRIORITY+2,&worker2_id);

 /* Create one Software Timer.*/
 Timer_id = xTimerCreate("Timer",500,pdTRUE,
0,TimerCallback);

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

22

 /* Start Timer.*/
 xTimerStart(Timer_id, 0);
 vTaskStartScheduler();

Figure 4-1 Illustration for Execution of Tasks with Timer

4.2. Semaphore Usage
To synchronize different tasks together, FreeRTOS kernel provides semaphore objects. A semaphore can
be compared to a synchronization token that tasks can exchange with each other.

To synchronize a task with an interrupt or another task, the task to synchronize will request a semaphore
by using the function xSemaphoreTake. If the semaphore is not available, the task will be blocked
waiting for its availability. At this time the CPU process will be released and another concurrent task that
is ready will be able to start/continue its work. The task/interrupt to be synchronized with will have to
execute xSemaphoreGive function in order to unblock the task. The task will then take the semaphore.

An example describing semaphore usage between hardware interrupt and task:

Figure 4-2 Semaphore not Available

Figure 4-3 Interrupt (which gives semaphore) Occurs

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

23

Figure 4-4 xSemaphoreGiveFromISR()

Figure 4-5 Semphore is Available

In the contextual example, the following hightlighted code illustrates the creation of a Manager Task that
creates and uses a notification semaphore in order to synchronize its execution with the previously
created timer. This Manager Task will have the highest priority in the system but will need the release of
the notification semaphore (implemented in the timer callback) to be unblocked. This manager task
function will be used to resume the worker task.

#include <asf.h>

xTaskHandle worker1_id;
xTaskHandle worker2_id;
xTaskHandle manager_id;
xTimerHandle Timer_id;
xSemaphoreHandle notification_semaphore;

static void worker1_task(void *pvParameters)
{
 static uint32_t idelay,Delay ;
 Delay = 100000;
 for(;;)
 {
 /* Simulate work */
 for (idelay = 0; idelay < Delay; ++idelay);
 /* Suspend Task */
 vTaskSuspend(worker1_id);
 }
 /* Should never go there */
 vTaskDelete(NULL);
}

static void worker2_task(void *pvParameters)
{
 static uint32_t idelay , Delay;
 Delay = 100000;
 for(;;)
 {
 /* Simulate CPU work */
 for (idelay = 0; idelay < Delay; ++idelay);
 /* Suspend Task */
 vTaskSuspend(worker2_id);
 }
 /* Should never go there */
 vTaskDelete(NULL);
}

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

24

void TimerCallback(xTimerHandle pxtimer)
{
 /* notify manager task to start working. */
 xSemaphoreGive(notification_semaphore);
}

static void manager_task(void *pvParameters)
{

 /* Create the notification semaphore and set the initial state. */
 vSemaphoreCreateBinary(notification_semaphore);
 vQueueAddToRegistry(notification_semaphore, "Notification Semaphore");
 xSemaphoreTake(notification_semaphore, 0);

 for(;;)
 {
 /* Try to get the notification semaphore. */
 /* The notification semaphore is only released in the SW Timer
callback */
 if (xSemaphoreTake(notification_semaphore, 10000))
 {
 vTaskResume(worker1_id);
 vTaskResume(worker2_id);
 }
 }
}

int main (void)
{
 board_init();
 sysclk_init();

 /*Create 2 Worker tasks. */
 xTaskCreate(worker1_task,"Worker 1",configMINIMAL_STACK_SIZE
+1000,NULL,tskIDLE_PRIORITY+1,&worker1_id);
 xTaskCreate(worker2_task,"Worker 2",configMINIMAL_STACK_SIZE
+1000,NULL,tskIDLE_PRIORITY+2,&worker2_id);

 /* Create one Software Timer.*/
 Timer_id = xTimerCreate("Timer",500,pdTRUE,0,TimerCallback);
 /* Start Timer.*/
 xTimerStart(Timer_id, 0);

 /* Create one manager task.*/
 xTaskCreate(manager_task,"manager",configMINIMAL_STACK_SIZE
+1000,NULL,tskIDLE_PRIORITY+3,&manager_id);

 vTaskStartScheduler();
 while(1);
}

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

25

Figure 4-6 Illustration for Execution of Tasks with Semaphore

4.3. Queue Management
Queues are used for inter-task communication and synchronization in a FreeRTOS environment. They
are an important subject to understand as it is unavoidable to be able to build a complex application with
tasks interacting with each other. They are meant to store a finite number of fixed size data. Queues
should be accessible for reads and writes by several different tasks and do not belong to any task in
particular. A queue is normally a FIFO which means elements are read in the order they have been
written. This behavior depends on the writing method: Two writing functions can be used to write either at
the beginning or at the end of this queue.

Illustration of Queue Usage: A Queue is created to allow task 1 and task 2 to communicate. The queue
can hold a maximum of five values. When a queue is created, it does not contain any value. It is empty:

Figure 4-7 Queue is Empty

Task 1 writes a value on the queue; the value is sent to the end. Since the queue was previously empty,
the value is now both the first and the last value in the queue:

Figure 4-8 Task1 Write First Value to the Queue

Task 1 sends another value. The queue now contains the previously written value and this newly added
value. The previous value remains at the front of the queue while the new one value is placed after the
first value. Three spaces are still available:

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

26

Figure 4-9 Task1 Write another Value to Queue

Task 2 reads a value in the queue. It will receive the value in the front of the queue:

Figure 4-10 Task2 Reads a Value

Task 2 has removed an item. The second item is moved to be the one in the front of the queue. This is
the value task 2 will read next time it tries to read a value. Four spaces are now available:

Figure 4-11 Second Value Moved to Front in Queue

The list of the kernel functions that allows to handle the queue are:

• xQueueCreate:
Description: Function used to create a new queue

Prototype: xQueueCreate(uxQueueLength, uxItemSize);

Parameters: uxQueueLength: Number of item that queue can store

uxItemSize: Size of the item to be stored in queue

• xQueueSend:
Description: Function used to send data into a queue

Prototype: xQueueSend(xQueue, pvItemToQueue, xTicksToWait)

Parameters: xQueue: ID of the Queue to send data in

pvItemToQueue: Pointer to Data to send into Queue

xTicksToWait: System wait for command to be executed

• xQueueReceive:
Description: Function used to receive data from a queue

Prototype: xQueueReceive(xQueue, pvBuffer, xTicksToWait)

Parameters: xQueue: ID of the Queue to send data in

pvItemToQueue: Pointer to Data to send into Queue

xTicksToWait: System wait for command to be executed

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

27

The following contextual example illustrates the queue usage by passing CPU load workload simulation
information (delay) from manager to Worker task using a message queue. Refer to the code dispalyed in
bold format.

#include <asf.h>

xTaskHandle worker1_id;
xTaskHandle worker2_id;
xTaskHandle manager_id;
xTimerHandle Timer_id;
xSemaphoreHandle notification_semaphore;
xQueueHandle Queue_id;

static void worker1_task(void *pvParameters)
{
 static uint32_t idelay,Delay;
 xQueueReceive(Queue_id,&Delay,100000);
 for(;;)
 {
 /* Simulate work */
 for (idelay = 0; idelay < Delay; ++idelay);
 /* Suspend Task */
 vTaskSuspend(worker1_id);
 }
 /* Should never go there */
 vTaskDelete(NULL);
}

static void worker2_task(void *pvParameters)
{
 static uint32_t idelay , Delay;
 xQueueReceive(Queue_id,&Delay,100000);
 for(;;)
 {
 /* Simulate CPU work */
 for (idelay = 0; idelay < Delay; ++idelay);
 /* Suspend Task */
 vTaskSuspend(worker2_id);
 }
 /* Should never go there */
 vTaskDelete(NULL);
}

void TimerCallback(xTimerHandle pxtimer)
{
 /* notify manager task to start working. */
 xSemaphoreGive(notification_semaphore);
}

static void manager_task(void *pvParameters)
{
 static uint32_t Delay1 = 400000 , Delay2 = 200000;

 /* Create the notification semaphore and set the initial state */
 vSemaphoreCreateBinary(notification_semaphore);
 vQueueAddToRegistry(notification_semaphore, "Notification Semaphore");
 xSemaphoreTake(notification_semaphore, 0);

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

28

 for(;;)
 {
 /* Try to get the notification semaphore. */
 /* The notification semaphore is only released in the SW Timer
callback */
 if (xSemaphoreTake(notification_semaphore, 10000))
 {
 xQueueSend(Queue_id,&Delay1,0);
 xQueueSend(Queue_id,&Delay2,0);
 vTaskResume(worker1_id);
 vTaskResume(worker2_id);
 }
 }
}

int main (void)
{
 board_init();
 sysclk_init();

 /*Create 2 Worker tasks */
 xTaskCreate(worker1_task,"Worker 1",configMINIMAL_STACK_SIZE
+1000,NULL,tskIDLE_PRIORITY+1,
 &worker1_id);
 xTaskCreate(worker2_task,"Worker 2",configMINIMAL_STACK_SIZE
+1000,NULL,tskIDLE_PRIORITY+2,
 &worker2_id);

 /* Create one Software Timer */
 Timer_id = xTimerCreate("Timer",500,pdTRUE,0,TimerCallback);
 /* Start Timer.*/
 xTimerStart(Timer_id, 0);

 /* Create one manager task */
 xTaskCreate(manager_task,"manager",configMINIMAL_STACK_SIZE
+1000,NULL,tskIDLE_PRIORITY+3,
 &manager_id);

 /* Create a queue*/
 Queue_id = xQueueCreate(2,sizeof(unsigned long));

 vTaskStartScheduler();
 while(1);
}

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

29

Figure 4-12 Illustration for Execution of Taks with Queue

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

30

5. Hook Functions
In addition to task management functions, FreeRTOS provides hook functions that allow management of
additional event in the system. Hook functions (or callbacks) are called by the kernel when specific
predefined event appends. The usage of each hook can be disabled or enable from the FreeRTOS
configuration file.

5.1. Idle Hook Function
The idle task (default lowest priority task) can call an application defined hook function - the idle hook.
This function will be executed only when there are no tasks of higher priority that must be executed.
Hence, idle hook function an ideal state to place the processor into a low power state - providing an
automatic power saving whenever no processing is required.

The idle hook is called repeatedly as long as the idle task is running.

WARNING: It is important that the idle hook function does not call any API functions that could cause it to
block. If the application makes use of the vTaskDelete() API function then the idle task hook must be
allowed to periodically return. This is because the idle task is responsible for cleaning up the resources
that were allocated by the RTOS kernel to the task that has been deleted.

5.2. Tick Hook Function
The tick interrupt can optionally call the tick hook. The tick hook provides a convenient place to implement
timer functionality.

WARNING: The vApplicationTickHook() function executes from within an ISR. It must be very
short. It should not use much stack nor call any API functions that does not end in FromISR or
FROM_ISR.

5.3. Malloc Failed Hook Function
The memory allocation schemes implemented by heap_1.c, heap_2.c, heap_3.c, and heap_4.c can
optionally include a malloc() failure hook (or callback) function that can be configured to get called if
pvPortMalloc() ever returns NULL.

Defining the malloc() failure hook will help identify problems caused by lack of heap memory –
especially when a call to pvPortMalloc() fails within an API function.

WARNING: Dynamic memory allocation is not the best to do on MCUs. In the case of FreeRTOS, it is
preferable to use dynamic memory allocation only during initialization.

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

31

6. References
1. FreeRTOS latest version Download link: http://www.freertos.org/a00104.html

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

32

http://www.freertos.org/a00104.html

7. Revision History
Doc. Rev. Date Comments

42622A 11/2015 Initial document release.

Atmel Atmel AT13723:Getting Started with FreeRTOS on Atmel SAMV/S/E MCUs
[APPLICATION NOTE]

Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

33

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42622A-Getting-Started-with-FreeRTOS-on-Atmel-SAMV/S/E-MCUs_AT13723_Application Note-11/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. The FreeRTOS™ and the FreeRTOS logo are
trademarks of Real Time Engineers Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Introduction
	1.1. What is a Real-time Application?
	1.2. Real-time Operating System and Multitasking
	1.3. FreeRTOS Introduction
	1.3.1. The FreeRTOS Kernel
	1.3.2. FreeRTOS Taks Management Mechanism
	1.3.3. FreeRTOS Memory Management

	2. FreeRTOS Kernel Inclusion and Configuration
	2.1. SAMV71-XULT Atmel Studio Software Package
	2.2. Add the FreeRTOS Library to Software Package
	2.3. Include the Added FreeRTOS files in an Example Project
	2.4. Configuring the Kernel according to Application Requirement
	2.4.1. System and Tick Frequency

	3. Tasks Creation and Scheduling
	3.1. Task Structure
	3.2. Task Creation and Deletion
	3.2.1. xTaskCreate Function
	3.2.2. xTaskDelete Function

	3.3. Task Management
	3.4. Priority Settings and Round Robin

	4. Kernel Objects
	4.1. Software Timer Usage
	4.2. Semaphore Usage
	4.3. Queue Management

	5. Hook Functions
	5.1. Idle Hook Function
	5.2. Tick Hook Function
	5.3. Malloc Failed Hook Function

	6. References
	7. Revision History

