

Configuring and Using the WDT Module of MCP795WXX Real-Time Clock/Calendars

Author: Alexandru Valeanu
Microchip Technology Inc.

INTRODUCTION

This application note is designed to take the design engineer through the steps needed to configure and setup the Watchdog Timer (WDT) module of Microchip SPI MCP795WXX Real-Time Clock/Calendar (RTCC) family. Topics covered include:

- · Configuring the WDT module
- · Using the WDT module
- · Overview of the provided drivers/libraries

The information presented in this document is designed serve as an example of possible configurations. The code supplied can be modified to change the device functionality.

This application note should be read in conjunction with the application note AN1365 – "Recommended Usage of Microchip Serial RTCC Devices" (DS 00001365) and the device data sheet. The latest documentation can be found at this location on the Microchip website: http://www.microchip.com/rtcc.

WHAT IS THE WDT MODULE?

A WDT is an electronic module that performs a specific task (such as generating an interrupt) after a programmed period of time, if a critical event does not appear before the end of the delay period. WDTs are most commonly used to detect when the software enters an unintended operation and then helps it recover.

If the software cannot clear the WDT in time, it is usually because two parts or programs conflict, a process is stuck, or an important event did not occur in time

A WDT has a digital counter that counts up to its programmed limit. If the software loop does not clear the WDT at regular intervals of time (shorter than the WDT period), the WDT will launch an interrupt, forcing/resetting the system to a known state.

The Watchdog Timer in the MCP795WXX is a free-running counter that operates from the crystal. This counter is independent of the time and date counters and can be used to generate an interrupt after a programmable period of time.

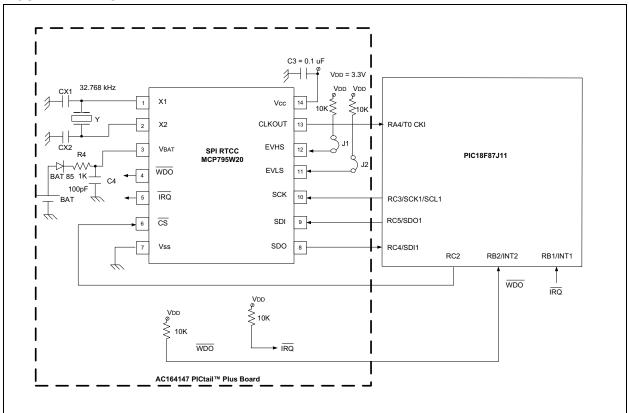
The counter can be reset at any time using either an SPI bus command or by toggling an external pin (EVHS), if configured. Note that using the EVHS pin in this manner prevents the use of the high-speed event detect feature.

SCHEMATIC DIAGRAM

The schematic illustrated in Figure 1 shows the minimum components required to operate the RTCC.

The schematic also shows the required components for battery backup operation using a lithium coin cell (for other options refer to AN1365). If the VBAT input and battery backup feature are not required, this pin should be tied to Vss.

The SPI RTCC is directly connected to the MSSP1 module of the PIC18 MCU. There is an additional connection between the \overline{WDO} signal of the RTCC and the RB2/INT2 pin of the MCU. The RTCC is selected through the RC2 GPIO of the MCU.


In the provided code, the following signal is defined:

```
#define NCS_SPI_RTCC PORTCbits.RC2 //\overline{\text{CS}} for the SPI RTCC.
```

The RTCC offers interrupts at a programmed time interval on the \overline{WDO} pin, connected to the INT2 pin (external hardware interrupt 2) of the MCU. The related interrupt functions are used and described in the main function.

The easiest way to start the project is by using the related SPI RTCC PICtail™ Plus Board (AC164147).

FIGURE 1: SCHEMATIC

FIRMWARE OVERVIEW

The host MCU will communicate with the RTCC using the SPI protocol, based on the MSSP1 serial module of the PIC18 MCU.

The code presented with this application note is designed to compile with the XC8 (V 1.34) compiler and MPLAB[®] X IDE (V3.55) for the following hardware:

- Explorer 18 Evaluation Board (DM183032)
- PIC18F87J11 PIM Module (MA180020)
- RTCC SPI PICtail Module (AC164147)

The code is presented in C and is portable with minimal effort to other PIC^{\circledcirc} MCU devices. This code is designed to be a starting point for application development and is based on the drivers/libraries presented in this text and the related code.

APPLICATION DESCRIPTION

The code presents the basics of the WDT's configuration and usage. After initializing the RTCC and the WDT, the code displays the value of the WDT register in binary on LEDs. The code then waits for the time-out period to expire, at which point all of the LEDs are turned on to indicate that the WDT has triggered.

CONFIGURATION OF THE WDT MODULE

TABLE 1: WATCHDOG REGISTER

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
WDTEN	WDTIF	WDTDLYEN	WDTPWS	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	

bit 7 WDTEN: Watchdog Timer Enable bit

This is a read/write bit that is set by the user and can be cleared by the user of the hardware. This bit is set to enable the WDT function and cleared to disable the function. This bit is cleared by the hardware when the Vcc supply is not present, it is not set again when Vcc is present.

bit 6 WDTIF: Watchdog Timer Interrupt Flag bit

This is a read/write bit that is set in hardware when the WDT times out and the WD pin is asserted. This bit must be cleared in software to restart the WDT.

bit 5 WDTDLYEN: Watchdog Timer Delay bit

This is a read/write bit and is set to enable a 64-second delay before the WDT starts to count. If this bit is set and the WDTIF bit is cleared then there will be a 64 second delay before the WDT starts to count. This bit should be set before the WDTEN bit is set.

bit 4 WDTPWS: Watchdog Timer Reset Pulse Width bit

This is a read/write bit that is used to select the pulse width on the WD pin when the WDT times out.

0 = 122 μs Pulse

1 = 125 ms Pulse

bit 3-0 WDTPS<3:0>: Watchdog Timer Configuration bits

These are read/write bits that are used to set the WDT time-out period as below (all times are based off the uncalibrated crystal reference). Bit 3 should be cleared and is reserved for future use:

 $000 = 977 \, \mu s$

001 = 15.6 ms

010 = 62.5 ms

011 = **125** ms

100 = 1s

101 = 16s

110 = 32s

111 = 64s

To program the register, several masks were used, as shown in Example 1:

EXAMPLE 1:

```
#define WDTEN
                       0x80
                                       // WDT enable bit
#define WDTDLYEN
                       0x20
                                       // enable WDT delay
#define WDTIF
                       0x40
                                       // WDT interrupt flag
#define WDTPWS
                       0x10
                                       // WDT pulse-width: 125 ms
                                       // (0 value -> 122 µs)
                                       // WDT time-out periods
#define WDT_TOP_00
                       0x00
                                       // 977 µs
#define WDT_TOP_01
                       0x01
                                       // 15.625 ms
#define WDT_TOP_02
                                       // 62.5 ms
                       0x02
#define WDT_TOP_03
                                       // 125 ms
                       0x03
#define WDT_TOP_04
                       0x04
                                       // 01 sec
                                       // 16 sec
#define WDT_TOP_05
                       0x05
#define WDT_TOP_06
                       0x06
                                       // 32 sec
#define WDT_TOP_07
                       0x07
                                       // 64 sec
#define WDTCON
                       0x0a
                                       // the address of the WDT register
```

A representation of how to initialize the WDT register is shown in Example 2:

EXAMPLE 2:

```
spi_rtcc_wr(WDTCON, WDTEN + WDTDLYEN + WDTPWS + WDT_TOP_00)
```

Table 2 presents all possible combinations of period and pulse width values, depending on the bits: WDTDLYEN, WDTPWS, WDTPS<3:0> bits, included in the Watchdog register.

TABLE 2:

WDTDLYEN	WDTPWS	WDTPS<3:0>	Total Period	Pulse Width
0	0	0-7	977 µsec, 15.625 msec, , 64 sec	122 µsec
0	1	4-7 ⁽¹⁾	1 sec, 16 sec, 32 sec, 64 sec	125 msec
1	0	0-7	64 sec + [977 µsec, 15.625 msec,, 64 sec]	122 µsec
1	1	0-7	64 sec + [977 µsec, 15.625 msec,, 64 sec]	125 msec

Note 1: The user must ensure that the WDT period is longer than the pulse width. For example, if the pulse width is 125 msec and the delay is '0', the WDT time-out period must be longer than one second.

RE-ENABLING THE WDT

To allow repetitive interrupts (coming from the WDT), the related WDT interrupt flag must be cleared after every action. Two methods could be used:

```
    Write the initial configuration value again spi_rtcc_wr(WDTCON, wdt_mask);
    // including WDTEN=1, WDTIF = 0;
    Clear only the interrupt flag rtcc_buff=spi_rtcc_rd(WDTCON);
```

spi_rtcc_wr(WDTCON,(rtcc_buf&~WDTIF));

CLEARING THE WDT

When the state of the WDT counter is unknown, or whenever a WDT time out and subsequent interrupt are not desired, the WDT counter must be cleared. This is performed using the MCP795WXX's CLRWDT command. The related #define directive is shown in Example 3, while Example 4 shows the function in the provided code that executes the CLRWDT command.

EXAMPLE 3:

```
#define SPI_RTCC_CLRWDT 0x44 // SPI CLEAR WDT COMMAND
```

EXAMPLE 4:

CONCLUSION

Following the steps in this application note, along with the included MPLAB X IDE project, will help setup the basic configuration and usage of the WDT module available on the Microchip MCP795WXX SPI RTCC. By using available off-the-shelf development tools, any hardware issues will be mitigated, allowing the engineer to concentrate on the firmware development.

The code is presented in C (XC8-V1.34 compiler on MPLAB X IDE-V3.55) and can easily be ported to other PIC device platforms.

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the "Company") is intended and supplied to you, the Company's customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX A: MAIN FUNCTION OF THE WDT TEST/USAGE CODE

```
; // mask to write in the WDT register
wdt mask = WDTPWS+WDT TOP 05
                                      // PLS = 125 msec ; period = 16 sec
                                     // you may write any other combination presented
                                      // in the text of the application note
wdt_mask |= WDTEN
                                    ; // enable the WDT
                                    ; // display the control byte on LEDs
LATD = wdt_mask
num_per = 0x00
                                    ; // init the counter of WDT periods
ini_spi_rtcc()
                                    ; // init the SPI RTCC
                                    ; // set the WDT register, enabling the module
spi_rtcc_wr(WDTCON,wdt_mask)
ini_wdt_int2()
                                                INTR2 on PIC18 (for the WDT)
                                    ; // init.
start_wdt_int2()
                                    ; // enable INTR2 on PIC18 (for the WDT)
while(num_per==0) {;}
                                      // waiting the first interrupt from WDT
                                    ; // stop interrupts from WDT / RTCC
stop_wdt_int2()
spi_rtcc_wr(WDTCON,0x00)
                                    ; // clear WDT register, disable WDT.
LATD = 0xff
                                    ; // message for the end of the WDT period
while(1) { ; }
                                      // loop for ever
```

APPENDIX B: DRIVERS LIBRARY

Delay Drivers (delay_drivers.h)

Not accessed in the present project. Used by the LCD drivers or as general purpose timing functions.

Represent a good starting point for further development on PIC18-based projects, as they use the timers of the MCU (see AN1355, AN1364, AN1413 for the usage of these drivers).

LCD Drivers (lcd_drivers.h)

Not accessed in the present project. Represent a good starting point on Explorer18-based projects (see AN1355, AN1364, AN1413 for the usage of these drivers).

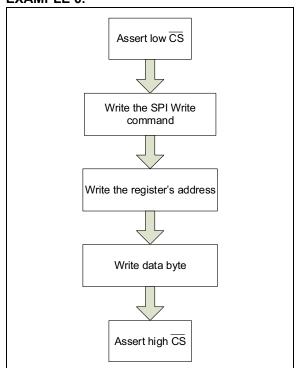
SPI Drivers (spi_drivers.h)

Represent the low-level communication between the MSSP1 module of the PIC18 and the SPI RTCC.

The related functions will be detailed in the next paragraph, as called functions.

SPI RTCC Drivers

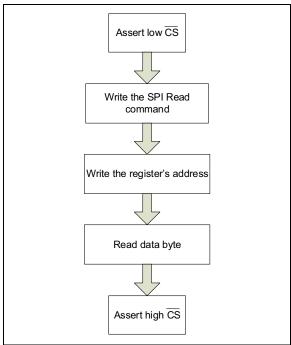
```
(spi_rtcc_drivers.h)
```


Represent the medium-level communication between the MSSP1 module of the PIC18 and the SPI RTCC.

The related functions call the SPI drivers, as described below. Moreover, the library defines all necessary constants, as register addresses and masks.

EXAMPLE 5: WRITING A BYTE TO THE SPI RTCC

The firmware for writes to the RTCC follows in Example 6.


EXAMPLE 6:

EXAMPLE 7: READING A BYTE FROM THE SPI RTCC

The firmware for reads from the RTCC is shown in Example 8.

EXAMPLE 8:

APPENDIX C: REVISION HISTORY

Revision A (09/2013)

Initial release of this document.

Revision B (10/2017)

Updated register and bit names.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2209-9

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631

Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301

Fax: 82-53-744-4302 **Korea - Seoul** Tel: 82-2-554-7200

Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366

Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0

Fax: 49-89-627-144-44 **Germany - Rosenheim**

Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820