Altmel

Atmel SHART

SMART ARM-based Microcontrollers

AT03264: SAM D/R/L/C Watchdog (WDT) Driver

APPLICATION NOTE

Introduction

This driver for Atmel® | SMART ARM®-based microcontrollers provides an
interface for the configuration and management of the device's Watchdog
Timer module, including the enabling, disabling, and kicking within the
device. The following driver APl modes are covered by this manual:

. Polled APIs
e Callback APIs

The following peripherals are used by this module:
* WDT (Watchdog Timer)

The following devices can use this module:
* Atmel | SMART SAM D20/D21
* Atmel | SMART SAM R21
* Atmel | SMART SAM D09/D10/D11
* Atmel | SMART SAM L21/L22
* Atmel | SMART SAM DA1
* Atmel | SMART SAM C20/C21

The outline of this documentation is as follows:
* Prerequisites
* Module Overview
* Special Considerations
+ Extra Information
+ Examples
* API Overview

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

Table of Contents

INEFOAUCTION. ... 1
1. SOMWAIE LICEBNSE.......ccoeeeeeeeee et e et e e e e e e e e e e ee e e e eaeeeeeees 4
B o =T =0 UL (=T 5
3. MOAUIE OVEIVIEW.euiiiiiiie ettt e e e e et e e e e e e e e st e e e e e e e e e e annnnnneeeeeens 6
3.1, LOCKEA MOUE......ceiiiiiiee et et 6
3.2, WINAOW MOGE.....c ittt ettt ettt et e e ettt e e an bt e e s ne e e e sas e e e ambeeesneeeesnneeeanseeennee 6

B TR T = VA= 4 o 1 T SRRSO 6
3.4, PhySiCal CONMNECHON.uiiiiiiieet ittt e e e e st e sne e e e anreeens 7

4. Special ConSIAEratioNS.........cooiiiiiiiiiiiie e 8
5. EXIra INfOrmMation.........oooo oo 9
B. EXAmMPIES...o o, 10
T APL OVEIVIEW......cieeeeee ettt e e e e e e e et e e e e e e e e e nnnnneeeeaeeens 11
7.1. Variable and Type DefinitioNS.........cocuiiiiiiiii e 11
7.1.1. Callback Configuration and Initialization................ccooiiiiiieiin 11

7.2, Structure DefiNitioNS..........coiiiiiiiii e 11
T.2.1. SHUCE WAL CONT...oeiic e e e e arre s 11

7.3, FUNCHON DEfINIHIONS.ceiiiieiie ettt e ettt e e e e et e e e e e e nnneeeaeeannees 11
7.3.1. Configuration and INitialization...............ccoouiiiiiiii e 11

7.3.2. Timeout and Early Warning Management.............ccooceieiiiiiiniii e 13

7.3.3. Callback Configuration and Initialization..............cccceeeieiiie e 14

7.3.4. Callback Enabling and DiSabling..........cc.ccociiiiriiiiiiiiiee e 15

7.4. Enumeration DEfiNItIONS.coooiiiiiiiiii e e e e e e e et e e e e e e 16
7.4.1. Callback Configuration and Initialization................cooiiiiiii e 16

A 37 = o101 T o | A =5 o o SRR 16

8. Extra Information for WDT DIIVEN........c..uuiiiiiiee et 17
S Tt I Vel 0] 1Y/ o 41T OTPPR 17

L T2 1= o 1= o [= T g o7 =Y USRS 17

S TR T = 4 - - T SRR 17
8.4, MOAUIE HISTOTY......eiiiiiiieite ettt e e 17

9. EXamples for WDT DIiVEL ... 18
9.1. Quick Start Guide fOr WDT = BASIC......cccuuieeiieieiiieeesiieeeeieeseee e e e s eee e s sneee e s e e s eeeeesnneeesneeeens 18

S R B S = (U o PP PP PP PPRPPPPPOE 18

9.1.2. Quick Start Guide for WDT - BaSiC........ccccveriiiiiiiiiiiiiesreeiee e 19

9.2. Quick Start Guide for WDT = CallDaCK.........ccceeiiiiiiiiiieeee e 20

S I D 1 (V] TSRS PTUPRRRRSOT 20

9.2.2. Quick Start Guide for WDT - Callback............coeeimiiiiiiiiiiiee e 21

Atmel

Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE]
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

2

10. Document ReViSioN HIiSTOIY........oooouiiiiiiiiiii e 23

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 3
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

1. Software License

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived from this software without
specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 4

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

2. Prerequisites

There are no prerequisites for this module.

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 5
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

3.1.

3.2.

3.3.

Module Overview

The Watchdog module (WDT) is designed to give an added level of safety in critical systems, to ensure a
system reset is triggered in the case of a deadlock or other software malfunction that prevents normal
device operation.

At a basic level, the Watchdog is a system timer with a fixed period; once enabled, it will continue to count
ticks of its asynchronous clock until it is periodically reset, or the timeout period is reached. In the event of
a Watchdog timeout, the module will trigger a system reset identical to a pulse of the device's reset pin,
resetting all peripherals to their power-on default states and restarting the application software from the
reset vector.

In many systems, there is an obvious upper bound to the amount of time each iteration of the main
application loop can be expected to run, before a malfunction can be assumed (either due to a deadlock
waiting on hardware or software, or due to other means). When the Watchdog is configured with a
timeout period equal to this upper bound, a malfunction in the system will force a full system reset to allow
for a graceful recovery.

Locked Mode

The Watchdog configuration can be set in the device fuses and locked in hardware, so that no software
changes can be made to the Watchdog configuration. Additionally, the Watchdog can be locked on in
software if it is not already locked, so that the module configuration cannot be modified until a power on
reset of the device.

The locked configuration can be used to ensure that faulty software does not cause the Watchdog
configuration to be changed, preserving the level of safety given by the module.

Window Mode

Just as there is a reasonable upper bound to the time the main program loop should take for each
iteration, there is also in many applications a lower bound, i.e. a minimum time for which each loop
iteration should run for under normal circumstances. To guard against a system failure resetting the
Watchdog in a tight loop (or a failure in the system application causing the main loop to run faster than
expected) a "Window" mode can be enabled to disallow resetting of the Watchdog counter before a
certain period of time. If the Watchdog is not reset after the window opens but not before the Watchdog
expires, the system will reset.

Early Warning

In some cases it is desirable to receive an early warning that the Watchdog is about to expire, so that
some system action (such as saving any system configuration data for failure analysis purposes) can be
performed before the system reset occurs. The Early Warning feature of the Watchdog module allows
such a notification to be requested; after the configured early warning time (but before the expiry of the
Watchdog counter) the Early Warning flag will become set, so that the user application can take an
appropriate action.

Note: It is important to note that the purpose of the Early Warning feature is not to allow the user
application to reset the Watchdog; doing so will defeat the safety the module gives to the user application.

/ItmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 6

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

Instead, this feature should be used purely to perform any tasks that need to be undertaken before the
system reset occurs.

3.4. Physical Connection

Figure 3-1 Physical Connection on page 7 shows how this module is interconnected within the device.

Figure 3-1. Physical Connection

WDT

GCLK*

Generic Clock [Watchdog Counter

System Reset Logic

Note: Watchdog Counter of SAM L21/L22 is not provided by GCLK, but it uses an internal 1KHz
OSCULP32K output clock.

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 7
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

Special Considerations

On some devices the Watchdog configuration can be fused to be always on in a particular configuration; if
this mode is enabled the Watchdog is not software configurable and can have its count reset and early

warning state checked/cleared only.

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 8
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

5. Extra Information

For extra information, see Extra Information for WDT Driver. This includes:

* Acronyms

* Dependencies
* Errata

* Module History

Atmel

Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE]
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

9

6. Examples

For a list of examples related to this driver, see Examples for WDT Driver.

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 10
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

7. API Overview
71. Variable and Type Definitions
7.1.1. Callback Configuration and Initialization
71.1.1. Type wdt_callback_t
typedef void(* wdt callback t) (void)
Type definition for a WDT module callback function.
7.2. Structure Definitions
7.21. Struct wdt_conf
Configuration structure for a Watchdog Timer instance. This structure should be initialized by the
wdt get config defaults() function before being modified by the user application.
Table 7-1. Members
e Name bwepion
bool always_on If t rue, the Watchdog will be locked to the current
configuration settings when the Watchdog is enabled
enum gclk_generator clock source GCLK generator used to clock the peripheral except SAM
L21/L22/C21/C20
enum wdt_period early_warning_period | Number of Watchdog timer clock ticks until the early
warning flag is set
bool enable Enable/Disable the Watchdog Timer
enum wdt_period timeout_period Number of Watchdog timer clock ticks until the Watchdog
expires
enum wdt period window_period Number of Watchdog timer clock ticks until the reset
window opens
7.3. Function Definitions
7.3.1. Configuration and Initialization
7.3.1.1. Function wdt_is_syncing()
Determines if the hardware module(s) are currently synchronizing to the bus.
bool wdt is syncing(void)
Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE]
me "

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

7.3.1.2.

7.3.1.3.

Checks to see if the underlying hardware peripheral module(s) are currently synchronizing across multiple
clock domains to the hardware bus. This function can be used to delay further operations on a module
until such time that it is ready, to prevent blocking delays for synchronization in the user application.

Returns
Synchronization status of the underlying hardware module(s).

Table 7-2. Return Values

false If the module has completed synchronization

true If the module synchronization is ongoing

Function wdt_get_config_defaults()

Initializes a Watchdog Timer configuration structure to defaults.

void wdt get config defaults(
struct wdt conf *const config)

Initializes a given Watchdog Timer configuration structure to a set of known default values. This function
should be called on all new instances of these configuration structures before being modified by the user
application.
The default configuration is as follows:

* Not locked, to allow for further (re-)configuration

* Enable WDT

* Watchdog timer sourced from Generic Clock Channel 4

* Atimeout period of 16384 clocks of the Watchdog module clock

* No window period, so that the Watchdog count can be reset at any time

* No early warning period to indicate the Watchdog will soon expire

Table 7-3. Parameters

[out] config Configuration structure to initialize to default values

Function wdt_set_config()

Sets up the WDT hardware module based on the configuration.

enum status code wdt set config(
const struct wdt conf *const config)

Writes a given configuration of a WDT configuration to the hardware module, and initializes the internal
device struct.

Table 7-4. Parameters

[in] config Pointer to the configuration struct

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 12

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

Returns
Status of the configuration procedure.

Table 7-5. Return Values

STATUS_OK If the module was configured correctly
STATUS_ERR_INVALID_ARG If invalid argument(s) were supplied
STATUS_ERR_IO If the Watchdog module is locked to be always on
7.3.1.4. Function wdt_is_locked()
Determines if the Watchdog timer is currently locked in an enabled state.
bool wdt is locked(void)
Determines if the Watchdog timer is currently enabled and locked, so that it cannot be disabled or
otherwise reconfigured.
Returns
Current Watchdog lock state.
7.3.2. Timeout and Early Warning Management
7.3.2.1. Function wdt_clear_early_warning()
Clears the Watchdog timer early warning period elapsed flag.
void wdt clear early warning(void)
Clears the Watchdog timer early warning period elapsed flag, so that a new early warning period can be
detected.
7.3.2.2. Function wdt_is_early_warning()
Determines if the Watchdog timer early warning period has elapsed.
bool wdt is early warning(void)
Determines if the Watchdog timer early warning period has elapsed.
Note: If no early warning period was configured, the value returned by this function is invalid.
Returns
Current Watchdog Early Warning state.
7.3.2.3. Function wdt_reset_count()
Resets the count of the running Watchdog Timer that was previously enabled.
void wdt reset count(void)
Resets the current count of the Watchdog Timer, restarting the timeout period count elapsed. This
function should be called after the window period (if one was set in the module configuration) but before
the timeout period to prevent a reset of the system.
Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 13
me

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

7.3.3. Callback Configuration and Initialization
7.3.3.1. Function wdt_register_callback()
Registers an asynchronous callback function with the driver.
enum status code wdt register callback(
const wdt callback t callback,
const enum wdt callback type)
Registers an asynchronous callback with the WDT driver, fired when a given criteria (such as an Early
Warning) is met. Callbacks are fired once for each event.
Table 7-6. Parameters
[in] callback Pointer to the callback function to register
[in] type Type of callback function to register
Returns
Status of the registration operation.
Table 7-7. Return Values
STATUS_OK The callback was registered successfully
STATUS_ERR_INVALID_ARG If an invalid callback type was supplied
7.3.3.2. Function wdt_unregister_callback()
Unregisters an asynchronous callback function with the driver.
enum status code wdt unregister callback(
const enum wdt callback type)
Unregisters an asynchronous callback with the WDT driver, removing it from the internal callback
registration table.
Table 7-8. Parameters
[in] type Type of callback function to unregister
Returns
Status of the de-registration operation.
Table 7-9. Return Values
STATUS_OK The callback was Unregistered successfully
STATUS_ERR_INVALID_ARG If an invalid callback type was supplied
AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 14

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

7.3.4. Callback Enabling and Disabling
7.3.4.1. Function wdt_enable_callback()
Enables asynchronous callback generation for a given type.
enum status code wdt enable callback(
const enum wdt callback type)
Enables asynchronous callbacks for a given callback type. This must be called before an external
interrupt channel will generate callback events.
Table 7-10. Parameters
[in] type Type of callback function to enable
Returns
Status of the callback enable operation.
Table 7-11. Return Values
STATUS_OK The callback was enabled successfully
STATUS_ERR_INVALID_ARG If an invalid callback type was supplied
7.3.4.2. Function wdt_disable_callback()
Disables asynchronous callback generation for a given type.
enum status code wdt disable callback(
const enum wdt callback type)
Disables asynchronous callbacks for a given callback type.
Table 7-12. Parameters
[in] type Type of callback function to disable
Returns
Status of the callback disable operation.
Table 7-13. Return Values
STATUS_OK The callback was disabled successfully
STATUS_ERR_INVALID_ARG If an invalid callback type was supplied
Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE]
me S /RIL/C (WDT) CATION NO 15

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

7.4. Enumeration Definitions

7.41. Callback Configuration and Initialization

7.4.1.1. Enum wdt_callback
Enum for the possible callback types for the WDT module.
Table 7-14. Members
WDT_CALLBACK_EARLY_WARNING | Callback type for when an early warning callback from the WDT

module is issued

7.4.2. Enum wdt_period
Enum for the possible period settings of the Watchdog timer module, for values requiring a period as a
number of Watchdog timer clock ticks.
Table 7-15. Members
WDT_PERIOD_NONE No Watchdog period. This value can only be used when setting the Window

and Early Warning periods; its use as the Watchdog Reset Period is invalid.

WDT_PERIOD_8CLK Watchdog period of 8 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD_16CLK Watchdog period of 16 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD_32CLK Watchdog period of 32 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD_64CLK Watchdog period of 64 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD_128CLK Watchdog period of 128 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD_256CLK | Watchdog period of 256 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD_512CLK Watchdog period of 512 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD_1024CLK | Watchdog period of 1024 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD _2048CLK Watchdog period of 2048 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD_4096CLK | Watchdog period of 4096 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD_8192CLK @ Watchdog period of 8192 clocks of the Watchdog Timer Generic Clock
WDT_PERIOD_16384CLK Watchdog period of 16384 clocks of the Watchdog Timer Generic Clock

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 16

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

8.1.

8.2.

8.3.

8.4.

Extra Information for WDT Driver

Acronyms
The table below presents the acronyms used in this module:

WDT Watchdog Timer

Dependencies

This driver has the following dependencies:

« System Clock Driver

Errata

There are no errata related to this driver.

Module History

An overview of the module history is presented in the table below, with details on the enhancements and
fixes made to the module since its first release. The current version of this corresponds to the newest
version in the table.

Changelog

Driver updated to follow driver type convention:
+ wdt_init, wdt_enable, wdt_disable functions removed
+ wdt_set_config function added
* WDT module enable state moved inside the configuration struct

Initial Release

Atmel AT03264: SAM D atchdo river
AtmeL S /R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 17

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

9.1.

9.1.1.

9.1.1.1.

9.1.1.2.

Examples for WDT Driver

This is a list of the available Quick Start guides (QSGs) and example applications for SAM Watchdog
(WDT) Driver. QSGs are simple examples with step-by-step instructions to configure and use this driver
in a selection of use cases. Note that a QSG can be compiled as a standalone application or be added to
the user application.

. Quick Start Guide for WDT - Basic
* Quick Start Guide for WDT - Callback

Quick Start Guide for WDT - Basic

In this use case, the Watchdog module is configured for:
« System reset after 2048 clocks of the Watchdog generic clock
* Always on mode disabled
« Basic mode, with no window or early warning periods

This use case sets up the Watchdog to force a system reset after every 2048 clocks of the Watchdog's
Generic Clock channel, unless the user periodically resets the Watchdog counter via a button before the
timer expires. If the Watchdog resets the device, a LED on the board is turned off.

Setup

Prerequisites

There are no special setup requirements for this use-case.
Code

Copy-paste the following setup code to your user application:

void configure wdt (void)
{
/* Create a new configuration structure for the Watchdog settings and fill
* with the default module settings. */
struct wdt conf config wdt;
wdt get config defaults(&config wdt);

/* Set the Watchdog configuration settings */
config wdt.always on = false;
#if ! ((SAML21) || (SAMC21) || (SAML22))
config wdt.clock source = GCLK GENERATOR 4;
#endif
config wdt.timeout period = WDT PERIOD 2048CLK;

/* Initialize and enable the Watchdog with the user settings */
wdt set config(&config wdt);
}

Add to user application initialization (typically the start of main ()):

configure wdt();

Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 18
Atmel 9

Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

9.1.1.3. Workflow

1. Create a Watchdog module configuration struct, which can be filled out to adjust the configuration
of the Watchdog.

struct wdt conf config wdt;

2. Initialize the Watchdog configuration struct with the module's default values.

wdt get config defaults(&config wdt);

Note: This should always be performed before using the configuration struct to ensure that all
values are initialized to known default settings.

3. Adjust the configuration struct to set the timeout period and lock mode of the Watchdog.

config wdt.always on = false;
#if ! ((SAML21) || (SAMC21) || (SAML22))

config wdt.clock source = GCLK GENERATOR 4;
#endif

config wdt.timeout period = WDT PERIOD 2048CLK;

4. Setups the WDT hardware module with the requested settings.
wdt set config(&config wdt);

9.1.2. Quick Start Guide for WDT - Basic
9.1.2.1. Code

Copy-paste the following code to your user application:

enum system reset cause reset cause = system get reset cause();

if (reset cause == SYSTEM RESET CAUSE WDT) ({
port pin set output level (LED 0 PIN, LED O INACTIVE);
}

else {
port pin set output level (LED O PIN, LED 0 ACTIVE);
}

while (true) {
if (port pin get input level (BUTTON O PIN) == false) {
port pin set output level (LED 0 PIN, LED O ACTIVE);

wdt reset count();

9.1.2.2. Workflow

1. Retrieve the cause of the system reset to determine if the Watchdog module was the cause of the
last reset.

enum system reset cause reset cause = system get reset cause();

2. Turn on or off the board LED based on whether the Watchdog reset the device.
if (reset cause == SYSTEM RESET CAUSE WDT) ({
port pin set output level (LED O PIN, LED 0 INACTIVE);
}

else {
port pin set output level (LED 0 PIN, LED O ACTIVE);
}

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 19
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

9.2.

9.2.1.

9.21.1.

9.2.1.2.

3.

4.

5.

Enter an infinite loop to hold the main program logic.

while (true) {

Test to see if the board button is currently being pressed.

if (port pin get input level (BUTTON O PIN) == false) {

If the button is pressed, turn on the board LED and reset the Watchdog timer.
port pin set output level (LED 0 PIN, LED O ACTIVE);

wdt reset count();

Quick Start Guide for WDT - Callback

In this use case, the Watchdog module is configured for:

This use case sets up the Watchdog to force a system reset after every 4096 clocks of the Watchdog's

System reset after 4096 clocks of the Watchdog generic clock
Always on mode disabled
Early warning period of 2048 clocks of the Watchdog generic clock

Generic Clock channel, with an Early Warning callback being generated every 2048 clocks. Each time the
Early Warning interrupt fires the board LED is turned on, and each time the device resets the board LED
is turned off, giving a periodic flashing pattern.

Setup

Prerequisites

There are no special setup requirements for this use-case.

Code

Copy-paste the following setup code to your user application:

void watchdog early warning callback (void)

{
}

port pin set output level (LED 0 PIN, LED O ACTIVE);

void configure wdt (void)

{

/* Create a new configuration structure for the Watchdog settings and fill

* with the default module settings. */
struct wdt conf config wdt;
wdt get config defaults(&config wdt);

/* Set the Watchdog configuration settings */

config wdt.always on = false;
#if ! ((SAML21) || (SAMC21) || (SAML22))

config wdt.clock source = GCLK_GENERATOR 4;
#endif

config wdt.timeout period = WDT PERIOD 4096CLK;

Atmel

config wdt.early warning period = WDT PERIOD 2048CLK;

/* Initialize and enable the Watchdog with the user settings */
wdt set config(&config wdt);

Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE]
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

20

void configure wdt callbacks (void)

{

wdt register callback(watchdog early warning callback,
WDT CALLBACK EARLY WARNING) ;

wdt_enable callback (WDT CALLBACK EARLY WARNING) ;
}

Add to user application initialization (typically the start of main ()):
configure wdt () ;

configure wdt callbacks();

9.2.1.3. Workflow

1. Configure and enable the Watchdog driver.

1. Create a Watchdog module configuration struct, which can be filled out to adjust the
configuration of the Watchdog.

struct wdt conf config wdt;
2. Initialize the Watchdog configuration struct with the module's default values.
wdt get config defaults(&config wdt);

Note: This should always be performed before using the configuration struct to ensure that
all values are initialized to known default settings.

3. Adjust the configuration struct to set the timeout and early warning periods of the Watchdog.

config wdt.always on = false;
#if ! ((SAML21) || (SAMC21) || (SAML22))

config wdt.clock source = GCLK GENERATOR 4;
fendif

config wdt.timeout period = WDT PERIOD 4096CLK;

config wdt.early warning period = WDT_PERTOD_204§CLK;

4. Sets up the WDT hardware module with the requested settings.

wdt set config(&config wdt);

2. Register and enable the Early Warning callback handler.

1. Register the user-provided Early Warning callback function with the driver, so that it will be
run when an Early Warning condition occurs.

wdt register callback(watchdog early warning callback,
WDT CALLBACK EARLY WARNING) ;

2. Enable the Early Warning callback so that it will generate callbacks.
wdt enable callback (WDT CALLBACK EARLY WARNING) ;

9.2.2. Quick Start Guide for WDT - Callback

9.2.21. Code

Copy-paste the following code to your user application:
port pin set output level (LED O PIN, LED 0 INACTIVE);

system interrupt enable global();
while (true) {

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 21
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

/* Wait for callback */

9.2.2.2. Workflow

1. Turn off the board LED when the application starts.
port pin set output level (LED O PIN, LED 0 INACTIVE);

2. Enable global interrupts so that callbacks can be generated.

system interrupt enable global();

3. Enter an infinite loop to hold the main program logic.

while (true) {
/* Wait for callback */
}

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 22
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

10. Document Revision History

Doc. Rev. ‘ Date ‘ Comments ‘

42124E 12/2015 Added support for SAM L21/L22, SAM DA1, SAM D09, and SAM C20/C21

42124D 12/2014 Added SAM R21 and SAM D10/D11 support

42124C 01/2014 | Add SAM D21 support

42124B 06/2013 Corrected documentation typos

42124A 06/2013 | Initial release

AtmeL Atmel AT03264: SAM D/R/L/C Watchdog (WDT) Driver [APPLICATION NOTE] 23
Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

Atmel | Enabiing Unlimited Possibilities’ fl¥lin]3[o]w
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42124E-SAM-Watchdog-WDT-Driver_AT03264_Application Note-12/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Software License
	2. Prerequisites
	3. Module Overview
	3.1. Locked Mode
	3.2. Window Mode
	3.3. Early Warning
	3.4. Physical Connection

	4. Special Considerations
	5. Extra Information
	6. Examples
	7. API Overview
	7.1. Variable and Type Definitions
	7.1.1. Callback Configuration and Initialization
	7.1.1.1. Type wdt_callback_t

	7.2. Structure Definitions
	7.2.1. Struct wdt_conf

	7.3. Function Definitions
	7.3.1. Configuration and Initialization
	7.3.1.1. Function wdt_is_syncing()
	7.3.1.2. Function wdt_get_config_defaults()
	7.3.1.3. Function wdt_set_config()
	7.3.1.4. Function wdt_is_locked()

	7.3.2. Timeout and Early Warning Management
	7.3.2.1. Function wdt_clear_early_warning()
	7.3.2.2. Function wdt_is_early_warning()
	7.3.2.3. Function wdt_reset_count()

	7.3.3. Callback Configuration and Initialization
	7.3.3.1. Function wdt_register_callback()
	7.3.3.2. Function wdt_unregister_callback()

	7.3.4. Callback Enabling and Disabling
	7.3.4.1. Function wdt_enable_callback()
	7.3.4.2. Function wdt_disable_callback()

	7.4. Enumeration Definitions
	7.4.1. Callback Configuration and Initialization
	7.4.1.1. Enum wdt_callback

	7.4.2. Enum wdt_period

	8. Extra Information for WDT Driver
	8.1. Acronyms
	8.2. Dependencies
	8.3. Errata
	8.4. Module History

	9. Examples for WDT Driver
	9.1. Quick Start Guide for WDT - Basic
	9.1.1. Setup
	9.1.1.1. Prerequisites
	9.1.1.2. Code
	9.1.1.3. Workflow

	9.1.2. Quick Start Guide for WDT - Basic
	9.1.2.1. Code
	9.1.2.2. Workflow

	9.2. Quick Start Guide for WDT - Callback
	9.2.1. Setup
	9.2.1.1. Prerequisites
	9.2.1.2. Code
	9.2.1.3. Workflow

	9.2.2. Quick Start Guide for WDT - Callback
	9.2.2.1. Code
	9.2.2.2. Workflow

	10. Document Revision History

