N

MICROCHIP

Getting Started with
dsPIC30F

Digital Signal Controllers
User’s Guide

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

—150/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerlInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS70151A-page ii

© 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers
Table of Contents
Preface ... 1
Chapter 1. The dsPIC30F Digital Signal Controller
1.1 INtrodUCHION ..o e 7
1.2 ArchiteCture ... e 7
1.3 Device Variantscooooiiiiiiioiieee e 13
1.4 APPHCALIONS ... 14
Chapter 2. The Microchip Development Tools
P20 B | 1o T ¥ T3 1] o PP 15
2.2 MPLAB IDE ...ttt 15
2.3 Language TooISccooiiiiiiiiiiiiie e 16
Y22 S 0 =Y o 18 o e [1 o TN e o] L= S 17
2.5 Programming TOOIScooiiiiiiiiiie e 20
2.6 Development Boardsccccooiiiiiiiiiiiiiiis e e 21
Chapter 3. MPLAB Integrated Development Environment
3.1 MPLAB IDE OVEIVIEWoiiiieiiiiiiiiiiiiie ettt e e e e eeaa e 25
3.2 Projects and WOIrKSPACESccovveiiiuiiiiiiieeeeeieiiicee e e e e e ee e aeneas 26
3.3 Creating @ ProJECT ... 26
R I S = 1011 o [o Yo @70 o [T PPTPPPRP 30
Chapter 4. The MPLAB SIM Simulator
4.1 MPLAB SIM OVEIVIEWeiiiiiiiiiee ettt e e e e e e e e ennnes 33
4.2 Opening the Projectcccooiiiiiiiie e 34
4.3 Selecting the SIMUIAtorooiiiiiii s 34
4.4 Resettingthe Code ... 35
4.5 Stepping Through the COdeoooiiiiiiiiiii e 35
4.6 Runningthe Code ... s 36
4.7 The Debug Toolbar and HOtKEYSc.eeeveiiiiiiiiiiii e 36
S = (== 1 oo | £ 37
4.9 Watch WINAOW ..o 38
410 SIMUIAtOr SEINGS ...eeeiiiiiiiie e 39
411 StopwatCh ..o ————— 40
4.12 Trace BUffer ..o 41

© 2005 Microchip Technology Inc. DS70151A-page iii

Getting Started with dsPIC30F Digital Signal Controllers

Chapter 5. The MPLAB ICD 2 In-Circuit Debugger

5.1 MPLAB ICD 2 OVEIVIEW ..ottt ee e e e e 43
5.2 Setting Up the MPLAB ICD 2oooiiiiiiiieeee et 44
5.3 Programming the dsPIC Devicecccccciiiiiiiiiiiie, 46
5.4 Resetting the COdeoooiiiiiiiii e 46
5.5 Stepping Throughthe Code ..., 47
5.6 RUNNING the COdecoooiiiiiiiii e 48
5.7 The Debug Toolbar and HOtKEYSuceeiiiiiiiiiiies e 48
5.8 Breakpoints ..o 49
5.9 Watch WINAOWooiiiiiiiiiii 50
510 Advanced Breakpoints ... 52
Chapter 6. MPLAB ICE 4000 In-Circuit Emulator
6.1 MPLAB ICE 4000 OVEIVIEWcueiiiieeiiiiiiiiiiieeae e et e e e e e eeeeeeeane 55
6.2 Opening the ProjECtcooiiiiiiiiiiie e 57
6.3 Special Emulator DeViCescoovviviiiiiiiiiiii 57
6.4 Selecting the MPLAB ICE 4000ccoiiiiiiiiieieee e ee e 58
6.5 MPLAB ICE 4000 Settingsccuuvveieeieeeiiiiiiiiieie e et e e ee e e e 59
6.6 Resetting the COUeoiiiiiiiii e 61
6.7 Stepping Throughthe Code ..., 61
6.8 RUNNING the COdeooiiiiiiii e 62
6.9 The Debug Toolbar and HOtKEYSuueeiiiiiiiiieice e 62
6.10 BreakpOointsooiiiiiiiiiiiiiiii e 63
6.11 Watch WINAOWcoooiiiiiiiiiii 64
6.12 STOPWALCH .o 66
6.13 Trace BUFferoooiee e 67
6.14 COMPIEX THGGEIS ..t e e e e 68
Chapter 7. The MPLAB ASM30 Assembler
7.1 MPLAB ASM30 Assembler OVErVIEWccooviiiiuueiiireeeeniiiiieeeeee e e e 71
7.2 Commonly Used DIr€CHVESccooiiiiiiiiiiiiiiieei e 72
7.3 EXample Code ... 75
Chapter 8. MPLAB C30 C Compiler
8.1 MPLAB C30 C Compiler OVErviewccooveieiiiiiiiiieeeeeeeeeeeeeeeeeeee 81
8.2 MPLAB C30 C Compiler Projectscooovvveeieiiiiiie, 81
8.3 Creating a Project with the Project Wizardcccciiiiiiiiiiiiiis 82
8.4 Setting the Build Optionscooovviiiiiiiiii 86
8.5 Building the Project ..o e 87
8.6 Language Features ... 87
8.7 EXaMPIE COUE ..cocorieiiiiiiieeeeeeeeeeeeee 88
Chapter 9. The MPLAB LINK30 Linker
9.1 MPLAB LINK3O0 Linker OVErvieWcooviiiiieiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 91
9.2 Linker SCript FileS .oooviiiiiiiiiiiiee 92

DS70151A-page iv © 2005 Microchip Technology Inc.

Table of Contents

Appendix A. Code for dsPICDEM 1.1 General Purpose Development Board

A.1 Flash LED with dSPIC30FB014.Scccccciiiiiiiirveeveev e 99

A.2 Flash LED with dSPIC30FB014.Ccccoiiiiiii e 102
Appendix B. Code for dsPICDEM Starter Demonstration Board

B.1 Flash LED with dsPIC30FB012.5ccoeiiiiiiieieieeeee, 105

B.2 Flash LED with dSPIC30F6012.C ..ceeoiiiiieiieeeeeeee e 108
Appendix C. Code for dsPICDEM 28-Pin Starter Demonstration Board

C.1 Flash LED with dsPIC30F2010.5coovvviiiieiiiiiieeeeeeeeeeeeeeeee, 111

C.2 Flash LED with dSPIC30F2010.C ..cooviiiiiiiiiiieeeeeeeeeeee e 114
Appendix D. Code for dsPICDEM 2 Development Board

D.1 Flash LED with dsPIC30F4011.5 ...ccooiiiiiiiiiieee e, 117

D.2 Flash LED with dSPIC30F4011.C cooeiiiiiiieieeeeeeee 120
g o = G 123
Worldwide Sales and Service ... s 126

© 2005 Microchip Technology Inc. DS70151A-page v

Getting Started with dsPIC30F Digital Signal Controllers

NOTES:

DS70151A-page vi © 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools
and documentation are constantly evolving to meet customer needs, so some actual
dialogs and/or tool descriptions may differ from those in this document. Please refer
to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom
of each page, in front of the page number. The numbering convention for the DS
number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the
revision level of the document.

For the most up-to-date information on development tools, see the MPLAB IDE
on-line help. Select the Help menu, and then Topics to open a list of available on-line
help files.

INTRODUCTION

Welcome to your top source for comprehensive microcontroller solutions. Microchip
Technology, the world leader in 8-bit microcontroller shipments, now offers the dsPIC®
family of 16-bit digital signal controllers. Targeted at a wide variety of applications, the
dsPIC30F offers the flexibility and control of a microcontroller with the computation and
throughput capabilities of a digital signal processor.

The dsPIC30F is supported by several development tools centered around the
industry-leading MPLAB® Integrated Development Environment (IDE). In this guide,
you'll learn how to use the MPLAB IDE and related assembler, compiler, linker,
simulator, debugger and emulator tools. All the tools are covered, so you'll find this
guide useful, even if you don’t have hardware yet. Hands-on tutorials maximize your
learning experience and minimize your learning time. These tutorials use the

MPLAB ICD 2 In-Circuit Debugger with either the dsPICDEM™ Starter Demonstration
Board or the dsPICDEM™ 1.1 General Purpose Development Board to both program
and debug the device. Tutorials are also available for the dsPICDEM™ 28-Pin Starter
Demonstration Board and the dsPICDEM™ 2 Development Board.

Items discussed in this Preface include:

» About This Guide

* Recommended Reading

» The Microchip Web Site

» Development Systems Customer Change Notification Service
» Customer Support

© 2005 Microchip Technology Inc. DS70151A-page 1

Getting Started with dsPIC30F Digital Signal Controllers

ABOUT THIS GUIDE

This Getting Started guide covers the architecture and development tools of the dsPIC
family and offers many tips on selecting the right dsPIC device for your design.

Document Layout

The manual is organized as follows:

* Chapter 1: The dsPIC30F Digital Signal Controller — This chapter will help you
choose the right dsPIC30F device for your design or simply learn more about the
features of this capable digital signal controller.

* Chapter 2: The Microchip Development Tools — This chapter introduces the
MPLAB IDE and acquaints you with the related assembler, compiler, linker,
simulator, debugger and emulator tools.

e Chapter 3: MPLAB Integrated Development Environment — Microchip
provides a powerful development environment called MPLAB IDE, and it's
absolutely free! This chapter uses a tutorial format to familiarize you with the
MPLAB IDE by creating a project and assembling and linking a program.

* Chapter 4: The MPLAB SIM Simulator — The MPLAB SIM30 allows you to
debug your code without the dsPIC30F hardware. The simulator is completely
integrated into the MPLAB IDE and you can learn how to use it in this chapter.

e Chapter 5: The MPLAB ICD 2 In-Circuit Debugger — The MPLAB ICD 2
In-Circuit Debugger gives you the flexibility to debug directly in the dsPIC chip on
your own circuit board. The MPLAB ICD 2 is an exceptional value and you’ll learn
how to use it in this chapter and in other hands-on tutorials in this guide.

e Chapter 6: MPLAB ICE 4000 In-Circuit Emulator — This chapter gets you
started using the MPLAB ICE 4000 In-Circuit Emulator. The MPLAB ICE 4000 is
the most sophisticated debugging tool available for the dsPIC devices. It provides
full-speed emulation and visibility into both the instructions and the data paths
during execution.

e Chapter 7: The MPLAB ASM30 Assembler — In this chapter, the focus shifts to
producing code. It describes the general format and provides examples of
instructions and directives that are assembled into object code by the
MPLAB ASM30 Assembiler.

e Chapter 8: MPLAB C30 C Compiler — This chapter gets you started generating
‘C’ code for your dsPIC30F device. The tutorial illustrates how to use the
MPLAB C30 C Compiler to combine application source code and libraries to
produce object files.

e Chapter 9: The MPLAB LINK30 Linker — This chapter examines the
MPLAB LINK30 Linker by providing a step-by-step analysis of a linker script file.

* Appendix A: Code for dsPICDEM 1.1 General Purpose Development Board —
This appendix contains the sample code for the dsPICDEM 1.1 General Purpose
Development Board.

* Appendix B: Code for dsPICDEM Starter Demonstration Board — This
appendix contains the sample code for the dsPICDEM Starter Demonstration
Board.

* Appendix C: Code for dsPICDEM 28-Pin Starter Demonstration Board — This
appendix contains the sample code for the dsPICDEM 28-Pin Starter
Demonstration Board.

* Appendix D: Code for dsPICDEM 2 Development Board — This appendix
contains the sample code for the dsPICDEM 2 Development Board.

DS70151A-page 2 © 2005 Microchip Technology Inc.

Preface

Conventions Used in this Guide

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User’s Guide

Emphasized text

...is the only compiler...

Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”
dialog
Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

A tab

Click the Power tab

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier font:

Plain Courier

Sample source code

#define START

Filenames autoexec.bat

File paths c:\mccl8\h

Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants OXFF, ‘A’

Italic Courier

A variable argument

file.o, where file can be
any valid filename

Square brackets []

Optional arguments

mccl8 [options] file

[options]

Curly brackets and pipe
character: {| }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]|1}

Ellipses...

Replaces repeated text

var_name [,
var name. . .]

Represents code supplied by
user

void main (void)
{
}

© 2005 Microchip Technology Inc.

DS70151A-page 3

Getting Started with dsPIC30F Digital Signal Controllers

RECOMMENDED READING

The following Microchip documents are available and recommended as supplemental
reference resources.

dsPIC30F Family Reference Manual (DS70046)

Consult this document for detailed information on the dsPIC30F device operation. The
manual explains the operation of the dsPIC30F DSC family architecture and peripheral
modules but does not cover the specifics of each device. Refer to the appropriate
device data sheet, mentioned below, for device-specific information.

dsPIC30F Data Sheet, Motor Control and Power Conversion Family (DS70082)

Consult this document for information regarding the dsPIC30F Motor Control and
Power Conversion devices. Reference information found in this data sheet includes:

» Device memory map

» Device pinout and packaging details

* Device electrical specifications

* List of peripherals included on the device

dsPIC30F Data Sheet, General Purpose and Sensor Families (DS70083)

Consult this document for information regarding the dsPIC30F Sensor and General
Purpose devices. Reference information found in this data sheet includes:

* Device memory map

* Device pinout and packaging details

* Device electrical specifications

* List of peripherals included on the device

dsPIC30F Programmer’s Reference Manual (DS70030)

This manual is a software developer’s reference for the dsPIC30F 16-bit DSC family of
devices. This manual describes the instruction set in detail and also provides general
information to assist the user in developing software for the dsPIC30F DSC family.

dsPIC30F Family Overview, dsPIC High Performance
16-bit Digital Signal Controller (DS70043)

This document provides an overview of the features and functionality of the dsPIC®
product family. It helps determine how the dsPIC 16-bit Digital Signal Controller Family
fits a specific product application. For detailed information about any of the functionality,
refer to the “dsPIC30F Family Reference Manual” (DS70046).

MPLAB® ASM30, MPLAB® LINK30 and Utilities User’s Guide (DS51317)

This document details Microchip Technology’s language tools for dsPIC devices based
on GNU technology. The language tools discussed are:

* MPLAB ASM30 Assembler

* MPLAB LINK30 Linker

* MPLAB LIB30 Archiver/Librarian
+ Other Utilities

MPLAB® C30 C Compiler User’s Guide (DS51284)

The purpose of this document is to help you use Microchip’s MPLAB C30 C Compiler
for dsPIC devices to develop your application. MPLAB C30 C Compiler is a
GNU-based language tool, based on source code from the Free Software Foundation
(FSF). For more information about the FSF, see www.fsf.org.

Readme Files

For the latest information on using other tools, read the tool-specific Readme files in
the Readme subdirectory of the MPLAB IDE installation directory. The Readme files
contain update information and known issues that may not be included in this user’s
guide.

DS70151A-page 4

© 2005 Microchip Technology Inc.

Preface

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This
web site is used as a means to make files and information easily available to
customers. Accessible by using your favorite Internet browser, the web site contains
the following information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

» General Technical Support — Frequently Asked Questions (FAQ), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

» Compilers — The latest information on Microchip C compilers and other language
tools. These include the MPLAB C17, MPLAB C18 and MPLAB C30 C Compilers;
MPASM™ and MPLAB ASM30 Assemblers; MPLINK™ and MPLAB LINK30
Object Linkers; and MPLIB™ and MPLAB LIB30 Object Librarians.

+ Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

* In-Circuit Debuggers — The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

« MPLAB IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB SIM and MPLAB SIM30 Simulators,
MPLAB IDE Project Manager and general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® Il Device Programmers and the
PICSTART® Plus Development Programmer.

© 2005 Microchip Technology Inc. DS70151A-page 5

Getting Started with dsPIC30F Digital Signal Controllers

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

+ Distributor or Representative

* Local Sales Office

+ Field Application Engineer (FAE)

» Technical Support

» Development Systems Information Line

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

In addition, there is a Development Systems Information Line which lists the latest
versions of Microchip’s development systems software products. This line also
provides information on how customers can receive currently available upgrade Kkits.

The Development Systems Information Line numbers are:
1-800-755-2345 — United States and most of Canada
1-480-792-7302 — Other International Locations

DS70151A-page 6

© 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Chapter 1. The dsPIC30F Digital Signal Controller

1.1 INTRODUCTION

The 16-bit dsPIC30F Digital Signal Controller (DSC) is Microchip’s newest and most
advanced processor family. In this chapter, you will learn about the features of this
processor, the different dsPIC devices available and how to choose the most suitable
dsPIC device for your application.

The dsPIC30F is an advanced 16-bit processor that offers true DSP capability with the
fundamental real-time control capabilities of a microcontroller. Prioritized interrupts,
extensive built-in peripherals and power management features are combined with a
full-featured DSP engine. Dual 40-bit accumulators, single-cycle 16x16 MAC, 40-bit
barrel shifter, dual-operand fetches and zero-overhead looping are among the features
that make this a very capable DSC.

If you don’t understand these terms, don’t worry. They are covered in more detail in this
chapter.

1.2 ARCHITECTURE

1.2.1 Harvard Architecture

The dsPIC processor uses a modified Harvard architecture with separate program and
data memory buses, as shown in Figure 1-1.

FIGURE 1-1: SEPARATE DATA AND PROGRAM BUSSES

Processor Core

Program Bus Data Bus
A A
24 16
v v
Program Data
Memory Memory

The Harvard architecture allows different size data (16 bits) and instruction (24 bits)
words. This design improves the efficiency of the instruction set. It also allows faster
processing because the dsPIC processor can prefetch the next instruction from
program memory while it executes the current instruction that accesses data RAM.

© 2005 Microchip Technology Inc. DS70151A-page 7

Getting Started with dsPIC30F Digital Signal Controllers

1.2.2 Program Memory and Program Counter

The Program Counter (PC) is 24 bits wide and addresses up to 4M x 24 bits of user
program memory space. The Program Counter increments by two for each 24-bit
instruction, which simplifies the addressing of 16-bit data constants stored in program
memory. Program memory space contains the Reset location, Interrupt Vector Tables,
user program memory, data EEPROM and configuration memory (see the Program
Memory Map in Figure 1-2).

The processor begins program execution at the Reset location 0x000000. This location
should be user-programmed with a GOTO instruction, which branches to the start of the
code. The GOTO instruction at the Reset location is followed by the Interrupt Vector

Tables. Program memory for the code starts after the vector tables at address 0x100.

Program looping is accomplished with minimal overhead with the DO and REPEAT
instructions; both can be interrupted at any time. These features make repetitive DSP
algorithms very efficient, while maintaining the ability to handle real-time events.

1.23 Data Memory

The data space is 64 Kbytes and is treated as one linear address space by most
instructions. When certain DSP instructions, known as DSP multiply instructions, are
used, the memory is split into two blocks called X and Y data memory (see the Data
Memory Map in Figure 1-2). As a result, these DSP instructions support dual operand
reads; that is, data can be simultaneously fetched from X memory and from Y memory
for a single instruction. The X and Y data space boundary is fixed for any given device.
When not doing DSP instructions, all the memory is treated as a single block of

X memory.

The first 2-Kbyte block of data memory is allocated to the Special Function Registers
(SFRs). The SFRs are control and status registers for core and peripheral functions in
the dsPIC devices.

After the SFRs, up to 8 Kbytes are implemented as data RAM. This RAM is general
purpose memory that can be used for data storage. It is split into X and Y memory for
DSP instructions.

The first 8 Kbytes of data space (i.e., all 2 Kbytes of SFRs and the first 6 Kbytes of data
RAM) are called Near RAM. This region of RAM can be accessed directly via file
register instructions. Some instructions cannot directly access RAM that is not near and
must use indirect addressing.

The last 32 Kbytes of data RAM space are not implemented but can be mapped into
program space for Program Space Visibility (PSV). PSV allows tables in program
memory to be read as though they were in data RAM. (This feature can be quite useful
for accessing DSP filter coefficients.)

DS70151A-page 8

© 2005 Microchip Technology Inc.

The dsPIC30F Digital Signal Controller

FIGURE 1-2: PROGRAM AND DATA MEMORY
PROGRAM MEMORY MAP DATA MEMORY MAP
A RESET Instruction 000002
Reserved 000004
Oscillator Fail Trap Vector
Address Error Trap Vector AgAdSB 16-Bits AdeSB
Stack Error Trap Vector ress g — ress
Math Error Trap Vector MSB LSB
Reserved 0x0001 I 0x0000
Reserved SFR Space
Reserved O0x07FF | P O0x07FE
Interrupt 0 Vector 000014 0x0801 | 0x0800
Interrupt 1 Vector =
. = X Data RAM
. 5 |
© LJ 2
g Interrupt 52 Vector Note 1
& Interrupt 53 Vector 8888;5 Note 2 ‘
2 Alternate Vector Table 0000FE
£ Ox1FFF Y Data RAM
5 000100
s User Flash |
= Program Memory
3 017FFE Note 3
> 018000 0x2801 0x2800
Reserved
(Read ‘0’s)
7FEFFE 0x8001 0x8000
7FF0000 ‘
Data Flash
V 7FFFFE ‘
A 800000 €
g2 X Data RAM
Reserved 23 Unimplemented
8005BE o |
. 8005C0 3
Unit 1D 8005FE =
800600 ° & ‘
o
[0}
[$]
®©
Q.
@ Reserved
S OXFFFF OXFFFE
[}
=
S F7FFFE
© Configuration F80000 Note 1: Varies with part — Maximum = Ox17FF.
_3 Registers F8000E 2: Varies with part — Always contiguous with
5 F80010 end of X Data RAM.
o Reserved 3: Varies with part — Maximum = 0x27FF.
FEFFFE
v Device ID FF0000
—_— FFFFFE

1.24 Working Register Array

The dsPIC devices have sixteen 16-bit working registers. The last working register
(W15) always operates as the software stack pointer. W15 cannot be used for other
purposes. The remaining working registers can act as a data register, data address
pointer or address offset register. The software stack is used for return addresses of
interrupts and calls, as well as PUSH and POP instructions. C compilers make extensive
use of the software stack for storing local variables.

1.25 Data Addressing Modes

The CPU supports Inherent (no operand), Relative, Literal, Memory Direct, Register
Direct and Register Indirect Addressing modes. Relax, these are not as complicated as
they sound. Each instruction that addresses data memory can use some of the
available addressing modes. As many as six addressing modes are supported for each
instruction. The working registers are used extensively as address pointers for the
indirect addressing modes. They can be modified (e.g., incremented) and used as
pointers in the same instruction.

© 2005 Microchip Technology Inc. DS70151A-page 9

Getting Started with dsPIC30F Digital Signal Controllers

1.2.6 Modulo and Bit-Reversed Addressing

Modulo addressing allows circular buffers to be implemented with no processor
overhead to check the boundaries of the buffer. The pointer for the buffer can be set up
to automatically wrap around to the beginning of the buffer after it reaches the end and
vice versa. This can be done in both X and Y memory, significantly reducing the
overhead for DSP algorithms.

Bit-reversed addressing greatly simplifies input or output data reordering for radix-2
FFT algorithms. Bit-reversed addressing is supported by X memory.

1.2.7 Program Space Visibility

The upper 32 Kbytes of the data space memory map can optionally be mapped into
program space at any 16K program word (32-Kbyte) boundary defined by the 8-bit
Program Space Visibility Page (PSVPAG) register.

The program-to-data space mapping feature lets any instruction access program space
as if it were data space. This capability is useful for look-up tables, especially tables of
filter coefficients in DSP algorithms.

FIGURE 1-3: PROGRAM SPACE VISIBILITY
Processor Core
Program Bus Data Bus
4 A
24 16
v v
________ Data
Memory
P4

Program

1.2.8 Instruction Set

The dsPIC30F instruction set has two classes of instructions: MCU instructions and
DSP instructions. These two instruction classes are seamlessly integrated into the
architecture and are carried out from a single execution unit. The instruction set
includes many addressing modes and was designed for optimum C compiler efficiency.

With just a few exceptions, instructions execute in a single cycle. The exceptions are
instructions that change the program flow (BRA, CALL, etc.), the double-word move
(MOV . D) instruction and program memory read/write (table) instructions.

For most instructions, the dsPIC30F is capable of executing a data memory read, a
working register data read, a data memory write and a program memory (instruction)
read, all during one instruction cycle. As a result, three-operand instructions can be
supported, allowing A + B = C type operations to be executed in a single cycle.

DS70151A-page 10 © 2005 Microchip Technology Inc.

The dsPIC30F Digital Signal Controller

1.2.9 DSP Engine

The DSP engine (Figure 1-4) features a high-speed, 17-bit x 17-bit fixed-point
multiplier, a 40-bit ALU (Arithmetic Logic Unit), two 40-bit saturating accumulators and
a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value
up to 15 bits right, or up to 16 bits left, in a single cycle.

The DSP instructions operate seamlessly with all other instructions and have been
designed for optimal real-time performance. The MAC instruction and other associated
instructions can concurrently fetch two data operands from memory while multiplying
two W registers. This is possible because the data memory is splitinto X and Y memory
spaces for DSP instructions.

FIGURE 1-4: DSP ENGINE
S
a
40 < 40-Bit Accumulator A > 40 |R t 16
"~ |Round | |10
- 40-Bit Accumulator B > | Logic | r [77%
Carry/Bi Out ™ { »
arry/Borrow Ou t
e
_ — >
Carry/Borrow In p
% Y
40 40 40
> Barrel
D Shifter 16
40 @
o
©
©
[a}
Sign-Extend x
E A A
© 32 16
s Zero Backfill |<%
> 32
32
17-Bit
Multiplier/Scaler
16 16
P
| To/From W Array |
Lo - — — -

© 2005 Microchip Technology Inc. DS70151A-page 11

Getting Started with dsPIC30F Digital Signal Controllers

1.2.10

The dsPIC30F has a vectored interrupt scheme. Each interrupt source has its own
vector and can be dynamically assigned one of seven priority levels. The interrupt entry
and return latencies are fixed, providing deterministic timing for real-time applications.

Interrupts

The Interrupt Vector Table (IVT) resides in program memory, immediately following the
instruction at the Reset location, as shown in Figure 1-5. The IVT contains 62 vectors
consisting of up to eight non-maskable (always enabled) error trap vectors and up to
54 sources of interrupt. Each interrupt vector contains the 24-bit wide starting address
of the associated Interrupt Service Routine (ISR).

The Alternate Interrupt Vector Table (AIVT) is located after the IVT in program memory.
If the ALTIVT bit is set, all the interrupts and error traps will use the alternate vectors
instead of the default vectors. The alternate vectors are organized in the same manner
as the default vectors and provide a means to switch between an application and a test,
setup or bootloader environment without requiring the interrupt vectors to be
reprogrammed.

FIGURE 1-5: INTERRUPT VECTOR TABLE

0x000000
0x000002
0x000004

Reset — GOTO Instruction
Reset — GOTO Address
A Reserved
Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
Reserved Vector
Reserved Vector
IVT Reserved Vector
Interrupt 0 Vector
Interrupt 1 Vector

0x000014

Decreasing Priority

Interrupt 52 Vector
Interrupt 53 Vector
Reserved
Reserved
A Reserved
Oscillator Fail Trap Vector
Stack Error Trap Vector
Address Error Trap Vector
Math Error Trap Vector
Reserved Vector
Reserved Vector
Reserved Vector
Interrupt 0 Vector
Interrupt 1 Vector

0x00007E
0x000080
0x000082
0x000084

AIVT

0x000094

Interrupt 52 Vector
v Interrupt 53 Vector

0x0000FE

1.2.11

Modern applications often require flexible operating modes to conserve battery power,
reduce EMI and handle Fault conditions. The dsPIC device has many system and
power management features. For example, it has several oscillator modes with clock
switching and oscillator failure detection. There are several power-saving modes that
can selectively shut down and wake-up parts of the processor and peripherals. There
are other safety features, such as Low-Voltage Detection, Brown-out Reset, Watchdog
Timer Reset and several error traps.

System and Power Management

DS70151A-page 12

© 2005 Microchip Technology Inc.

The dsPIC30F Digital Signal Controller

1.2.12 Peripherals

The dsPIC devices are available with a wide range of peripherals to suit a diverse
assortment of applications. The main peripherals include:

+ 1/O Ports » 10-bit or 12-bit A/D Converter

* Timers + UART

* Input Capture « SPI™

« Output Compare/PWM . [2Cc™

* Motor Control PWM » Data Converter (CODEC) Interface
* Quadrature Encoder » Controller Area Network (CAN)

Each device variant has a subset of these peripherals.

1.3 DEVICE VARIANTS

The dsPIC devices fall into three broad families. They are characterized this way to
help you pick the most suitable part for your application:

* General Purpose

» Motor Control/Power Conversion

» Sensor

1.3.1 General Purpose Family

The general purpose devices are 40 to 80-pin parts ideal for a variety of 16-bit
embedded applications. This variant family has:

+ 12-bit, 100-ksps A/D Converter

» Dual UARTs

+ CODEC Interface (most devices)

CAN Interface (most devices)

 Timers, Input Capture, Output Compare

« UART, SPI, I°C Serial Interfaces

The parts with CODEC interfaces can support many audio applications.

1.3.2 Motor Control and Power Conversion Family

The motor control devices are 28 to 80-pin parts designed to support motor control
applications. They are also suited for Uninterruptible Power Supplies (UPS), inverters,
switched mode power supplies and related equipment. This variant family has:

* 10-bit, 500-ksps A/D Converter

* Motor Control PWM

» Quadrature Encoder

» Timers, Input Capture, Output Compare

« UART, SPI, I2C, CAN Serial Interfaces

1.3.3 Sensor Family

The sensor devices are small 18 to 28-pin parts designed to support low-cost
embedded control applications. They have most of the features of the general purpose
family but fewer of each peripheral. This variant family has:

+ 12-bit, 100-ksps A/D Converter

» Timers, Input Capture, Output Compare

« UART, SPI, I2C Serial Interfaces

© 2005 Microchip Technology Inc. DS70151A-page 13

Getting Started with dsPIC30F Digital Signal Controllers

1.4 APPLICATIONS

Now that you have a basic understanding of the dsPIC architecture, you can consider
the suitability of the dsPIC device for your particular application. There are endless
possibilities, but here are the most common applications for the dsPIC devices:

1.4.1 Motor Control

The dsPIC device is ideal for motor control that needs more than a basic 8-bit
microcontroller. Brushless DC, AC Induction and Switch Reluctance motors can all be
controlled with a dsPIC device. The applications might require sensorless control,
torque management, variable speed, position or servo control. Noise reduction and
energy efficiency applications can also be handled.

1.4.2 Power Conversion and Monitoring

The fast A/D converter and multiple PWM modules make the dsPIC devices well-suited
for many power conversion and power management applications. Uninterruptible
power supplies (UPS), inverters and power management units for complex equipment
can all be handled.

143 Internet Connectivity

Ethernet and modem applications for Internet connectivity are supported with
Microchip’s ready to use TCP/IP, Ethernet driver and Soft Modem application libraries.

1.4.4 Speech and Audio

The dsPIC device can support many audio applications, such as noise and echo can-
cellation, speech recognition and speech playback. It can also be used as a companion
chip to a main DSP in high-end audio application to handle other tasks, such as digital
tuning, equalizers and more.

1.4.5 Sensor Control

The smaller dsPIC devices are ideal for advanced sensor control. The A/D converter
and serial communication peripherals, combined with the power management
features, make it possible to create smart sensor interface modules.

1.4.6 Automotive

Microchip Technology Inc. is QS-9000 and ISO/TS-16949 certified and has automotive
temperature grades parts. Traditionally, our products have had long life cycles to
support product life cycles typical of automotive applications.

DS70151A-page 14

© 2005 Microchip Technology Inc.

Getting Started with dsPIC30F
MICROCHIP Digital Signal Controllers

Chapter 2. The Microchip Development Tools

21 INTRODUCTION

Now that you’ve decided which dsPIC device suits your application, you'll need
development tools. The development process can be broken down into three distinct
steps:

» Writing your code
» Debugging the code
* Programming devices

You’'ll need a tool to serve each of these functions and the key to supporting the
development tools is the MPLAB® Integrated Development Environment (IDE). To get
started, you'll find that the MPLAB ICD 2 In-Circuit Debugger offers the most
cost-effective debugging and programming solution. The MPLAB ICD 2 can be used
with any of the dsPIC development boards making an ideal learning platform.

2.2 MPLAB IDE

The MPLAB IDE allows you to develop a project from beginning to end, all within the
same environment. You don’t need to use a separate editor, assembler/compiler and
programming utility to create, debug and program your applications. The MPLAB IDE
can control all aspects of this process, as illustrated in Figure 2-1 and remember,
MPLAB IDE is free!

FIGURE 2-1: MPLAB® INTEGRATED DEVELOPMENT ENVIRONMENT
MPLAB® IDE
Writing Code Debugging Programming
« MPLAB® ASM30* « MPLAB® ICD 2 « MPLAB®ICD 2
« MPLAB® C30 + MPLAB® ICE 4000 « PRO MATE® ||
+ MPLAB® LINK30* + MPLAB® SIM30* + MPLAB® PM3
* ASM30, LINK30 and SIM30 are included with MPLAB IDE (free).

© 2005 Microchip Technology Inc. DS70151A-page 15

Getting Started with dsPIC30F Digital Signal Controllers

2.21 Projects

The MPLAB IDE includes tools to create and use projects and workspaces. A
workspace stores all the settings for a project so that you can swap between projects
with minimum effort. The Project Wizard allows projects to be easily created with a few
mouse clicks. You can conveniently add and remove files in a project using the Project
window view (Figure 2-2).

FIGURE 2-2: PROJECT WINDOW

= CiyTutorialyMyProject.mcp
- 5aurce Files
Flash LEDs.5
Header Files
Cbject Files
Library Files
- Linker Scripts
p30fe014.gld
Other Files

2.2.2 Editor

The editor is an integral part of the MPLAB IDE and provides many features that make
writing your code easy: syntax highlighting, automatic indentation, brace matching,
block commenting, bookmarks and many others. The Editor window (Figure 2-3)
directly supports the debugging tools, showing the current execution position, break
and trace points, mouseover viewing of variables and so forth.

FIGURE 2-3: EDITOR WINDOW

M C:\Tutorial\Flash LEDs.s CEX
[.start of cc;ce =

.text ;8tart of Code section

;Initialize stack pointer and limit register

B _ reset: mov #_ 8P _init, W15 ;Initalize the Stack Pointer register
mov # SPLIM init,W0 ;Get address at the end of stack space
(B mev Wo, SPLIM ;Load the Stack Pointer Limit register
nop ;Rdd NOP to follow ZPLIM initialization |y
= >

2.3 LANGUAGE TOOLS

2.3.1 Assembler/Linker

MPLAB IDE includes the MPLAB ASM30 Assembler and the MPLAB LINK30 Linker
based on the industry standard GNU toolsuite. You don’t need to purchase any
additional software to develop code. MPLAB ASM30 Assembler assembles source
files into object files, which the linker converts to an output hex file, along with any
library (archive) files that may be included in the project.

DS70151A-page 16

© 2005 Microchip Technology Inc.

The Microchip Development Tools

2.3.2 Compilers

For those who need a C compiler, Microchip offers the MPLAB C30 C Compiler.
Available for purchase separately, MPLAB C30 C Compiler allows your code to be
more portable, readable and maintainable. MPLAB C30 C Compiler can be used from
within MPLAB IDE to give you seamlessly integrated code development, debugging
and programming.

Aside from the MPLAB C30 C Compiler, dsPIC compilers are also available from
third party manufacturers. HI-TECH Software (www.htsoft.com), CCS, Inc.
(www.ccsinfo.com) and IAR Systems (www.iar.com) all have C compilers that support
the dsPIC family.

For those familiar with the other PICmicro® compilers from these manufacturers, their
dsPIC offerings would be a logical choice. By reducing the need to learn a whole new
compiler, these compilers offer an easy way to migrate to the dsPIC family.

233 Template, Include and Linker Script Files

Want to start writing some code, but don’t know how to begin? Then take a look at the
template files in the MPLAB ASM30 Assembler directory that is part of MPLAB IDE.
These templates can be copied and used to form the basis of your own code. You'll also
find processor include files; they define all the register and bit names and their loca-
tions, consistent with the data sheet definitions. Linker script files provide the linker with
a memory map of the dsPIC devices for proper automatic code and data placement.

234 Application Notes

Not sure how to implement your design? Just want to brush up on your design skills?
Got some time to kill? Then check out our web site (www.microchip.com) for the latest
application notes. We are always adding more application notes to provide you with

examples on how to use the dsPIC devices in an ever-expanding array of applications.

24 DEBUGGING TOOLS

Three different debugging tools can be used with MPLAB IDE: the simulator

(MPLAB SIM30 Software Simulator), the in-circuit debugger (MPLAB ICD 2) and the
in-circuit emulator (MPLAB ICE 4000). All of these debuggers give you the ability to
step through code, run till you choose to halt or hit a breakpoint, watch registers update
and view memory contents. Each has its own particular advantages and
disadvantages.

241 MPLAB SIM30 Software Simulator

The MPLAB SIM30 Software Simulator is a powerful debugging tool included with
MPLAB IDE (Figure 2-4). The simulator runs on your PC and simulates code execution
in the dsPIC devices. Not only can the simulator be used to mimic code execution, but
it can also be used to respond to simulated external inputs and peripheral operations,
and measure code execution time.

The MPLAB SIM30 Software Simulator offers a quick and easy way to debug code
without the need for external hardware. It is particularly useful for testing mathematical
operations and DSP functions when repeatable data from a file can be provided. Often,
it can be challenging to test code on an analog signal in real hardware because of the
difficulty in duplicating the data. By supplying sampled or synthesized data as stimulus,
testing is made easier.

© 2005 Microchip Technology Inc. DS70151A-page 17

www.htsoft.com
www.htsoft.com
http://www.ccsinfo.com
http://www.iar.com
http://www.iar.com

Getting Started with dsPIC30F Digital Signal Controllers

FIGURE 2-4: SIMULATOR SELECTION MENU IN MPLAB® IDE

wt | Debugger Programmer Tocols Configure Win
z Z||
Clear Memory

4 1 MPLAB ICD 2

2 MFLAB ICE 4000
i [

The MPLAB SIM30 Software Simulator has all the basic debugging features and some
more advanced features:

 Stopwatch — for timing code execution.
 Stimulus — for simulating external inputs and data reception.
» Trace — for viewing recorded execution.

FIGURE 2-5: MPLAB® ICE 4000

2.4.2 MPLAB ICE 4000

The MPLAB ICE 4000 In-Circuit Emulator (Figure 2-5) is a full-featured debugging tool,
capable of emulating all of the dsPIC30F devices at full speed. It is the most powerful
debugging tool we offer and gives excellent visibility into the processor. It is fully
integrated into MPLAB IDE with a USB interface, which allows MPLAB IDE to update
memory and data views very quickly.

MPLAB ICE 4000 is a modular system that supports a variety of processors and
package options. Use the “Product Selector Guide” available on our web site
(www.microchip.com) to select the correct processor module, device adapter and
transition socket to emulate the particular device that you wish to use.

The MPLAB ICE 4000 has all the basic debugging features and many more advanced
features:

» Complex trigger settings — to detect event sequences such as writes to registers.
 Stopwatch — for timing code execution.

» Trace — for viewing recorded execution.

» Logic probes — to trigger on external signals and generate triggers for test
equipment.

DS70151A-page 18

© 2005 Microchip Technology Inc.

www.microchip.com
www.microchip.com

The Microchip Development Tools

FIGURE 2-6: MPLAB® ICD 2

2.4.3 MPLAB ICD 2

The MPLAB ICD 2 In-Circuit Debugger is a very cost-effective debugging tool that
allows code to be tested on the target circuit board. For those who don’t want the added
costs associated with an MPLAB ICE 4000 and can do without its sophisticated
features, the MPLAB ICD 2 is a viable alternative. The MPLAB ICD 2 allows you to
debug dsPIC devices directly in your target board. You can also use it to program
devices in-circuit.

Although MPLAB ICD 2 provides basic debugging functions, it lacks such features of
the MPLAB ICE 4000 as trace memory and complex triggers. Similarly, the free

MPLAB SIM30 Software Simulator allows you to debug your code but lacks features
included in MPLAB ICD 2. Figure 2-7 is a summary comparison of these three tools.

FIGURE 2-7: COMPARISON OF MPLAB® TOOLS

Real-time emulation

* Real-time watch windows

+ Complex triggers

* Logic analyzer trigger

CON

« Different modules needed to
emulate different processor
families (extra cost)

MPLAB®ICD 2

PRO
* Low cost

« Debug on target processor
« Also a development

PRO
» Debug on target

board

programmer .
CON * Watch windows Cost
. . * Registers update
o upeourees with a click MPLAB® ICE 4000
* Limited number * Breakpoints

+ Single stepping

« Halt mid-execution
* View memory
contents

PRO

e Target
board not
needed

* Programmablg
clock speed

* Unlimited
breakpoints

« Stopwatch

feature

of breakpoints

PRO

+ FREE (Built into MPLAB IDE)

« Stimulus files allow simulation of peripherals
and inputs

CON

« Cannot respond to actual board level signals

MPLAB® SIM30

© 2005 Microchip Technology Inc. DS70151A-page 19

Getting Started with dsPIC30F Digital Signal Controllers

2.5 PROGRAMMING TOOLS

Two programmers can be used with MPLAB IDE to program dsPIC devices:
MPLAB PM3 and MPLAB ICD 2. Each has its own particular advantages and
disadvantages.

MPLAB PM3 can program all package types and has more programming options and
memory than the MPLAB ICD 2. However, both can program parts in-circuit. The
MPLAB ICD 2 is an in-circuit debugger that can also program parts in-circuit.

Note: As a general rule, the MPLAB PM3 is your best choice for production
programming. The MPLAB ICD 2 is your best choice for testing code during
development if the boards support in-circuit programming.

The older PRO MATE |l programmer also supports the dsPIC devices but has been
superseded by the newer MPLAB PM3.

FIGURE 2-8: MPLAB® PM3 UNIVERSAL DEVICE PROGRAMMER

251 MPLAB PM3 Universal Device Programmer

The MPLAB PM3 (Figure 2-8) is the preferred choice for those wanting to purchase a
production programmer. It consists of a basic programmer unit and interchangeable
socket modules to support various device packages. It can be controlled from
MPLAB IDE, from a command-line utility, or it can operate stand-alone. MPLAB PM3
includes the following features:

* Built-in support for In-Circuit Serial Programming.

* Serialized programming for unique ID numbers.

» Safe mode for code security.

» High-speed programming and download through USB.

» Secure digital and multimedia card slot for convenient program storage.

2.5.2 MPLAB ICD 2

In addition to being an in-circuit debugger, the MPLAB ICD 2 can also be used as a
low-cost development programmer. You can use it to program parts in-circuit, directly
on your target board, as well as DIP packages out of circuit with our universal
programming module.

DS70151A-page 20

© 2005 Microchip Technology Inc.

The Microchip Development Tools

2.6 DEVELOPMENT BOARDS

Several dsPIC development boards are available to simplify code development and
testing. These boards are very useful for new users getting started with the dsPIC
processors because they include example code and tutorials.

Note: The example code in this guide is provided in four versions to run on the
following development boards:
+ dsPICDEM Starter Demonstration Board
+ dsPICDEM 28-Pin Starter Demonstration Board
» dsPICDEM 1.1 General Purpose Development Board
+ dsPICDEM 2 Development Board

FIGURE 2-9: dsPICDEM™ STARTER DEMONSTRATION BOARDS

dsPICDEM™ Starter Demonstration Board dsPICDEM™ 28-Pin Starter Demonstration Board

2.6.1 dsPICDEM Starter Demonstration Board

The dsPICDEM Starter Demonstration Board (on the left in Figure 2-9) is a low-cost
demo board that uses a dsPIC30F6012 processor and has a connector for
programming and debugging with the MPLAB ICD 2. It includes the following features:
» RS-232 interface for use with the UART

» Switches and LEDs for I/O

» Analog output controlled via a digital pot

* Analog input from potentiometer

 Buffered external analog input

» Wire wrap area for prototyping

2.6.2 dsPICDEM 28-Pin Starter Demonstration Board

The dsPICDEM 28-Pin Starter Demonstration Board (on the right in Figure 2-9) is
another low-cost demo board for the dsPIC devices. This board uses a dsPIC30F2010
28-pin processor and has a connector for programming and debugging with the
MPLAB ICD 2. It also has the following features:

» RS-232 interface

» One LED

» Header for access to all device I/O pins

+ 28-pin DIP socket and layout pad for 28-pin SOIC device

» Wire wrap area for prototyping

© 2005 Microchip Technology Inc. DS70151A-page 21

Getting Started with dsPIC30F Digital Signal Controllers

FIGURE 2-10: dsPICDEM™ 1.1 GENERAL PURPOSE DEVELOPMENT
BOARD

2.6.3 dsPICDEM 1.1 General Purpose Development Board

The dsPICDEM 1.1 General Purpose Development Board (Figure 2-10) is a relatively
sophisticated general purpose board that uses a dsPIC30F6014 processor. It includes
the following features in addition to most of the features of the dsPICDEM Starter
Demonstration Board:

» Graphic and text LCD display module

» Header pins for MPLAB ICE 4000 device adapter

» Controller Area Network (CAN) interface

* RS-232, RS-422 and RS-485 UART interface

+ CODEC analog input and output for use with the DCI interface

2.6.4 dsPICDEM 2 Development Board

The dsPICDEM 2 Development Board (Figure 2-11) is a multipurpose development
board that helps you create embedded applications using dsPIC30F Digital Signal
Controllers in 18, 28 and 40-pin PDIP and SPDIP packages. Key features of the
dsPICDEM 2 Development Board include:

» dsPIC30F4011 40-pin PDIP sample device

» Multiple sockets for 18, 28 and 40-pin DIP devices

» Connector for MPLAB ICD 2 In-Circuit Debugger

» RS-232 interface

* CAN interface

» Temperature sensor, analog potentiometer and push button switches to simulate
A/D inputs

» LCD screen and LED indicators

DS70151A-page 22 © 2005 Microchip Technology Inc.

The Microchip Development Tools

FIGURE 2-11: dsPICDEM™ 2 DEVELOPMENT BOARD

26.5 dsPICDEM MC1 Motor Control Development System

The dsPICDEM MC1 Motor Control Development System provides the application
developer with three main components for quick prototyping and validation of
Brushless DC Motor (BLDC), Permanent Magnet Alternating Current (PMAC) and AC
Induction Motor (ACIM) applications. The three main components are:

» dsPICDEM MC1 Motor Control Development System

» dsPICDEM MC1L 3-Phase Low-Voltage Power Module

+ dsPICDEM MC1H 3-Phase High-Voltage Power Module

The dsPICDEM MC1 Motor Control Development System contains a dsPIC30F6010
and supports a custom interface header, which allows different motor power modules
to be connected to the PCB. The control board also has connectors for mechanical

position sensors, such as incremental rotary encoders and hall effect sensors, and a
breadboard area for custom circuits.

FIGURE 2-12: dsPICDEM™ MC1 MOTOR CONTROL DEVELOPMENT
SYSTEM

The dsPICDEM MC1L 3-Phase Low-Voltage Power Module is optimized for 3-phase

motor applications that require a DC bus voltage less than 50 volts and can deliver up
to 400W power output. The low-voltage module is intended to power BLDC and PMAC
motors.

© 2005 Microchip Technology Inc. DS70151A-page 23

Getting Started with dsPIC30F Digital Signal Controllers

The dsPICDEM MC1H 3-Phase High-Voltage Power Module is optimized for 3-phase
motor applications that require DC bus voltages up to 400 volts and can deliver up to 1 kW
power output. The high-voltage module has an active power factor correction circuit that
is controlled by the dsPIC30F device. This power module is intended for AC induction
motor and power inverter applications that operate directly from AC line voltage.

FIGURE 2-13: dsPICDEM.net™ CONNECTIVITY DEVELOPMENT BOARDS

2.6.6 dsPICDEM.net 1 and dsPICDEM.net 2 Connectivity
Development Boards

The dsPICDEM.net 1 and dsPICDEM.net 2 Connectivity Development Boards provide
a basic platform for developing and evaluating various connectivity solutions and
implementing TCP/IP protocol layers combined with V.22bis/V.22 ITU specifications
across PSTN or Ethernet communication channels.The board comes with an ITU-T
compliant V.22bis/V.22 modem demonstration program loaded on the installed
dsPIC30F6014 device. This program enables you to connect and transfer data
between the dsPIC Soft Modem and an ITU-T compliant reference modem. Control of
the dsPIC Soft Modem is supported via AT commands communicated using the
on-chip UART channel. Also included are CMX-MicroNet™ Web and FTP Server dem-
onstration files that, when downloaded into the dsPIC30F6014 device, demonstrate
two TCP/IP stack-based applications over the Ethernet data link layer.

Both dsPICDEM.net 1 and 2 support the dsPIC30F5013 and dsPIC30F6014 devices
and have Ethernet and PSTN interfaces. The dsPICDEM.net 1 supports FCC/JATE
PSTN and the dsPICDEM.net 2 supports CTR-21 PSTN.

2.6.7 Next Step — Learn to Use MPLAB IDE

Now that you have learned about the development tools available for the dsPIC
devices, it's time to start using the MPLAB Integrated Development Environment (IDE).

You must learn to use the MPLAB IDE before you can compile, program or debug, so
please proceed to Chapter 3. “MPLAB Integrated Development Environment”.

DS70151A-page 24 © 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Chapter 3. MPLAB Integrated Development Environment

3.1 MPLAB IDE OVERVIEW

Now that you've been introduced to the dsPIC30F and its development tools, you're
probably itching to write some code. As discussed in Chapter 2. “The Microchip
Development Tools”, the MPLAB IDE software is used throughout the whole code
development process: for writing, compiling, debugging and programming. It has the
following main features:

» Project Manager — for organizing code files

+ Editor — for typing code

» Assembler and Linker — for assembling and building code

» Compiler Interface — for compiling code with separate compilers

+ Simulator — for testing code operation

» Debugger/Emulator Interface — for testing code with a separate debugger or
emulator

* Programmer Interface — for programming parts with a separate programmer

Instead of wasting time with a dry, boring discussion of these features, let's do a quick
tutorial. Learning by doing is always effective.

First, install and run the latest MPLAB IDE software. No kidding — this step is important.
The software is updated quite regularly to add new features and support for the latest
devices. The latest version of MPLAB IDE can be obtained from the Microchip
Technology web site (www.microchip.com).

The source code files for this tutorial are available with this document on the Microchip
Technology web site or on CD. We will use the Flash LEDs with dsPIC30F6014.s
file for the tutorial. You will not need any hardware, but later, you will be able to run the
code on a dsPIC30F6014 using the dsPICDEM 1.1 General Purpose Development
Board.

The Project Wizard in MPLAB IDE is a great way to create new projects, making it a
very simple process. Before starting, create a folder called C: \Tutorial and copy the
Flash LEDs with dsPIC30F6014. s file into the folder. If the files are copied from
a CD, they have read-only attributes. Remember to change the attributes if the file
needs to be edited.

Note: If you have a dsPICDEM Starter Demonstration Board, you can use the
Flash LEDs with dsPIC30F6012.s file instead. For the dsPICDEM
28-Pin Starter Demonstration Board, you can use the Flash LED with
dsPIC30F2010.s file and for the dsPICDEM 2 Development Board, you
canuse the Flash LED with dsPIC30F4011. s file. These files contain
very similar code and functionality.

© 2005 Microchip Technology Inc. DS70151A-page 25

http://www.microchip.com

Getting Started with dsPIC30F Digital Signal Controllers

3.2 PROJECTS AND WORKSPACES

Generally, everything in MPLAB IDE is done within a project.

A project contains the files needed to build an application (source code, linker script
files, etc.), along with their associations to various build tools (language tools, linker)
and build options (the settings for those tools).

A workspace contains one or more projects, information on the selected device, debug
tool and/or programmer, open windows and their location, and other IDE configuration
settings. Usually, you will have one project in one workspace. (This can be changed by
going to the Configure>Settings menu.)

3.3 CREATING A PROJECT

3.31 Projects and Workspaces

Start MPLAB IDE and close any open workspace with the File>Close Workspace
menu. Then, use the Project>Project Wizard menu to start the Project Wizard. When
the Welcome screen appears, click Next to continue.

Step 1 — Select a Device

The next screen (Figure 3-1) allows you to choose the part. Select “dsPIC30F6014”
from the pull-down menu.

Note: If you are using one of the other dsPIC development boards, you'll need to
pick the appropriate device for that board. For the dsPICDEM Starter
Demonstration Board, select the dsPIC30F6012. For the dsPICDEM
28-Pin Starter Demonstration Board, select the dsPIC30F2010. For the
dsPICDEM 2 Development Board, select the dsPIC30F4011.

FIGURE 3-1: PROJECT WIZARD — STEP ONE
Stegecl);;:a device EE/’@

Device:

dsFIC30FE01 4 v

cBack || Nedt> | [cancel | [Hel

Click Next to continue.

DS70151A-page 26 © 2005 Microchip Technology Inc.

MPLAB Integrated Development Environment

Step 2 - Select a Language Toolsuite

The next screen (Figure 3-2) allows you to select the toolsuite. Select the “Microchip
ASM30 Toolsuite” from the pull-down menu.

FIGURE 3-2: PROJECT WIZARD - STEP TWO
Project Wizard E‘
Slepﬁ;::?:a language toolsuite Eﬁtffﬁ
Active Taoalsuite: ticrochip 45030 T oolsuite

Toolsuite Contents

nbler [pic. i)
MPLAE LINK30 Object Linker [pic30-Id. exe)
LIB30 Archiver [pic30-ar.exe|

Location

C:\Program Files\MiciochichMPLAR ASMI0 Suite\bintpica0-as.exe

Helpl My Suite lsn't Listed!] [Show all installed toolsuites

[< Back H Mest >][Cancel] [Help]

Check that the executables for the assembler and linker are at these locations:

Assembler:
C:\Program Files\Microchip\MPLAB ASM30 Suite\bin\pic30-as.exe

Linker:
C:\Program Files\Microchip\MPLAB ASM30 Suite\bin\pic30-1d.exe

Archiver:
C:\Program Files\Microchip\MPLAB ASM30 Suite\bin\pic30-ar.exe

These tool locations assume that the latest version of MPLAB IDE was installed with
the default settings.

A red ‘X’ appears next to toolsuites whose locations are blank. If there is a red ‘X, then
select the toolsuite and click on the Browse button to set the location. Once the
toolsuite has been selected and the locations are correct, click Next to continue.
Step 3 — Name the Project

The next screen (Figure 3-3) allows you to name the project.

FIGURE 3-3: PROJECT WIZARD - STEP THREE
Project Wizard E\
Slerﬂeﬂgiiilrpmject
Project Mame
WyProject

Project Directony

ChTutorial | Browse.

<Back | Medt> | [cancel | [Hel

© 2005 Microchip Technology Inc. DS70151A-page 27

Getting Started with dsPIC30F Digital Signal Controllers

Type “MyProject” for the project name and browse to, or type C:\Tutorial for the
project directory.

Click Next to continue.

Step 4 — Add Files to the Project
The next screen (Figure 3-4) allows you to add files to the project.

FIGURE 3-4: PROJECT WIZARD - STEP FOUR

Step Four: EE
Add any existing files to your project /‘{é}

=1 MPLAB ASM30 Suite A [JiCiProgram Files\Microchip\MPLAB
#- 1 hin [CATutorialyFlash LEDs with dsPIC30F

=1 lib
=1 Support
&
p30f2010.gld
p302010e.gld
p30f2011.gid

30201 Te.gld

p30f2012.gld

p30207 26 gld

p3073010.9id ¢ >

p30fIT legld Check the box to copy the file ta the
* project directary

[< Back “ Mext> I l Cancel I l Helg I

Select the Flash LEDs with dsPIC30F6014.s file and click Add>> to include the
file in the project.

Navigate to the C: \Program Files\Microchip\MPLAB ASM30 Suite)
Support\gld folder. Select the p30£6014 .g1d file and click Add>> to include the
file in the project. There should now be two files in the project.

Click Next to continue. When the summary screen appears, click Finish.

Note: For the dsPICDEM Starter Demonstration Board, select the Flash LEDs
with dsPIC30F6012.s and p30£6012.gld files. For the dsPICDEM
28-Pin Starter Demonstration Board, select the Flash LED with
dsPIC30F2010.s and p30£2010.gld files. For the dsPICDEM 2
Development Board, selectthe Flash LED with dsPIC30F4011.s and

p30£f4011.gld files.

After the Project Wizard completes, the MPLAB IDE Project window will show the
Flash LEDs with dsPIC30F6104.s file in the Source Files category and the
p30£f6014.gld file in the Linker Scripts category. The . gld file is described in much
greater depth in Chapter 9. “The MPLAB LINK30 Linker”.

If you realize that you have forgotten to add files to your project, you don’t have to
restart the Project Wizard. Simply right click on a category in the project tree, select Add
Files from the drop-down menu and browse to the file you want to add. You can remove
files by right clicking on the file name and selecting Remove.

A project file, MyProject .mcp, and workspace file, MyProject . mcw, have now been
created by the MPLAB IDE (see Figure 3-5). Double click the Flash LEDs with
dsPIC30F6014. s file in the Project window to open the file. The file displays in the
Editor window.

DS70151A-page 28

© 2005 Microchip Technology Inc.

MPLAB Integrated Development Environment

FIGURE 3-5: EDITOR WINDOW

w MPLAB IDE v7.00
Fle Edit ¥ew Project Debugger Programmer Tools Configure Window Help
0O = SRA? e D &5
- i
= Ci\Tutorial\MyProject.mep d
=-Source Files ; Use Timer 1 to flash LED]1 when switch SW1l is not pressed
Flash LEDs with dsPIC30F6014.5 : and flash LEDZ when switch 3Wl is pressed
Header Files d E
Cbject Flles
Library Files .equ _ 30F6014, 1
=-Linker Scripts .include "p30f6014.inc"
p30fe0 14.gld
Gther Files e e e e e e

;Global Declarations:

M C:\Tutorial\Flash LEDs with dsPIC30F6014.5 FEX)

.global _ reset ;The label for the

.global _ OscillatorFail iDeclare Oscillator

Build ‘\/erswon Contral | Find in .global _ AddressError ;Declare Address Er
\ .global StackError iDeclare ftack Errc

.global MathError ;Declare Math Erro:

Project Window

;configuration bits:

conficg FOSC. CEW FSCM OFF & XT PLL4 e

Editor Window

dsPIC30FE014 oabsabIPO dcnovze Ln32,Col 15 INS WR

3.3.2 Editor

There are several features provided in the editor in MPLAB IDE that makes writing
code a much smoother experience. These features include:

» Syntax highlighting

* View and print line numbers

» Search through all project files or within a single file

» Bookmark and jump to specific lines

» Double click on error message to go to the line of code

* Block commenting

* Brace matching

 Variable font and font size

Syntax highlighting is an especially useful feature of MPLAB IDE. Code elements, such

as instructions, directives, registers, etc., appear in different colors and fonts. This
allows you to easily interpret your code and notice mistakes more quickly.

© 2005 Microchip Technology Inc. DS70151A-page 29

Getting Started with dsPIC30F Digital Signal Controllers

3.4 BUILDING CODE

3.4.1

Building a project consists of two steps. The first is the Assembly or Compile process,
where each source file is converted into an object file (. o extension), containing
opcodes or dsPIC instructions. These object files can be used to form libraries, which
are added to other projects as code modules, or to generate the final hex file, which is
used to program the dsPIC device.

Assembling and Linking

The second step in the building process is Linking. During the link stage, all of the
dsPIC instructions and variables from the various object and library files are placed in
memory according to the memory map provided by the linker script file.

The linker creates two files:
1. The .hex file, which is a listing of the data to be placed in the dsPIC device’s
program, EEPROM and configuration memory.

2. The .cof, or COFF (Coded Object File Format) file, contains additional
information that is necessary to debug your source code.

3.4.2

Before building, you must tell MPLAB IDE where to find the include files. Near the top
of the Flash LEDs with dsPIC30F6014. s file, you will see the line:

.include "p30£f6014.inc"

The p30£6014 . inc file contains symbolic information that is needed to refer to
Special Function Register bits by name rather than fairly meaningless numbers. To let
MPLAB IDE know where to find this file, use the Project>Build Options>Project menu
to display the Build Options window, as shown in Figure 3-6. Then, click the Browse
button next to the “Assembler Include Path, $(AINDIR):” field.

Include Files

FIGURE 3-6: BUILD OPTIONS WINDOW

Build Options For Project "MyProject. mcp” @@

General | ASM30/C30 Suite | MPLAE ASM30 | MPLAB LINK30

Output Directory. $(BINDIR):

Intermediates Directan:. $(TMPDIR]:
Assembler Include Path, $(AINDIR):
ChProgram Files\Microchip\MPLAB ASM30 Suitel Supportyingy Browse

Include Path, ${INCDIR)

Library Path. $(LIBDIF):
Linker-Script Path, ${LKRDIR)
Help I [Suite Defaults I
I 0K] [Cancel I I Apphy]

Browse to the C:\Program Files\Microchip\MPLAB ASM30 Suite)\
Support\inc folder and click Select. This directory is where MPLAB IDE keeps the
include files for all the dsPIC devices that it supports.

Finally, click OK to save the information. The project is now ready to be built.

DS70151A-page 30

© 2005 Microchip Technology Inc.

MPLAB Integrated Development Environment

343 Building the Project

To build the project, use the Project>Make menu. The results of the build will appear in
the Output window and should indicate that the build succeeded, as shown in

Figure 3-7.

Depending on your Project Build Options, you may see a Memory Usage Reportin your
Build results.

FIGURE 3-7: OUTPUT WINDOW

M Qutput

Build | Version Control | Find in Files | MPLAB SIM

Make: The target "CATutarial\Flash LEDs with dsPIC30FE0T4.0" is out of date.

Executing: "C\Program Files\Microchip\MPLAB ASM30 Suite\binypicil-as.exe" -p=30FE014 "Flash LEDs with dsPIC30FE014.¢
Make: The target "CATutorialWyProject.cof' is out of date.

Executing: "CA\Program Files\Microchip\MPLAB ASM30 Suitelbinypic30-ld.exe" "CATutorial\Flash LEDs with dsPIC30FE014.0"

Executing: "CA\Program Files\Microchip\MPLAB ASM30 Suitetbinypic3l-binZhex.exe" "MyProject cof'
Loaded ChTutarialMyProject.cof.
BUILD SUCCEEDED: Fri bay 06 13:36:01 2005

< >

344 Configuration Bits

The code contains configuration bit settings, specified with configuration

directives. You can see the settings in the Configuration Bits window using the
Configure>Configuration Bits menu. These settings can be changed. You can edit the
settings by clicking on the text in the Setting column.

345 Next Step — Debugging

Now that you have built the project successfully, it's time to debug the code. There are
several tools you can use. If you want to debug using the simulator, then please
continue on to Chapter 4. “The MPLAB SIM Simulator” for a tutorial on the simulator.
If you wish to use the In-Circuit Debugger (MPLAB ICD 2), then skip ahead to
Chapter 5. “The MPLAB ICD 2 In-Circuit Debugger”. To use the MPLAB ICE 4000
In-Circuit Emulator, go to Chapter 6. “MPLAB ICE 4000 In-Circuit Emulator”.

© 2005 Microchip Technology Inc. DS70151A-page 31

Getting Started with dsPIC30F Digital Signal Controllers

NOTES:

DS70151A-page 32 © 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Chapter 4. The MPLAB SIM Simulator

41 MPLAB SIM OVERVIEW

So, you want to test your code but don’t want to bother setting up any hardware? Then
the MPLAB SIM Simulator is for you. MPLAB SIM Simulator is fully integrated into the
MPLAB IDE environment. It is capable of mimicking your code execution on hardware
without the need for expensive overhead. You can test external inputs, peripheral
transactions and see internal signals on your processor without having to spend any
money.

There are limitations to the MPLAB SIM Simulator. The simulator is not capable of
reacting to or producing any real world signals. It can’t beep buzzers, blink LEDs or
interact with other processors. Still, it gives you much flexibility in developing your code
and working out its bugs.

The MPLAB SIM Simulator allows you to:

* Modify code and immediately re-execute it
* Inject external stimuli into the simulated processor
» Load register values at specified times

The dsPIC devices have 1/O pins multiplexed with other peripherals (and therefore,
referred to by more than one name). The simulator recognizes the pin names specified
in the standard device headers as valid I/0O pins. Therefore, you should refer to the
header file for your device (e.g., p30F6014.1inc or p30F6014.h) to determine the
correct pin names.

This chapter discusses how to use the simulator. First, you’ll open the project that you
created in Section 3.3 “Creating a Project”. If you haven’t yet created the project,
please refer to that section now. You will use the simulator to step through the code,
create breakpoints, use the stopwatch feature and apply stimulus.

Note: If you created the project for the dsPICDEM Starter Demonstration Board,
the dsPICDEM 28-Pin Starter Demonstration Board or the dsPICDEM 2
Development Board, you can use your project and still follow along with this
section. The code is very similar.

© 2005 Microchip Technology Inc. DS70151A-page 33

Getting Started with dsPIC30F Digital Signal Controllers

4.2 OPENING THE PROJECT

If it is not already open, open the workspace created in Section 3.3 “Creating a
Project” by selecting File>Open Workspace and browsing to
C:\Tutorial\MyProject .mcw. The workspace name should be visible in the title
bar of the Project window and the name of the project should be visible inside the
Project window at the top. Build the project with the Project>Make menu to ensure that
it is up to date.

FIGURE 4-1: PROJECT WORKSPACE

MPLAB IDE v7.00 EX
File Edit View Project Debugger Frogrammer Took Configure Window Help

DEFW| i mE 247 | deEBaw|sE e B TR

M MyProject. mew [)E)*%] mc:\..\Flash LEDs with dsPIC3OF6014.5 (=] ES|
= Ci\Tutorial\MyProject.mcp 5 &
= S_ource Files ; Use Timer 1 to flash LED1 whery—
*Flash LEDs with dsPIC30FE014.5 2 and flash LEDZ when switch
Header Files :
- Object Fles
- Library Files .equ _ 30FA014, 1
= Linker Scripts .include "p30fe014.inc”
- p30fe014.gid
- Qther Files

;Global Declaraticns:
B Qutput

-global reset

MFLAB SIM dsPIC30FE014 | pci oabsab PO donovzo

4.3 SELECTING THE SIMULATOR

Use the Debugger>Select Tool>MPLAB SIM menu to select the MPLAB SIM Simulator,
as shown in Figure 4-2. When you do this, simulator operations are added to menus
and tool bars. The standard set of debugging options, plus Stopwatch, Stimulus
Controller and SCL Generator are added to the Debugger menu in the MPLAB IDE.

FIGURE 4-2: DEBUG TOOL SELECTION MENU

MPLAB IDE v7.00
Fle Edit View Project | Debugger Programmer Tools Configure Window Help

ol None
Clear Memory L 1 MPLAB ICD 2
2 MPLAB ICE 4000

Run
Animate
Halt

Step Into
Step Cwer
Step Qut
Reset

4 MPLAB ICE 2000

Breakpoints...

StopWWatch
Stimulus Controller
SCL Generator
Profile

Refresh P

Settings...

MPLAB SIM dsPIC30FE014 pci0 oabsabIPO dcnovzc

DS70151A-page 34

© 2005 Microchip Technology Inc.

The MPLAB SIM Simulator

44 RESETTING THE CODE

When you select MPLAB SIM, the Program Counter is automatically set to zero,

the Reset vector. You can simulate a Power-on Reset with the
Debugger>Reset>Processor Reset menu. The text “pc:0” appears in the Status bar at
the bottom of the MPLAB IDE screen, showing that the Program Counter is zero.

There are four types of Reset, selectable by the Debugger menu:

 MCLR Reset

» Watchdog Timer Reset

» Brown-out Reset

* Processor (Power-on) Reset

Open the Program Memory window (Figure 4-3) with the View>Program Memory menu

and click on the Symbolic tab at the bottom of the window. A green arrow in the gutter
points to the first line containing the code at address zero.

FIGURE 4-3: PROGRAM MEMORY WINDOW

M Program Memory

Line | Address
00000

s ic

1 040100 ¢

2 00002 oo00oo0o nop

3 00004 00014aA nop

4 0000&e 000134 nop v

Opcode Hex| kachine || Symbolic PSY Mixed ‘ PaY Data|

Address zero contains agoto _ reset instruction that is added automatically by the
linker and is not in the source code file.

Close the Program Memory window at this point because all the other instructions are
in the source code.

4.5 STEPPING THROUGH THE CODE

You can now step through the source code in the simulator. Use the
Debugger>Step Into menu to single step the goto _ reset instruction. The green
arrow now points to the first line of executable code in the Flash LEDs with
dsPIC30F6014.s file.

FIGURE 4-4: STEPPING THROUGH THE CODE

B C:\Tutorial\Flash LEDs with dsPIC30F6014.5

;Initialize stack pointer and limit register

B _ reset: mov #_ 8P init, W15 ;Initalize the Stack Pointer register
mov #_SPLIM init,W0 ;Get address at the end of stack space
mov Wi, SPLIM ;Load the stack Pointer Limit register
nop ;Add NOP to follow SPLIM initialization |«
< >

© 2005 Microchip Technology Inc. DS70151A-page 35

Getting Started with dsPIC30F Digital Signal Controllers

You can use the Debugger>Step Into menu to keep stepping through the code. There
are several different methods of stepping through your code, all under the Debugger
menu: Step Into, Step Over and Animate.

» Step Into executes the current instruction and then halts. If the current instruction
is a call to a subroutine, the Program Counter changes to the start of the called
function.

» Step Over executes all code up to the next Program Counter location. It is just like
the Step Into feature for most instructions. However, if the instruction is a CALL, it
executes the called subroutine in its entirety and then returns.

» Animate steps continuously through your code. It is equivalent to doing many
Step Into operations repetitively until you select Halt.

4.6 RUNNING THE CODE

Select Debugger>Run to run your application. The word, “Running...”, with a small
moving bar appears in the Status bar. Nothing seems to be happening except for the
moving bar. The green arrow in the gutter becomes transparent since the Program
Counter is changing and the current execution point cannot be shown.

Select Debugger>Halt to stop the program execution. MPLAB IDE updates its windows
after the Halt and shows the current execution point with the green arrow (Figure 4-5).

FIGURE 4-5: HALTING THE CODE
M C:\Tutorial\Flash LEDs with dsPIC3OF6014.5 FEX
4 ~
;Loop while waiting for a Timerl match and toggle LED1 when it happens
MainLoop: btss IFs0, #T1IF ;Check 1f Timerl interrupt flag is set
=2 bra MainLoop ;Loop back until set
belr IFS0, #T1IF ;Clear Timerl interrupt flag
btss PORTR, #12 ;Test switch SWl (low when pressed)
bra SwitchPressed v
< >

4.7 THE DEBUG TOOLBAR AND HOTKEYS

The Debug toolbar provides shortcut icons to control the simulator, as shown in Figure 4-6.

FIGURE 4-6: SHORTCUT ICONS

Halt Step Into

/

Reset
b o (i B+

\
Animate Step Over

When you select the MPLAB SIM Simulator, the Debug toolbar automatically opens. You
can drag this toolbar anywhere on the desktop for convenience. Click on the appropriate
toolbar icon to Run, Halt, Animate, Step Into, Step Over or Reset the program.

MPLAB SIM also uses the following function keys to access the main debugging functions:

<F5> Halt

<F6> Reset
<F7> Single Step
<F9> Run

Additional functions are available by right clicking on a line of source code. The most
important of these are Set Breakpoint and Run to Cursor.

If you do not see the toolbar, you can enable it with the View>Toolbars>Debug menu.

DS70151A-page 36 © 2005 Microchip Technology Inc.

The MPLAB SIM Simulator

4.8 BREAKPOINTS

The simulator gives you the ability to set breakpoints — places in the code where
execution will be halted. You can set breakpoints directly in your Source Code window,
in the Program Memory window, or in the Disassembly window.

In this example, you'll set a breakpoint where an LED is lit by toggling a bit in PORTD.
Scroll down to line 100 and find the btg LATD, #1 instruction. Note that the line
number is shown in the Status bar.

Note: If you are using the Flash LED with dsPIC30F6012.s file, set the
breakpoint on line 100 on the btg LATD, #5 instruction. If you are using
the Flash LED with dsPIC30F2010. s file, then set the breakpoint on
line 91 on the btg LATD, #0 instruction. If you are using the Flash LED
with dsPIC30F4011. s file, set the breakpoint on line 103 on the btg
LATB, #1 instruction.

Click on the line of code to place the cursor on the correct line, then right mouse click
and select Set Breakpoint from the pop-up menu. You can also set a breakpoint by
doubile clicking on the line (if the option has been turned on with the Edit>Properties
menu).

Now press <F9> or use the Debugger>Run menu. The program will execute up to the
line with the breakpoint, toggling the 1/0O pin. After halting at the breakpoint, the green
arrow appears superimposed on the red stop sign (Figure 4-7).

FIGURE 4-7: HALTING AT BREAKPOINT
M C:\Tutorial\Flash LEDs with dsPIC30F6014.5 (=1t
btg LATD, #0 ;Toggle LEDL when SWl is not pressed r
bset LATD, #1 ;Turn off LEDZ
bra MainLoop ;Loop back
gwitchPressed: bset LATD, #0 ;Turn off LEDL
(B] btg LATD, #1 ;Toggle LEDZ when 3Wl is pressed
bra MainLoop ;Loop back
;Error traps 3
< >

Try combinations of stepping with <F7> and running with <F9>. Notice that every time
the code is made to run, it halts at the breakpoint.

© 2005 Microchip Technology Inc. DS70151A-page 37

Getting Started with dsPIC30F Digital Signal Controllers

49 WATCH WINDOW

Several options are available to view memory in the dsPIC simulator. The Watch
window is one of the most useful. Use the View>Watch menu to open a Watch window

(Figure 4-8).

FIGURE 4-8: WATCH W

INDOW

v | | Add Symbol| | _30FE014

Address ‘ Svmbol Name | Value
0z2o4d FORTD 0x0000
0zZpz TRISD 0xFFFF

|'watch1 ‘Watch 2 | Watch 3| Watch 4]

Type “PORTD” in the Add SFR (Special Function Register) selection box at the top of
the window. Click Add SFR to add it to the Watch window list. You can also type the
register name directly into the Watch window; add TRISD in the same way.

You should now have two Special Function Registers listed in the Watch window. There
are columns for the “Address”, “Symbol Name” and the “Value” of the symbol.

Press <F6> to reset the code. Notice that the value of TRISD is OxFFFF. This is the
state of the TRISD register after a Reset. Press <F9> to run the code. The code should
execute and halt at the breakpoint set earlier. Notice that the TRISD register has
changed to OxFFFO. The code set up the I/O port directions by writing to TRISD and
we can see the change in the Watch window. Notice that each time you step or halt,
changed values appear in red, whereas unchanged values are black.

Note: Ifyouareusingthe Flash LED with dsPIC30F6012.afile, then TRISD
changes to OxFFOF. If you are using the Flash LED with
dsPIC30F2010.s file, TRISD changes to OXxFFFE. If you are using the

Flash LED with dsPIC30F4011.a file, TRISB changes to OxFFFC.

Note the state of PORTD in the Watch window and then press <F6> to run again. Each
time the code runs and halts at the breakpoint, a bit in PORTD changes (see
Figure 4-9). This shows the code toggling the pin to turn the LED on or off.

DS70151A-page 38

© 2005 Microchip Technology Inc.

The MPLAB SIM Simulator

FIGURE 4-9: EXAMPLE OF PORTD BIT CHANGES

Add SFR | |PORTD v | | Add Symbol| |_30FE014 «

Rddress | dvmbol Name | Value
0zo4d FORTD 0x000D
02Dz TRISD 0=FFFE0
Wyatch 1 Watch 2 | Watch 3| Watch 4 Note change in PORTD

Add 5FR | |FORTD | | Add Symbol| |_30FB0T4 «

value.

Address | Gvmbol HName | Value
02D4 PORTD 0x000F
0ZD2 TRISD O=xFFFO0

['Waich1 Watch2| Watch 3| watch 4

410 SIMULATOR SETTINGS

In the MPLAB IDE environment, use the Debugger>Settings menu to set up various
features of the simulator. The oscillator speed must be set up in order to make timing

measurements.
FIGURE 4-10: SIMULATOR SETTINGS DIALOG
Simulator Settings ?x
Uantl 10 Debugger Animation Limitations
Osc/Trace Break Options SCL Optians
Frocessor Frequency
Units:
(@) MHz
29.4912 () KHz
C' Hz
Trace Options
[Trace Al [(]Break on Trace Buffer Full
[Ok l l Cancel l

Select the Osc/Trace tab and set the “Processor Frequency” to 29.4912 MHz. Check
the Trace All checkbox. You'll be using the trace feature later on.

© 2005 Microchip Technology Inc.

DS70151A-page 39

Getting Started with dsPIC30F Digital Signal Controllers

The dsPICDEM 1.1 General Purpose Development Board is shipped with a

7.3728 MHz crystal oscillator and the code selects the 4x PLL option in the configura-
tion bits to step up the frequency by a factor of four. This means that the processor runs
at 29.4912 MHz. Each instruction cycle takes four clock cycles, so the instruction cycle
rate is 7.3728 MIPS.

Note: Ifyouareusingthe Flash LED with dsPIC30F6012. s file, then set the
processor frequency to 16 MHz instead. The other demo files use the
29.4912 MHz crystal frequency.

411 STOPWATCH

We can measure the execution time between two events by using the Stopwatch
feature. Open the Stopwatch by clicking Debugger>Stopwatch. The Stopwatch keeps
track of the number of instruction cycles that are executed and also shows the time that
the cycles took. It calculates the time from the “Processor Frequency” that you entered
earlier.

FIGURE 4-11: STOPWATCH DIALOG
M Stopwatch @|§|@
Stopwatch Total Simulated

Instruction Cycles 1474587 1474587
Time (mSecs) 200003662 200.003662

Pracessor Frequency (MHz) 29.491200

Clear Simulation Time On Reset

Now try a brief exercise. Press <F6> to Reset and then <F9> to Run. The execution
should halt at the breakpoint that you set earlier in Section 4.8 “Breakpoints”. Notice
that the “Stopwatch” and the “Total Simulated” columns both show 200 ms. The code
sets up the Timer1 Period register for 1/5 of a second (200 ms) and the breakpoint is
set where the timer period has been detected.

DS70151A-page 40

© 2005 Microchip Technology Inc.

The MPLAB SIM Simulator

412 TRACE BUFFER

The Trace buffer is a handy feature of the MPLAB SIM Simulator. You'll find this feature
under the View>ICE Trace menu.

The Trace buffer holds a list of the instructions that have executed. It can hold more
than 65,000 instructions. The Trace buffer works in the background and does not need
to be explicitly enabled. Simply executing code causes it to be recorded in the Trace
buffer.

FIGURE 4-12: PROGRAM WINDOW WITH TRACE BUFFER

BREAKPOINT SET

W C:\Tutorial\Flash LEDs with dsPICIOF6014.5 EBX

<

;Loop while walting for a Timerl match and toggle LEDL when it happens

MainLoop: btss IFS0, #T1IF ;Check if Timerl interrupt flag is set
(B bra MainLoop ;Loop back until set
belr IFs0, #T1IF ;Clear Timerl interrupt flag
btss PORTA, #12 ;Test switch 3Wl {low when pressed)
bra FwitchPressed

v

>

As a simple experiment, follow these steps to execute a few lines of code and view
them in the Trace:

1.

In the Program window, set a breakpoint on the bra MainLoop instruction,
immediately after the MainLoop: address label (see Figure 4-12).

Press <F6> to Reset and <F9> to Run. The code will halt at the breakpoint.
Select View>ICE Trace to display the Trace buffer. All the instructions that were
executed are shown in the Trace window, starting with the goto _ reset
instruction at address zero (see Figure 4-13). If the Trace view is blank, check
what filter trace is not selected in the complex trigger setting.

Scroll to the very end of the Trace to see the last instruction that was executed.
Notice that the Trace recorded the btss IFSO0, #T1IF instruction immediately
before the breakpoint and then stopped.

Compare the Trace buffer with the source code; you'll see that all the instructions
up to the breakpoint are represented in the Trace window. Notice that when you
select a line in the Trace view, the associated source code line is highlighted at
the bottom of the window, as shown in Figure 4-13.

© 2005 Microchip Technology Inc. DS70151A-page 41

Getting Started with dsPIC30F Digital Signal Controllers

FIGURE 4-13: TRACE WINDOW

Trace
T
ajlala
Line | Addr op Label Instruction sxa | sxp | sva | syp | pa | DD Cyoles E E E
76l s
0 000000 040100 goto 0=000100 0000 0000 0000 0000 0000 0000 00000000000Z 0 0 O
1 000002 000000 nop 0000 0000 0000 0000 0000 0000 000000000002 0 O O

mov.w #0x800,0x001e

3 000102 227980 mov.w #0x2798,0=0000 0000 0000 0OOO 0OOO 0000 0000 0000OOOOOO0S O O O
4 000104 880100 mov.w 0x0000,0x0020 0000 0800 0000 0000 OO1E 0800 000000000006 O O O
5 000106 000000 nop 0000 2798 0000 0000 0OOOO 2798 00000DOOOOOT O O O
6 000108 ZFFFEO mov.w #0xffff, 00000 0000 2798 0000 0000 0020 2798 0000OOCOOOOE O O O
7 00010n 8816B0 mov.w 0x0000,0x02da 0000 0000 QOO0 0O0O 0020 27%8 000000000009 O O O
8 00010C ZFFFOO mov.w #0xfff0,0z0000 0000 FFFF 0000 0000 000D FEFF 0000000O0DOOA O 0O O
9 00010E 881630 mov.w 0x0000,0x02d2 0000 FFFF 0000 0000 02D6 FFFE 00000000000B O O O
10 000110 m90zZD6 bclr.b Ox02d6,#0 0oo0 FEFO 0000 0000 0000 FEFO OOOOOOOOOQOC O O O
11 000112 EFZ2104 clr.w 0x0104 0000 FEFO 0000 0000 0ZpZ FFEO 0000000000OD O O O
1z 000114 EF2100 clr.w 0x0100 0Zp6 FFFF 0000 0000 02pé OOFE 00000000000E O 0O O
13 0001le 2Zleso0 mov.w #0x1680,0x0000 0000 0O0OO QOOO 0OOO 0104 0000 ODOOQOOQODOOOER O O O
14 000118 880810 mov.w 0x0000,0x0102 0000 0000 0O0OO0 0000 0100 0000 000000000010 O O O
15 00011r ZBs0300 mov.w #0xB8030,0x0000 0000 1680 QOO0 0OOD 0000 1680 OOOQOOOODOOLI O O O
16 00011C 8BBOBZ0 mov.w 0Ox0000,0x0104 0000 1680 0000 0000 O10Z 1480 00000000001Z 0 0O O
17 00011E AEA084 MainLoop btss.b 0x0084,#3 0oo0 8030 0000 0000 0000 BO30 000000000013 O O O
< >
CiTutorial\Flash LEDs with dsPIC30F6014.5
58 ~
59
60
61
62 z
63 #_ SPLIM_init,WD ;Get address at the end of stack space
64 Wi, SELIM ;Load the Stack Pointer Limit register I
< >

DS70151A-page 42 © 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Chapter 5. The MPLAB ICD 2 In-Circuit Debugger

51 MPLABICD 2 OVERVIEW

The MPLAB ICD 2 is a development level programmer and in-circuit debugger.

Although not as powerful as an in-circuit emulator, it has many benefits.

» The ICD 2 allows you to execute your code on the actual target chip.

* You can run at full speed or step one instruction at a time.

* You can view and modify register contents on-the-fly, as well as set breakpoints in
your source code.

For the price, this tool offers excellent value.

511 Installing the USB Driver

The MPLAB ICD 2 has a USB interface. The USB drivers must be installed before it
can be used. The MPLAB ICD 2 can be used with a serial port, but it is easier and much
faster to use the USB interface. The instructions for installing the USB drivers can be
found in your MPLAB IDE installation directory:

C:\Program Files\Microchip\MPLAB IDE\ICD2\Drivers\ezicd2.htm

The instruction files may be different if you are using an operating system other than
Windows® XP or Windows® 2000. Look for the appropriate . htm file in the Drivers
folder.

5.1.2 Opening the Project

This chapter contains a tutorial that demonstrates how to use the MPLAB ICD 2. First,
you’ll open the project that you created in the tutorial in Section 3.3 “Creating a
Project”. If you have not yet created the project, please refer to that section now.

The project code is designed to run on a dsPICDEM 1.1 General Purpose
Development Board. You will need a demo board to follow this tutorial.

Note: If you created the project for the dsPICDEM Starter Demonstration Board,
the dsPICDEM 28-Pin Starter Demonstration Board or the dsPICDEM 2
Development Board, you can use your project on your demo board and still
follow along with this section. The code is very similar. If you use the
dsPICDEM 2 Development Board, you will need to ensure that the proper
jumpers are inserted (H6-M ALL, H12-M D3 and H12-M D4).

Open the workspace you created in Section 3.2 “Projects and Workspaces” (select
File>Open Workspace and browse to C: \Tutorial\MyProject.mcw). The work-
space name should be visible in the title bar of the Project window and the name of the
project should be visible inside the Project window at the top.

Build the project (Project>Make menu) to ensure that it is up to date.

© 2005 Microchip Technology Inc. DS70151A-page 43

Getting Started with dsPIC30F Digital Signal Controllers

FIGURE 5-1: TUTORIAL PROJECT AND WORKSPACE

 MPLAB IDE v7.00
Fie Edit View Project Debugger FProgrammer Took Configure Window Help

0= ? R B S b

B MyProject. mcw EJ@|E|
& Ci\Tutorial\MyProject.mcp S -
= Source Files ; Use Timer 1 to flash LED1 whern
Flash LEDs with dsPIC30FE014.5] and flash LED2 when switch
Header Files :
Obiject Files
Library Files .equ _ 30F6014, 1
& Linker Scripts _include "p30fA014.inc”
p30fen14.gid
Other Files

;Global Declarations:

.glohal _ resst

[MPLAB SIM dsPIC30FE014 pci cabsab PO donovzc

5.2 SETTING UP THE MPLAB ICD 2

Connect your PC to the MPLAB ICD 2 with the USB cable, as shown in Figure 5-2.
Apply power to your target board and then connect the MPLAB ICD 2 to your target
board using an RJ-12 (telephone type) cable.

Note: Be sure the MPLAB ICD 2 is connected to your PC through the USB before
attaching it to the target.

FIGURE 5-2: MPLAB® ICD 2 CONNECTED TO DEVELOPMENT BOARD

PC running MPLAB® IDE

dsPICDEM™ 2 Development Board

Connect USB cable to PC.

m
= % PWRIN

- 'E< 1 Power Cable
ICDM-—c 115 Vac

MPLAB® ICD 2 / RJ-12 Phone Cable

USB Cable

Apply power to the board.

Connect RJ-12 cable to MPLAB®ICD 2.

Enable the MPLAB ICD 2 as a debugger (Debugger>Select Tool>MPLAB ICD 2 menu).
When you select the MPLAB ICD 2, the standard debugging operations, as well as
MPLAB ICD 2 specific ones, are added to the debugger menu and toolbar. It is possible
that MPLAB IDE will generate the following warning message in the Output window as
soon as the MPLAB ICD 2 is selected in the menu:

“ICDWarn0030: MPLAB ICD 2 is about to download a new operating system”

DS70151A-page 44

© 2005 Microchip Technology Inc.

The MPLAB ICD 2 In-Circuit Debugger

Don’t be alarmed. This condition is quite normal when a processor family is being used
for the first time with the MPLAB ICD 2, or when switching between processors. It is
also possible that you might see other error messages, depending on how the
MPLAB ICD 2 has been set up.

If this is the first time the MPLAB ICD 2 is being used, the ICD 2 Setup Wizard will run.
You can run it yourself using the Debugger>MPLAB ICD 2 Setup Wizard menu. The
Wizard makes setting up the MPLAB ICD 2 a simple matter.

Choose the following options in the Wizard:

+ At the Welcome screen, click Next.

» Select USB as the Com Port, click Next.

» Select Target has own power supply, click Next.

» Check MPLAB IDE automatically connects to the MPLAB ICD 2, click Next.

» Check MPLAB IDE automatically downloads the required operating system,
click Next.

» At the Summary screen, click Finish.

It's that simple. The MPLAB ICD 2 is now set up and ready to be used. You can check
the settings and make changes with the Debugger>Settings menu.

You can now make the MPLAB ICD 2 connect to your target board (use the
Debugger>Connect menu). The Output window should indicate that the MPLAB ICD 2
has connected and identified the dsPIC30F6014 on your target board, as shown in
Figure 5-3.

FIGURE 5-3: CONNECT STATUS IN OUTPUT WINDOW

I Output
Build | “ersion Control | Find in Files | MPLAB ICD 2

Connecting to MPLAB ICD 2

..Connected

Setting VYdd source to target

Target Device dsPIC30F5014 found, revision = mss1.b b2
..Reading ICD Product ID

Running ICD Self Test

..Passed

MPLAB ICD 2 Ready

Your version of silicon might be different, but the Output window should show that the
correct target device was found.

Note: If you are using the dsPICDEM Starter Demonstration Board, the
dsPIC30F6012 device should be found. If you are using the dsPICDEM
28-Pin Starter Demonstration Board, the dsPIC30F2010 device should be
found. If you are using the dsPICDEM 2 Development Board, the
dsPIC30F4011 device should be found.

If you receive an “ICDWarn0020: Invalid target device id” message, there is probably a
problem with the connections or the power supply. Double click the text “ICDWarn0020”
for more help, but you will probably need to check your connections and power.

© 2005 Microchip Technology Inc. DS70151A-page 45

Getting Started with dsPIC30F Digital Signal Controllers

5.3 PROGRAMMING THE dsPIC DEVICE

Before you can do any debugging, you must program the part. Use the
Debugger>Program menu to program the device.

The Output window displays the various steps in the programming and verification
process. If any error messages or warnings are displayed, double click the message
number for more detailed help.

FIGURE 5-4: PROGRAMMING STATUS IN OUTPUT WINDOW

B Output
Build || “ersion Control | Find in Files | MPLAB ICD 2

FProgramming Target...

..Erasing Part

...Programming Programming Executive
..Verifying Programming Executive
...Programming Program Memory (0x0 - 0x17F)
Verifying...

..Program Memory

..Verify Succeeded

...Loading DebugExecutive
...Programming DebugExecutive
..Debug Executive

...Programming Debug VYector

..Debug Vector

..Programming Configuration Bits

.. Config Memory

Verifying configuration memory...
Connecting to debug executive
...Programming succeeded

MPLAB ICD 2 Ready

When the status shows “MPLAB ICD 2 Ready”, the dsPIC30F6014 target chip is
running the debug executive code, which allows you to step, set breakpoints, view
registers and perform other debugging tasks.

It's important to note that the dsPIC device is running under the control of the debug
executive code and will not run the code without a command from the MPLAB ICD 2.
Later, if you wish to run the code by itself, you can use the MPLAB ICD 2 as a program-
mer instead of a debugger. The operation is similar, but you use the Programmer menu
instead of the Debugger menu.

5.4 RESETTING THE CODE

After programming with MPLAB ICD 2 as a debugger, the Program Counter is
automatically set to zero, the Reset vector. You can force a Reset with the
Debugger>Reset>Processor Reset menu. The text “pc:0” appears in the Status bar at
the bottom of the MPLAB IDE screen, showing that the Program Counter is zero.

Open the Program Memory window with the View>Program Memory menu and click
on the Symbolic tab at the bottom of the window. There will be a green arrow in the
gutter pointing to the first line containing the code at address zero, as shown in
Figure 5-5.

DS70151A-page 46 © 2005 Microchip Technology Inc.

The MPLAB ICD 2 In-Circuit Debugger

Address zero contains agoto __ reset instruction that is added automatically by the
linker and is not in the source code file.

FIGURE 5-5: PROGRAM MEMORY WINDOW

B Program Memory

IR 00000 pEEEN} goto

Disassembly

2 0000z Doooon

3 00004 000146 _DefaultInterrupt

4 00006 000134 _OscillatorFail

5 00008 000138 _AddressError v

Opcode Hex| Machine || Symbolic PSY Mixed | PEY Data|

Close the Program Memory window at this point because all the other instructions are
in the source code.

5.5 STEPPING THROUGH THE CODE

You can now step through the source code with the MPLAB ICD 2.

Use the Debugger>Step Into menu to single step the goto _ reset instruction. The
green arrow now points to the first line of executable code in the Flash LEDs with
dsPIC30F6014.s file.

FIGURE 5-6: SINGLE STEP RESULT IN PROGRAM MEMORY WINDOW

M C:\Tutorial\Flash LEDs with dsPICIOF6014.5 EEX

;Initialize stack pointer and limit register

B _ reset: mov # SP_init,Wl5 ;Initalize the &tack Pointer register
mov #_SPLIM init, Wl ;Get address at the end of atack space
mov Wl, SPLIM ;Load the Stack Pointer Limit register
nep ;Edd NOP to follow SPLIM initialization |«
< >

Use the Debugger>Step Into menu to continue stepping through the code. The
Debugger menu also lets you Step Into, Step Over and Animate the code:

» Step Into executes the current instruction and then halts. If the current instruction
is a call to a subroutine, the Program Counter will change to the start of the called
function.

» Step Over executes all code up to the next Program Counter location. It is just like
the Step Into feature for most instructions. However, if the instruction is a CALL, it
will execute the called subroutine in its entirety and then return.

» Animate steps continuously through your code. It is equivalent to doing Step Into
operations repetitively until you select Halt.

© 2005 Microchip Technology Inc. DS70151A-page 47

Getting Started with dsPIC30F Digital Signal Controllers

5.6 RUNNING THE CODE

To run your application, select Debugger>Run. The MPLAB IDE workspace Status bar
displays the word “Running...” and a progress bar.

Nothing appears to be happening on the MPLAB IDE screen except for the moving bar.
The green arrow in the gutter becomes transparent, since the Program Counter is
changing and the current execution point cannot be shown. The LED on the demo
board will be flashing because the code is running in the dsPIC device on the demo
board.

To stop program execution, select Debugger>Halt. MPLAB IDE updates its windows
after the Halt and indicates the current execution point with the green arrow, as shown
in Figure 5-7.

FIGURE 5-7: HALT LOCATION IN PROGRAM WINDOW

W C:\Tutorial\Flash LEDs with dsPIC30F6014. 5 [E]l=1ES

;Loop while waiting for a Timerl match and toggle LED1 when it happens

B MainLoop: btss IF30, #T1IF ;Check if Timerl interrupt flag is set
bra MainLoop ;Loop back until set
belr IFs0, #T1IF ;Clear Timerl interrupt flag
btss FPORTER, #12 ;Test switch SWl {low when pressed)
bra gwitchPressed v

[< >

5.7 THE DEBUG TOOLBAR AND HOTKEYS

The Debug toolbar provides shortcut icons to control the MPLAB ICD 2, as shown in
Figure 5-8.

FIGURE 5-8: SHORTCUT ICONS

Halt Step Into

/

Run Reset
TT———&» (9 il/} {? B+

Animate Step Over

When you select the MPLAB ICD 2, the Debug toolbar automatically opens. You can
drag this toolbar anywhere on the desktop for convenience. Click on the appropriate
toolbar icon to Run, Halt, Animate, Step Into, Step Over or Reset the program.

MPLAB ICD 2 also uses the following function keys to access the main debugging

functions:
<F5> Halt
<F6> Reset
<F7> Single Step
<F9> Run

Additional functions are available by right clicking on a line of source code. The most
important of these are Set Breakpoint and Run to Cursor.

If you do not see the toolbar, you can enable it with the View>Toolbars>Debug menu.

DS70151A-page 48 © 2005 Microchip Technology Inc.

The MPLAB ICD 2 In-Circuit Debugger

5.8 BREAKPOINTS

The MPLAB ICD 2 gives you the ability to set breakpoints — places in the code where
execution will be halted. You can set breakpoints directly in your Source Code window,
in the Program Memory window or in the Disassembly window.

In this example, you'll set a breakpoint where an LED is illuminated by toggling a bit in
PORTD. Scroll down to line 95 and find the btg LATD, #0 instruction. Note that the
line number is shown in the Status bar.

Note: If you're using the Flash LED with dsPIC30F6012.s file, setthe
breakpoint on line 95 on the btg LATD, #4 instruction. If you're using the
Flash LED with dsPIC30F2010. s file, set the breakpoint on line 90
on the belr IFSO, #T1IF instruction. If you're using the Flash LED
with dsPIC30F4011.s file, set the breakpoint on line 98 on the
btg LATB, #0 instruction.

Right click on the code line, then select Set Breakpoint from the pop-up menu.

You can also set a breakpoint by double clicking on the line. This option may need to
be turned on with the Edit>Properties menu.

Now press <F9> or select the Debugger>Run menu. The program will halt after
executing the line with the breakpoint, toggling the 1/0 pin. Notice that the LED on the
demo board changes each time the code halts. After halting, the green arrow appears
two instructions beyond the breakpoint, as shown in Figure 5-9.

FIGURE 5-9: PROGRAM WINDOW SHOWING BREAKPOINTS
M C:\Tutorial\Flash LEDs with dsPIC30F6014.5 [E]l=1ES
bra SwitchPressed 2
(B btyg LATD, #0 ;Toggle LEDL when 3$Wl iz not pressed
bset LATD, #1 ;Turn off LEDZ
=2 bra MainLoop ;Loop hack
SwitchPressed: bset LATD, #0 ;Turn off LEDL
btyg LATD, #1 ;Toggle LEDZ when $Wl iz pressed
bra MainLoop ;Loop back =
< >

One of the limitations of in-circuit debugging on the dsPIC devices is the skew when
halting at a breakpoint. By the time the hardware has detected the breakpoint address,
another instruction beyond the breakpoint has already been executed. This is not
difficult to work around, however, simply adjust where your breakpoints are placed. It
can be a little confusing if a branch instruction follows the breakpoint.

Try combinations of stepping with <F7> and running with <F9>. Notice that every time
the code is made to run, it halts after the breakpoint. Try pressing switch SW1 on the
development board and notice that the code does not halt while the switch is pressed.

Note: If you are using the dsPICDEM Starter Demonstration Board, press switch
S1. If you are using the dsPICDEM 2 Development Board, press switch S5.
The dsPICDEM 28-Pin Starter Demonstration Board does not have a
switch.

© 2005 Microchip Technology Inc. DS70151A-page 49

Getting Started with dsPIC30F Digital Signal Controllers

59 WATCH WINDOW

There are several ways to view memory while using the MPLAB ICD 2. The Watch
window (Figure 5-10) is one of the most useful. The Watch window lets you specify
memory locations that you want to observe under different program conditions. To open
a Watch window, select the View>Watch menu.

FIGURE 5-10: WATCH WINDOW
B Watch
Address | Symbol Name | Walue
02o4 PORTD 0x000F
0202 TEISD OxFFFF
U2C2 PORTAR U=xF00o
[watch1 ‘Watch 2| wWatch 3| Watch 4

For example, to add PORTD to the Watch window, type "PORTD” in the Add SFR
(Special Function Register) selection box at the top of the window. Then click Add SFR
to add it to the Watch list.

You can also type the register name directly into the Watch window.

Add TRISD and PORTA in the same way. You should now have three Special Function
Registers listed in the Watch window. There are columns for the “Address”, “Symbol
Name” and “Value” of the symbol.

Press <F6> to reset the code. Notice that the value of TRISD is OxFFFF. This is the
state of the TRISD register after a Reset. Press <F9> to run the code. The code should
execute and halt at the breakpoint set earlier. Notice that the TRISD register has
changed to OxFFFO. The code set up the I/O port directions by writing to TRISD and
you can see the change in the Watch window. Notice that each time you Step or Halt,
changed values appear in red, whereas unchanged values are black.

Note: Ifyouareusingthe Flash LED with dsPIC30F6012. s file, then TRISD
changes to OxFFOF. If you are using the Flash LED with
dsPIC30F2010.s file, TRISD changes to OXFFFE. If you are using the
Flash LED with dsPIC30F4011.s file, TRISB changes to OxFFFC.

Note the state of PORTD in the Watch window and then press <F6> to run again. Each
time the code runs and halts at the breakpoint, a bit in PORTD changes. This shows
the code toggling the pin to turn the LED on or off.

DS70151A-page 50 © 2005 Microchip Technology Inc.

The MPLAB ICD 2 In-Circuit Debugger

FIGURE 5-11:

WATCH WINDOWS SHOW CHANGING VALUES

| | Add Symbol| |_30FE014 w

2ddress | Syvmbol Name ‘ Talue
02D4d PORTD 0=z000E
02Dz TRISD 0xFFFO
0dcz PORTR O=xFQ0o0

|‘Watch 1 Watch 2 | watch 3 | ‘Watch 4]

v || Add Symbol| |_30FE0T4

Note change in PORTD
value.

Lddress | Symbol Name ‘ Talue
0204 PORTD Ox000F
0zDz TRISD 0=FFED
0Z2Cz PORTA OxFoo0

|'watch1 ‘Watch2 | Watch 3| Watch 4]

Single step through the code by pressing <F7> while pressing and releasing switch

SWH1. Notice how PORTA changes when the switch is pressed. The switch is on pin

RA12 of PORTA and the state of the input pin can be seen in the Watch window.

Note:

RES8 of PORTE.

If you are using the dsPICDEM Starter Demonstration Board, press switch
S1 and watch PORTC in the Watch window. The switch is on pin RC13 of
PORTC. If you are using the dsPICDEM 2 Development Board, press
switch S5 and watch PORTE in the Watch window. The switch is on pin

© 2005 Microchip Technology Inc.

DS70151A-page 51

Getting Started with dsPIC30F Digital Signal Controllers

5.10 ADVANCED BREAKPOINTS

The advanced breakpoint feature of the MPLAB ICD 2 allows you to set up to break on
a complicated set of conditions. This feature can help you trap an unusual occurrence
in your code. In this case, set up an advanced breakpoint to halt when data is written
to the PR1 register. You know this will happen because there is a mov W0, PR1
instruction in the code. To find the address of the PR1 register, you can look in the
p30£f6014.gld linker script file and find the line, PR1 = 0x0102;.

Open the Advanced Breakpoint dialog (Figure 5-12) with the Debugger>Advanced
Breakpoints menu. Two advanced breakpoints are available, but you’ll only use
Breakpoint # “0”. Select “X Bus Write” for the Breakpoint Type to detect a write to
address 0x0102, which is in the X data space. Actually, all data memory is accessed
through the X bus unless very specific DSP operations are being performed.

Set the Data Memory Address to “0x102” and leave “Pass counting disabled”. Click OK
to save the advanced breakpoint settings.

FIGURE 5-12: ADVANCED BREAKPOINT DIALOG

B MPLAB ICD 2 dsPIC Advanced Breakpoint Page

Breakpoint Combinations

Breakpoints
Breskpoint # o v

Breakpoint Type |X Bus Write w

Data Memary Address 0102

Fass Count Type Pass counting disabled hd
04] [Cancel] [Apply l [Help

Now, press <F6> to reset the code and press <F9> to run. Notice that the code halts
and the green arrow points to two instructions after the write to the PR1 register, as
shown in Figure 5-13. The two extra cycles are caused by the skew mentioned earlier.

DS70151A-page 52

© 2005 Microchip Technology Inc.

The MPLAB ICD 2 In-Circuit Debugger

FIGURE 5-13: ADVANCED BREAKPOINT IN PROGRAM WINDOW
M C:\Tutorial\Flash LEDs writh dsPIC30F6014.5
;Initialize Timerl for 1/5 second period =
clr T1CON ;Turn off Timerl by clearing control rec
clr TME1 ;8tart Timerl at zero
mov #Fcy/256/5, W0 ;Get period register value for 1/5 secor
mov wo, PR1 ;Load Timerl period register
mov #0xB030, W0 ;Get Timerl settings (1:256 prescaler)
= mov WO, T1COH ;Load Timerl settings into control regis
- vl
& »

This demonstrates a very simple use of the advanced breakpoints. You can also break
on reads and writes of specific data in specific memory locations. You can break on
table reads and writes to locations in program memory, as well as simple instruction
fetches from program memory. A pass counter is available so that a break can be made
to occur once the event has occurred several times, or after several instruction cycles
have been executed after an event.

Two separate advanced breakpoints are available and can be used in combination so
that two independent events must occur to trigger the break. All in all, the advanced
breakpoints provide very powerful debugging capabilities more often found in
expensive emulators. The options are tremendous if you learn how to use them.

© 2005 Microchip Technology Inc. DS70151A-page 53

Getting Started with dsPIC30F Digital Signal Controllers

NOTES:

DS70151A-page 54 © 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Chapter 6. MPLAB ICE 4000 In-Circuit Emulator

6.1 MPLAB ICE 4000 OVERVIEW

MPLAB ICE 4000 is an In-Circuit Emulator (ICE) designed to work with PIC18 and
dsPIC devices. It provides full speed emulation and visibility into both the instruction
and data paths during execution.

In addition to the basic Run, Halt, Single Step and Software Breakpoint functions, the
MPLAB ICE 4000 provides advanced capabilities, such as instruction/address data
monitoring, instruction data trace, complex triggering and code coverage. The
MPLAB ICE 4000 can be connected to your target board and used in-circuit as the
processor, or it can be used stand-alone for debugging your program.

FIGURE 6-1: MPLAB® ICE 4000 IN-CIRCUIT EMULATOR

Processor Module

Emulator Pod

it

14

Transition Socket 4*’ \ .
evice Adapter

Figure 6-1 shows the main components of the MPLAB ICE 4000.

» The ICE 4000 emulator pod is the interface between your PC and the processor
module. It contains hardware to read data from the processor module and send it
back to the PC, as well as to take commands and various other data from the PC
and send it to the processor module.

» The processor module is the component that actually emulates the specific
device.

» The device adapter is an interchangeable assembly that allows the emulator to
interface to a target application system.

» The transition socket allows a device adapter to be connected to a target
application board designed to support a surface mount package style.

© 2005 Microchip Technology Inc. DS70151A-page 55

Getting Started with dsPIC30F Digital Signal Controllers

6.1.1 Installing the USB Driver

The MPLAB ICE 4000 has a USB interface. The USB drivers must be installed before
you can use the MPLAB ICE 4000. Instructions for installing the USB drivers can be
found in your MPLAB IDE installation directory:

C:\Program Files\Microchip\MPLAB IDE\ICE 4000\Drivers\ezice4k.htm

The instruction files may be different if you are using an operating system other than
Windows XP or Windows 2000. Please look for the appropriate . htm file in the Drivers
folder.

Note: The MPLAB ICE 4000 must be plugged in and turned on for the USB
drivers to be installed. Please follow the instructions in the ezice4k.htm
file before turning on the ICE 4000.

6.1.2 Connecting the MPLAB ICE 4000 Hardware

Connect the emulator and demo board as shown in Figure 6-2.

FIGURE 6-2: MPLAB® ICE 4000 SETUP

@ Host-to-Pod @

Processor Module

®

Emulator “Log
. Logic Probe Transition Socket

A\ Connector v y
Indicator Lights d

1. Connect the MPLAB ICE 4000 pod to your PC with the USB cable.
2. Connect the power supply to the emulator but do not switch it on.

3. Connect the end of the flat flex-circuit cable, marked Emulation Module, to the
processor module.

4. Connect the other end of the flex-circuit cable, marked Device Adapter, to the
device adapter.

5. Plug the processor module into the connector on top of the emulator pod.

6. Plug the device adapter onto the pins on the demo board. If there are no pins,
you may need a transition socket.

7. Turn on power to the emulator pod and the demo board, in that order.

DS70151A-page 56 © 2005 Microchip Technology Inc.

MPLAB ICE 4000 In-Circuit Emulator

6.2

6.3

OPENING THE PROJECT

This chapter provides a tutorial that demonstrates how to use the MPLAB ICE 4000.
First, you'll open the project that you created in the tutorial in Section 3.3 “Creating a
Project”. If you have not yet created the project, please refer to that section now. The
project code is designed to run on a dsPICDEM 1.1 General Purpose Development
Board. You will need a demo board to be able to follow this tutorial.

Note: If you created the project for the dsPICDEM Starter Demonstration Board,
the dsPICDEM 28-Pin Starter Demonstration Board or the dsPICDEM 2
Development Board, you can use your project on your demo board and still
follow along with this section. The code is very similar.

If it is not already open, open the workspace you created in Chapter 4. “The MPLAB
SIM Simulator” by selecting File>Open Workspace and browsing to
C:\Tutorial\MyProject .mcw. The workspace name should be visible in the title
bar of the Project window and the name of the project should be visible inside the
Project window at the top, as shown in Figure 6-3.

Build the project (Project>Make menu) to ensure that it is up to date.

FIGURE 6-3: PROJECT WINDOW

 MPLAB IDE v7.00
Fie Edit View Project Debugger FProgrammer Took Configure Window Help

0w ? e Ba & 4
M MyProject. mew FBJX] mc:. \Flash LEDs 3

& Ci\Tutorial\MyProject.mcp o -
= Source Files ; Use Timer 1 to flash LED1 whern
Flash LEDs with dsPIC30FE0 14,5 2 and flash LEDZ when switch
Header Files :
Obiject Files
Library Files .equ _ 30F6014, 1
& Linker Scripts _include "p30fA014.inc”
p30fen14.gid
Other Files

writh dePICIONFANAA

;Global Declarations:

.glohal _ resst

[MPLAB SIM dsPIC30FE014 pci cabsab PO donovzc

SPECIAL EMULATOR DEVICES

The ICE 4000 processor module (e.g., PMF30XA1) uses a superset emulator chip that
is capable of emulating all the dsPIC30F devices. This is very convenient and mini-
mizes the number of different processor modules needed. However, the emulator chip
has a fixed X/Y memory boundary.

As you may recall from Section 1.2.3 “Data Memory”, the dsPIC device has two
separately addressable data memory spaces for DSP instructions. The boundary
between these X and Y memory areas is fixed, but its location differs from device to
device. Itis necessary to modify the address map to use different memory locations on
the ICE 4000 when you use some of the smaller parts, such as the dsPIC30F2010 or
dsPIC30F4011. MPLAB IDE warns you when this is necessary, as shown in Figure 6-4.

© 2005 Microchip Technology Inc. DS70151A-page 57

Getting Started with dsPIC30F Digital Signal Controllers

FIGURE 6-4: XY DATA BOUNDARY WARNING

MPLAB ICE 4000 DSC Engine Warning

@ wi Daka Boundary [Address Trap Warning

Address traps may resulk if DSP-Multiply and Accumulate
operations are used on the currently selected device,

[100 not show this warning again.

MPLAB IDE supports the different memory maps for the ICE 4000 by providing different
part numbers for the affected devices. For example, to emulate a dsPIC30F2010, use
the Configure>Select Device menu and select the dsPIC30F2010e device instead of
the normal dsPIC30F2010. Similarly, add the p30£2010e.g1d linker script file to your
project instead of the p30£2010.gld file. Section 3.3 “Creating a Project” explains
how to set up a project. You'll find that some devices, such as the dsPIC30F6014 and
dsPIC30F6012, have the same XY boundary as the emulator chip and do not need a
special part number.

6.4 SELECTING THE MPLAB ICE 4000

Enable the MPLAB ICE 4000 as a debugger (Debugger>Select Tool>MPLAB ICE 4000
menu). The standard debugging operations, as well as MPLAB ICE 4000 specific ones,
are added to the debugger menu and toolbar.

It is possible that MPLAB IDE will pop up the warning message shown in Figure 6-5 as
soon as the MPLAB ICE 4000 is selected in the menu. Do not be alarmed. This
condition is quite normal when the MPLAB ICE 4000 is being used for the first time, or
after a new version has been installed.

FIGURE 6-5: MPLAB® ICE 4000 HARDWARE WARNING MESSAGE

MPLAB ICE 4000 Warning (X

"j The detected hardware revisions of the ICE 4000 and/or the attached PMF are older than the revisions
L] expected by MPLAB.

Fleasa run the separate, updater utiity to update and verify your hardware revisions.
Do ol want to run the updater utiity now? (MPLAB wil be disabled while the updater is active.)

(LD £2)

If this warning appears:

1. Click Yes to allow the MPLAB ICE 4000 to be updated.

2. When the ICE4K Update window appears, click UpdatelCE4K.

3. Close the window when the update has completed.

The ICE 4000 updater program configures the programmable logic in the
MPLAB ICE 4000 with the latest versions.

After updating the MPLAB ICE 4000 hardware, MPLAB IDE might pop up another
warning message box asking to update the firmware in the processor module, as
shown in Figure 6-6.

DS70151A-page 58 © 2005 Microchip Technology Inc.

MPLAB ICE 4000 In-Circuit Emulator

FIGURE 6-6: MPLAB® ICE 4000 FIRMWARE WARNING MESSAGE

MPLAB ICE 4000 Warning [X]

'E The detected version of the internal control firmware (DebugExec) of the FMF is older than the revision expected by
L] MPLAB.

Actual: 00.00.01.00, Expected: 00.00.02.02

Do you want to update (re-program) the internal control firmware of the PMF?

(WARNIMG: Selecting YES will overwrite the internal control firmware currently programmed in your PMF., If there
is an error during this process, your PMF may become unusablel IF itis left the same, it may not work properly

with the ICE firmwrare.)

{LID: 55)

e J[w |

If this warning appears, click Yes to allow the firmware to be updated.

Note: If updates are performed, you may need to reselect the MPLAB ICE 4000
as a debugger (Debugger>Select Tool>MPLAB ICE 4000 menu).

The emulator can take about a minute to initialize. You will hear relays clicking during
this process. After initialization has completed, the MPLAB ICE 4000 is ready to be
used.

6.5 MPLAB ICE 4000 SETTINGS

Before you start debugging with the MPLAB ICE 4000, you must be sure it is set up
correctly:
1. Open the MPLAB ICE 4000 Settings dialog (Debugger>Settings menu).

2. Select the Power tab and check that all of the options are set to From Emulator
(see Figure 6-7).

FIGURE 6-7: MPLAB® ICE 4000 SETTINGS — POWER TAB
MPLAB ICE 4000 Settings ?X]
bemany Fins and Usage Feripherals
Fort Info Liritations e Clock Fower Break Options

Frocessor Fower
(@) From Ernulatar

() From Target Board

Analog VWoltage
Source Feferaence

(@) From Emulatar

() From Target Board

ok || camcet || appy][Hep

© 2005 Microchip Technology Inc. DS70151A-page 59

Getting Started with dsPIC30F Digital Signal Controllers

3. Select the Clock tab and set the Desired Frequency to 29.4912 MHz
(Figure 6-8).

Note: If you are using the Flash LED with dsPIC30F6012.s file, set the
processor frequency to 16 MHz. The other demo boards use a processor
frequency of 29.4912 MHz.

4. Click Apply, then OK.

FIGURE 6-8: MPLAB® ICE 4000 SETTINGS - FREQUENCY

MPLAB ICE 4000 Settings

Break Optionz b ermory Fing and Usage Peripherals
Port | Infa || Limitations | View _ Clock | Power
Ernulator
Desired Frequency: 529.491 200 . (%) MHz
[OKHZ
Actual Frequency: | 29.431343
{JHz
Iput - 1 . Desired
e) ~— Frgq | Frim_| | 7 Freq
512KHz >—| LF'HI:I 3
akiHz FRC 3
32K Hz >—| LPSEI 3

Fazt Access While Halted

| ok | [Cancel

The dsPICDEM 1.1 General Purpose Development Board uses a 7.3728 MHz crystal
and the code selects the 4x PLL option in the configuration bits, which steps up the
frequency by a factor of four.

Thus, the processor runs at 29.4912 MHz. Each instruction cycle takes four clock
cycles, so the instruction cycle rate is 7.3728 MHz.

Notice that the Use Target Board Clock checkbox is grayed out. You may only use the
target clock on the demo board if you also set up the emulator to use target power.

DS70151A-page 60 © 2005 Microchip Technology Inc.

MPLAB ICE 4000 In-Circuit Emulator

6.6 RESETTING THE CODE

After the MPLAB ICE 4000 is selected as the debugger, the Program Counter is auto-
matically set to zero (the Reset vector). The Status bar at the bottom of the MPLAB IDE
screen shows that the Program Counter is zero by displaying the text “pc:0”.

You can force a Reset with the Debugger>Reset>Processor Reset menu.

Open the Program Memory window (View>Program Memory menu) and click on the
Symbolic tab at the bottom of the window (see Figure 6-9). A green arrow in the gutter
points to the first line containing the code at address zero. Address zero contains a
goto _ reset instruction that is added automatically by the linker and is not in the
source code file.

FIGURE 6-9: PROGRAM MEMORY AFTER RESET

B Program Memory g@@|

= 1D 040100 g
2 0000z aoooooo nop
3 00004 000146 ~DefaultInterrupt
4 00006 000134 _0scillatorFail
5 00008 000138 _AddressError -

Opcode Hex| bachine || Symhbolic PSY Mixed | PSW Data‘

Close the Program Memory window at this point because all the other instructions are
in the source code.

6.7 STEPPING THROUGH THE CODE

You can now step through the source code with the MPLAB ICE 4000. Use the
Debugger>Step Into menu to single step the goto reset instruction. The green
arrow now points to the first line of executable code in the Flash LEDs with
dsPIC30F6014.s file, as shown in Figure 6-10.

FIGURE 6-10: PROGRAM MEMORY AFTER STEP INTO COMMAND

B C:\Tutorial\Flash LEDs with dsPIC30OF6014.5

;Initialize stack pointer and limit register

B _ reset: mov #_ 8P _init, W15 ;Initalize the Stack Pointer register

mov # SPLIM init,W0 ;Get address at the end of stack space

mov W0, SPLIM ;Load the Stack Pointer Limit register

nep ;Rdd MNOP to follow SPLIM initialization
< >

Use the Debugger>Step Into menu to continue stepping through the code. The
Debugger menu also lets you Step Into, Step Over and Animate the code.

» Step Into executes the current instruction and then halts. If the current instruction
is a call to a subroutine, the Program Counter will change to the start of the called
function.

» Step Over executes all code up to the next Program Counter location. It is just like
the Step Into feature for most instructions. However, if the instruction is a CALL, it
will execute the called subroutine in its entirety and then return.

» Animate steps continuously through your code. It is equivalent to doing Step Into
operations repetitively until you select Halt.

© 2005 Microchip Technology Inc. DS70151A-page 61

Getting Started with dsPIC30F Digital Signal Controllers

6.8 RUNNING THE CODE

Run your application (select Debugger>Run). The MPLAB IDE workspace Status bar
displays the word “Running...” and a progress bar.

Nothing appears to be happening on the MPLAB IDE screen except for the moving
progress bar. The green arrow in the gutter becomes transparent since the Program
Counter is changing and the current execution point cannot be shown. The LED on the
demo board will be flashing because the code is running in the dsPIC device on the
demo board.

Stop program execution (select Debugger>Half). MPLAB IDE updates its windows
after the Halt and indicates the current execution point with the green arrow, as shown
in Figure 6-11.

FIGURE 6-11: HALT LOCATION IN PROGRAM WINDOW
M C:\Tutorial\Flash LEDs with dsPIC30F6014.5
: ~
;Loop while waiting for a Timerl match and toggle LEDL when it happens
B MainLoop: btss IFs0, #T1IF ;Check if Timerl interrupt flag is set
bra MainLoop ;Loop back until set
belr IFs0, #T1IF ;Clear Timerl interrupt flag
btss PORTA, #12 ;Test switch SWl {low when pressed)
bra SwitchPressed v
g >

6.9 THE DEBUG TOOLBAR AND HOTKEYS

The Debug toolbar provides shortcut icons to control the MPLAB ICE 4000, as shown
in Figure 6-12.

FIGURE 6-12: SHORTCUT ICONS

Halt Step Into

/

Run Reset
— 1 b T‘/} {? @// ese

Animate Step Over

When you select the MPLAB ICE 4000, the Debug toolbar automatically opens (for
convenience, you can drag this toolbar anywhere on the desktop). Click on the
appropriate icon to Run, Halt, Animate, Step Into, Step Over or Reset the program.

MPLAB ICE 4000 also uses the following function keys to access the main debugging
functions:

<F5> Halt

<F6> Reset
<F7> Single Step
<F9> Run

Additional functions are available by right clicking on a line of source code, which
displays a menu of functions. The most important of these are Set Breakpoint and Run
to Cursor.

If you do not see the toolbar, you can enable it with the View>Toolbars>Debug menu.

DS70151A-page 62

© 2005 Microchip Technology Inc.

MPLAB ICE 4000 In-Circuit Emulator

6.10 BREAKPOINTS

The MPLAB ICE 4000 allows you to set breakpoints — places in the code where
execution will be halted. You can set breakpoints directly in your Source Code window,
in the Program Memory window or in the Disassembly window.

In this example, you'll set a breakpoint where an LED is illuminated when a bit in
PORTD is toggled. If you scroll down to line 95, you'll find the btg LATD, #0
instruction. Note that the line number is shown in the Status bar.

Note: If you are using the Flash LED with dsPIC30F6012.s file, set the
breakpoint on line 95 on the btg LATD, #4 instruction. If you are using the
Flash LED with dsPIC30F2010. s file, set the breakpoint on line 90
on the belr IFSO, #T1IF instruction. If you are using the Flash LED
with dsPIC30F4011.s file, set the breakpoint on line 98 on the
btg LATB, #0 instruction.

Right click on the code line, then select Set Breakpoint from the pop-up menu.

You can also set a breakpoint by double clicking on the line. This option may need to
be turned on with the Edit>Properties menu.

Now press <F9> or select the Debugger>Run menu. The program will halt after
executing the line with the breakpoint, toggling the 1/0 pin. Notice that the LED on the
demo board changes each time the code halts. After halting, the green arrow appears
two instructions beyond the breakpoint, as shown in Figure 6-13.

FIGURE 6-13: PROGRAM WINDOW SHOWING BREAKPOINTS
M C:\Tutorial\Flash LEDs with dsPIC30F6014.5 E®
bra SwitchPreased 3
(E] btg LATD, #0 ;Toggle LEDL when 3W1 1s not pressed
bset LATD, #1 ;Turn off LEDZ
= bra MainLoop ;Loop back
SwitchPressed: bset LATD, #0 ;Turn off LEDL
btg LATD, #1 ;Toggle LEDZ when 3W1 1s pressed
bra MainLoop ;Loop back 3
= >

One of the limitations of in-circuit debugging on the dsPIC devices is the skew when
halting at a breakpoint. By the time the hardware has detected the breakpoint address,
another instruction beyond the breakpoint has already been executed. This is not
difficult to work around, however, simply adjust where your breakpoints are placed. It
can be a little confusing if a branch instruction follows the breakpoint.

Try combinations of stepping with <F7> and running with <F9>. Notice that every time
the code is made to run, it halts after the breakpoint. Try pressing switch SW1 on the
development board and notice that the code does not halt while the switch is pressed.

Note: On the dsPICDEM Starter Demonstration Board, use switch S1. On the
dsPICDEM 2 Development Board, use switch S5. The dsPICDEM 28-Pin
Starter Demonstration Board does not have a switch.

© 2005 Microchip Technology Inc. DS70151A-page 63

Getting Started with dsPIC30F Digital Signal Controllers

6.11 WATCH WINDOW

There are several ways to view memory while using the MPLAB ICE 4000. The Watch
window (Figure 6-14) is one of the most useful. The Watch window lets you specify
memory locations that you want to observe under different programming conditions. To
open a Watch window, select the View>Watch menu.

FIGURE 6-14: WATCH WINDOW

B Watch
Add SFR | [PORTA » | | Add Symhbol| |_30FE014 +
Address | Symbol Name | Walue
0Z04 PCRTD 0=000F
02Dz TEISD 0XFFFF
D2C2 PORTR OxF0oo0
[watch1 ‘Watch 2| wWatch 3| Watch 4

For example, to add PORTD to the Watch window, type "PORTD” in the Add SFR
(Special Function Register) selection box at the top of the window. Then click Add SFR
to add it to the Watch list.

You can also type the register name directly into the Watch window.

Add TRISD and PORTA in the same way. You should now have three Special Function
Registers listed in the Watch window. There are columns for the “Address”, “Symbol
Name” and “Value” of the symbol.

Press <F6> to reset the code. Notice that the value of TRISD is OxFFFF. This is the
state of the TRISD register after a Reset. Press <F9> to run the code. The code should
execute and halt at the breakpoint set earlier. Notice that the TRISD register has
changed to OxFFFO. The code set up the 1/O port directions by writing to TRISD and
you can see the change in the Watch window. Notice that each time you Step or Halt,
changed values appear in red, whereas unchanged values are black.

Note: Ifyouareusingthe Flash LED with dsPIC30F6012. s file, then TRISD
changes to OxFFOF. If you are using the Flash LED with
dsPIC30F2010.s file, then TRISD changes to OxFFFE. If you are using
the Flash LED with dsPIC30F4011.s file, then TRISB changes to
OxFFFC.

Note the state of PORTD in the Watch window and then press <F6> to run again. Each
time the code runs and halts at the breakpoint, a bit in PORTD changes. This shows
the code toggling the pin to turn the LED on or off.

DS70151A-page 64 © 2005 Microchip Technology Inc.

MPLAB ICE 4000 In-Circuit Emulator

FIGURE 6-15:

WATCH WINDOWS SHOW CHANGING VALUES

w | | Add Symbol| [_30FE014 »

Address ‘ Svmbol MName | Value
0Zp4 FORTD 0x000E
0ZD2 TRISD 0xFFFO
0Zce PORTA 0xFo0o

|Watch1 ‘Watch 2| Watch 3 | ‘watch 4]

v | | Add Symbol| |_30FEDTA

Note change in PORTD
value.

Address ‘ Syvmbol Name | Value
02D4 PORTD Ox000F
02Dz TRIED 0=FFF0O
0zZcz PORTAR OxFOo0

|watch1 Watch2 | Watch 3| ‘watch 4]

Single step through the code by pressing <F7> while pressing and releasing switch

SWH1. Notice how PORTA changes when the switch is pressed. The switch is on pin

RA12 of PORTA and the state of the input pin can be seen in the Watch window.

Note:

RES8 or PORTE.

If you are using the dsPICDEM Starter Demonstration Board, press switch
S1 and watch PORTC in the Watch window. The switch is on pin RC13 of
PORTC. If you are using the dsPICDEM 2 Development Board, press
switch S5 and watch PORTE in the Watch window. The switch is on pin

© 2005 Microchip Technology Inc.

DS70151A-page 65

Getting Started with dsPIC30F Digital Signal Controllers

6.12 STOPWATCH

You can measure the execution time between two events with the Stopwatch feature of
MPLAB ICE 4000. The Stopwatch keeps track of the number of instruction cycles that
are executed and the amount of time consumed by the cycles. It calculates the time
from the “Processor Frequency” that you entered in the settings.

Open the Stopwatch by selecting the Debugger>Stopwatch menu.

FIGURE 6-16: MPLAB® ICE 4000 STOPWATCH
% ICE Stopwatch @@@
System Clock
Time (mSec): 200.456
Clear on Reset (when Halted) ng perInstruction: | 138

Frocessor Information (Calculated)

Processor Frequency (MHz): 29491200

Instruction Cycles: 1473341

(NOTE: For actual values, view ICE trace.)

Close] [Help

Now do this brief exercise:

1.

Check Clear on Reset. This setting ensures that the Stopwatch will count from
zero after you perform a Reset.

Click in your Source Code window and then press <F6> to Reset and <F9> to
Run. The execution should halt at the breakpoint that you set earlier in
Section 6.10 “Breakpoints”.

Notice that the value of Time (mSec): is 200 ms. The code sets up the Timer1
Period register for 1/5 of a second (200 ms). The breakpoint is set where the
timer period has been detected.

Press <F9> to Run. The code will halt at the breakpoint again.

Notice that the Stopwatch time is now 400 ms because another timer period has
elapsed.

You can start the time from zero at any point by pressing the Clear Now button. This
gives you the flexibility to easily time individual loops and functions.

DS70151A-page 66

© 2005 Microchip Technology Inc.

MPLAB ICE 4000 In-Circuit Emulator

6.13 TRACE BUFFER

The Trace buffer is a handy feature of the MPLAB ICE 4000. You'll find this feature
under the View>ICE Trace menu.

The Trace buffer holds a list of the instructions that have executed. It can hold more
than 65,000 instructions. The Trace buffer works in the background and does not need
to be explicitly enabled. Simply executing code causes it to be recorded in the Trace
buffer.

FIGURE 6-17: PROGRAM WINDOW WITH TRACE BUFFER
BREAKPOINT SET

W C:\Tutorial\Flash LEDs with dsPICIOF6014.5 EBX

; ~
;Loop while walting for a Timerl match and toggle LEDL when it happens
MainLoop: btss IFS0, #T1IF ;Check if Timerl interrupt flag is set
(B bra MainLoop ;Loop back until set
belr IFs0, #T1IF ;Clear Timerl interrupt flag
btss PORTA, #12 ;Test switch 3Wl {low when pressed)
bra FwitchPressed 3
< >

As a simple experiment, follow these steps to execute a few lines of code and view
them in the Trace:

1. In the Program window, set a breakpoint on the bra MainLoop instruction,
immediately after the MainLoop: address label (see Figure 6-17).

2. Press <F6> to Reset and <F9> to Run. The code will halt at the breakpoint.

3. Select View>ICE Trace to display the Trace buffer. All the instructions that were
executed are shown in the Trace window, starting with the goto _ reset
instruction at address zero (see Figure 6-18). If the Trace view is blank, check
what filter trace is not selected in the Complex Trigger Settings (see
Section 6.14 “Complex Triggers”).

4. Scroll to the very end of the Trace to see the last instruction that was executed.
Notice that the Trace recorded the btss IFSO0, #T1IF instruction immediately
before the breakpoint and then stopped.

5. Compare the Trace buffer with the source code; you'll see that all the instructions
up to the breakpoint are represented in the Trace window. Notice that when you
select a line in the Trace view, the associated source code line is highlighted at
the bottom of the window, as shown in Figure 6-18.

© 2005 Microchip Technology Inc. DS70151A-page 67

Getting Started with dsPIC30F Digital Signal Controllers

FIGURE 6-18: TRACE WINDOW

M Trace g@@l
W w D
Slala
Line | Addr op Label Instruction sxa | sxp | sva | syp | pa | DD Cyoles E E E
76l 5
0 000000 040100 goto 0x000100 gooo oooo 0000 0000 0000 0000 OOoo0OOO0OOOZ O 0 O
1 000002 0000 0000 0000 0000 0000 0000 000000000003 O O O
2 000100 2 g R 4PN 0000 0000 0000 0000 0000 0000 00000000000 000
3 oo01o0z .w #0x2798, 020000 0000 0000 OOOO0 OODOO DOOO OOOO OOOOOODOOOOOS O O O
4 000104 880100 mov.w 0x0000,0x0020 0000 0800 0000 0000 OO1E 0800 O0O00OOOOOOOOE O O O
5 000106 000000 nop oooo 2798 0000 0000 0000 2798 000000000007 O O O
& 000108 ZFFFFO mov.w #0xffff, 00000 0000 2798 0000 0000 0020 2798 0000OOCOOOOE O O O
7 00010 82816BO mov.w Ox0000,0=x02de 0000 0000 OOOO 0OOO 0020 2788 000000000009 0O O O
g8 00010C ZFFFOO mov.w #0xfff0,0x0000 0000 FFFF 0000 0000 0OOOO0 FEFF OOOOOOOOOCOOA O O O
0 00010E 881690 mov.w 0x0000,0x02d2 0000 FFFF 0000 0000 0Zp6 FEFF 00000000CCCOE O O O
10 000110 m90zZD6 bclr.b Ox02d6,#0 0oo0 FEFO 0000 0000 0000 FEFO OOOOOOOOOQOC O O O
11 000112 EFZ2104 clr.w O0x0104 0000 FFFO 0000 0000 DZDZ FEFO 0000000000OD O O O
12 000114 EFZ2100 clr.w 0x0100 0zZpg FFFF 0000 0000 0OZpeé OOFE 00000O0COQOCQCE O O O
13 0001le 2Zleso0 mov.w #0x1680,0x0000 0000 0O0OO QOOO 0OOO 0104 0000 ODOOQOOQODOOOER O O O
14 000118 880810 mov.w 0x0000,0=0102 0000 0000 0OODO 0000 0100 0OOOO OO0OOOOOOGC10D O O O
15 00011r ZBs0300 mov.w #0xB8030,0x0000 0000 1680 QOO0 0OOD 0000 1680 OOOQOOOODOOLI O O O
16 00011C 880820 mov.w 0x0000,0x0104 oooo 1e80 0000 0000 0102 1680 00000000OO1Z O O O
17 00011E AE6084 MainLoop btss.b 0x0084,#3 0oo0 8030 0000 0000 0000 BO30 000000000013 O O O
< >
CATutorialiFlash LEDs with dsPIC30F6014.5
58 ~
59 o
a0 ;Initialize stack pointer and limit register
61
52 # SP init,WlS ;Initalize
63 #_SPLIM_init, WD ;Get addr
64 mov Wi, SELIM ;Load the Stack Pointer Limit register I
< >

6.14 COMPLEX TRIGGERS

The complex triggers feature allows you set up the MPLAB ICE 4000 to break on a
complicated set of conditions. This capability is very useful if you need to trap an
unusual occurrence in your code. For illustration, you can set up a complex trigger to
halt when data is written to the PR1 register.

You know this will happen because there is a mov W0, PR1 instruction in the code. To
find the address of the PR1 register, look in the p30f6014 .g1d linker script file and
find the line, PR1 = 0x0102;.

Use the Debugger>Complex Triggers and Code Coverage menu to open the
MPLAB ICE 4000 Analyzer dialog. This dialog provides individual tabs for:

» Complex Trigger Settings — used to break on a combination of up to four events,
such as program memory or data memory reads or writes. It is also possible to
break on logic signals detected on the Logic Probes: input.

» Trigger In/Out Settings — used to trigger on a single external trigger input and to
output a pulse that can be used to trigger an oscilloscope or other data capture
device.

» Code Coverage — used to track which program memory instructions are used. It
can be useful during testing to see that all the code was actually executed during
the tests.

+ Internal Triggers — additional trigger circuits built into the dsPIC processor
modules that allow triggering on a combination of events.

Select the Complex Trigger Settings tab and set it up as shown in Figure 6-19 and
described in Table 6-1.

DS70151A-page 68

© 2005 Microchip Technology Inc.

MPLAB ICE 4000 In-Circuit Emulator

FIGURE 6-19:

MPLAB® ICE 4000 ANALYZER DIALOG

?

MPLAB ICE 4000 Analyzer

Complex Trigger Seftings | Trigger In/Out Settings | Code Coverage | Intemal Triggers

(Trigger Status)

\T;iggerType
1) Sequential

Event1| EventZ | Event3 | Trigger

@

&l bemary]

@)= () Read

() Al Events = S P o
() Amy Event Edl 9) Data 8)Write

()Fitter Trace
(O Time Between Events

Trigger Position

Position: Value:
Cycles Traced After Trigger: (O Symbolic ()Binary () Hex
Frobes
Hait [JLogic Probes
OnTr\gger
[]On Cycles Atter Trigger

Fass Counter:
[]On Trace Butfer Full
1

[¥]Ignore FNOP Cycles

Address: |PR1 \V

XL

Load Al] [Gave Al] [Load Ewvent] I Save Ewvent]
[OK } ’ Cancel l ’ Apply] ’ Help

TABLE 6-1:

COMPLEX TRIGGER SETTINGS

Ref

Setting

Make sure that the (Trigger Status) is set to Sequential

Set the Memory type to Data

Set the Operation type to Write (because we want to detect a write to data

memory address PR1)

Select X under the Memory type (all data memory writes in the dsPIC® devices

are to X memory space)

Set the Address: to “PR1”

Leave the Pass Counter: set to “1”

Set the Halt type to On Trigger

O |N|O O

Click OK to save the Complex Trigger Settings

Press <F6> to Reset and <F9> to Run the code. Notice that execution halts a few
cycles after the instruction that writes to the PR1 register has executed, as shown in

Figure 6-20.

© 2005 Microchip Technology Inc.

DS70151A-page 69

Getting Started with dsPIC30F Digital Signal Controllers

FIGURE 6-20:

PROGRAM WINDOW WITH PROGRAM HALTED AFTER

COMPLEX TRIGGER

¢

;Loop while waiting for

MainLoop: btss
bra

M C:\Tutorial\Flash LEDs with dsPICIOF6014. 5 B

mov
mov
mov
mov

#Fcy/256/5, W0 ;Get pericd register value for 1/5 zecoTg

Wi, FR1 ;Load Timerl period register
#0=8030, w0 jEet Timerl settings {1:256 prescaler)
Wi, T1COM ;Load Timerl settings into control regi

a Timerl match and toggle LED] or LEDZ when it happens

IFS0, #T1IF ;Check 1f Timerl interrupt flag is set
MainLoop ;Loop back until set v
¥

This demonstration is a very simple use of the complex triggers. You can break on
reads and writes of specific data to either data or program memory locations. You can
incorporate the pass counter to trigger after the desired event has happened several
times or after several instruction cycles have been executed after an event.

Four separate trigger events are available. They can be used in combination so that a
specific sequence of events must occur to cause the break. The complex triggers
provide very powerful debugging capabilities.

DS70151A-page 70

© 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Chapter 7. The MPLAB ASM30 Assembler

71 MPLAB ASM30 ASSEMBLER OVERVIEW

Now that you know how to create and build a project and use the tools to simulate or
debug, let’s spend a little time learning how to write code. Since the MPLAB ASM30
Assembler is included with MPLAB IDE, we’ll discuss some of the essentials to using
this language tool.

The MPLAB IDE assembler is based on open source GNU software, which may seem
familiar to some users. The assembler interprets instructions and directives in source
code files to generate object code. A linker is used to convert the object code to a final
output (Hex) file for programming a part (see Chapter 9. “The MPLAB LINK30
Linker”).

Instructions are executed at run time in the dsPIC device. They are the native language
of the dsPIC processor. However, the dsPIC instruction set is beyond the scope of this
document. For detailed information about the dsPIC instruction set, refer to the
“dsPIC30F Programmer’s Reference Manual” (DS70030).

Directives are interpreted at build-time by the assembler and are used to define
sections of memory, initialize constants, declare and define symbols (variables, labels,
etc.), substitute text and so forth. A list of directives and their usage is documented in
the “MPLAB® ASM30, MPLAB® LINK30 and Utilities User’s Guide” (DS51317).

A period (“.”) must precede each directive.

We’ll discuss a few of the most commonly used directives so you'll have an idea of what
is required when writing your own code. Many of these directives were used in the
example code from the preceding tutorials.

Note: This chapter is based on MPLAB ASM30 Assembler version 1.31. Some
information may become dated as new versions are released.

711 General Format of Instructions and Directives

Instructions and directives take the following general forms:

[label:] instruction [operands] [; comment]
[label:] directive [arguments] [; comment]

Labels are used to mark locations in code. At link time, labels are evaluated to a

[l

memory address; label definitions may begin with a “.” (period) and must end with

a “” (colon).

Operands are used by instructions to provide source and destination information. They
consist of:

+ Literals — These are hexadecimal, octal, binary or decimal values. A number sign
“#” must precede all literal values.

* Registers and Memory Addresses — These are working registers, accumula-
tors, General Purpose Registers (GPRs) and Special Function Registers (SFRs).

» Condition Codes — These are Status bits, such as Z (Zero) or C (Carry), used as
operands in conditional branch instructions.

Arguments are similar to operands. Arguments are used by directives for source and
destination information.

© 2005 Microchip Technology Inc. DS70151A-page 71

Getting Started with dsPIC30F Digital Signal Controllers

Syntax rules for instructions and directives are summarized in Table 7-1.
TABLE 7-1: SYNTAX RULES

Character Description Usage
Period Begins a directive or label
Colon Ends a label

Pound Begins a literal value

; Semicolon Begins a single-line comment

/* Begins multi-line comment

*/ Ends multi-line comment

7.2 COMMONLY USED DIRECTIVES

Some commonly used directives are listed below. They are all given as examples in the
dsPIC template files, which you can find in the following directory:

C:\Program Files\Microchip\MPLAB ASM30 Suite\Support\templates\assembly
You will also find the first five directives in our tutorial from Chapter 4. “The MPLAB SIM
Simulator”, where we learned how to create and build a project. Although the other five
directives were not present in our tutorial, you may find yourself in need of one of them.

.equ equates a value to a symbol
.include includes another file into the current file
.global makes a symbol globally visible
.text starts a section of executable code
.end ends assembly within a file
.section starts a section (of code or data, in program or data memory)
.space allocates space within a section
.bss adds variables to the uninitialized data section
.data adds variables to the initialized data section
.hword declares words of data within a section
.palign aligns code within a section
.align aligns data within a section

.equ

One of the common directives in any assembly source file is . equ. The . equ directive is
used to define a symbol and assign it a value. In Example 7-1, the .equ directive is used
to assign the literal value of 7372800 to the symbol Fcy. In this context, FCY is a constant
that can be used throughout the code to represent the instruction cycle frequency.

EXAMPLE 7-1: .equ

;Program Specific Constants (literals used in code)
.equ Fcy, #7372800 ;Instruction cycle rate (Osc x PLL / 4)

.include

The . include directive adds the contents of the specified file into the assembly
source, at the point it is used, as shown in Example 7-2. One common use of the
. include directive is to add in definitions from the standard processor include file.

EXAMPLE 7-2: .include

.equ 1
.include *p30£f6014.inc.”

DS70151A-page 72 © 2005 Microchip Technology Inc.

The MPLAB ASM30 Assembler

.global

The .global directive is used to allow labels defined within the file to be used by other
files. In Example 7-3, the reset symbol is made global so that the linker can use it
as the address to jump to, from the Reset vector. The reset : label is required to
signify the start of code and needs to be present in one of the project’s object files (from
assembler, compiler or library files).

EXAMPLE 7-3: .global

;Global Declarations

.global reset ;The label for the first line of code
.global __ OscillatorFail ;Declare Oscillator Fail trap routine 1

.global _ AddressError ;jDeclare Address Error trap routine la

.text

This is a special instance of the . section directive. The . text directive is used to
inform the assembler that the code following it is to be placed in an executable section
of program memory (see Example 7-4).

EXAMPLE 7-4: text

;Start of code

;Start of Code section

.end

The . end directive is used to signify the end of an assembly source file (see
Example 7-5).

EXAMPLE 7-5: .end

;End of code in this file

.section

The . section directive declares a section of memory. This section can be in RAM or in
program memory, as determined by the attributes that follow the directive. In Example 7-6,
the section named, MyDataSection, is placed in uninitialized near data memory. The

section named, MyOtherSection, is placed in Y data memory. A complete list of section
types is contained in the “MPLAB® ASM30, MPLAB® LINK30 and Ultilities User’s Guide”
(DS51317) and in the “dsPIC30F Language Tools Quick Reference Card” (DS51322).

EXAMPLE 7-6: .section
;RAM variables

@n MyDataSection, b@

Varl: .space 1 ;Allocating space (in bytes) to variable
@n MyOtherSection,@
Arrayl:.space 20 Allocating space (in bytes) to array

© 2005 Microchip Technology Inc. DS70151A-page 73

Getting Started with dsPIC30F Digital Signal Controllers

. space

The .space directive instructs the assembler to reserve space in the current section. In
Example 7-7, a one-byte space of memory is reserved for the variable named vari.

EXAMPLE 7-7: .space

;RAM variables

.section MyDataSection, bss, near

Varl: ;Allocating space (in bytes) to variable

.bss

The .bss directive is a special instance of the . section directive. It causes uninitial-
ized data variables to be appended to an uninitialized data section. In Example 7-8,
var2 will be placed in uninitialized data memory.

EXAMPLE 7-8: .bss

;RAM variables

Var2: .space 2 ;Allocating space (in bytes) to variable

.data

The .data directive is a special instance of the . section directive. It causes
initialized data variables to be appended to an initialized data section. In Example 7-9,
the array, MyRAM, will be placed in data memory and the assembler will place the data,
0x1111, 0x2222 and 0x3333, in a program memory section.

EXAMPLE 7-9: .data

;Initialized RAM variables

MyRAM: .hword 0x1111, 0x2222, 0x3333

Itis important to note that in order to use initialized data, the correct start-up code needs
to be added to the project to copy the data to RAM. The run-time start-up module is
included in the run-time library, the 1ibpic30. a file. This file is present in the
pic30_tools\1lib folder.

Refer to the “MPLAB® ASM30, MPLAB® LINK30 and Utilities User’s Guide” (DS51317)
for further information on the functions of the start-up module in the run-time library.

.hword

The .hword directive declares words of initialized data within a section. It can also
declare constant data within program memory. In Example 7-10, the MyData array is
placed in program memory. The data words, 0x0002, 0x0003 and 0x0005, will be
stored in adjacent words of program memory. Since program memory is 24 bits wide,
the upper byte of each word will be 0x0.

EXAMPLE 7-10: .hword

.palign 2 Align next word to a two byte boundary

MyData: .hword 0x0002, 0x0003, 0x0005

DS70151A-page 74 © 2005 Microchip Technology Inc.

The MPLAB ASM30 Assembler

.palign

The .palign directive aligns data within a program memory section. In Example 7-11,
the variable, MyData, will start at an even address (exactly divisible by 2).

EXAMPLE 7-11: .palign

.section .myconstbuffer, “x”

Align next word to a two byte boundary

MyData: .hword 0x0002, 0x0003, 0x0005

.align

The .align directive aligns data within a section. In Example 7-12, the variable
Array3 will start at an address that is exactly divisible by 8. The .align directive is
especially useful when using the modulo addressing feature or the dsPIC30F
processor.

EXAMPLE 7-12: .align

.bss

Array3:.space 6 Allocating space (in bytes) to variable

7.3 EXAMPLE CODE

Having learned about the directives and the format of the instructions, we can now look
at an example to see how it all works. Here is an explanation of the code in the Flash
LEDs with dsPIC30F6014.s file used in the previous chapters.

Note: The other tutorial files, Flash LEDs with dsPIC30F6012.s, Flash
LED with dsPIC30F2010.s and Flash LEDs with
dsPIC30F4011.s are very similar and the descriptions below are
applicable.

7.31 Code Description

The Flash LEDs with dsPIC30F6014. s file starts with comments. In this file, the
comments explain the license agreement and what the program is doing (flashing the
LEDs depending on the state of switch SW1). Comments are always preceded by a
semicolon (;) or, alternatively, C-style block comments (/* */).

The comments are followed by a definition of the 30F6014 label to allow the include
file to check that the correct processor is being used. The standard include file is
included to define all the bits in the various SFRs.

EXAMPLE 7-13:

; Use Timer 1 to flash LED1 when switch SW1l is not pressed
; and flash LED2 when switch SW1l is pressed

.equ __30F6014, 1
.include "p30f6014.inc"

© 2005 Microchip Technology Inc. DS70151A-page 75

Getting Started with dsPIC30F Digital Signal Controllers

The next section contains global declarations of the reset label and the various
error trap labels. This allows the linker to determine the correct address to place in the
goto instruction at the Reset vector. It also allows the linker to determine the
addresses to place in the Interrupt Vector Table for the error trap routines. (Refer to
Section 1.2.10 “Interrupts” for more information about the error traps and the
Interrupt Vector Table.)

EXAMPLE 7-14:

;Global Declarations

.global _ reset ;iThe label for the first line of code
.global _ OscillatorFail ;Declare Oscillator Fail trap routine label
.global AddressError ;Declare Address Error trap routine label
.global _ StackError ;Declare Stack Error trap routine label
.global MathError ;Declare Math Error trap routine label

In the next section, the configuration bits are defined so that the processor will be
programmed with the correct oscillator mode, Watchdog Timer settings, etc. The
Configuration register addresses, such as Fosc and __ FWDT, are defined in the
linker script file, p30£6014 .g1d. The Configuration register values, such as
CSW_FSCM OFF and XT_ PLL4, are defined in the processor include file,
p30£f6014.1inc.

EXAMPLE 7-15:

;Configuration bits

config _ FOSC, CSW_FSCM OFF & XT PLL4

config FWDT, WDT OFF

config FBORPOR, PBOR OFF & BORV_27 & PWRT 16 & MCLR_EN
config __ FGS, CODE_PROT OFF

The Fcy label is equated to a value so that frequency changes can easily be made. A
single line can now be changed to adapt the code to different oscillator options.

EXAMPLE 7-16:

;Program Specific Constants (literals used in code)

.equ Fcy, #7372800 ;Instruction cycle rate (Osc x PLL / 4)

A . text directive tells the assembler that the code that follows should be placed in the
default code section.

EXAMPLE 7-17:

;Start of code

.text ;Start of Code section

DS70151A-page 76 © 2005 Microchip Technology Inc.

The MPLAB ASM30 Assembler

EXAMPLE 7-18:

Thelinker recognizes reset: as a standard label and adds code to branch to it after
a Reset. It must be global for the linker to use the label.

After allocating all the RAM variables, the linker finds the largest available space for the
stack and assigns the start addresstothe SP_init label. The code loads this label
into the Stack Pointer register, W15, and this sets up the software stack. Notice the “#”
sign that indicates a literal value.

The linker also provides the end address of the available stack space and the code
loads this value from the _ SPL.IM init label into the Stack Pointer Limit register,
SPLIM. This sets up error checking for stack overflows. A stack error will occur if the
stack pointer, W15, equals the address in SPLIM. Notice that this operation is done in
two instructions. The WO register is loaded with the SPLIM init value and this is
then moved into the SPLIM register. It is not possible to code a 16-bit literal value and
a 13-bit near memory address into one 24-bit instruction.

__reset: mov
mov
mov
nop

;Initialize stack pointer and limit register

SP init, W15 ;Initialize the Stack Pointer register
#_SPLIM init, WO ;Get address at the end of stack space
WO, SPLIM ;Load the Stack Pointer Limit register

;Add NOP to follow SPLIM initialization

EXAMPLE 7-19:

After setting up the stack, the code initializes an 1/O port to drive the LEDs on PORTD.
The LEDs are on bits 0 to 3 of PORTD and turn on when the pins are driven low. The
code sets these bits in the Port Latch register, LATD, so that when the I/O pins are
turned into outputs, the LEDs will be off. The code then clears these same bits in the
Port Tri-State register, TRISD, so that the 1/O pins are turned into outputs. Finally, the
code clears bit 0 of LATD to turn one LED on.

mov
mov
mov
mov
bclr

;Initialize LED outputs on PORTD bits 0-3

HOXEEEE, WO ;Initialize LED pin data to off state
W0, LATD

#0xfffo, WO ;Set LED pins as outputs

W0, TRISD

LATD, #0 ;Turn LED1 on

© 2005 Microchip Technology Inc. DS70151A-page 77

Getting Started with dsPIC30F Digital Signal Controllers

Timer1 is initialized for a 1/5-second period so that it will flash cheerfully. The code
clears the Timer1 Control register, T1CON, to stop the timer and the Timer1 Count
register, TMR1, is cleared so that it will start counting from zero.

The Timer1 Period register, PR1, is loaded with the number of counts in 1/5 second.
The assembler calculates this value because we have specified the instruction rate

(Fcy), divided by the prescaler value (256), multiplied by the time (1/5 second). The
prescaler divides the clock rate that increments the timer.

Finally, the Timer1 Control register, T1CON, is written to turn the timer on and to use
an internal clock source with a 1:256 prescaler.

EXAMPLE 7-20:

;Initialize Timerl for 1/5 second period

clr T1CON ;Turn off Timerl by clearing control register
clr TMR1 ;Start Timerl at zero

mov #Fcy/256/5, WO ;Get period register value for 1/5 second
mov W0, PR1 ;Load Timerl period register

mov #0x8030, WO ;Get Timerl settings (1:256 prescaler)

mov WO, T1CON ;Load Timerl settings into control register

The main code loop starts with a label, MainLoop :. The Timer1 Interrupt Flag bit, T1IF,
in the IFSO register is tested to see whether the timer count has reached the Period
register value. If the period has not yet elapsed, then the code branches back to
MainLoop.

Once Timer1 has set the T1IF bit, the code skips over the branch instruction so that it
can go and flash an LED. The T1IF bit is cleared so that it can be used again to detect
the end of the next timer period.

The switch, SW1, is connected to the RA12 pin, so the code tests bit 12 of the PORTA
register to see if the switch is being pressed. If the switch is pressed, the branch
instruction is executed to go toggle LEDZ2; otherwise, the code skips over the branch
instruction and toggles LED1 instead.

LED1 is connected to pin RDO, so bit 0 of LATD is toggled to turn the LED on or off.
LED?2 is turned off by clearing bit 1 of LATD in case the LED was lit. Notice that when
an /O port is used as an input, the PORTXx register is used and when a port is used as
an output, the LATX register is used. After changing either of the LEDs, the code
branches back to MainLoop.

EXAMPLE 7-21:

;Loop while waiting for a Timerl match and toggle LED1 or LED2 when it happens

MainLoop: btss 1IFSO0, #T1IF ;Check if Timerl interrupt flag is set
bra MainLoop ;Loop back until set
bclr 1IFS0, #T1IF ;Clear Timerl interrupt flag
btss PORTA, #12 ;Test switch SW1l (low when pressed)

bra SwitchPressed

btg LATD, #0 ;Toggle LED1 when SW1l is not pressed
bset LATD, #1 ;Turn off LED2
bra MainLoop ;Loop back
SwitchPressed:bset LATD, #0 ;Turn off LED1
btg LATD, #1 ;Toggle LED2 when SW1l is pressed
bra MainLoop ;Loop back

DS70151A-page 78 © 2005 Microchip Technology Inc.

The MPLAB ASM30 Assembler

The error trap routines follow the rest of the code. If the code fails due to a catastrophic
error, such as an oscillator failure or a branch to non-existent memory, then the hard-
ware will switch the execution to the appropriate error trap routine. Each routine has a
global address label, such as OscillatorFail: and the linker uses these
addresses to create the Interrupt Vector Table. Each of these error trap routines turns
on an LED and loops endlessly.

EXAMPLE 7-22:

;O0scillator Fail Error trap routine

.text ;Start of Code section
_OscillatorFail:
beclr LATD, #3 ;Turn LED4 on
bra __OscillatorFail ;Loop forever when oscillator failure occurs

;Address Error trap routine

__AddressError:
beclr LATD, #3 ;Turn LED4 on
bra __AddressError ;jLoop forever when address error occurs

After the error trap routines, there is an . end directive that indicates that there is no
more code to be assembled in this file.

EXAMPLE 7-23:

.end ;End of code in this file

The assembler always generates object files that need to be linked. To learn about
the LINK30 linker and how it takes the code and data from the object files and
creates the final output files, please jump ahead to Chapter 9. “The MPLAB LINK30
Linker”. If you are going to use the MPLAB C30 compiler, then proceed to

Chapter 8. “MPLAB C30 C Compiler”.

© 2005 Microchip Technology Inc. DS70151A-page 79

Getting Started with dsPIC30F Digital Signal Controllers

NOTES:

DS70151A-page 80 © 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Chapter 8. MPLAB C30 C Compiler

8.1 MPLAB C30 C COMPILER OVERVIEW

Many of you writing software for the dsPIC devices will do so in ‘C’. MPLAB C30

C Compiler is an ANSI-compliant C compiler that allows you to write uniform, modular
code for the dsPIC digital signal controller that is more portable and easier to understand
than assembly. In addition to the advantage of the ‘C’ language itself, the libraries offered
by MPLAB C30 C Compiler make it a powerful compiler. For example, implementing
floating point, trigonometrical functions, filters and FFT algorithms can be quite
cumbersome in the assembly language. But with the DSP, peripheral and standard math
libraries, these routines can be called easily. The modularity of the ‘C’ language reduces
the likelihood of functions interacting.

The intent of this chapter is not to describe the ins and outs of the C language, but
rather what you’ll need to know to be able to get up and running quickly. For
detailed information on the operation of MPLAB C30 C Compiler, refer to the
“MPLAB® C30 C Compiler User’s Guide” (DS51284).

Note: This chapter is based on MPLAB C30 C Compiler version 1.30. Some
information may become dated as new versions are released.

8.2 MPLAB C30 C COMPILER PROJECTS

You learned about MPLAB projects in Chapter 3. “MPLAB Integrated Development
Environment”, but only used assembly (. s) source files. You will now see that MPLAB
C30 C Compiler projects are very similar, but use C language (. c) source files and
archive (. a) library files as well.

Recall that building an assembly project is a two-step process. The assembly source
(.s) files are each assembled to create object (. o) files and then the object files are
linked to create output (.hex and . cof) files, as shown in Figure 8-1.

Building a MPLAB C30 C Compiler project is also a two-step process in which ‘C’ source
(.c) files are compiled to object files and the object files are linked to create output files.

FIGURE 8-1: PROJECT BUILD PROCESS
Assembly C Source
Source Files Files
(*f) (*f)
MPLAB® ASM30 MPLAB® C30
COFF Object List Files COFF Object List Files
Files (*.0) (*.1st) Files (*.0) (*.1st)

© 2005 Microchip Technology Inc. DS70151A-page 81

Getting Started with dsPIC30F Digital Signal Controllers

In addition to ‘C’ files, the project may include library files that are linked together with
the object files. The libraries are created from precompiled object files and are
essentially functions that can be used in the project without the need to be compiled.

The project also includes a linker script file for the LINK30 linker. For more information
on the linker, please read Chapter 9. “The MPLAB LINK30 Linker”.

8.3 CREATING A PROJECT WITH THE PROJECT WIZARD

If you have not already done so, please read Chapter 3. “MPLAB Integrated
Development Environment” to find out about projects and workspaces in MPLAB
IDE. We will forgo any repetition and jump right into creating an MPLAB C30 C Compiler
project.

First, install the MPLAB C30 C Compiler. The tutorial that follows assumes that it has
been installed to the default location C: \Program Files\Microchip\MPLAB C30.
If you install it elsewhere, please adjust the paths in the tutorial accordingly.

Note: The tool locations for your environment may be different from those shown
here.

Before starting, create a folder for the project files for this tutorial. The folder
C:\Tutorial is being used in the instructions that follow. If you have already created
this folder for a previous tutorial, you can simply add the new file into the folder. Copy
the Flash LEDs with dsPIC30F6014.cfileintothe C:\Tutorial folder. The files
are supplied with this document. If the file is copied from a CD, it has read-only
attributes; remember to change the attributes if the file needs to be edited.

Note: If you have a dsPICDEM Starter Demonstration Board, you can use the
Flash LEDs with dsPIC30F6012.c file instead;it contains very similar
code. For the dsPICDEM 28-Pin Starter Demonstration Board, you can use
the Flash LED with dsPIC30F2010.c file. For the dsPICDEM 2
Development Board, you can use the Flash LED with
dsPIC30F4011.c file.

Now, start MPLAB IDE and close any open workspace with the File>Close Workspace
menu. The Project Wizard in MPLAB IDE is an easy way to create new projects. Use
the Project>Project Wizard menu to start the Project Wizard. When the Welcome
screen appears, click Next> to continue.

Step 1 — Select a Device

The Project Wizard wants you to select a dsPIC device to work with, as shown in
Figure 8-2. Select “dsPIC30F6014” from the pull-down menu, then click Next> to
continue.

Note: If you are using a different demo board, select the dsPIC30F6012,
dsPIC30F2010 or dsPIC30F4011, as appropriate.

DS70151A-page 82 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler

FIGURE 8-2: PROJECT WIZARD - STEP ONE

Project Wizard

Step One:
Selecta device

Dewvice:

<Back || mea> | [cCancel | [Hep

Step 2 — Select a Language Toolsuite

The next screen (Figure 8-3) expects you to select the toolsuite. Select the “Microchip
C30 Toolsuite” from the pull-down menu.

FIGURE

8-3: PROJECT WIZARD - STEP TWO

Step Two:

Active Toolsuite:

Lozation

Select al toolzuit EE
elect a language toolsuite /
%

Toolsuite Contents

MPLAE A5 30 Assembler [pic30-as.exe N
MPLAB C30 C Compiler [pic]

|
FMPLAE LIMNE30 Object Linker [pic30-d.exe) 2
LIR30 Archiver Ric30-ar ceel

C:\Program Filss\MiciochipsMPLAB CA0MbIn\pica0-gos. exs

Microchip C30 Toolsuite w

Help! My Suite lsn't Listed! J

[Show all installed tooksuites

’ ¢ Back ” MHest >][Cancel][Help]

Check that the executables for the assembler, compiler and linker are at the following

locations:

Assembler: C:\Program

Compiler:
Linker:
Archiver:

C:\Program
C:\Program
C:\Program

Files\Microchip\MPLAB C30\bin\pic30-as.exe
Files\Microchip\MPLAB C30\bin\pic30-gcc.exe
Files\Microchip\MPLAB C30\bin\pic30-1d.exe
Files\Microchip\MPLAB C30\bin\pic30-ar.exe

© 2005 Microchip Technology Inc.

DS70151A-page 83

Getting Started with dsPIC30F Digital Signal Controllers

These tool locations assume that the MPLAB C30 C Compiler was installed with the
default settings.

Note: A red ‘X’ appears next to toolsuite locations that are missing information.

If a red ‘X’ appears next to a toolsuite, select the toolsuite and click on the Browse
button to set the location. Once the toolsuite has been selected and the locations are
correct, click Next to continue.

Step 3 — Name your Project

The next screen (Figure 8-4) wants you to name the project.

Type “MyC30Project” for the project name and browse to, or type C: \Tutorial for
the project directory.

Click Next> to continue.

FIGURE 8-4: PROJECT WIZARD - STEP THREE

Project Wizard @

Step Three: r‘.
Mame your project

Project Mame
MuC30Project

Project Directorny

C:AT utarial

< Back ” Mest »][Cancel] [Help

Step 4 — Adding Files to the Project

The next screen allows you to add files to the project.

Selectthe Flash LEDs with dsPIC30F6014 . c file from the Tutorial folder and click
Add>> to include this file in the project.

Navigate to the C: \Program Files\Microchip\MPLAB C30\Support\gld
folder. Select the p30£6014 .g1d file and click Add>> to include the file in the project.

There should now be two files in the project, as shown in Figure 8-5. Click Next> to
continue.

DS70151A-page 84 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler

FIGURE 8-5:

PROJECT WIZARD - STEP FOUR

Step Four: Eﬁ‘
Add any exizting files to pour project /ﬁ
=] MPLAE C30 ES [C:\Program FilessMicrochiphMPLe
1 kin [C:ATutorial\Flash LED's with dsPIC
] docs
1 eramples
7 inchude
C1ib
] s
=] suppart
=1 gid
pa0F2010.g1d
p30F201 0e. gld hS >
[F1 pl0f2011.ad

Check the box to copy the file to the

» project directany

’ ¢ Back ” MHest >][Cancel][Help]

The Project Wizard Summary screen displays the Project Parameters you have just set

up, as shown in Figure 8-6.

FIGURE 8-6:

PROJECT WIZARD SUMMARY SCREEN

Project Wizard

- Summary

Click. Finigh' to create the project with these parameters.

Froject Parameters

Device: dsPICI0FEOT4
Toolzuite: Micrachip C30 Toolsuite
File: C:4Tutarial\MyuC30Project. mop

A new project will be created and added to the curent
workzpace. Mote that the selected device applies to all
projects in the current workspace.,

< Back “ Firizh |[Cancel] [Help

Click Finish.

Note:

If you are using the dsPICDEM Starter Demonstration Board, select the
files applicable to the dsPIC30F6012 instead. If you are using the
dsPICDEM 28-Pin Starter Demonstration Board, select the files applicable
to the dsPIC30F2010. If you are using the dsPICDEM 2 Development
Board, select the files applicable to the dsPIC30F4011.

© 2005 Microchip Technology Inc.

DS70151A-page 85

Getting Started with dsPIC30F Digital Signal Controllers

After the Project Wizard completes, MPLAB IDE will have a Project window showing
the Flash LEDs with dsPIC30F6104.c file in the Source Files category and the
p30£f6014.gld file in the Linker Scripts category. The GLD file is described in much
greater depth in Chapter 9. “The MPLAB LINK30 Linker”.

If you realize that you have forgotten to add files to your project, you don’t have to
restart the Project Wizard. Simply right click on a category in the project tree, select
“Add Files” from the drop-down menu and browse to the file you want to add. You can
remove files by right clicking on the file name and selecting Remove.

A project file, MyC30Project . mcp, and workspace file, MyC30Project . mcw, have
now been created by the MPLAB IDE. Double click the Flash LEDs with
dsPIC30F6014.c file in the Project window to open the file. The file displays in the
Editor window.

8.4 SETTING THE BUILD OPTIONS

Before you can build your project, you will need to set the build options. These settings
are used by MPLAB IDE to locate files, generate debugging information, control
optimization and create diagnostic files.

Use the Project>Build Options>Project menu to tell MPLAB IDE where to find the
header files. When the Build Options screen displays, click on the Browse button for
the “Include Path” and browse to C: \Program Files\Microchip\MPLAB
c30\support\h. Click OK to add this path, as shown in Figure 8-7.

FIGURE 8-7: PROJECT BUILD OPTIONS DIALOG

Include Path, $[IIMCDIR]:
iE:"-.F'ru:ugram FilezhMicrochipitPLAR C30Nzupportihh Browse. . I

DS70151A-page 86

© 2005 Microchip Technology Inc.

MPLAB C30 C Compiler

8.5 BUILDING THE PROJECT

The project is now ready to be built. Select the Project>Make menu. The results of the
build will appear in the Output window and this should indicate that the build
succeeded, as shown in Figure 8-8.

Depending on your Project Build Options, you may see a Memory Usage Reportin your
Build results.

FIGURE 8-8: BUILD STATUS
M Qutput E@E

Build | Version Control | Find in Files | MPLAB 51M

Clean: Deleting interrmediary and outputfiles.

Clean: Deleted file "CATutoriahlMash LCDs with dsFICI0CG014.0"

Clean: Deleted file "MyC30Project.cof".

Clean: Deleted file "MyC30Projecthex".

Clean: Deleted file "CATutorialhyC30Project mes"

Clean: Done

Executing: "C\Program Files\Microchip\WPLAE C30binpic30-goc.exe” -D__dsPIC30FE014__ -c -« ¢ "Flash LEDs with dsPIC30FE014.c"
Executing: "CA\Program Files\MicrochipiWMPLABE C30binkpic30-goo.exe” WL "CA\Tutorial\Flash LEDs with dsPICI0FE0T 4.0" —script="CAF
Executing: "C\Program Files\MicrochipiMPLAEB CI30\binypic30-binZhexexe" "MyC30Project.cof!

Loaded CATutorialiMyC30Project cof.

BUILD SUCCEEDED: Fri May 06 15:03:06 2005

Now that you have built the project successfully, you can run or debug the code. You
can go back to Chapter 4. “The MPLAB SIM Simulator”, Chapter 5. “The MPLAB
ICD 2 In-Circuit Debugger” or Chapter 6. “MPLAB ICE 4000 In-Circuit Emulator”.

8.6 LANGUAGE FEATURES

8.6.1 ANSI C Standard

The MPLAB C30 C Compiler is an ANSI C compiler with various extensions to support
specific features and capabilities of the dsPIC devices. The compiler includes a
complete ANSI C standard library and there is an optimizer to generate efficient
compact code.

8.6.2 Standard Header File

A standard header file, such as p30£6014 . h used in our example code, should always
be included in each ‘C’ file with an #include statement. The header file contains the
declarations for all the Special Function Registers (SFRs) and their bits so that they can
be used in the code. The linker obtains the addresses of the SFRs from the linker script
file, p30£6014.gld, in our example.

8.6.3 __attribute___ keyword

The MPLAB C30 C Compiler uses the attribute keyword (note the double
underscore prefix and suffix) to indicate compiler specific actions for functions and vari-
ables that cannot be done with standard ‘C’ syntax. It can be used to define sections,
control how program memory is used, optimize functions, specify interrupt functions
and so forth. It is similar to the #pragma directive used in some other compilers, such
as MPLAB C18 C Compiler.

© 2005 Microchip Technology Inc. DS70151A-page 87

Getting Started with dsPIC30F Digital Signal Controllers

8.7 EXAMPLE CODE

Having learned more about the compiler, you can now look at an example to see how
it all works. Here is an explanation of the example code in the Flash LEDs with
dsPIC30F6014.c file used in the tutorial.

Note: The other tutorial files, Flash LEDs with dsPIC30F6012.c, Flash
LED with dsPIC30F2010.cand Flash LED with dsPIC30F4011.c
are very similar and the descriptions below are applicable.

The file starts with comments, preceded by “/*” or “//” (see Example 8-1). The standard
header file is then included to define all the Special Function Registers (SFRs). There
is a header file for each dsPIC controller supported by the MPLAB C30 C Compiler.

EXAMPLE 8-1: COMMENTS AND HEADER FILE REFERENCE

/**

* Software License Agreement

The software supplied herewith by Microchip Technology Incorporated
(the "Company") for its dsPIC controller is intended and supplied to
you, the Company's customer, for use solely and exclusively on
Microchip dsPIC products. The software is owned by the Company and/or
its supplier, and is protected under applicable copyright laws. All
rights are reserved. Any use in violation of the foregoing
restrictions may subject the user to criminal sanctions under
applicable laws, as well as to civil liability for the breach of the
terms and conditions of this license.

L I S T . N

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, *
WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO,
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY
CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES, FOR ANY REASON WHATSOEVER.

L T S I T N

*

SN Ok ok F F F *

khhkhkkhkhkhdhhkhhkhkdhhhhhhhhdhhkhkdkhhdhhhhdhdhhhhhdhhhhhhkdkhhhhdhhdhhhhrdhrdhkhkdrdhkhkdhrdrhhxdx

// Use Timer 1 to flash LED1 when switch SW1l is not pressed
// and flash LED2 when switch SW1 is pressed

#include "p30F6014.h"

The configuration bits are defined using macros to declare the configuration bit
settings, as shown in Example 8-2. This ensures that the configuration settings will be
included in the output hex file.

EXAMPLE 8-2: CONFIGURATION BITS

//Configuration bits

_FOSC (CSW_FSCM_OFF & XT PLL4) ;

_FWDT (WDT_OFF) ;

__FBORPOR (PBOR_OFF & BORV_27 & PWRT_16 & MCLR_EN) ;
_FGS (CODE_PROT OFF) ;

DS70151A-page 88 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler

The processor frequency is defined in order to set up a timer later in the code. The
symbol, Fcy, is given a value in a #define statement, as shown in Example 8-3.

EXAMPLE 8-3: PROCESSOR FREQUENCY DEFINITION

//Program Specific Constants

#define Fcy 7372800 //Instruction cycle rate (Osc x PLL / 4)

The Main () routine starts the executable code and has an integer return value in
accordance with the ANSI ‘C’ standard. It is important to note that the linker will add
start-up code that calls the Main routine. The first part of the Main routine
(Example 8-4) sets up the 1/O pins for the LEDs by initializing the output latch and
turning the LED pins into outputs.

EXAMPLE 8-4: BEGINNING OF MAIN ROUTINE

//Main routine
//Set up LEDs and timer, wait for timer periods, and flash one of the two LEDs

int main(void)

{

LATD = Oxffff; //Initialize LED pin data to off state
TRISD = Oxfffo; //Set LED pins (PORTD bits 0-3) as outputs
LATDbits.LATDO = O; //Turn LED1 on (active low)

The code then initializes Timer1 for a 1/5-second period and turns the timer on, as
shown in Example 8-5.

EXAMPLE 8-5: TIMER INITIALIZATION

T1CON = O; //Turn off Timerl and clear settings

TMR1 = 0; //Start Timerl at zero

PR1 = Fcy/256/5; //Set period register value for 1/5 second
T1CON = 0x8030; //Turn on Timerl with 1:256 prescaler

Inside the Main () routine,thereisawhile (1) loop to ensure that code execution
never leaves main and stops. Inside the infinite loop, the code waits for the Timer1
interrupt flag to be set (see Example 8-6). The interrupt flag is set by the hardware
when the timer matches the Period register, even though interrupts are not enabled.

EXAMPLE 8-6: WHILE LOOP

while (1) //Loop forever

{

while (! IFSObits.T1IF) {} //Wait for timer period

After the timer period has elapsed, the code clears the interrupt flag to be ready to test
it again later. The RA12 input pin is tested to see if switch SW1 has been pressed.
Depending on the state of the input pin, one of the LEDs is toggled and the other is
turned off. As shown in Example 8-7, the code that waits for the timer and toggles the
LED repeats endlessly.

© 2005 Microchip Technology Inc. DS70151A-page 89

Getting Started with dsPIC30F Digital Signal Controllers

EXAMPLE 8-7: MAIN ROUTINE

IFSObits.T1IF = 0; //Clear timer flag for next period
if (PORTAbits.RA12) //Check if SW1 is pressed
{
LATDbits.LATDO "= 1; //Toggle LED1 when SW1 not pressed
LATDbits.LATD1 = 1; //Turn off LED2
}
else
{
LATDbits.LATDO = 1; //Turn off LED1
LATDbits.LATD1I “= 1; //Toggle LED2 when SW1l is pressed
}
}
} //End of main ()

Next are the error trap routines, as shown in Example 8-8. If the code fails due to a
catastrophic error, such as an oscillator failure or a branch to non-existent memory, the
hardware switches the execution to the appropriate error trap routine. Each routine has a
function name, such as _OscillatorFail, thatis recognized and used by the linker to
create the Interrupt Vector Table. The error trap routines turn on an LED and loop endlessly.

EXAMPLE 8-8: ERROR TRAP ROUTINES

//Oscillator Fail Error trap routine

void ISR OscillatorFail (void)

{

LATDbits.LATD3 = O; //Turn LED4 on
while (1) ; //Wait forever

//Address Error trap routine

void ISR _AddressError (void)

{

LATDbits.LATD3 = O0; //Turn LED4 on
while (1) ; //Wait forever

//Stack Error trap routine

void ISR _StackError (void)

{

LATDbits.LATD3 = O; //Turn LED4 on
while (1) ; //Wait forever

//Math (Arithmetic) Error trap routine

void ISR MathError (void)

{

LATDbits.LATD3 = O; //Turn LED4 on
while (1) ; //Wait forever

This simple code example and the tutorial should explain the basics of using the
MPLAB C30 C Compiler. Remember that the compiler generates object files and the
MPLAB LINK30 Linker uses the object files to place the code and variables into memory
and generate the output files. To learn more about the linker, please proceed to
Chapter 9. “The MPLAB LINK30 Linker”.

DS70151A-page 90 © 2005 Microchip Technology Inc.

Getting Started with

MICROCHIP dsPIC30F Digital Signal Controllers

Chapter 9. The MPLAB LINK30 Linker

MPLAB LINK30 LINKER OVERVIEW

The MPLAB LINK3O0 linker translates object files and archive (library) files and
combines them into the executable program that runs the dsPIC device. Object files are
created by the MPLAB ASM30 Assembler and MPLAB C30 C Compiler. Archive files
are created by the MPLAB® LIB30 Archiver/Librarian. As illustrated in Figure 9-1, these
files are then translated and linked to form a Common Object File Format (COFF) file
that actually controls the dsPIC device.

FIGURE 9-1: MPLAB® LINK30 LINKER OPERATION
C Source Files Assembler Source Files | | Precompiled Object Files
(*.c) (*.s) (*.0)
MPLAB® C30 MPLAB® ASM30 MPLAB® LIB30
C Compiler Assembler Archiver
Object Files Object Files Library/Archive Files

(*.0) (*.0) (*.a)

\ /

Linker Script File MPLAB® LINK30
(*.gld) Linker

Executable COFF File
(*.cof)

The linker essentially links all compiled and assembled files in the project together, to
form one executable file that can be programmed into a part, simulated or emulated.
The hex file and map file are created from the COFF file.

Note: This chapter is based on MPLAB LINK30 Linker version 1.31. Some
information may become dated as new versions are released.

© 2005 Microchip Technology Inc. DS70151A-page 91

Getting Started with dsPIC30F Digital Signal Controllers

9.2 LINKER SCRIPT FILES

The linker uses a linker script file to know where sections of memory are located and
to know the memory ranges implemented on a specific part. The linker script file
supports the construction of Interrupt Vector Tables and the allocation of the software
stack. It also assigns the addresses of the Special Function Registers (SFRs).

The linker script file has the following categories of information that we will briefly
discuss in the rest of this chapter by looking at the p30£6014 . g1d file as an example:
» Output File Format and Entry Point

* Memory Region Information

+ Base Memory Address

* Input/Output Section Map

» Range Checking for Near and X Data Memory

* Interrupt Vector Tables

* SFR Addresses

9.21 Output File Format and Entry Point
The first several lines of a linker script define the output format, processor family and
entry point:
EXAMPLE 9-1:
/*

** TLinker Script for p30£6014
*/

OUTPUT_FORMAT (“coff-pic30”)
OUTPUT_ARCH (“pic30”)

EXTERN(_ resetPRI)

EXTERN (_resetALT)

ENTRY (_ reset)

Notice that the entry label is reset. If you have a global label called reset in
your code, that will be where the code starts executing.

DS70151A-page 92

© 2005 Microchip Technology Inc.

The MPLAB LINK30 Linker

9.2.2 Memory Region Information

The next section of the linker script file defines the various memory regions for the
device. The information in this section tells the linker how much memory is available on
the device. Each memory region is range checked as sections are added during the
link process. If any region overflows, a link error is reported.

EXAMPLE 9-2:
/*
** Memory Regions
*/
MEMORY
(
data (alxr) : ORIGIN = 0x800, LENGTH = 8096
program (xXr) : ORIGIN = 0x100, LENGTH = ((48K * 2) - 0x100)
reset : ORIGIN = O, LENGTH = (4)
ivt : ORIGIN = 0x04, LENGTH = (62 * 2)
aivt : ORIGIN = 0x84, LENGTH = (62 * 2)
__ _FOScC : ORIGIN = 0xF80000,LENGTH = (2)
__ FWDT : ORIGIN = 0xF80002,LENGTH = (2)
__ FBORPOR : ORIGIN = 0xF80004,LENGTH = (2)
__ CONFIG4 : ORIGIN = 0xF80006,LENGTH = (2)
__ CONFIG5 : ORIGIN = 0xF80008,LENGTH = (2)
__FGS : ORIGIN = OxF8000A,LENGTH = (2)
eedata : ORIGIN = O0x7FF000,LENGTH = (4096)
)

9.2.3 Base Memory Address

This portion of the linker script defines the starting addresses of several sections into
which the linker will place code or data. Each base address is defined as a symbol and
the symbols are used to specify load addresses in the section map that follows.

EXAMPLE 9-3:
/*
** Base Memory Addresses - Program Memory
*/
__RESET BASE = 0: /* Reset Instruction */
__IVT BASE = 0X04; /* Interrupt Vector Table */
__AIVT BASE = 0x84; /* Alternate Interrupt Vector Table */
__CODE_BASE = 0x100; /* Handles, User Code, Library Code */
/*
** Base Memory Addresses - Data Memory
*/
__SFR_BASE = 0; /* Memory-mapped SFRs */
__DATA BASE = 0x800; /* X and General Purpose Data Memory */
__YDATA BASE = 0x1800; /* Y Data Memory for DSP Instructions */

© 2005 Microchip Technology Inc. DS70151A-page 93

Getting Started with dsPIC30F Digital Signal Controllers

9.24 Input/Output Section Map

The section map is the heart of the linker script file. It defines how input sections are
mapped to output sections. Note that input sections are portions of an application that
are defined in source code, while output sections are created by the linker. Generally,
several input sections may be combined into a single output section.

For example, suppose that an application consists of five different functions and each
function is defined in a separate source file. Together, these source files produce five
input sections. The linker combines these input sections into a single output section.
Only the output section has an absolute address. Input sections are always relocatable.

If any input or output sections are empty, there is no penalty or storage cost for the
linked application. Most applications will use only a few of the many sections that
appear in the section map.

This is how the section map starts:

EXAMPLE 9-4:

SECTIONS
(

Consider the first section of program memory in Example 9-5. The program memory
starts at address zero (_ RESET BASE is defined as a base memory address in
Example 9-3) and there is space for a two-word instruction before the Interrupt Vector
Table starts. The section is loaded with data to form a two-word GOTO _ reset
instruction. You can look at the encoding for a GOTO instruction in the

“dsPIC30F Programmer’s Reference Manual” (DS70030) to see how the instruction
has been constructed.

EXAMPLE 9-5:

/*
** RESET Instruction
*/
.reset _ RESET_BASE:
(
SHORT (ABSOLUTE (_reset)) ;
SHORT (0x04) ;
SHORT (ABSOLUTE (_reset) >> 16) & O0x7F;
SHORT (0) ;
) >reset

DS70151A-page 94 © 2005 Microchip Technology Inc.

The MPLAB LINK30 Linker

The . text section collects executable code input sections from all of the application’s
input files and puts them into one output section. The order of some input sections is
defined to ensure proper operation of the MPLAB C30 C Compiler. For example, the
.handle section is used for function pointers and is loaded first. This is followed by
the library sections, .1ibc, .1ibmand .1ibdsp. The math library is in the middle so
that it can be called efficiently from the standard ‘C’ library as well as the DSP library.
Other libraries are then followed by the rest of the code.

EXAMPLE 9-6:
/*
** User Code and Library Code
*/
.text _ CODE_BASE:
{
* (.handle) ;
*(.libc) *(.libm) *(.libdsp); /* Keep together in this order*/
(.1ib) ;
* (.text) ;

} >program

The rest of the section maps follow, to define all the different types of program memory,
RAM, EEPROM and configuration memory sections.

Note: Itis possible to create your own user-defined output sections in program
and data memory. There are examples showing how to do this in the linker
script files.

9.2.5 Range Checking for Near and X Data Memory

Range check expressions are included for the X Data Memory space and the Near
Data Memory space. Range checking for all other sections is provided as the memory
regions are filled. A link error will be reported if any section extends beyond its assigned
memory region.

Note that the X Data Memory space limit varies by device, while the Near Data Memory
space limit is fixed at 8 Kbytes, or address 0x2000.

EXAMPLE 9-7:

/*

** Calculate overflow of X and Near data space

*/

X OVERFLOW = (((__exdata != _ bxdata) &&
(__exdata > __ YDATA BASE)) *?
(__exdata - __YDATA BASE) : 0);

__ NEAR OVERFLOW = (((_endata != _ bndata) &&
(__endata > 0x2000)) 2
(__endata - 0x2000) : 0);

© 2005 Microchip Technology Inc. DS70151A-page 95

Getting Started with dsPIC30F Digital Signal Controllers

9.2.6

The primary and alternate Interrupt Vector Tables are defined in a second section map,
near the end of the linker script file. Here is a simple explanation of the table, using the

Interrupt Vector Tables

oscillator fail error trap as an example:

If the symbol, OscillatorFail, is defined, the address of that symbol is used;
otherwise, the address of symbol, = DefaultInterrupt, is used instead. This
means that if you have not provided an interrupt routine, then a default routine will be
called. If you have not provided a default interrupt handler (a function with the name
DefaultInterrupt), then the linker will generate one automatically. The simplest

default interrupt handler is a RESET instruction.

EXAMPLE 9-8:

/*
*/
{
/*
*/

.ivt

{

** Section Map for Interrupt Vector Tables

SECTIONS

** Primary Interrupt Vector Table
___IVT BASE:

LONG (DEFINED (_ReservedTrapO) ? ABSOLUTE (__ReservedTrapO) :

ABSOLUTE (__ DefaultInterrupt)) ;

LONG (DEFINED (_ OscillatorFail) ? ABSOLUTE(__ OscillatorFail) :

ABSOLUTE (__ DefaultInterrupt)) ;

LONG (DEFINED (__AddressError) ? ABSOLUTE (__ AddressError)

ABSOLUTE (__ DefaultInterrupt)) ;

LONG (DEFINED(__StackError) ? ABSOLUTE(__StackError)

ABSOLUTE (__ DefaultInterrupt)) ;

LONG (DEFINED (__MathError) ? ABSOLUTE (__ MathError)

ABSOLUTE (__ DefaultInterrupt)) ;

}osivt

DS70151A-page 96

© 2005 Microchip Technology Inc.

The MPLAB LINK30 Linker

9.2.7 SFR Addresses

Absolute addresses for the Special Function Registers (SFRs) are defined as a series
of symbol definitions. Two versions of each SFR address are included, with and without
a leading underscore. This is to enable both ‘C’ and assembly language programmers
to refer to the SFR using the same name. By convention, the C compiler adds a leading
underscore to every label.

EXAMPLE 9-9:

* %k Register Definitions
**% (Core and Peripheral Registers in Data Space)

WREGO = 0x0000;
WREGO = 0x0000;
WREG1 = 0x0002;
_WREG1 = 0x0002;

CAN1 = 0x0300;

_CAN1 = 0x0300;

CAN2 = 0x03CO0;

_CAN2 = 0x03CO0;
/*==
**end of SFR definitions required in Data Space
¥===% /

That may be more data than you thought you needed, but it is important not to be
intimidated by the linker and its linker script file. The linker simply follows a procedure
to place your code and variables in the available memory.

We hope this “Getting Started with dsPIC30F Digital Signal Controllers User’s Guide”
has helped you become comfortable using the dsPIC30F devices and the Microchip
development tools. Good luck with all your dsPIC designs.

© 2005 Microchip Technology Inc. DS70151A-page 97

Getting Started with dsPIC30F Digital Signal Controllers

NOTES:

DS70151A-page 98 © 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Appendix A. Code for dsPICDEM 1.1 General Purpose
Development Board

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company'’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

A1 FLASH LED WITH dsPIC30F6014.s

This appendix contains the sample code for the dsPICDEM 1.1 General Purpose
Development Board. This tutorial example was written for the MPLAB ASM30
Assembler and the MPLAB C30 C Compiler.

; Software License Agreement ;

; The software supplied herewith by Microchip Technology Incorporated ;
; (the "Company") for its dsPIC controller is intended and supplied to ;
; you, the Company's customer, for use solely and exclusively on ;
; Microchip dsPIC products. The software is owned by the Company and/or ;
; its supplier, and is protected under applicable copyright laws. All ;
; rights are reserved. Any use in violation of the foregoing ;
; restrictions may subject the user to criminal sanctions under ;
H applicable laws, as well as to civil liability for the breach of the ;
H terms and conditions of this license. ;

; THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, ;
; WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ;
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ;
; PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY ;
; CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL ;
; DAMAGES, FOR ANY REASON WHATSOEVER. ;

; Use Timer 1 to flash LED1 when switch SW1l is not pressed
; and flash LED2 when switch SW1 is pressed

.equ _ 30F6014, 1
.include "p30£f6014.inc"

© 2005 Microchip Technology Inc. DS70151A-page 99

Getting Started with dsPIC30F Digital Signal Controllers

;Global Declarations

.global _ reset ;iThe label for the first line of code
.global _ OscillatorFail ;Declare Oscillator Fail trap routine label
.global AddressError ;Declare Address Error trap routine label
.global _ StackError ;Declare Stack Error trap routine label
.global _ MathError ;Declare Math Error trap routine label

;Configuration bits

config _ FOSC, CSW_FSCM OFF & XT PLL4

config _ FWDT, WDT_ OFF

config FBORPOR, PBOR OFF & BORV 27 & PWRT 16 & MCLR_EN
config _ FGS, CODE_PROT OFF

;Program Specific Constants (literals used in code)

.equ Fcy, #7372800 ;Instruction cycle rate (Osc x PLL / 4)

;Start of code

.text ;Start of Code section

;Initialize stack pointer and limit register

__reset: mov # SP_init, W15 ;Initalize the Stack Pointer register
mov # SPLIM init, WO ;Get address at the end of stack space
mov W0, SPLIM ;Load the Stack Pointer Limit register
nop ;Add NOP to follow SPLIM initialization

;Initialize LED outputs on PORTD bits 0-3

mov HOXEEEE, WO ;Initialize LED pin data to off state
mov W0, LATD

mov #0xfffo, WO ;Set LED pins as outputs

mov W0, TRISD

beclr LATD, #0 ;Turn LED1 on

;Initialize Timerl for 1/5 second period

clr T1CON ;Turn off Timerl by clearing control register
clr TMR1 ;Start Timerl at zero

mov #Fcy/256/5, WO ;Get period register value for 1/5 second
mov W0, PR1 ;Load Timerl period register

mov #0x8030, WO ;Get Timerl settings (1:256 prescaler)

mov W0, T1CON ;Load Timerl settings into control register

;Loop while waiting for a Timerl match and toggle LED1 or LED2 when it happens

MainLoop: btss IFSO, #T1IF ;Check if Timerl interrupt flag is set
bra MainLoop ;Loop back until set
bclr IFSO, #T1IF ;Clear Timerl interrupt flag
btss PORTA, #12 ;Test switch SW1 (low when pressed)
bra SwitchPressed

DS70151A-page 100 © 2005 Microchip Technology Inc.

Code for dsPICDEM 1.1 General Purpose Development Board

btg LATD, #0 ;Toggle LED1 when SW1l is not pressed
bset LATD, #1 ;Turn off LED2
bra MainLoop ;Loop back
SwitchPressed:bset LATD, #O0 ;Turn off LED1
btg LATD, #1 ;Toggle LED2 when SW1l is pressed
bra MainLoop ;Loop back

;Oscillator Fail Error trap routine

.text ;Start of Code section
__OscillatorFail:
bclr LATD, #3 ;Turn LED4 on
bra __ OscillatorFail ;Loop forever when oscillator failure occurs

;Address Error trap routine

___AddressError:
beclr LATD, #3 ;Turn LED4 on
bra __AddressError ;Loop forever when address error occurs

;Stack Error trap routine

___StackError:
beclr LATD, #3 ;Turn LED4 on
bra ___StackError ;Loop forever when stack error occurs

;Math (Arithmetic) Error trap routine

__MathError:
beclr LATD, #3 ;Turn LED4 on
bra __MathError ;Loop forever when math error occurs
.end ;End of code in this file

© 2005 Microchip Technology Inc. DS70151A-page 101

Getting Started with dsPIC30F Digital Signal Controllers

A.2 FLASH LED WITH dsPIC30F6014.c

/**

* Software License Agreement

The software supplied herewith by Microchip Technology Incorporated
(the "Company") for its dsPIC controller is intended and supplied to
you, the Company's customer, for use solely and exclusively on
Microchip dsPIC products. The software is owned by the Company and/or
its supplier, and is protected under applicable copyright laws. All
rights are reserved. Any use in violation of the foregoing
restrictions may subject the user to criminal sanctions under
applicable laws, as well as to civil liability for the breach of the
terms and conditions of this license.

*
*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, *
* WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, *
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR *
* PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY *
* CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL *
* DAMAGES, FOR ANY REASON WHATSOEVER. *
* *
* *
*
*
*
*
*

LR RS R SRR SR R R R R R R R R SR SRR R R R R R R SRR RS EE SRR EEEEEEREEEE

Use Timer 1 to flash LED1 when switch SW1 is not pressed
and flash LED2 when switch SW1l is pressed

***/

#include "p30F6014.h"

//Configuration bits

_FOSC(CSW_FSCM_OFF & XT PLL4) ;

_FWDT (WDT_OFF) ;

__FBORPOR (PBOR_OFF & BORV_27 & PWRT_16 & MCLR_EN) ;
_FGS (CODE_PROT_OFF) ;

/= = e -
//Program Specific Constants

#define Fcy 7372800 //Instruction cycle rate (Osc x PLL / 4)
S

//Main routine
//Set up LEDs and timer, wait for timer periods, and flash one of the two LEDs

int main(void)

{

LATD = Oxffff; //Initialize LED pin data to off state
TRISD = Oxfffo; //Set LED pins (PORTD bits 0-3) as outputs
LATDbits.LATDO = 0; //Turn LED1 on (active low)

T1CON = 0; //Turn off Timerl and clear settings

TMR1 = 0; //Start Timerl at zero

PR1 = Fcy/256/5; //Set period register value for 1/5 second
T1CON = 0x8030; //Turn on Timerl with 1:256 prescaler
while (1) //Loop forever

DS70151A-page 102 © 2005 Microchip Technology Inc.

Code for dsPICDEM 1.1 General Purpose Development Board

while (! IFSObits.T1IF) {}

IFSObits.T1IF = 0;
if (PORTAbits.RA12)

{

LATDbits.LATDO "= 1;
LATDbits.LATD1l = 1;

}

else

{

LATDbits.LATDO = 1;
LATDbits.LATD1 "= 1;

//Oscillator Fail Error trap routine
void ISR OscillatorFail (void)

{

LATDbits.LATD3 = 0;
while (1) ;

//Address Error trap routine

void ISR _AddressError (void)

{
LATDbits.LATD3 = 0;
while (1) ;
1
[] mmmm

//Stack Error trap routine

void ISR _StackError (void)

{

LATDbits.LATD3 = 0;

while (1) ;
}
e

//Math (Arithmetic) Error trap routine

void ISR MathError (void)

{

LATDbits.LATD3 = 0;
while (1) ;

//Wait for timer period

//Clear timer flag for next period
//Check if SW1l is pressed

//Toggle LED1 when SW1 not pressed
//Turn off LED2

//Turn off LED1
//Toggle LED2 when SW1 is pressed

//End of main()

//Turn LED4 on
//Wait forever

//Turn LED4 on
//Wait forever

//Turn LED4 on
//Wait forever

//Turn LED4 on
//Wait forever

© 2005 Microchip Technology Inc.

DS70151A-page 103

Getting Started with dsPIC30F Digital Signal Controllers

NOTES:

DS70151A-page 104 © 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Appendix B. Code for dsPICDEM Starter Demonstration Board

B.1 FLASH LED WITH dsPIC30F6012.s

This appendix contains the sample code for the dsPICDEM Starter Demonstration
Board. This tutorial example was written for the MPLAB ASM30 Assembler and the
C30 C Compiler.

; Software License Agreement ;

; The software supplied herewith by Microchip Technology Incorporated ;
; (the "Company") for its dsPIC controller is intended and supplied to ;
; you, the Company's customer, for use solely and exclusively on ;
; Microchip dsPIC products. The software is owned by the Company and/or ;
; its supplier, and is protected under applicable copyright laws. All ;
; rights are reserved. Any use in violation of the foregoing ;
; restrictions may subject the user to criminal sanctions under ;
H applicable laws, as well as to civil liability for the breach of the ;
; terms and conditions of this license. ;

; THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, ;

; WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ;
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ;
; PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY ;
; CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL ;
; DAMAGES, FOR ANY REASON WHATSOEVER. ;

; Use Timer 1 to flash LED RD4 when switch S1 is not pressed
; and flash LED RD5 when switch S1 is pressed

.equ _ 30F6012, 1
.include "p30£f6012.inc"

;Global Declarations

.global _ reset ;The label for the first line of code
.global _ OscillatorFail ;Declare Oscillator Fail trap routine label
.global AddressError ;Declare Address Error trap routine label
.global _ StackError ;Declare Stack Error trap routine label
.global _ MathError ;Declare Math Error trap routine label

;Configuration bits

config _ FOSC, CSW_FSCM OFF & XT PLL4

config FWDT, WDT_ OFF

config _ FBORPOR, PBOR OFF & BORV 27 & PWRT 16 & MCLR_EN
config _ FGS, CODE_PROT OFF

© 2005 Microchip Technology Inc. DS70151A-page 105

Getting Started with dsPIC30F Digital Signal Controllers

;Program Specific Constants (literals used in code)

.equ Fcy, #4000000 ;Instruction cycle rate (Osc x PLL / 4)

;Start of code

.text

;Initialize stack pointer and limit register

__reset: mov
mov
mov
nop

SP_init, W15 ;Initialize the Stack Pointer register
SPLIM init, WO ;Get address at the end of stack space
WO, SPLIM ;Load the Stack Pointer Limit register

;Add NOP to follow SPLIM initialization

;Initialize LED outputs on PORTD bits 4-7

mov
mov
mov

#OxE£0E, WO ;Initialize LED pin data to off state
W0, LATD

#OxE£0f, WO ;Set LED pins as outputs

W0, TRISD

LATD, #4 ;Turn LED RD4 on

;Initialize Timerl for 1/5 second period

clr
clr
mov
mov
mov
mov

;Loop while waiting

MainLoop: btss
bra
bclr
btss
bra

btg
bclr
bra

SwitchPressed:bclr
btg
bra

T1CON ;Turn off Timerl by clearing control register
TMR1 ;Start Timerl at zero

#Fcy/256/5, WO ;Get period register value for 1/5 second
W0, PR1 ;Load Timerl period register

#0x8030, WO ;Get Timerl settings (1:256 prescaler)

W0, T1CON ;Load Timerl settings into control register

for a Timerl match and toggle LED1 when it happens

IFSO, #T1IF ;Check if Timerl interrupt flag is set
MainLoop ;Loop back until set

IFSO, #T1IF ;Clear Timerl interrupt flag
PORTC, #13 ;Test switch S1 (low when pressed)
SwitchPressed

LATD, #4 ;Toggle LED RD4

LATD, #5 ;Turn off LED RD5

MainLoop ;Loop back

LATD, #4 ;Turn off LED RD4

LATD, #5 ;Toggle LED RD5

MainLoop ;Loop back

DS70151A-page 106

© 2005 Microchip Technology Inc.

Code for dsPICDEM Starter Demonstration Board

;Oscillator Fail Error trap routine

.text ;Start of Code section
___OscillatorFail:
bclr LATD, #7 ;Turn LED RD7 on
bra __OscillatorFail ;jLoop forever when oscillator failure occurs

;Address Error trap routine

___AddressError:
bclr LATD, #7 ;Turn LED RD7 on
bra __AddressError ;Loop forever when address error occurs

;Stack Error trap routine

__StackError:
bclr LATD, #7 ;Turn LED RD7 on
bra ___StackError ;Loop forever when stack error occurs

;Math (Arithmetic) Error trap routine

__MathError:
beclr LATD, #7 ;Turn LED RD7 on
bra __MathError ;Loop forever when math error occurs
.end ;End of code in this file

© 2005 Microchip Technology Inc. DS70151A-page 107

Getting Started with dsPIC30F Digital Signal Controllers

B.2 FLASH LED WITH dsPIC30F6012.c

/**

* Software License Agreement

The software supplied herewith by Microchip Technology Incorporated
(the "Company") for its dsPIC controller is intended and supplied to
you, the Company's customer, for use solely and exclusively on
Microchip dsPIC products. The software is owned by the Company and/or
its supplier, and is protected under applicable copyright laws. All
rights are reserved. Any use in violation of the foregoing
restrictions may subject the user to criminal sanctions under
applicable laws, as well as to civil liability for the breach of the
terms and conditions of this license.

* % ok 3k X X X X X X X *

*
*
*
*
*
*
*
*
*
*
* THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, *
* WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, *
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR *
* PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY *
* CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL *
* DAMAGES, FOR ANY REASON WHATSOEVER. *
* *
* *
*

*

*

*

*

LR RS R SRR SR R R R R R R R R SR SRR R R R R R R SRR RS EE SRR EEEEEEREEEE

Use Timer 1 to flash LED RD4 when switch S1 is not pressed
and flash LED RD5 when switch S1 is pressed

***/

#include "p30F6012.h"

//Configuration bits

_FOSC(CSW_FSCM_OFF & XT PLL4) ;

_FWDT (WDT_OFF) ;

__FBORPOR (PBOR_OFF & BORV_27 & PWRT_16 & MCLR_EN) ;
_FGS (CODE_PROT_OFF) ;

/= = e -
//Program Specific Constants

#define Fcy 4000000 //Instruction cycle rate (Osc x PLL / 4)
S

//Main routine
//Set up LEDs and timer, wait for timer periods, and flash one of the two LEDs

int main(void)

{

LATD = OxffoOf; //Initialize LED pin data to off state
TRISD = OxffOf; //Set LED pins as outputs

LATDbits.LATD4 = 1; //Turn LED RD4 on

T1CON = 0; //Turn off Timerl and clear settings

TMR1 = 0; //Start Timerl at zero

PR1 = Fcy/256/5; //Set period register value for 1/5 second
T1CON = 0x8030; //Turn on Timerl with 1:256 prescaler
while (1) //Loop forever

DS70151A-page 108 © 2005 Microchip Technology Inc.

Code for dsPICDEM Starter Demonstration Board

while (! IFSObits.T1IF) {}

IFSObits.T1IF = 0;
if (PORTCbits.RC13)

{

LATDbits.LATD4 "= 1;
LATDbits.LATD5 = 0;

}

else

{

LATDbits.LATD4 = 0;
LATDbits.LATD5 "= 1;

//Oscillator Fail Error trap routine
void ISR OscillatorFail (void)

{

LATDbits.LATD7 = 0;
while (1) ;

//Address Error trap routine

void ISR _AddressError (void)

{
LATDbits.LATD7 = 0;
while (1) ;

1

//Stack Error trap routine

void ISR _StackError (void)

{
LATDbits.LATD7 = 0;
while (1) ;

}

//Math (Arithmetic) Error trap routine

void ISR MathError (void)

{

LATDbits.LATD7 = 0;
while (1) ;

//Wait for timer period

//Clear timer flag for next period
//Check if S1 is pressed (low when pressed)

//Toggle LED RD4 when S1 not pressed
//Turn off LED RD5

//Turn off LED RD4
//Toggle LED RD5 when S1 is pressed

//End of main()

//Turn
//Wait

//Turn
//Wait

//Turn
//Wait

//Turn
//Wait

LED RD7
forever

LED RD7
forever

LED RD7
forever

LED RD7
forever

on

on

on

on

© 2005 Microchip Technology Inc.

DS70151A-page 109

Getting Started with dsPIC30F Digital Signal Controllers

NOTES:

DS70151A-page 110 © 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Appendix C. Code for dsPICDEM 28-Pin Starter Demonstration Board

C.1 FLASH LED WITH dsPIC30F2010.s

This appendix contains the sample code for the dsPICDEM 28-Pin Starter Demonstra-
tion Board. This tutorial example was written for the MPLAB ASM30 Assembler and the
C30 C Compiler.

; Software License Agreement ;

; The software supplied herewith by Microchip Technology Incorporated ;
; (the "Company") for its dsPIC controller is intended and supplied to ;
; you, the Company's customer, for use solely and exclusively on ;
; Microchip dsPIC products. The software is owned by the Company and/or ;
; its supplier, and is protected under applicable copyright laws. All ;
; rights are reserved. Any use in violation of the foregoing ;
; restrictions may subject the user to criminal sanctions under ;
; applicable laws, as well as to civil liability for the breach of the ;
; terms and conditions of this license. ;

; THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, ;

; WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ;
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ;
; PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY ;
; CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL ;
; DAMAGES, FOR ANY REASON WHATSOEVER. ;

.equ _ 30F2010, 1
.include "p30£2010.inc"

;Global Declarations

.global _ reset ;The label for the first line of code
.global _ OscillatorFail ;Declare Oscillator Fail trap routine label
.global AddressError ;Declare Address Error trap routine label
.global _ StackError ;Declare Stack Error trap routine label
.global _ MathError ;Declare Math Error trap routine label

;Configuration bits

config _ FOSC, CSW_FSCM OFF & XT PLL4

config FWDT, WDT_ OFF

config = FBORPOR, PBOR OFF & BORV 27 & PWRT 16 & MCLR_EN
config _ FGS, CODE_PROT OFF

© 2005 Microchip Technology Inc. DS70151A-page 111

Getting Started with dsPIC30F Digital Signal Controllers

;Program Specific Constants (literals used in code)

.equ Fcy, #7372800 ;Instruction cycle rate (Osc x PLL / 4)

;Start of code

.text ;Start of Code section

;Initialize stack pointer and limit register

__reset: mov # SP init, W15 ;jInitialize the Stack Pointer register
mov # SPLIM init, WO ;Get address at the end of stack space
mov WO, SPLIM ;Load the Stack Pointer Limit register
nop ;Add NOP to follow SPLIM initialization

;Initialize LED output on PORTD bit 0

mov #0xfffe, WO ;Initialize LED pin data to off state
mov W0, LATD

mov #0xfffe, WO ;Set LED pin as output

mov W0, TRISD

bset LATD, #O0 ;Turn LED on

;Initialize Timerl for 1/5 second period

clr T1CON ;Turn off Timerl by clearing control register
clr TMR1 ;Start Timerl at zero

mov #Fcy/256/5, W0 ;Get period register value for 1/5 second
mov W0, PR1 ;Load Timerl period register

mov #0x8030,WO0 ;Get Timerl settings (1:256 prescaler)

mov W0, T1CON ;Load Timerl settings into control register

;Loop while waiting for a Timerl match and toggle LED1 when it happens

MainLoop: btss IFSO, #T1IF ;Check if Timerl interrupt flag is set
bra MainLoop ;Loop back until set
bclr IFS0, #T1IF ;Clear Timerl interrupt flag
btg LATD, #0 ;Toggle LED
bra MainLoop ;Loop back

;Oscillator Fail Error trap routine

.text ;Start of Code section
___OscillatorFail:
beclr LATD, #0 ;Turn LED on
bra __OscillatorFail ;jLoop forever when oscillator failure occurs

;Address Error trap routine

DS70151A-page 112 © 2005 Microchip Technology Inc.

Code for dsPICDEM 28-Pin Starter Demonstration Board

__AddressError:
bclr LATD, #0
bra __AddressError

;Turn
;Loop

LED on
forever when address error occurs

;Stack Error trap routine

__StackError:
bclr LATD, #0
bra ___StackError

LED on
forever when stack error occurs

;Math (Arithmetic) Error trap routine

__ MathError:
bclr LATD, #0
bra __MathError

LED on
forever when math error occurs

;End of code in this file

© 2005 Microchip Technology Inc.

DS70151A-page 113

Getting Started with dsPIC30F Digital Signal Controllers

C.2 FLASH LED WITH dsPIC30F2010.c

/**

* Software License Agreement

The software supplied herewith by Microchip Technology Incorporated
(the "Company") for its dsPIC controller is intended and supplied to
you, the Company's customer, for use solely and exclusively on
Microchip dsPIC products. The software is owned by the Company and/or
its supplier, and is protected under applicable copyright laws. All
rights are reserved. Any use in violation of the foregoing
restrictions may subject the user to criminal sanctions under
applicable laws, as well as to civil liability for the breach of the
terms and conditions of this license.

* % ok 3k X X X X X X X *

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, *
WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, *
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR *
PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY *
CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL *
DAMAGES, FOR ANY REASON WHATSOEVER. *

*

*

LR RS R SRR SR R R R R R R R R SR SRR R R R R R R SRR RS EE SRR EEEEEEREEEE

Use Timer 1 to flash LED

***/

#include "p30F2010.h"

//Configuration bits

_FOSC(CSW_FSCM_OFF & XT PLL4) ;

_FWDT (WDT_OFF) ;

_FBORPOR (PBOR_OFF & BORV_27 & PWRT 16 & MCLR EN) ;
_FGS (CODE_PROT_OFF) ;

/= e e e e e e
//Program Specific Constants

#define Fcy 7372800 //Instruction cycle rate (Osc x PLL / 4)
S

//Main routine
//Set up LEDs and timer, wait for timer periods, and flash one of the two LEDs

int main(void)

{

LATD = Oxfffe; //Initialize LED pin data to off state
TRISD = Oxfffe; //Set LED pin as output

LATDbits.LATDO = 1; //Turn LED on

T1CON = O; //Turn off Timerl and clear settings

TMR1 = 0; //Start Timerl at zero

PR1 = Fcy/256/5; //Set period register value for 1/5 second
T1CON = 0x8030; //Turn on Timerl with 1:256 prescaler

DS70151A-page 114 © 2005 Microchip Technology Inc.

Code for dsPICDEM 28-Pin Starter Demonstration Board

while (1) //Loop forever
{
while (!IFSObits.T1IF) {} //Wait for timer period
IFSObits.T1IF = 0; //Clear timer flag for next period
LATDbits.LATDO “= 1; //Toggle LED
1
} //End of main()

//Oscillator Fail Error trap routine

void ISR OscillatorFail (void)

{
LATDbits.LATDO = 1; //Turn
while (1) ; //Wait
1

//Address Error trap routine
void ISR _AddressError (void)

{

LATDbits.LATDO = 1; //Turn
while (1) ; //Wait

//Stack Error trap routine

void ISR _StackError (void)

{
LATDbits.LATDO = 1; //Turn
while (1) ; //Wait
1

//Math (Arithmetic) Error trap routine

void ISR MathError (void)

{

LATDbits.LATDO = 1; //Turn
while (1) ; //Wait

LED on
forever

LED on
forever

LED on
forever

LED on
forever

© 2005 Microchip Technology Inc.

DS70151A-page 115

Getting Started with dsPIC30F Digital Signal Controllers

NOTES:

DS70151A-page 116 © 2005 Microchip Technology Inc.

Getting Started with
MICROCHIP dsPIC30F Digital Signal Controllers

Appendix D. Code for dsPICDEM 2 Development Board

D.1 FLASH LED WITH dsPIC30F4011.s

This appendix contains the sample code for the dsPICDEM 2 Development Board. This
tutorial example was written for the MPLAB ASM30 Assembler and the
C30 C Compiler.

; Software License Agreement ;

; The software supplied herewith by Microchip Technology Incorporated ;
; (the "Company") for its dsPIC controller is intended and supplied to ;
; you, the Company's customer, for use solely and exclusively on ;
; Microchip dsPIC products. The software is owned by the Company and/or ;
; its supplier, and is protected under applicable copyright laws. All ;
; rights are reserved. Any use in violation of the foregoing ;
; restrictions may subject the user to criminal sanctions under ;
H applicable laws, as well as to civil liability for the breach of the ;
; terms and conditions of this license. ;

; THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, ;

; WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ;
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ;
; PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY ;
; CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL ;
; DAMAGES, FOR ANY REASON WHATSOEVER. ;

; Use Timer 1 to flash LED D3 when switch S5 is not pressed
; and flash LED D4 when switch S5 is pressed
; Jumpers H6-M ALL, H12-M D3, and H12-M D4 must be in place

.equ _ 30F4011, 1
.include "p30£f4011.inc"

;Global Declarations

.global _ reset ;The label for the first line of code
.global _ OscillatorFail ;Declare Oscillator Fail trap routine label
.global AddressError ;Declare Address Error trap routine label
.global _ StackError ;Declare Stack Error trap routine label
.global _ MathError ;Declare Math Error trap routine label

© 2005 Microchip Technology Inc. DS70151A-page 117

Getting Started with dsPIC30F Digital Signal Controllers

;Configuration bits

config _ FOSC, CSW_FSCM OFF & XT_ PLL4

config FWDT, WDT OFF

config FBORPOR, PBOR OFF & BORV 27 & PWRT 16 & MCLR_EN
config __ FGS, CODE_PROT OFF

;Program Specific Constants (literals used in code)

.equ Fcy, #7372800 ;Instruction cycle rate (Osc x PLL / 4)

;Start of code

.text ;Start of Code section

;Initialize stack pointer and limit register

__reset: mov # SP _init, W15 ;jInitialize the Stack Pointer register
mov # SPLIM init, WO ;Get address at the end of stack space
mov W0, SPLIM ;Load the Stack Pointer Limit register
nop ;Add NOP to follow SPLIM initialization

;Initialize LED outputs on PORTD bits 0-3

mov #0x0000, WO ;Initialize LED pin data to off state
mov WO, LATB

mov #0x0003, WO ;Set LED pins as digital, not analog
mov W0, ADPCFG

mov #oxfffc, WO ;Set LED pins as outputs

mov W0, TRISB

bset LATB, #0 ;Turn LED D3 on

;Initialize Timerl for 1/5 second period

clr T1CON ;Turn off Timerl by clearing control register
clr TMR1 ;Start Timerl at zero

mov #Fcy/256/5,W0 ;Get period register value for 1/5 second
mov W0, PR1 ;Load Timerl period register

mov #0x8030,WO0 ;Get Timerl settings (1:256 prescaler)

mov W0, T1CON ;Load Timerl settings into control register

;Loop while waiting for a Timerl match and toggle LED1 or LED2 when it happens

MainLoop: btss IFSO, #T1IF ;Check if Timerl interrupt flag is set
bra MainLoop ;Loop back until set
bclr IFSO, #T1IF ;Clear Timerl interrupt flag
btss PORTE, #8 ;Test switch S5 (low when pressed)
bra SwitchPressed
btg LATB, #0 ;Toggle LED D3 when S5 is not pressed
bclr LATB, #1 ;Turn off LED D4
bra MainLoop ;Loop back

DS70151A-page 118 © 2005 Microchip Technology Inc.

Code for dsPICDEM 2 Development Board

SwitchPressed:bclr LATB, #0 ;Turn off LED D3
btg LATB, #1 ;Toggle LED D4 when S5 is pressed
bra MainLoop ;Loop back

;Oscillator Fail Error trap routine

.text ;Start of Code section
__OscillatorFail:
bset LATB, #1 ;Turn LED D4 on
bra __OscillatorFail ;Loop forever when oscillator failure occurs

;Address Error trap routine

__AddressError:
bset LATB, #1 ;Turn LED D4 on
bra __AddressError ;Loop forever when address error occurs

;Stack Error trap routine

___StackError:
bset LATB, #1 ;Turn LED D4 on
bra ___StackError ;Loop forever when stack error occurs

;Math (Arithmetic) Error trap routine

___MathError:
bset LATB, #1 ;Turn LED D4 on
bra __MathError ;Loop forever when math error occurs
.end ;End of code in this file

© 2005 Microchip Technology Inc. DS70151A-page 119

Getting Started with dsPIC30F Digital Signal Controllers

D.2 FLASH LED WITH dsPIC30F4011.c

/**

* Software License Agreement

The software supplied herewith by Microchip Technology Incorporated
(the "Company") for its dsPIC controller is intended and supplied to
you, the Company's customer, for use solely and exclusively on
Microchip dsPIC products. The software is owned by the Company and/or
its supplier, and is protected under applicable copyright laws. All
rights are reserved. Any use in violation of the foregoing
restrictions may subject the user to criminal sanctions under
applicable laws, as well as to civil liability for the breach of the
terms and conditions of this license.

* % ok 3k X X X X X X X *

*
*
*
*
*
*
*
*
*
*
* THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, *
* WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, *
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR *
* PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY *
* CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL *
* DAMAGES, FOR ANY REASON WHATSOEVER. *
* *
* *
*

*

*

*

*

*

LR RS R SRR SR R R R R R R R R SR SRR R R R R R R SRR RS EE SRR EEEEEEREEEE

Use Timer 1 to flash LED D3 when switch S5 is not pressed
and flash LED D4 when switch S5 is pressed
Jumpers H6-M ALL, H12-M D3, and H12-M D4 must be in place

***/

#include "p30F4011.h"

//Configuration bits

_FOSC(CSW_FSCM_OFF & XT PLL4) ;

_FWDT (WDT_OFF) ;

_FBORPOR (PBOR_OFF & BORV_27 & PWRT_16 & MCLR_EN) ;
_FGS (CODE_PROT_OFF) ;

/= = -
//Program Specific Constants

#define Fcy 7372800 //Instruction cycle rate (Osc x PLL / 4)
B

//Main routine
//Set up LEDs and timer, wait for timer periods, and flash one of the two LEDs

int main(void)

{

static int MyVarl, MyVar2, MyVar3, MyVar4, MyVar5;

MyVarl = 1000;

MyVar2 = 20;

MyVar3d = MyVarl + MyVar2;
MyVar4 = MyVarl * MyVar2;
MyVar5 = MyVar4d / MyVar3;

DS70151A-page 120 © 2005 Microchip Technology Inc.

Code for dsPICDEM 2 Development Board

LATB = 0x0000;
TRISB = Oxfffc;
LATBbits.LATBO = 1;

T1CON = O;
TMR1 = O;
PR1 = Fcy/256/5;
T1CON = 0x8030;

while (1)

{

while (! IFSObits.T1IF) {}

IFSObits.T1IF = 0;
if (PORTEbits.RES8)

{

LATBbits.LATBO "=

LATBbits.LATBl =

}

else

{

LATBbits.LATBO =

LATBbits.LATBl "=

//Oscillator Fail Error trap routine

void ISR OscillatorFail (void)

{

LATBbits.LATB1l = 1;
while (1) ;

//Address Error trap routine

void ISR _AddressError (void)

{

LATBbits.LATBl = 1;
while (1) ;

//Stack Error trap routine

void ISR _StackError (void)

{

LATBbits.LATB1l = 1;
while (1) ;

//Initialize LED pin data to off state

//Set LED pins as outputs
//Turn LED D3 on

//Turn off Timerl and clear
//Start Timerl at zero
//Set period register value
//Turn on Timerl with 1:256
//Loop forever

//Wait for timer period

//Clear timer flag for next
//Check if S5 is pressed

//Toggle LED D3 when S5 not
//Turn off LED D4

//Turn off LED D3

settings

for 1/5 second
prescaler

period

pressed

//Toggle LED D4 when S5 is pressed

//End of main()

//Turn LED D4 on
//Wait forever

//Turn LED D4 on
//Wait forever

//Turn LED D4 on
//Wait forever

© 2005 Microchip Technology Inc.

DS70151A-page 121

Getting Started with dsPIC30F Digital Signal Controllers

//Math (Arithmetic) Error trap routine

void ISR MathError (void)

{

LATBbits.LATB1l = 1; //Turn LED D4 on
while (1) ; //Wait forever

DS70151A-page 122 © 2005 Microchip Technology Inc.

MICROCHIP

Getting Started with

dsPIC30F Digital Signal Controllers

Index
A dsPICDEM Starter
Application NOtESc.covvevereeeeeeieeeeeeeeeeee e 17 Demonstration Board........................ 105
ApplicationS........ccueeeiie e 14 Flash LED W!th dsPIC30F6012.c............. 108
AULOMOLIVE ... 14 Flash LED with dsPIC30F6012s............. 105
Internet CoNNECHVitYcoccvvcurirciriiciniicnes 14 Development BOards..............cooowvevioniivencnieeens 21-24
MOtOr CONEIOleeveeececeeeeeeeeee e 14 dsPICDEM 1.1 General Purpose
Power Conversion, Monitoring.......................... 14 Development Board............cc..cooco..v. 22
Sensor CONtrOl.......c.covveueeeeeeeeeeeeeeeeeeeeree e 14 dsPICDEM 2 Development Board 22
Speech and AUdIOccccurvruiciciicicce, 14 dsPICDEM 28-Pin Starter
ATCRIECIUNE ..o 7 Demonstration Board...............c......... 21
HAMVard ..o 7 dsPICDEM MC1 Motor Control
Development Systemcccceonee. 23
B dsPICDEM MC1H 3-Phase
Building the Project ..o 31 High-Voltage Power Module............... 24
C dsPICDEM MC1L 3-Phase
) Low-Voltage Power Module................ 23
C COMPIIEFS ... 17 dsPICDEM Starter
Code Demonstration Board............c.cococ.u.... 21
An!mgte .. 47, 61 dsPICDEM.net 1 Connectivity
BU|Id|n.g ... 30 Development Board...............ooc.oeeen.. 24
Reset.tlng .. 35, 46, 61 dsPICDEM.net 2 Connectivity
Runnlng ... 36, 48, 62 Development Board ..., 24
Step [0] (o TR 47,61 DEVICE ValiANTS oo 13
Step Qver ... 47, 61 General Purpose Familycoccovoevereeeeeneen. 13
Stepp!ng Through ... 47 Motor Control and Power
Configuration BitS..........ccccoviiiiiiiiii e 31 CONVersion Familyccowvvveererenne. 13
CTR-21 PSTN .t 24 SENSOF FAMIIY vv.vveeeeeeeeee e 13
Customer Change Notification Service....................... 5 Directives
Customer SUPPOrt.........oooiiiiiieiieeee e 6 BT SN 75
D DSS e 74
Data Addressing MOAES.........oovvvvoooooooooeoeeoooo. 9 daga .. ;g
Bit-Reversed ... 10 =10 Lo [OOSR 5
MOTUIO .o 10 BQU oo
(o] (0] o - | S 73
Data MemOryoccuviiiiiiie e 8 hword 74
Data MemOory Map oo 9 AWOT oo
INCIUAE ... 72
Debug Toolbarccceiieiiiieee e 36 .
. PANGN e 75
Debugging......ccoee i 31 ’
SECHON ... 73
Demo Code 74
dsPICDEM 1.1 General Purpose SPACE .eeeiiiiiiee ettt
EEXt e 73
Development Board.............cccoeeeeennene 99 D tati
Flash LED with dsPIC30F6014.c............. 102 o 5
Flash LED with dsPIC30F6014 s, 99 Oonve.n |ct)_ns .. :
dsPICDEM 2 Development Board 117 Rrgamza Iong d T :
Flash LED with dsPIC30F4011 c. ... 120 osp Eecqmmen ed Readingccccoooeeeeviieeciieeen, %1
Flash LED with dsPIC30F4011 s............. 117 AGING.oovorererrr e
. dSPICDEM 1.1 oo 22
dsPICDEM 28-Pin Starter
. ASPICDEM 2 ..o 22
Demonstration Board 111 :
. dsPICDEM 28-Pin Starter Demo Board.................... 21
Flash LED with dsPIC30F2010.c............. 114 4SPICDEM MC1 23
Flash LED with dsPIC30F2010.s.......... 11 SPICDEM MC ...

© 2005 Microchip Technology Inc.

DS70151A-page 123

Getting Started with dsPIC30F Digital Signal Controllers

dSPICDEM MCTH ...ooiiiiiii e 24
ASPICDEM MCTL .. 23
dsPICDEM Starter Demo Board..............ccceeeeeennnn. 21
dSPICDEM.NEt 1 ..o 24
dSPICDEM.NEt 2oooiiicee e 24
E
Ethernet Interface.........oeveveeiiiiiiiii e 24
Example Code for MPLAB ASM30..................... 75-79
ComMMENES. ... 75
Configuration Bits...........ccccccvveiieeiiiieec e 76
CoNStaNtS ...covieeieiiiieeeeee s 76
Global Declarations...............cccooeeciciiiiiiiiininees 76
Initialization ..., 77
F
FCC/JATE PSTN...oiiiiiiie e 24
Function KeYsoooovviiiiiiiiii e 36
G
GNU TOOISUILE ... 16
H
HOKEYS ... 36
|
INClude FileSooveeeiiiiieecee e 30
INStruction Setccccvviiiiiiiee e 10
DSP Instructionsccccoevveeiieiiiiieee e 10, 11
MAC ... 11
MCU Instructionsccccociiiiiiiiiiiiieeceee e, 10
Instructions and Directives
General Format.........ccooveeeeiiiiiiiee e 71
Syntax RUIESccooiiiiiiiiiceeeeeee e 72
Internet AddreSss......oovvveveveee e 5
INEEITUPES e 12
Alternate Interrupt
Vector Table (AIVT) ..o 12
Interrupt Vector Table (IVT) ...cccooveeeiiiieeees 12
L
LinKer FileSuuuiiiiiiiiiiieieieeeeeee e 30
(oo) SRRSO PUPRPRRIN 30
NEX ettt 30
Linker Script FileS........oouiiiiiii e 92
Base Memory Address..........ccccooecuiiieeeeeciinennn. 93
Input/Output Section Mapccccvvverveeinneenn. 94
Interrupt Vector Tablescccccoeeeeiiiiiiinnn. 96
Memory Region Information............c.cccceveeeen. 93
Output File Format and Entry Point................... 92
Range Check EXpressions...........cccccceeeeeuienenen. 95
SFR AdAreSSeS.....uvvvieiiiiiieieieeeeeeeeeee e 97
M
Microchip Internet Web Sitecccoooiiiiiiiis 5
MPLAB ASMS30ooiiiiieiiiee e 16
Instructions and Directives.......ccccccccveeeeennnnennn. 71
OVEIVIEW ..ot 71
MPLAB ASM30 Assemblerccccoovvveeeeeeinnes 71-79

MPLAB C30
Building the Project
Example Code.........cooiuiiiiiiiiiiiiiiee e
Beginning of Main Routine......................... 89
Comments, Header File
Reference........ccococevveiicennnenn. 88
Configuration Bits...........cccccevveeiiiiiiieeeeee 88
Error Trap Routinesccccccvevvievenenennnnnn. 90
Main Routine..........cccooiiiiiiie 90
Processor Frequency Definition.................. 89
Timer Initializationccoccoiiiiiiiie. 89
WHhile LOOPuuviiriiiiiiiiiiiiieeieeeeeeeee e 89
Language Features............ccccoeeieiiiiiiiccininins 87
__attribute__ keyword........ccccccvveviiiieennnen.n. 87
ANSI C Standardccccceeeeiiiiiiieeeien. 87
Standard Header File............c.ccoccoiis 87
OVEIVIEW ...ttt 81
Projectsuuvee i 81
Setting Build Options.........cccccoccievieiiiiieeeeee 86
MPLAB C30 C Compiler.......ccccceevureeeieeiiieneenn. 81-90
MPLAB ICD 2.....oiiieeeeee e 20, 43-53
Advanced Breakpoint Feature........................... 52
Breakpointsooiiiii e 49
Debug Toolbarccccceeeeeeiiiieiceeeees 48
HOKEYS ... 48
OVEIVIEBW ..ot 43
Setting UP oo 44
Watch Windowooooiiiiiiee e 50
MPLAB ICE 4000cccceeiiieeeeiie e 18, 55-70
Breakpointscvevieeeiiiieee e 63
Complex TrHQQErScccveeceiieeeeeciiee e 68
Debug Toolbarccccceeeeeeiiiieicceeeeeees 62
HOKEYS ... 62
OVEIVIEW ...t 55
Selecting as Debugger........cccoovevciiiniieeinneenn. 58
SettingS .. 59
SEIUP oo 56
Special Emulator Devicesccccccccvveeeeeenns 57
Stopwatch Featurecccoeiieiiiiiniicee 66
Trace BUffer ... 67
Trace WindOWccueeeeiiiiiiiiieeeee e 67
USB DIVET ..ot 56
Watch Windowcooeeiiiiiiiiiiiiieceeee, 64
MPLAB IDE ..o 15, 25-31
Debugging TOOISveiiiiiiiiiiiiee e 17
CoMPAriSON......coiiiiiiiiiee e 19
MPLAB ICE 4000.......cccceeiiuieeeiieeeee e 18
MPLAB SIM30 Simulatorcccccceeenen. 17
Editor. .o 16, 29
Language TOOISccccvvveeeeiiiiieieee e 16
C Compilerscoooeiiieiieiiiiiee e 17
MPLAB ASM30 Assembler............cc.ocu.eeee. 16
MPLAB LINK30 Linker......ccccceeoeeviceeennnenn. 16
OVEIVIEBW ..ot 25
Programming TOOIS.........ccceeveieiiiiiiiiieics 20
MPLAB ICD 2 In-Circuit Debugger 20
MPLAB PM3 Universal
Device Programmer..................... 20

DS70151A-page 124

© 2005 Microchip Technology Inc.

Index

Project Wizardc.covveeiiiiiiiiiiiiieees 26
Projects and Workspaces...............ccccceenneee 16, 26
Template, Include and
Linker Script Files.........ccccoocviiininnie 17
MPLAB LINK30 ..ot 16
MPLAB LINK30 Linkerc.ccocevviieiiiieeeieeeeceenn 91-97
OVEIVIEW ..ot 91
MPLAB PM3 ... 20
MPLAB SIM
Breakpointscccovieeeiiieiicceeeeee e 37
Opening the Projectccccooiiiiiiiiiicee 34
OVEIVIEW ..ottt 33
Selecting the Simulator............cccccooeeveieeiiis 34
Simulator SettingS..........cccccveeiieiiiiee e 39
SOPWaLCh ..o 40
Trace BUffer ... 41
Trace Windowcooeiiiiiiiiiiiiiiiiee e 41
Watch WindoWw...........coooviiiiiiiiiiiiieie e 38
MPLAB SIM Simulatorcccoccoeeiiiieiieeeeenn 3342
MPLAB SIM30 ..ot 17
N
Near RAM ... 8
P
Peripheralscoooviiiiiiiie e 13
Program Counter ... 8
Program Memory ..o 8
SPACE ... ettt e 8
Program Memory Mapcccccovvvmiiiiiiiiieieeeeeee e 9
Program Space Visibilityccccoveiiiiiiiiiiieicieee. 8
Program Space Visibility (PSV)......cccccevveveeveeienen. 10
Program Space Visibility Page Register 10
Programming the dsPIC Device........cc.cccccoveeerrnennn. 46
Project Wizard............oooiiiiiiiieeeeee 82
Creating @ Projectccoccveeeveivieeee e 82
PSTN INterfaceccccovoeeeiiiieieie e 24

PSV, See Program Space Visibility.
PSVPAG Register, See Program Space
Visibility Page Register.

R
Resets
Brown-out Reset ..., 35
MCLR ..o 35
Processor (Power-on) Reset..........cccccccvveeenns 35
Watchdog Timer Resetccocvveiiiiiiiiinnnne 35
Resetting Code ..o 61
Running Codecooooiiiiiiiiiiee e 62
S
SFR, See Special Function Registers.
Special Function Registerscccccovveeeeeiiieneenn. 8
Stopwatch
MPLAB ICE 4000..........cccoevuirrienieneienee e 66
System and Power Management...........c..coccevinnene 12
T
TCOP/IP . 24
U
USB Driver
INStallingooeeeeei e 43
\'
V.22DiS/V.22 ITU . 24
w
Working Register Arraycccoooicoeiiiiiiiiiiieeeeeee, 9
WWW AdAress......ccooiiiiiiiiiie e 5

© 2005 Microchip Technology Inc.

DS70151A-page 125

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose

Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Shanghai

Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang

Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Qingdao

Tel: 86-532-502-7355
Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel:011-604-646-8870
Fax:011-604-646-5086
Philippines - Manila
Tel: 011-632-634-9065
Fax: 011-632-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4450-2828

Fax: 45-4485-2829
France - Massy

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

04/20/05

DS70151A-page 126

© 2005 Microchip Technology Inc.

	Table of Contents
	Preface 1
	Chapter 1. The dsPIC30F Digital Signal Controller
	Chapter 2. The Microchip Development Tools
	Chapter 3. MPLAB Integrated Development Environment
	Chapter 4. The MPLAB SIM Simulator
	Chapter 5. The MPLAB ICD 2 In-Circuit Debugger
	Chapter 6. MPLAB ICE 4000 In-Circuit Emulator
	Chapter 7. The MPLAB ASM30 Assembler
	Chapter 8. MPLAB C30 C Compiler
	Chapter 9. The MPLAB LINK30 Linker
	Appendix A. Code for dsPICDEM 1.1 General Purpose Development Board
	Appendix B. Code for dsPICDEM Starter Demonstration Board
	Appendix C. Code for dsPICDEM 28-Pin Starter Demonstration Board
	Appendix D. Code for dsPICDEM 2 Development Board
	Index 123
	Worldwide Sales and Service 126

	Preface
	Introduction
	About This Guide
	Document Layout
	Conventions Used in this Guide

	Recommended Reading
	The Microchip Web Site
	Development Systems Customer Change Notification Service
	Customer Support

	Chapter 1. The dsPIC30F Digital Signal Controller
	1.1 Introduction
	1.2 Architecture
	1.2.1 Harvard Architecture
	Figure 1-1: Separate Data and Program Busses

	1.2.2 Program Memory and Program Counter
	1.2.3 Data Memory
	Figure 1-2: Program and Data Memory

	1.2.4 Working Register Array
	1.2.5 Data Addressing Modes
	1.2.6 Modulo and Bit-Reversed Addressing
	1.2.7 Program Space Visibility
	Figure 1-3: Program Space Visibility

	1.2.8 Instruction Set
	1.2.9 DSP Engine
	Figure 1-4: DSP Engine

	1.2.10 Interrupts
	Figure 1-5: Interrupt Vector Table

	1.2.11 System and Power Management
	1.2.12 Peripherals

	1.3 Device Variants
	1.3.1 General Purpose Family
	1.3.2 Motor Control and Power Conversion Family
	1.3.3 Sensor Family

	1.4 Applications
	1.4.1 Motor Control
	1.4.2 Power Conversion and Monitoring
	1.4.3 Internet Connectivity
	1.4.4 Speech and Audio
	1.4.5 Sensor Control
	1.4.6 Automotive

	Chapter 2. The Microchip Development Tools
	2.1 Introduction
	2.2 MPLAB IDE
	Figure 2-1: MPLAB® Integrated Development Environment
	2.2.1 Projects
	Figure 2-2: Project Window

	2.2.2 Editor
	Figure 2-3: Editor Window

	2.3 Language Tools
	2.3.1 Assembler/Linker
	2.3.2 Compilers
	2.3.3 Template, Include and Linker Script Files
	2.3.4 Application Notes

	2.4 Debugging Tools
	2.4.1 MPLAB SIM30 Software Simulator
	Figure 2-4: Simulator Selection Menu in MPLAB® IDE
	Figure 2-5: MPLAB® ICE 4000

	2.4.2 MPLAB ICE 4000
	Figure 2-6: MPLAB® ICD 2

	2.4.3 MPLAB ICD 2
	Figure 2-7: Comparison of MPLAB® Tools

	2.5 Programming Tools
	Figure 2-8: MPLAB® PM3 Universal Device Programmer
	2.5.1 MPLAB PM3 Universal Device Programmer
	2.5.2 MPLAB ICD 2

	2.6 Development Boards
	Figure 2-9: dsPICDEM™ Starter Demonstration Boards
	2.6.1 dsPICDEM Starter Demonstration Board
	2.6.2 dsPICDEM 28-Pin Starter Demonstration Board
	Figure 2-10: dsPICDEM™ 1.1 General Purpose Development Board

	2.6.3 dsPICDEM 1.1 General Purpose Development Board
	2.6.4 dsPICDEM 2 Development Board
	Figure 2-11: dsPICDEM™ 2 Development Board

	2.6.5 dsPICDEM MC1 Motor Control Development System
	Figure 2-12: dsPICDEM™ MC1 Motor Control Development System
	Figure 2-13: dsPICDEM.net™ Connectivity Development Boards

	2.6.6 dsPICDEM.net 1 and dsPICDEM.net 2 Connectivity Development Boards
	2.6.7 Next Step – Learn to Use MPLAB IDE

	Chapter 3. MPLAB Integrated Development Environment
	3.1 MPLAB IDE Overview
	3.2 Projects and Workspaces
	3.3 Creating a Project
	3.3.1 Projects and Workspaces
	Figure 3-1: Project Wizard – Step One
	Figure 3-2: Project Wizard – Step Two
	Figure 3-3: Project Wizard – Step Three
	Figure 3-4: Project Wizard – Step Four
	Figure 3-5: Editor Window

	3.3.2 Editor

	3.4 Building Code
	3.4.1 Assembling and Linking
	3.4.2 Include Files
	Figure 3-6: Build Options Window

	3.4.3 Building the Project
	Figure 3-7: Output Window

	3.4.4 Configuration Bits
	3.4.5 Next Step – Debugging

	Chapter 4. The MPLAB SIM Simulator
	4.1 MPLAB sim Overview
	4.2 Opening the Project
	Figure 4-1: Project Workspace

	4.3 Selecting the Simulator
	Figure 4-2: Debug Tool Selection Menu

	4.4 Resetting the Code
	Figure 4-3: Program Memory Window

	4.5 Stepping Through the Code
	Figure 4-4: Stepping Through the Code

	4.6 Running the Code
	Figure 4-5: Halting the Code

	4.7 The Debug Toolbar and Hotkeys
	Figure 4-6: Shortcut Icons

	4.8 Breakpoints
	Figure 4-7: Halting at Breakpoint

	4.9 Watch Window
	Figure 4-8: Watch Window
	Figure 4-9: Example of PORTD Bit Changes

	4.10 Simulator Settings
	Figure 4-10: Simulator Settings Dialog

	4.11 Stopwatch
	Figure 4-11: Stopwatch Dialog

	4.12 Trace buffer
	Figure 4-12: Program Window with Trace Buffer Breakpoint Set
	Figure 4-13: Trace Window

	Chapter 5. The MPLAB ICD 2 In-Circuit Debugger
	5.1 MPLAB ICD 2 Overview
	5.1.1 Installing the USB Driver
	5.1.2 Opening the Project
	Figure 5-1: Tutorial Project and Workspace

	5.2 Setting Up the MPLAB ICD 2
	Figure 5-2: MPLAB® ICD 2 Connected to Development Board
	Figure 5-3: Connect Status in Output Window

	5.3 Programming the dsPIC Device
	Figure 5-4: Programming Status In Output Window

	5.4 Resetting the Code
	Figure 5-5: Program Memory Window

	5.5 Stepping Through the Code
	Figure 5-6: Single Step Result in Program Memory Window

	5.6 Running the Code
	Figure 5-7: Halt Location in Program Window

	5.7 The Debug Toolbar and Hotkeys
	Figure 5-8: Shortcut Icons

	5.8 Breakpoints
	Figure 5-9: Program Window Showing Breakpoints

	5.9 Watch Window
	Figure 5-10: Watch Window
	Figure 5-11: Watch Windows Show Changing Values

	5.10 Advanced Breakpoints
	Figure 5-12: Advanced Breakpoint Dialog
	Figure 5-13: Advanced Breakpoint in Program Window

	Chapter 6. MPLAB ICE 4000 In-Circuit Emulator
	6.1 MPLAB ICE 4000 Overview
	Figure 6-1: MPLAB® ICE 4000 In-Circuit Emulator
	6.1.1 Installing the USB Driver
	6.1.2 Connecting the MPLAB ICE 4000 Hardware
	Figure 6-2: MPLAB® ICE 4000 Setup

	6.2 Opening the Project
	Figure 6-3: Project Window

	6.3 Special Emulator Devices
	Figure 6-4: XY Data Boundary Warning

	6.4 Selecting the MPLAB ICE 4000
	Figure 6-5: MPLAB® ICE 4000 Hardware Warning Message
	Figure 6-6: MPLAB® ICE 4000 Firmware Warning Message

	6.5 MPLAB ICE 4000 Settings
	Figure 6-7: MPLAB® ICE 4000 Settings – Power Tab
	Figure 6-8: MPLAB® ICE 4000 Settings – Frequency

	6.6 Resetting the Code
	Figure 6-9: Program Memory After Reset

	6.7 Stepping Through the Code
	Figure 6-10: Program Memory After Step Into Command

	6.8 Running the Code
	Figure 6-11: Halt Location in Program Window

	6.9 The Debug Toolbar and Hotkeys
	Figure 6-12: Shortcut Icons

	6.10 Breakpoints
	Figure 6-13: Program Window Showing Breakpoints

	6.11 Watch Window
	Figure 6-14: Watch Window
	Figure 6-15: Watch Windows Show Changing Values

	6.12 Stopwatch
	Figure 6-16: MPLAB® ICE 4000 Stopwatch

	6.13 Trace Buffer
	Figure 6-17: Program Window with Trace Buffer Breakpoint Set
	Figure 6-18: Trace Window

	6.14 Complex Triggers
	Figure 6-19: MPLAB® ICE 4000 Analyzer Dialog
	Table 6-1: Complex Trigger Settings
	Figure 6-20: Program Window with Program Halted After Complex Trigger

	Chapter 7. The MPLAB ASM30 Assembler
	7.1 MPLAB ASM30 Assembler Overview
	7.1.1 General Format of Instructions and Directives
	Table 7-1: Syntax Rules�

	7.2 Commonly Used Directives
	.equ
	Example 7-1: .equ

	.include
	Example 7-2: .include

	.global
	Example 7-3: .global

	.text
	Example 7-4: .text

	.end
	Example 7-5: .end

	.section
	Example 7-6: .section

	.space
	Example 7-7: .space

	.bss
	Example 7-8: .bss

	.data
	Example 7-9: .data

	.hword
	Example 7-10: .hword

	.palign
	Example 7-11: .palign

	.align
	Example 7-12: .align

	7.3 Example Code
	7.3.1 Code Description
	Example 7-13:
	Example 7-14:
	Example 7-15:
	Example 7-16:
	Example 7-17:
	Example 7-18:
	Example 7-19:
	Example 7-20:
	Example 7-21:
	Example 7-22:
	Example 7-23:

	Chapter 8. MPLAB C30 C Compiler
	8.1 MPLAB C30 C Compiler Overview
	8.2 MPLAB C30 C Compiler Projects
	Figure 8-1: Project Build Process

	8.3 Creating a Project with the Project Wizard
	Step 1 – Select a Device
	Figure 8-2: Project Wizard – Step One

	Step 2 – Select a Language Toolsuite
	Figure 8-3: Project Wizard – Step Two

	Step 3 – Name your Project
	Figure 8-4: Project Wizard – Step Three

	Step 4 – Adding Files to the Project
	Figure 8-5: Project Wizard – Step Four
	Figure 8-6: Project Wizard Summary Screen

	8.4 Setting the Build Options
	Figure 8-7: Project Build Options Dialog

	8.5 Building the Project
	Figure 8-8: Build Status

	8.6 Language Features
	8.6.1 ANSI C Standard
	8.6.2 Standard Header File
	8.6.3 __attribute__ keyword

	8.7 Example Code
	Example 8-1: Comments and Header File Reference
	Example 8-2: Configuration Bits
	Example 8-3: Processor Frequency Definition
	Example 8-4: Beginning of Main Routine
	Example 8-5: Timer Initialization
	Example 8-6: While Loop
	Example 8-7: Main Routine
	Example 8-8: Error Trap Routines

	Chapter 9. The MPLAB LINK30 Linker
	9.1 MPLAB LINK30 Linker Overview
	Figure 9-1: MPLAB® LINK30 Linker Operation

	9.2 Linker Script Files
	9.2.1 Output File Format and Entry Point
	Example 9-1:

	9.2.2 Memory Region Information
	Example 9-2:

	9.2.3 Base Memory Address
	Example 9-3:

	9.2.4 Input/Output Section Map
	Example 9-4:
	Example 9-5:
	Example 9-6:

	9.2.5 Range Checking for Near and X Data Memory
	Example 9-7:

	9.2.6 Interrupt Vector Tables
	Example 9-8:

	9.2.7 SFR Addresses
	Example 9-9:

	Appendix A. Code for dsPICDEM 1.1 General Purpose Development Board
	A.1 Flash LED with dsPIC30F6014.s
	A.2 Flash LED with dsPIC30F6014.c

	Appendix B. Code for dsPICDEM Starter Demonstration Board
	B.1 Flash LED with dsPIC30F6012.s
	B.2 Flash LED with dsPIC30F6012.c

	Appendix C. Code for dsPICDEM 28-Pin Starter Demonstration Board
	C.1 Flash LED with dsPIC30F2010.s
	C.2 Flash LED with dsPIC30F2010.c

	Appendix D. Code for dsPICDEM 2 Development Board
	D.1 Flash LED with dsPIC30F4011.s
	D.2 Flash LED with dsPIC30F4011.c

	Index
	Worldwide Sales and Service

