
7645B–USB–07/08

USB
Microcontrollers

Application Note
USB PC Drivers Based on Generic HID Class

• Supported by Windows 98® SE or later
• Full Duplex Communication
• Send Commands Through the EP 0
• Dynamic Link Library Supported by any Compiler: VC++, JAVA, VB...
• Auto-detection of device for VC++ application
• Point-to-Point Communication

1. Introduction
This application note describes how to integrate the USB HID DLL in your application.
The provided examples are based on VC++ and JAVA compilers, however the DLL
can be used with any compiler (VB, Delphi, LabView...).

Simple code examples that demonstrate different types of implementation are given.

2. DLL functions
As specified in the USB HID specification, the Generic HID application uses two reports
(IN/OUT) to send and receive data. The length of these reports is assigned in the firmware and
automatically detected by the DLL following the firmware setting (please refer to the USB
Generic HID Implementation application note to see how to modify these values if needed).

Please note that this DLL allows you to communicate with one Generic HID device and only one
device at a time. You cannot manage several devices at the same time using this DLL.

Figure 2-1. DLL functions

.

2.1 findHidDevice
This function (BOOLEAN) allows to find the Generic HID device using the vendor ID (VID)/the
product ID (PID) and open a handle if the device is connected.

Input

const UINT VendorID: this is the vendor ID

const UINT ProductID: this is the product ID

Output

FALSE: if the device is not found. More information can be found using GetLastError().

GetLastError will return:

Find the HID Device

findHidDevice(VID, PID)

Send data to
the device

writeData(*buff)

Get data from
the device

readData(*buff)

Send commands
to the device

setFeature(*buff)

Get the IN report
length

getInputReportLength()

Get the OUT report
length

getOutputReportLength()

Get the Feature report
length

getFeatureputReportLength()

Close all handles
closeDevice()

YES

NO
 2
7645B–USB–07/08

Application Note

 Application Note
ERROR_USB_DEVICE_NOT_FOUND if Device is cannot be found.

ERROR_USB_DEVICE_NO_CAPABILITIES if device found but capabilities cannot be
retrieved.

TRUE: if the connection has succeeded and the handle is opened.

2.2 closeDevice
Closes the communication with the USB device and all related handles.

2.3 writeData
This function (BOOLEAN) sends data to the device (OUT data). The maximum data length sup-
ported by this function must be lower or equal to the value given by the funct ion
getOutputReportLength (see Section 2.9 on page 5).

If the data length exceeds the maximum length specified in the firmware, the user has to send
data in several packets.

When data length is lower than the maximum length, this function will complete the remaining
bytes with zero (0x00).

Input

UCHAR* buffer: pointer of the packet to be sent.

2.3.1 Output
FALSE: if data transmission fails. GetLastError() will return ERROR_WRITE_FAULT code

TRUE: if the packet was successfully transferred.

2.4 readData
This function (BOOLEAN) read the data packets sent by the device (IN data). To avoid data loss
this function should be called in continuous mode (using a thread or a timer).

.

Input

UCHAR* buffer: Pointer to the buffer which will contain the received packet.

The buffer must have the length of the IN report given by the getInputReportLength function (see
Section 2.10 on page 5).

2.4.1 Output
FALSE: if no data is available.

TRUE: if data are received and stored in the buffer.

2.5 setFeature
This function (BOOLEAN) allows the user to send a command data to control the HID device
(i.e.: Start the bootloader, start a new task...). Data will be transmitted over the endpoint 0 as a
“SetReport” request (Refer to the HID Specification for further information). The endpoints IN
and OUT will be used for the applicative raw data transfer only.
 3
7645B–USB–07/08

The data length is fixed by the firmware and can be obtained using the function getFeatureRe-
portLength (please refer to the Section 2.11 on page 5). The data length must not exceed the
length returned by getFeatureReportLength function.

Input

UCHAR* buffer: Pointer to the buffer which contains the received packet.

Output

FALSE:if data transmission fails.

TRUE: if data are well transferred.

2.6 hidRegisterDeviceNotification
Please note that this function can be used only with VC++ project.

This function notifies the application if a new plug & play device has been plugged or unplugged.

Input

HWND hWnd - Handle to a window.

Output

FALSE: if the function fails. To get extended error information, call GetLastError.

TRUE: if the function succeeds.

2.7 hidUnregisterDeviceNotification
Please note that this function can be used only with VC++ project.

This function closes the specified device notification handle.

Input

HWND hWnd - Handle to a window.

Output

FALSE: if the function fails. To get extended error information, call GetLastError.

TRUE: if the function succeeds.

2.8 isMyDeviceNotification
Please note that this function can be used only with VC++ project.

This function allows to check if the new device (plugged or unplugged) notified by “hidRegister-
DeviceNotification” is the used HID device or not.

Input

DWORD dwData, the value given by OnDeviceChange 2nd parameters

Output

TRUE: if the device connected/disconnected is the used HID device

FALSE: if this is another device
 4
7645B–USB–07/08

Application Note

 Application Note
2.9 getOutputReportLength
This function allows the user to get the length of the OUT report (data packet sent from the PC to
the device). This value is specified in the firmware.

2.10 getInputReportLength
This function allows the user to get the length of the IN report (data packet sent from the device
to the PC). This value is specified in the firmware.

2.11 getFeatureReportLength
This function allows the user to get the length of the Feature report (Control data packet sent
from the PC to the device). This value is specified in the firmware.

3. PC demos

3.1 VC++ demo
The VC++ demo allows the user to see how to load the AtUsbHid.dll in a project, and also how
to use the plug & play notification.

3.1.1 Load the DLL in Visual C++ Application
The file AtUsbHid.h provides the macros which help to load and use the functions present in the
Atmel USB HID DLL.

When designing an application using the DLL you need to do the following:

• create a handler for the DLL: HINSTANCE hLib = NULL;

• Load the DLL using the function hLib =LoadLibrary(AT_USB_HID_DLL);

• Load each DLL functions using loadFuncPointers(hLib)

Once these steps have been performed without error, the DLL and its functions are loaded in
your application and can be called using the macro DYNCALL(DllFunction()).

When the application is stopped, it is convenient to free the DLL from memory using the function
FreeLibrary(hLib).

You must ensure that USB device handle has been closed before freeing the DLL from memory.

3.1.2 Using Automatic Device Connection/Disconnection Feature
The DLL provides the functions which allow the user to detect the connection/disconnection of
the device.

To perform this feature you have to do the following actions:

Reg is te r you app l i ca t i on to ge t dev i ce change no t i f i ca t i on us ing :
DYNCALL(hidRegisterDeviceNotification)((m_hWnd)).

Add the function ON_WM_DEVICECHANGE() in your Message Map application.

Creates a function called OnDeviceChange(UINT nEventType, DWORD dwData) which will
be called each time a device status changes.

In the function OnDeviceChange, call the function DYNCALL(isMyDeviceNotifica-
tion(dwData)) to know if the status of your device has changed (connected or disconnected).
(See code demo code in UsbHidDemoCodeDlg.cpp)
 5
7645B–USB–07/08

When exit ing the appl icat ion, i t is convenient to unregister i t using the function:
DYNCALL(hidUnregisterDeviceNotification(m_hWnd)).

3.1.3 Using readData
As data can be sent continuously by the device. It’s interesting to read data using a timer base
function. This allows you to poll continuously the readData function.

To do so, you have to do the following:

Add the function ON_WM_TIMER() in your Message Map application.

Crea te a func t i on OnTimer (U INT n IDEvent) wh ich w i l l ca l l the func t i on
DYNCALL(readData(sbuffer).

Now you can set the Timer for a specified interval using SetTimer(n,x,y); to call the readData
function each x ms when your device is connected.

Kill the timer using KillTimer(n) when your device is disconnected.

3.1.4 User Interface
Hereunder is a screen shot of the provided demo. Please note that the default PID is related to
one specific demo (Atmel demos which have a Generic HID interface do not have the same
PID). You may have to modify this PID parameter to match with the device you are using (refer
to the firmware or the device manager to get the VID/PID used by your demo)

Figure 3-1. VC++ based demo

Hereunder is the description of the GUI components:

• The Vendor ID, Product ID box are used to specify the VID/PID of the device.

• OK button should be pushed once the VID/PID are correctly set.

• LED 1...LED4 button are used to switch ON/OFF the LEDs of the board.

• Firmware Upgrade button allows the user to start the bootloader to upgrade the firmware
through the USB interface (Refer to the bootloader datasheet for further details).
 6
7645B–USB–07/08

Application Note

 Application Note
• Exit button closes the application

• Status field gives the connection state and also when the device is connected gives the
lengths of the IN report, OUT report and Feature report (these parameters will be
automatically used by the DLL to send/receive data)

3.1.5 DOS demo
This demo gives a simple console application example. This demo uses a fixed VID/PID and has
to be recompiled to modify these parameters. The device have to be connected and running with
the Generic HID firmware before performing this console application.

Figure 3-2. DOS Interface

Note: This project can be compiled using the MinGw (www.mingw.org). The command line is:
mingw32-g++ -O2 -Wall UsbHidSmallDemoCode.cpp -o AtUsbHidMinGw.exe -I.

3.2 JAVA demo
The JAVA demo allows the user to see how to integrate the AtUsbHid.dll in a JAVA project.

The interface between the AtUsbHid.dll and the JAVA is done through the package
AtUsbHidJni.jar.

3.2.1 AtUsbHid.dll integration
To integrate the AtUsbHid.dll you have to follow the steps below:

• Add the following code in the import section of your JAVA file:

import com.atmel.atusbhidjni.AtUsbHidJni
• Create a new object to use the DLL:

AtUsbHidJni usbDevice = new AtUsbHidJni();
 7
7645B–USB–07/08

• Load the DLL:

usbDevice.loadLibraryUsbHid();

• Now, the DLL is ready for use. Please refer to the DLL functions section for further details
regarding the DLL functionalities.

• Before existing the application, it is important to unload the DLL:

usbDevice.UnloadloadLibraryUsbHid();

• To compile the project, please add to the class path of the AtUsbHidJni.jar package:

JAVAc userhid.JAVA -classpath AtUsbHidJni.jar

Note: Please refer to the HTML documentation provided with the DLL package for further information.

3.2.2 User interface
The GUI source code is available in the JNICodeForHIDDLL folder. Hereunder is the JAVA user
interface:

Figure 3-3. JAVA User interface

The components have the same roles as described for the VC++ interface (refer to section
3.1.4). The Auto-Connect box is used to allow the application to detect automatically the connec-
tion/disconnection of the device.

3.2.3 DOS demo
This demo gives a simple console application example. The demo uses a fixed VID/PID and has
to be recompiled to modify these parameters. The device has to be connected and running with
the Generic HID firmware before performing this console application.
 8
7645B–USB–07/08

Application Note

 Application Note
Figure 3-4. DOS Interface

4. The package architecture
When you unzip the DLL package, you’ll find several folders. Hereunder is the content of each
one:

4.1 AtUsbHid
This folder contains the AtUsbHid.dll and the AtUsbHid.h files.

4.2 ExeDemo
This folder contains the different executable demo examples.

4.3 JNICodeForHIDDLL
This folder contains the source code of the JAVA project.

4.4 UsbHidDemoCode
This folder contains the source code of the VC++ project.

4.5 UsbHidSmallDemoCode
This folder contains the source code of the VC++ small demo (DOS demo).
 9
7645B–USB–07/08

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
8051@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
7645B–USB–07/08

	1. Introduction
	2. DLL functions
	2.1 findHidDevice
	2.2 closeDevice
	2.3 writeData
	2.3.1 Output

	2.4 readData
	2.4.1 Output

	2.5 setFeature
	2.6 hidRegisterDeviceNotification
	2.7 hidUnregisterDeviceNotification
	2.8 isMyDeviceNotification
	2.9 getOutputReportLength
	2.10 getInputReportLength
	2.11 getFeatureReportLength

	3. PC demos
	3.1 VC++ demo
	3.1.1 Load the DLL in Visual C++ Application
	3.1.2 Using Automatic Device Connection/Disconnection Feature
	3.1.3 Using readData
	3.1.4 User Interface
	3.1.5 DOS demo

	3.2 JAVA demo
	3.2.1 AtUsbHid.dll integration
	3.2.2 User interface
	3.2.3 DOS demo

	4. The package architecture
	4.1 AtUsbHid
	4.2 ExeDemo
	4.3 JNICodeForHIDDLL
	4.4 UsbHidDemoCode
	4.5 UsbHidSmallDemoCode

