

APPLICATION NOTE

AT13214: Using Cyclic Redundancy Check Calculation

Unit (CRCCU) on SAM4S

SMART ARM-based Microcontrollers

Introduction

The Cyclic Redundancy Check Calculation Unit (CRCCU) is designed to perform

data integrity checks of off-/on-chip memories as a background task without CPU

intervention.

The CRCCU has its own DMA which functions as a Master with the Bus Matrix.

Three different polynomials are available: CCITT802.3, CASTAGNOLI, and

CCITT16.

In this application note, it provides three examples to demonstrate the usage of

CRCCU on SAM4S and the benefits of the Hardware CRCCU module compared

with the optimized software CRC algorithm.

Chapter 5 demonstrates the CRCCU Polling Mode of Flash Integrity Check.

Chapter 6 demonstrates the CRCCU Callback Mode of Flash Integrity Check.

Chapter 7 demonstrates the benefits of the Hardware CRCCU implementation

compared with the optimized software CRC algorithm.

Features

 Data Integrity Check of Off-/On-Chip Memories

 Background Task without CPU Intervention

 Performs Cyclic Redundancy Check (CRC) Operation on Programmable

Memory Area

 Programmable Bus Burden

Note: The CRCCU is designed to verify data integrity of off-/on-chip

memories, thus the CRC must be generated and verified by the

CRCCU. The CRCCU performs the CRC from LSB to MSB. If the CRC

has been performed with the same polynomial by another device, a bit-

reverse must be done on each byte before using the CRCCU.

Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015
2

2

Table of Contents

1 CRCCU Block Diagram .. 3

2 Product Dependencies .. 3

2.1 Power Management .. 3

2.2 Interrupt Source .. 3

3 CRCCU Functional Description .. 4

3.1 CRC Calculation Unit .. 4

3.2 CRC Calculation Unit Operation .. 4

4 Registers Memory Mapping .. 6

5 CRCCU Polling Mode .. 7

5.1 Define Flash Start Address and Flash Size to be Checked ... 7

5.2 Define the CRCCU Descriptor ... 7

5.3 Enable CRCCU Clock ... 7

5.4 System Clock Configuration .. 8

5.5 Configure and Run CRCCU .. 8

5.6 Output of CRCCU Polling Mode .. 10

6 CRCCU Callback Mode .. 11

6.1 CRCCU Callback Interrupt Definition .. 11

6.2 CRCCU Callback Interrupt Setup .. 11

6.3 Configure and Run CRCCU .. 11

6.4 Output of CRCCU Callback Mode ... 12

7 CRCCU Compared with the Optimized Software CRC Algorithm 13

7.1 Run Hardware CRCCU and SW CRC32 ... 13

7.2 Output of CRCCU and SW CRC32 ... 14

7.3 CRCCU Usage Benefits Compared with SW CRC32.. 14

8 Revision History .. 15

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

3

3

1 CRCCU Block Diagram

Figure 1-1. Block Diagram

2 Product Dependencies

2.1 Power Management

The CRCCU is clocked through the Power Management Controller (PMC), hence the CRCCU clock must be

enabled through the PMC configuration before it can be used.

2.2 Interrupt Source

The CRCCU has an interrupt line connected to the Interrupt Controller. In order to handle the CRCCU interrupt,

the Interrupt Controller must be configured accordingly.

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015
4

4

3 CRCCU Functional Description

3.1 CRC Calculation Unit

The CRCCU implements a dedicated Cyclic Redundancy Check (CRC) engine. After being configured and

enabled, this CRC engine performs a checksum computation on a memory area. CRC computation is

performed from the LSB to MSB. Three different polynomials are available: CCITT802.3, CASTAGNOLI and

CCITT16.

3.2 CRC Calculation Unit Operation

The CRCCU has a DMA controller that supports configurable CRC memory checks. When enabled, the DMA

channel reads a configured amount of data and computes CRC on the fly.

The CRCCU is controlled by two registers, TR_ADDR and TR_CTRL, which need to be mapped in the internal

SRAM. The addresses of these two registers are pointed at by the CRCCU_DSCR.

Figure 3-1. CRCCU Descriptor Memory Mapping

Note: The DMA must be enabled to start CRCCU execution.

TR_ADDR defines the start address of memory area targeted for CRC calculation.

TR_CTRL defines the buffer transfer size, the transfer width (byte, half word, and word) and the transfer-

completed Interrupt enable.

To start the CRCCU, the user needs to set the CRC enable bit (ENABLE) in the CRCCU Mode Register

(CRCCU_MR), then configure it and finally set the DMA enable bit (DMAEN) in the CRCCU DMA Enable

Register (CRCCU_DMA_EN).

After the DAM enable bit is set, the CRCCU reads the predefined amount of data (defined in TR_CTRL)

located from TR_ADDR start address and computes the checksum.

The CRCCU_SR contains the temporary CRC value.

The BTSIZE field located in the TR_CTRL register (located in SRAM memory), is automatically decremented if

its value is different from zero. Once the value of the BTSIZE field is equal to zero, the CRCCU is disabled by

hardware. In this case, the CRCCU DMA Status Register bit DMASR is automatically cleared.

If the COMPARE field of the CRCCU_MR is set to true, the TR_CRC (Transfer Reference Register) is

compared with the last CRC computed. If a mismatch occurs, an error flag is set and an interrupt is raised (if

unmasked).

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

5

5

The CRCCU accesses the memory by single access (TRWIDTH size) in order not to limit the bandwidth usage

of the system, and the DIVIDER field of the CRCCU Mode Register can be used to lower it by dividing the

frequency of the single accesses.

The CRCCU traverses the defined memory area using ascending addresses.

In order to compute the CRC for a memory size larger than 256KB or for non-contiguous memory area, it is

possible to re-enable the CRCCU on the new memory area and the CRC will be updated accordingly. Use the

RESET field of the CRCCU_CR to reset the CRCCU Status Register to its default value (0xFFFF_FFFF).

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015
6

6

4 Registers Memory Mapping

Table 4-1. Transfer Control Register Memory Mapping

Offset Register Name Access

CRCCU_DSCR + 0x0 CRCCU Transfer Address Register TR_ADDR Read/Write

CRCCU_DSCR + 0x4 CRCCU Transfer Control Register TR_CTRL Read/Write

CRCCU_DSCR + 0xC – 0x10 Reserved - -

CRCCU_DSCR + 0x10 CRCCU Transfer Reference Register TR_CRC Read/Write

Note: These registers are SRAM mapped.

Table 4-2. Cyclic Redundancy Check Calculation Unit (CRCCU) User Interface

Offset Register Name Access Reset

0x000 CRCCU Descriptor Base Register CRCCU_DSCR Read/Write 0x00000000

0x004 Reserved - - -

0x008 CRCCU DMA Enable Register CRCCU_DMA_EN Write-only 0x00000000

0x00C CRCCU DMA Disble Register CRCCU_DMA_DIS Write-only 0x00000000

0x010 CRCCU DMA Status Register CRCCU_DMA_SR Read-only 0x00000000

0x014 CRCCU DMA Interrupt Enable Register CRCCU_DMA_IER Write-only 0x00000000

0x018 CRCCU DMA Interrupt Disable Register CRCCU_DMA_IDR Write-only 0x00000000

0x001C CRCCU DMA Interrupt Mask Register CRCCU_DMA_IMR Read-only 0x00000000

0x020 CRCCU DMA Interrupt Status Register CRCCU_DMA_ISR Read-only 0x00000000

0x024-0x030 Reserved - - -

0x034 CRCCU Control Register CRCCU_CR Write-only 0x00000000

0x038 CRCCU Mode Register CRCCU_MR Read/Write 0x00000000

0x03C CRCCU Status Register CRCCU_SR Read-only 0xFFFFFFFF

0x040 CRCCU Interrupt Enable Register CRCCU_IER Write-only 0x00000000

0x044 CRCCU Interrupt Disable Register CRCCU_IDR Write-only 0x00000000

0x048 CRCCU Interrupt Mask Register CRCCU_IMR Read-only 0x00000000

0x004C CRCCU Interrupt Status Register CRCCU_ISR Read-only 0x00000000

0x050-0x0FC Reserved - - -

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

7

7

5 CRCCU Polling Mode

This chapter describes how to implement the CRCCU polling mode on SAM4S step by step.

All the examples provided with this application note have been executed under the following conditions:

 Hardware: Atmel® SAM4S-EK2 board with ATSAM4SD32C

 System Clock: 8MHz, internal RC used with FW=0

 CRC Configuration: Polynomial CCITT802.3 with CRC_INIT:0xFFFFFFFF, CRC_POLY:0x04C11DB7

 Total Checked Flash Size: 32KB

 DMA transfer Width: WORD (four bytes)

Note: There are three values which can be selected for DMA transfer; BYTE, HALFWORD, and WORD. For

CRCCU, WORD selection the best performance can be achieved as it transfers four bytes per DMA

transition.

5.1 Define Flash Start Address and Flash Size to be Checked

Below macros define the checked start address, total checked Flash size, and DMA transfer size for each beat.

/* In this sample code, by default, it uses the 4BYTE align to do the CRC checking*/

#define TEST_CRCCU_BUF_ADDRESS (0x00400000) /* Flash Start address*/

#define TEST_SIZE (0x100000/32) /* Flash Size 32KB */

#define TEST_CRCCU_SIZE (TEST_SIZE/4) /*WORD transfer by default*/

In the demo example, the checked start address is 0x00400000 and the total checked flash size is 32KB. The

users can adjust the checked Flash start address and Flash size flexibly if they want to check on a different

start address and size.

5.2 Define the CRCCU Descriptor

Define the CRCCU descriptor in main.c and it needs 512 byte aligned.

/** CRC descriptor */

COMPILER_ALIGNED (512)

crccu_dscr_type_t crc_dscr;

The user can find the CRCCU structure definition in the crccu.h file:

/** CRCCU descriptor type */

typedef struct crccu_dscr_type {

 uint32_t ul_tr_addr; /* TR_ADDR */

 uint32_t ul_tr_ctrl; /* TR_CTRL */

#if (SAM3SD8 || SAM4S || SAM4L || SAMG55)

 uint32_t ul_reserved[2]; /* Reserved register */

#elif SAM3S

 uint32_t ul_reserved[52]; /* TR_CRC begins at offset 0xE0 */

#endif

 uint32_t ul_tr_crc; /* TR_CRC */

} crccu_dscr_type_t;

5.3 Enable CRCCU Clock

Enable the CRCCU peripheral clock before using this peripheral. The CRCCU peripheral ID on SAM4S is 32.

pmc_enable_periph_clk(CRCCU);

Refer to the SAM4S datasheet for the corresponding Peripheral Identifiers.

http://cn.bing.com/dict/search?q=byte&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=aligned&FORM=BDVSP6&mkt=zh-cn

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015
8

8

Table 5-1. CRCCU Peripheral ID

Instance ID Instance name NVIC interrupt PMC clock control Instance description

31 PWM X X Pulse width modulation

32 CRCCU X X CRC calculation unit

33 ACC X X Analog comparator

34 UDP X X USB device port

5.4 System Clock Configuration

The system clock is running at 8MHz with internal RC. The user can refer to conf_clock.h for clock

configuration.

Figure 5-1. 8MHz System Clock Configuration

5.5 Configure and Run CRCCU

There are three parameters of CRCCU calculation API compute_crc(): Start address, Length, and Polynomial.

For this API, it doesn’t need to know whether the start address is located on the Flash or SRAM. The user just

needs to pass the Flash or SRAM buffer address, data length, and Polynomial to this API for CRC calculation.

The detail procedures to configure and run CRCCU are described below:

 Before any CRC checking, the user should reset CRCCU to make sure the CRC value is initialized to

0xFFFFFFFF

crccu_reset(CRCCU);

 Check the data length (ul_length): If it is larger than MAX_BTSIZE (0xFFFF), then the data buffer should

be divided into several blocks and call CRCCU function for multiple times.

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

9

9

Note: In this document, the MAX_BTSIZE is the maximum BTSIZE in register TR_CTRL.

if(ul_length > (MAX_BTSIZE))

{

 real_calculate_length = (MAX_BTSIZE);

}

else

{

 real_calculate_length = ul_length ;

}

 Initialize and configure the CRC descriptor as defined in Section 5.2, the CRCCU descriptor is located in

SRAM with 512 byte aligned

memset((void *)&crc_dscr, 0, sizeof(crccu_dscr_type_t));

crc_dscr.ul_tr_addr = (uint32_t) p_buffer;

/* Transfer width: word, interrupt enable */

crc_dscr.ul_tr_ctrl =

 CRCCU_TR_CTRL_TRWIDTH_WORD | real_calculate_length |

 CRCCU_TR_CTRL_IEN_ENABLE;

/* Configure the CRCCU descriptor */

crccu_configure_descriptor(CRCCU, (uint32_t) &crc_dscr);

 Configure CRCCU mode: Three modes can be selected. In this demo example, Polynomial

0x04C11DB7 is selected.

/* Configure CRCCU mode */

crccu_configure_mode(CRCCU, CRCCU_MR_ENABLE | ul_polynomial_type);

Note: The polynomial type is defined in header file crccu.h as below:

#define CRCCU_MR_PTYPE_CCITT8023 (0x0u << 2) /**< \brief (CRCCU_MR) Polynom 0x04C11DB7 */

#define CRCCU_MR_PTYPE_CASTAGNOLI (0x1u << 2) /**< \brief (CRCCU_MR) Polynom 0x1EDC6F41 */

#define CRCCU_MR_PTYPE_CCITT16 (0x2u << 2) /**< \brief (CRCCU_MR) Polynom 0x1021 */

 Enable the CRCCU DMA to start the CRC calculation and CPU just needs to wait for the calculation to

finish by checking the DMA Status Register bit.

/* Start the CRC calculation */

crccu_enable_dma(CRCCU);

/* Wait for calculation ready */

while (crccu_get_dma_status(CRCCU) == CRCCU_DMA_SR_DMASR) {

}

 Get the CRC value

ul_crc = crccu_read_crc_value(CRCCU);

http://cn.bing.com/dict/search?q=byte&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=aligned&FORM=BDVSP6&mkt=zh-cn

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015
1

0

10

5.6 Output of CRCCU Polling Mode

Figure 5-2. Output of CRCCU Polling Mode

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

1
1

11

6 CRCCU Callback Mode

The CRCCU callback mode configuration is the same as the polling mode except that it will use the CRCCU

interrupt to get the final CRC value. The CPU can be released during CRCCU execution.

6.1 CRCCU Callback Interrupt Definition

The CRCCU interrupt will be triggered once the CRCCU has finished the execution. During the execution of

CRCCU, the CPU is fully released for other tasks which will potentially increase the total CPU performance.

The CRCCU callback interrupt is defined in main.c as below:

void CRCCU_Handler(void)

{

 if((crccu_get_dma_status(CRCCU) == 0))

 {

 ul_crc=crccu_read_crc_value(CRCCU);

 printf("CRCCU Callback mode, CRC checksum is:0x%08x\n\r", ul_crc);

 crccu_get_dma_interrupt_status(CRCCU);

 }

}

6.2 CRCCU Callback Interrupt Setup
NVIC_DisableIRQ(CRCCU_IRQn);

NVIC_ClearPendingIRQ(CRCCU_IRQn);

NVIC_SetPriority(CRCCU_IRQn, 0);

NVIC_EnableIRQ(CRCCU_IRQn);

crccu_enable_dma_interrupt(CRCCU);

6.3 Configure and Run CRCCU

The detailed procedures to configure and run CRCCU are described below:

 Before CRC checking, the user should reset CRCCU to make sure the CRC value is initialized to

0xFFFFFFFF

crccu_reset(CRCCU);

 Check the data length (ul_length): If it is larger than MAX_BTSIZE (0xFFFF), then the data buffer should

be divided into several blocks and call CRCCU function for multiple times. Several CRCCU operations

are needed if the total input data size (in the unit of 32-bit word) is larger than 0xFFFF (256kB).

if(ul_length > (MAX_BTSIZE))

{

 real_calculate_length = (MAX_BTSIZE);

}

else

{

 real_calculate_length = ul_length ;

}

 Initialize and configure the CRC descriptor as defined in Section 5.2. The CRC descriptor is located in

SRAM with 512 byte aligned.

memset((void *)&crc_dscr, 0, sizeof(crccu_dscr_type_t));

crc_dscr.ul_tr_addr = (uint32_t) p_buffer;

/* Transfer width: word, interrupt enable */

http://cn.bing.com/dict/search?q=byte&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=aligned&FORM=BDVSP6&mkt=zh-cn

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015
1

2

12

crc_dscr.ul_tr_ctrl =

 CRCCU_TR_CTRL_TRWIDTH_WORD | real_calculate_length |

 CRCCU_TR_CTRL_IEN_ENABLE;

/* Configure the CRCCU descriptor */

crccu_configure_descriptor(CRCCU, (uint32_t) &crc_dscr);

 Configure CRCCU mode: Three modes can be selected. In this demo example, Polynomial

0x04C11DB7 is selected.

/* Configure CRCCU mode */

crccu_configure_mode(CRCCU, CRCCU_MR_ENABLE | ul_polynomial_type);

Note: The polynomial type is defined as below in header file crccu.h

#define CRCCU_MR_PTYPE_CCITT8023 (0x0u << 2) /**< \brief (CRCCU_MR) Polynom 0x04C11DB7 */

#define CRCCU_MR_PTYPE_CASTAGNOLI (0x1u << 2) /**< \brief (CRCCU_MR) Polynom 0x1EDC6F41 */

#define CRCCU_MR_PTYPE_CCITT16 (0x2u << 2) /**< \brief (CRCCU_MR) Polynom 0x1021 */

 Enable the CRCCU DMA to start the CRC calculation

/* Start the CRC calculation */

crccu_enable_dma(CRCCU);

Note: The compute_crc function in Callback mode is slightly different from the function in Polling mode. In

Callback mode, the final CRC value is received from the interrupt handler.

6.4 Output of CRCCU Callback Mode

Figure 6-1. Output of CRCCU Callback Mode

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

1
3

13

7 CRCCU Compared with the Optimized Software CRC Algorithm

The CRCCU_SW_COMPARISON example shows the benefits by comparing the CRCCU with the optimized

software CRC algorithm. The SW CRC32 polynomial is 0x04C11DB7, the same polynomial as CRCCU

(CCITT802.3).

The SW CRC32 software algorithm utilizes a 1KB look-up table to speed up the SW CRC32 execution while it

will increase 1KB Flash space.

Test Conditions:

 Hardware: Atmel SAM4S-EK2 board with ATSAM4SD32C

 System Clock: 8MHz, internal RC used with FW=0

 CRC Configuration: polynomial CCITT802.3 with CRC_INIT:0xFFFFFFFF, CRC_POLY:0x04C11DB7

 Total Checked Flash Size: 32KB

 DMA transfer Width: WORD (32 bits)

 SW CRC32: 1KB loop-up table to speed up the SW CRC32 execution

 System Clock Measurement: TC0, Channel0

7.1 Run Hardware CRCCU and SW CRC32

The detailed procedures to run hardware CRCCU and SW CRC32 are as below:

 Initialize TC0 to do the CPU Cycles measurement.

tc_waveform_initialize();

tc_start(TC, TC_CHANNEL_WAVEFORM);

Note: TC_CMR_TCCLKS_TIMER_CLOCK4 is used as the TC0 clock source, which means that for one TC

count = MCK/128.

 Before running the hardware CRCCU, record the initial TC0 counter value

temp_value0 = TC->TC_CHANNEL[0].TC_CV ;

 Run hardware CRCCU with polling mode to perform 32KB Flash check

 After hardware CRCCU finished execution, record the current TC0 counter value

temp_value1 = TC->TC_CHANNEL[0].TC_CV ;

 Output the measurement data consumed by hardware CRCCU to console

 Re-initialize the TC0 to perform the SW CRC32 measurement

 Before running the hardware CRCCU, record the initial TC0 counter value

temp_value0 = TC->TC_CHANNEL[0].TC_CV ;

 Run SW CRC32 algorithm to perform 32KB Flash check

ul_crc1 = calculate_crc32((uint8_t *)TEST_CRCCU_BUF_ADDRESS,TEST_SIZE);//Main function to perform

CRC32 by SW

ul_crc1 = reverse32(ul_crc1)^0xFFFFFFFF;/* This should be taken into consideration when using the

CRC32 SW solution.*/

Note: There are some limitations with hardware CRCCU. The SW CRC32 checksum should first perform 32

bit reverse and then XOR 0xFFFFFFFF, then the result can be the same with hardware CRCCU, and

vice versa.

 After SW CRC32 finished execution, record the current TC0 counter value

temp_value1 = TC->TC_CHANNEL[0].TC_CV ;

 Output the measurement data consumed by SW CRC32 algorithm to console

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015
1

4

14

7.2 Output of CRCCU and SW CRC32

Figure 7-1. Output of CRCCU and SW CRC32 Comparison Data

7.3 CRCCU Usage Benefits Compared with SW CRC32

Table 7-1. Comparison Data Between HW CRCCU and SW CRC32

Flash size
ATSAM4SD32C @8MHz, CRCCU ATSAM4SD32C @8MHz, SW CRC32

CPU cycles Cycles/bytes CPU cycles Cycles/bytes

32KB 73856 2.25 360448 11

In summary, the hardware CRCCU on SAM4S is about five times faster than the optimized SW CRC32

algorithm.

The user can benefit from large performance improvement when using the hardware CRCCU component

instead of SW CRC32 algorithm.

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

1
5

15

8 Revision History

Doc Rev. Date Comments

42534A 09/2015 Initial document release.

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015
1

6

16

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied , by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND COND ITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON -INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT , EVEN IF ATMEL

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accurac y or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, auto motive applications. Atmel products are not intended,

authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in conne ction with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety -Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities a nd weapons systems. Atmel

products are not designed nor intended for use in military or aerospace applications or environments unl ess specifically designated by Atmel as military-grade. Atmel products are not

designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive -grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Introduction
	Features
	Table of Contents
	1 CRCCU Block Diagram
	2 Product Dependencies
	2.1 Power Management
	2.2 Interrupt Source

	3 CRCCU Functional Description
	3.1 CRC Calculation Unit
	3.2 CRC Calculation Unit Operation

	4 Registers Memory Mapping
	5 CRCCU Polling Mode
	5.1 Define Flash Start Address and Flash Size to be Checked
	5.2 Define the CRCCU Descriptor
	5.3 Enable CRCCU Clock
	5.4 System Clock Configuration
	5.5 Configure and Run CRCCU
	5.6 Output of CRCCU Polling Mode

	6 CRCCU Callback Mode
	6.1 CRCCU Callback Interrupt Definition
	6.2 CRCCU Callback Interrupt Setup
	6.3 Configure and Run CRCCU
	6.4 Output of CRCCU Callback Mode

	7 CRCCU Compared with the Optimized Software CRC Algorithm
	7.1 Run Hardware CRCCU and SW CRC32
	7.2 Output of CRCCU and SW CRC32
	7.3 CRCCU Usage Benefits Compared with SW CRC32

	8 Revision History

