Altmel

APPLICATION NOTE

AT13214: Using Cyclic Redundancy Check Calculation
Unit (CRCCU) on SAM4S

SMART ARM-based Microcontrollers

Introduction

The Cyclic Redundancy Check Calculation Unit (CRCCU) is designed to perform
data integrity checks of off-/on-chip memories as a background task without CPU
intervention.

The CRCCU has its own DMA which functions as a Master with the Bus Matrix.
Three different polynomials are available: CCITT802.3, CASTAGNOLI, and
CCITT16.

In this application note, it provides three examples to demonstrate the usage of
CRCCU on SAM4S and the benefits of the Hardware CRCCU module compared
with the optimized software CRC algorithm.

Chapter 5 demonstrates the CRCCU Polling Mode of Flash Integrity Check.
Chapter 6 demonstrates the CRCCU Callback Mode of Flash Integrity Check.

Chapter 7 demonstrates the benefits of the Hardware CRCCU implementation
compared with the optimized software CRC algorithm.

Features

o Data Integrity Check of Off-/On-Chip Memories
e Background Task without CPU Intervention
e Performs Cyclic Redundancy Check (CRC) Operation on Programmable
Memory Area
e Programmable Bus Burden
Note: The CRCCU is designed to verify data integrity of off-/on-chip
memories, thus the CRC must be generated and verified by the
CRCCU. The CRCCU performs the CRC from LSB to MSB. If the CRC
has been performed with the same polynomial by another device, a bit-
reverse must be done on each byte before using the CRCCU.

Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ ApplicationNote_AT13214_092015

ART

Table of Contents

1 CRCCU BIOCK DIAQIaIM .. .uuuuuuiiiiiiiiiiiiiiiiiiiiieiesisisisessssss s esnsnseennnnes 3
2 ProducCt DEPENUENCIES ... oo 3
2.1 POWEI MANAGEIMENTcceii ittt ettt e et e e e e s et e e e e e e e e e e e e e e e st e e e e e e e e s s snnnneeeeeessennnneeeeeenas 3
2.2 INTEITUDPE SOUICE ...oeeeiieiee ittt e ettt e e e e e e e e e e e e et e e e e e e e e s ae e e e e e e e e e s snnnneeeeeessennnneeeeeenan 3
3 CRCCU Functional DeSCIIPLION ..uuuiii i e e 4
3.1 CRC CalCUIAtION UNIE ..ttt e e s e e s e e e e s e e e e s et e e nnnne e e s nneeeas 4
3.2 CRC Calculation Unit OPEIatiON...........ccueiiiiiriieiiieeeestiee et e et r e e e e e s e e e sneeeesnnneees 4
4 Registers Memory MapPiNg ... 6
5 CRCCU POIING MOAE ..uuniieeeeeeeee ittt e e e e e e e e e 7
5.1 Define Flash Start Address and Flash Size to be Checked.............cccoooiiiiiiiiiiiiicee e 7
5.2 DefiNe the CRCCU DESCIIPIONc.uteieiiitiee ittt ettt e ettt e s e et e e s st e e s nneeeesnneeeas 7
5.3 ENADIE CRCCU CIOCKitiiiiiiit ettt ettt et et e ket e et e e st e e e e st e e nnnneeesnneee s 7
5.4 System ClOCK CONIQUIALIONciuiiiiiiiiie ettt e et e e et et e e e e e s nneee s 8
5.5 Configure and RUN CRCCUcoiiiiiiiiiii ettt st e ettt e e ettt e e e st e e e ssbaeeeasteeeesnneeeesnnneeeas 8
5.6 Output of CRCCU POIlING MOEcoiiiiiiieiiiiie ettt tee et ste et e e e st e e snaeee e nnnes 10
6 CRCCU Callback MOUE.......ccooeeeeeeeeeeee e 11
6.1 CRCCU Callback Interrupt DEfINItIONccciiiiiiiiiiie it e et e e s e e enees 11
6.2 CRCCU Callback INTEITUPE SEIUP ...uveiiiiiiiiee ittt ettt e et e e st ee e e srte e e e ssee e e e enbeeeesntbeeesneeeeeannees 11
6.3 Configure and RUN CRCCUcoiiiiiiiiiii et e s e e e s s s 11
6.4 Output of CRCCU CallDACK MOUEuiiiiiiiiiie ettt 12
7 CRCCU Compared with the Optimized Software CRC Algorithm 13
7.1 Run Hardware CRCCU and SW CREC3B2.........oiiiiiiiiiiiiieeeii ettt 13
7.2 Output Of CRCCU and SW CREC3B2oiiiiiiiie ittt ettt e ettt e e e e e e sttt e e e e e s e nbntaeeeaeesaasnseeeeas 14
7.3 CRCCU Usage Benefits Compared With SW CRC32........cccuuiiiiiiiieiiiee et ee e 14
8 REVISION HiSTOMY oo 15
2 AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] Atmel

Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ ApplicationNote_AT13214_092015

1 CRCCU Block Diagram

2.1

2.2

Atmel

Figure 1-1. Block Diagram
Atmel :‘los‘t_fa
APBBus | <> nterface
Context FSM
—> | CRC Register %
*— | Addr Register :
g DeteRegster o
AHB Interface
HTRANS
T HSIZE
l AHB-Layer
External
Bus Interface Flash AHB SRAM

Product Dependencies

Power Management

The CRCCU is clocked through the Power Management Controller (PMC), hence the CRCCU clock must be
enabled through the PMC configuration before it can be used.

Interrupt Source

The CRCCU has an interrupt line connected to the Interrupt Controller. In order to handle the CRCCU interrupt,
the Interrupt Controller must be configured accordingly.

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] 3
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

3.1

3.2

CRCCU Functional Description

CRC Calculation Unit

The CRCCU implements a dedicated Cyclic Redundancy Check (CRC) engine. After being configured and
enabled, this CRC engine performs a checksum computation on a memory area. CRC computation is
performed from the LSB to MSB. Three different polynomials are available: CCITT802.3, CASTAGNOLI and
CCITT16.

CRC Calculation Unit Operation

The CRCCU has a DMA controller that supports configurable CRC memory checks. When enabled, the DMA
channel reads a configured amount of data and computes CRC on the fly.

The CRCCU is controlled by two registers, TR_ADDR and TR_CTRL, which need to be mapped in the internal
SRAM. The addresses of these two registers are pointed at by the CRCCU_DSCR.

Figure 3-1. CRCCU Descriptor Memory Mapping

SRAM
Memory
CRCCU_DSCR+0x0 -2 TR_ADDR
CRCCU_DSCR+0x4 > TR_CTRL
CRCCU_DSCR+0x8 -——-> Reserved
CRCCU_DSCR+0xC e Reserved
CRCCU_DSCR+0x10 - TR_CRC

Note: The DMA must be enabled to start CRCCU execution.
TR_ADDR defines the start address of memory area targeted for CRC calculation.

TR_CTRL defines the buffer transfer size, the transfer width (byte, half word, and word) and the transfer-
completed Interrupt enable.

To start the CRCCU, the user needs to set the CRC enable bit (ENABLE) in the CRCCU Mode Register
(CRCCU_MR), then configure it and finally set the DMA enable bit (DMAEN) in the CRCCU DMA Enable
Register (CRCCU_DMA_EN).

After the DAM enable bit is set, the CRCCU reads the predefined amount of data (defined in TR_CTRL)
located from TR_ADDR start address and computes the checksum.

The CRCCU_SR contains the temporary CRC value.

The BTSIZE field located in the TR_CTRL register (located in SRAM memory), is automatically decremented if
its value is different from zero. Once the value of the BTSIZE field is equal to zero, the CRCCU is disabled by
hardware. In this case, the CRCCU DMA Status Register bit DMASR is automatically cleared.

If the COMPARE field of the CRCCU_MR s set to true, the TR_CRC (Transfer Reference Register) is
compared with the last CRC computed. If a mismatch occurs, an error flag is set and an interrupt is raised (if
unmasked).

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] Atmel
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ ApplicationNote_AT13214_092015

The CRCCU accesses the memory by single access (TRWIDTH size) in order not to limit the bandwidth usage
of the system, and the DIVIDER field of the CRCCU Mode Register can be used to lower it by dividing the
frequency of the single accesses.

The CRCCU traverses the defined memory area using ascending addresses.

In order to compute the CRC for a memory size larger than 256KB or for non-contiguous memory area, it is
possible to re-enable the CRCCU on the new memory area and the CRC will be updated accordingly. Use the
RESET field of the CRCCU_CR to reset the CRCCU Status Register to its default value (OxFFFF_FFFF).

Atmel AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] 5

Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

4 Registers Memory Mapping

Table 4-1. Transfer Control Register Memory Mapping

Register Name : Access
CRCCU_DSCR + 0x0 CRCCU Transfer Address Register TR_ADDR Read/Write
CRCCU_DSCR + 0x4 CRCCU Transfer Control Register TR_CTRL Read/Write
CRCCU_DSCR + 0xC — 0x10 Reserved - -
CRCCU_DSCR + 0x10 CRCCU Transfer Reference Register | TR_CRC Read/Write

Note: These registers are SRAM mapped.

Table 4-2.

Cyclic Redundancy Check Calculation Unit (CRCCU) User Interface

0x000 CRCCU Descriptor Base Register CRCCU_DSCR Read/Write 0x00000000
0x004 Reserved = - -

0x008 CRCCU DMA Enable Register CRCCU_DMA_EN Write-only 0x00000000
0x00C CRCCU DMA Disble Register CRCCU_DMA_DIS Write-only 0x00000000
0x010 CRCCU DMA Status Register CRCCU_DMA_SR Read-only 0x00000000
0x014 CRCCU DMA Interrupt Enable Register CRCCU_DMA_IER Write-only 0x00000000
0x018 CRCCU DMA Interrupt Disable Register CRCCU_DMA_IDR Write-only 0x00000000
0x001C CRCCU DMA Interrupt Mask Register CRCCU_DMA_IMR Read-only 0x00000000
0x020 CRCCU DMA Interrupt Status Register CRCCU_DMA_ISR Read-only 0x00000000
0x024-0x030 | Reserved - - -

0x034 CRCCU Control Register CRCCU_CR Write-only 0x00000000
0x038 CRCCU Mode Register CRCCU_MR Read/Write 0x00000000
0x03C CRCCU Status Register CRCCU_SR Read-only OXFFFFFFFF
0x040 CRCCU Interrupt Enable Register CRCCU_IER Write-only 0x00000000
0x044 CRCCU Interrupt Disable Register CRCCU_IDR Write-only 0x00000000
0x048 CRCCU Interrupt Mask Register CRCCU_IMR Read-only 0x00000000
0x004C CRCCU Interrupt Status Register CRCCU_ISR Read-only 0x00000000
0x050-0xOFC | Reserved - - -

6 AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] Atmel

Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ ApplicationNote_AT13214_092015

5.1

5.2

5.3

CRCCU Polling Mode

This chapter describes how to implement the CRCCU polling mode on SAM4S step by step.
All the examples provided with this application note have been executed under the following conditions:

e Hardware: Atmel® SAM4S-EK2 board with ATSAM4SD32C
e System Clock: 8MHz, internal RC used with FW=0
e CRC Configuration: Polynomial CCITT802.3 with CRC_INIT:0xFFFFFFFF, CRC_POLY:0x04C11DB7
e Total Checked Flash Size: 32KB
e DMA transfer Width: WORD (four bytes)
Note: There are three values which can be selected for DMA transfer; BYTE, HALFWORD, and WORD. For

CRCCU, WORD selection the best performance can be achieved as it transfers four bytes per DMA
transition.

Define Flash Start Address and Flash Size to be Checked

Below macros define the checked start address, total checked Flash size, and DMA transfer size for each beat.
/% In this sample code, by default, it uses the 4BYTE align to do the CRC checking#*/

#tdefine TEST CRCCU BUF ADDRESS (0x00400000) /* Flash Start address#/

fidefine TEST SIZE (0x100000/32) /* Flash Size 32KB */

#tdefine TEST CRCCU SIZE (TEST_SIZE/4) /*WORD transfer by defaultx/

In the demo example, the checked start address is 0x00400000 and the total checked flash size is 32KB. The
users can adjust the checked Flash start address and Flash size flexibly if they want to check on a different
start address and size.

Define the CRCCU Descriptor

Define the CRCCU descriptor in main.c and it needs 512 byte aligned.
/%% CRC descriptor */

COMPILER ALIGNED (512)

crceu _dscr type t crc_dscr;

The user can find the CRCCU structure definition in the crccu.h file:

/#% CRCCU descriptor type */
typedef struct crccu_dscr type {

uint32 t ul tr addr; /% TR ADDR */

uint32 t ul tr ctrl; /% TR CTRL */
#if (SAM3SDS || SAM4S || SAM4L || SAMG55)

uint32 t ul reserved[2]; /% Reserved register */
felif SAM3S

uint32 t ul reserved[52]; /% TR_CRC begins at offset 0xE0 */
fendif

uint32 t ul tr crc; /% TR _CRC */
} crccu_dscr type t;

Enable CRCCU Clock

Enable the CRCCU peripheral clock before using this peripheral. The CRCCU peripheral ID on SAM4S is 32.
pmc_enable periph clk (CRCCU) ;

Refer to the SAMA4S datasheet for the corresponding Peripheral Identifiers.

Atmel AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] 7

Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

http://cn.bing.com/dict/search?q=byte&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=aligned&FORM=BDVSP6&mkt=zh-cn

Table 5-1. CRCCU Peripheral ID

Instance ID NVIC interrupt | PMC clock control Instance descrlptlon

Pulse width modulation
| = CRCCU X X CRC calculation unit |
33 ACC X X Analog comparator
34 UDP X X USB device port

5.4 System Clock Configuration

The system clock is running at 8MHz with internal RC.

configuration.

Figure 5-1.

—#ifndef CONF_CLOCK_H_INCLUDED
#define CONF_CLOCK_H_INCLUDED

8MHz System Clock Configuration

/{ ===== System Clock (MCK) Source Options

/{#define CONFIG_SYSCLK_SOURCE
/{#define CONFIG_SYSCLK_SOURCE
//#define CONFIG_SYSCLK_SOURCE
//#define CONFIG_SYSCLK_SOURCE
#define CONFIG_SYSCLK_SOURCE

//#define CONFIG_SYSCLK_SOURCE
//#define CONFIG_SYSCLK_SOURCE
/{#define CONFIG_SYSCLK_SOURCE
//#define CONFIG_SYSCLK_SOURCE
//{#define CONFIG_SYSCLK_SOURCE

// ===== System Clock (MCK) Prescaler

/{#define CONFIG_SYSCLK_PRES
#define CONFIG_SYSCLK_PRES

//#define CONFIG_SYSCLK_PRES
/{#define CONFIG_SYSCLK_PRES
/{#define CONFIG_SYSCLK_PRES
//#define CONFIG_SYSCLK_PRES
//#define CONFIG_SYSCLK_PRES
//#define CONFIG_SYSCLK_PRES

// ===== PLLO (&) Options (Fpll =

SYSCLK_SRC_SLCK_RC
SYSCLK_SRC_SLCK_XTAL
SYSCLK_SRC_SLCK_BYPASS
SYSCLK_SRC_MAINCK_4M_RC
SYSCLK_SRC_MAINCK_8M_RC
SYSCLK_SRC_MAINCK_12M_RC
SYSCLK_SRC_MAINCK_XTAL
SYSCLK_SRC_MAINCK_BYPASS
SYSCLK_SRC_PLLACK
SYSCLK_SRC_PLLECK

Options (Fmgk =
SYSCLK_PRES_1
SYSCLK_PRES_2
SYSCLK_PRES_4
SYSCLK_PRES_8
SYSCLK_PRES_16
SYSCLK_PRES_32
SYSCLK_PRES_64
SYSCLK_PRES_3

Fsys / (SYSCLK_PRES))

(Fclk * PLL_mul) / PLL_div)

// Use mul and div effective values here.

#define CONFIG_PLLO_SOURCE
#define CONFIG_PLLO_MUL
#define CONFIG_PLLO_DIV

5.5 Configure and Run CRCCU

PLL_SRC_MAINCK_XTAL
20

The user can refer to conf_clock.h for clock

There are three parameters of CRCCU calculation APl compute_crc(): Start address, Length, and Polynomial.

For this API, it doesn’t need to know whether the start address is located on the Flash or SRAM. The user just
needs to pass the Flash or SRAM buffer address, data length, and Polynomial to this API for CRC calculation.

The detail procedures to configure and run CRCCU are described below:

o Before any CRC checking, the user should reset CRCCU to make sure the CRC value is initialized to

OXFFFFFFFF
crecu_reset (CRCCU) ;

e Check the data length (ul_length): If it is larger than MAX_BTSIZE (OxFFFF), then the data buffer should

be divided into several blocks and call CRCCU function for multiple times.

8 AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE]
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ ApplicationNote_AT13214_092015

Atmel

Note:

Atmel

Note: In this document, the MAX_BTSIZE is the maximum BTSIZE in register TR_CTRL.

if (ul length > (MAX BTSIZE))
{
real calculate length

}

else

{
real calculate length = ul length ;

}

Initialize and configure the CRC descriptor as defined in Section 5.2, the CRCCU descriptor is located in
SRAM with 512 byte aligned

memset ((void *)&crc dscr, 0, sizeof(crccu dscr type t));

(MAX BTSIZE) ;

crc_dscr.ul tr addr = (uint32_t) p_buffer;

/% Transfer width: word, interrupt enable */
crc_dscr.ul tr ctrl =
CRCCU TR _CTRL_TRWIDTH WORD | real calculate length |
CRCCU_TR_CTRL_IEN ENABLE;

/% Configure the CRCCU descriptor */

crceu configure descriptor (CRCCU, (uint32 t) &crc dscr);

Configure CRCCU mode: Three modes can be selected. In this demo example, Polynomial
0x04C11DBY7 is selected.

/% Configure CRCCU mode */

crceu configure mode (CRCCU, CRCCU MR ENABLE | ul polynomial type);

The polynomial type is defined in header file crccu.h as below:
#tdefine CRCCU MR PTYPE CCITT8023 (0xOu << 2) /#%< \brief (CRCCU MR) Polynom 0x04C11DB7 */
#tdefine CRCCU MR PTYPE CASTAGNOLI (0xlu << 2) /#%< \brief (CRCCU MR) Polynom Ox1EDC6F41 */
#define CRCCU MR PTYPE CCITT16 (0x2u << 2) /#%< \brief (CRCCU MR) Polynom 0x1021 */
Enable the CRCCU DMA to start the CRC calculation and CPU just needs to wait for the calculation to
finish by checking the DMA Status Register bit.

/% Start the CRC calculation */
crccu_enable dma (CRCCU) ;

/% Wait for calculation ready */

while (crccu get dma status(CRCCU) == CRCCU DMA SR DMASR) {
1

Get the CRC value

ul_crc = crccu_read crc_value (CRCCU) ;

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] 9
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

http://cn.bing.com/dict/search?q=byte&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=aligned&FORM=BDVSP6&mkt=zh-cn

5.6 Output of CRCCU Polling Mode

Figure 5-2. Output of CRCCU Polling Mode

&P COMS1 - PuTTY o|[@] =

10 AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] Atmel

Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ ApplicationNote_AT13214_092015

6.1

6.2

6.3

CRCCU Callback Mode

The CRCCU callback mode configuration is the same as the polling mode except that it will use the CRCCU
interrupt to get the final CRC value. The CPU can be released during CRCCU execution.

CRCCU Callback Interrupt Definition

The CRCCU interrupt will be triggered once the CRCCU has finished the execution. During the execution of
CRCCU, the CPU is fully released for other tasks which will potentially increase the total CPU performance.

The CRCCU callback interrupt is defined in main.c as below:

void CRCCU Handler (void)

{
if ((crccu get dma status (CRCCU) == 0))

{

ul_crc=crccu_read crc_value (CRCCU) ;
printf ("CRCCU Callback mode, CRC checksum is:0x%08x\n\r”, ul crc);
crccu_get dma_interrupt status (CRCCU) ;

CRCCU Callback Interrupt Setup
NVIC DisableIRQ(CRCCU IRQn);

NVIC ClearPendingIRQ(CRCCU IRQn) ;

NVIC SetPriority(CRCCU IRQn, O0);

NVIC EnableIRQ(CRCCU IRQn);
crccu_enable dma_interrupt (CRCCU) ;

Configure and Run CRCCU

The detailed procedures to configure and run CRCCU are described below:

e Before CRC checking, the user should reset CRCCU to make sure the CRC value is initialized to
OXFFFFFFFF
crecu_reset (CRCCU) ;

e Check the data length (ul_length): If it is larger than MAX_BTSIZE (OxFFFF), then the data buffer should
be divided into several blocks and call CRCCU function for multiple times. Several CRCCU operations
are needed if the total input data size (in the unit of 32-bit word) is larger than OXFFFF (256kB).
if (ul length > (MAX BTSIZE))

{

real calculate length

}

else

{
real calculate length
}
e Initialize and configure the CRC descriptor as defined in Section 5.2. The CRC descriptor is located in
SRAM with 512 byte aligned.

memset ((void *)&crc dscr, 0, sizeof(crccu dscr type t));

(MAX_BTSIZE) ;

ul length ;

crce dscr.ul tr addr = (uint32 t) p buffer;

/% Transfer width: word, interrupt enable */

Atmel AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] 11

Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

http://cn.bing.com/dict/search?q=byte&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=aligned&FORM=BDVSP6&mkt=zh-cn

crc_dscr.ul tr ctrl =
CRCCU TR CTRL TRWIDTH WORD | real calculate length |
CRCCU TR CTRL IEN ENABLE;

/* Configure the CRCCU descriptor */
crccu_configure descriptor (CRCCU, (uint32 t) &crc_dscr);

e Configure CRCCU mode: Three modes can be selected. In this demo example, Polynomial
0x04C11DBY7 is selected.
/% Configure CRCCU mode */
crccu_configure mode (CRCCU, CRCCU MR ENABLE | ul polynomial type):
Note: The polynomial type is defined as below in header file crccu.h
#tdefine CRCCU MR _PTYPE CCITT8023 (0xOu << 2) /*%< \brief (CRCCU MR) Polynom 0x04C11DB7 */
#tdefine CRCCU_MR_PTYPE_CASTAGNOLT (Oxlu << 2) /#k< \brief (CRCCU_MR) Polynom Ox1EDC6F41 */
#tdefine CRCCU MR PTYPE CCITT16 (0x2u << 2) /#%< \brief (CRCCU MR) Polynom 0x1021 */

e Enable the CRCCU DMA to start the CRC calculation
/% Start the CRC calculation */
crccu_enable dma (CRCCU) ;

Note: The compute_crc function in Callback mode is slightly different from the function in Polling mode. In
Callback mode, the final CRC value is received from the interrupt handler.

6.4 Output of CRCCU Callback Mode

Figure 6-1. Output of CRCCU Callback Mode

&P COMS1 - PuTTY o |[®] =

12 AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] Atmel

Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ ApplicationNote_AT13214_092015

7 CRCCU Compared with the Optimized Software CRC Algorithm

The CRCCU_SW_COMPARISON example shows the benefits by comparing the CRCCU with the optimized
software CRC algorithm. The SW CRC32 polynomial is 0x04C11DB7, the same polynomial as CRCCU
(CCITT802.3).

The SW CRC32 software algorithm utilizes a 1KB look-up table to speed up the SW CRC32 execution while it
will increase 1KB Flash space.

Test Conditions:

7.1 Run

Hardware: Atmel SAM4S-EK2 board with ATSAM4SD32C

System Clock: 8MHz, internal RC used with FW=0

CRC Configuration: polynomial CCITT802.3 with CRC_INIT:0xFFFFFFFF, CRC_POLY:0x04C11DB7
Total Checked Flash Size: 32KB

DMA transfer Width: WORD (32 bits)

SW CRC32: 1KB loop-up table to speed up the SW CRC32 execution

System Clock Measurement: TCO, Channel0

Hardware CRCCU and SW CRC32

The detailed procedures to run hardware CRCCU and SW CRC32 are as below:

Note:

Note:

Atmel

Initialize TCO to do the CPU Cycles measurement.

tc_waveform initialize() ;
tc_start (TC, TC_CHANNEL WAVEFORM) ;

TC_CMR_TCCLKS_TIMER_CLOCKA4 is used as the TCO clock source, which means that for one TC
count = MCK/128.
Before running the hardware CRCCU, record the initial TCO counter value
temp_value0 = TC->TC_CHANNEL[O]. TC_CV ;
Run hardware CRCCU with polling mode to perform 32KB Flash check
After hardware CRCCU finished execution, record the current TCO counter value
temp valuel = TC->TC CHANNEL[O].TC CV ;
Output the measurement data consumed by hardware CRCCU to console
Re-initialize the TCO to perform the SW CRC32 measurement
Before running the hardware CRCCU, record the initial TCO counter value
temp valueO = TC->TC_CHANNEL[O].TC CV ;

Run SW CRC32 algorithm to perform 32KB Flash check

ul crcl = calculate cre32((uint8 t #*)TEST CRCCU_BUF_ADDRESS, TEST SIZE);//Main function to perform

CRC32 by SW

ul crcl = reverse32(ul crcl) "OxFFFFFFFF;/* This should be taken into consideration when using the

CRC32 SW solution. */
There are some limitations with hardware CRCCU. The SW CRC32 checksum should first perform 32
bit reverse and then XOR OxFFFFFFFF, then the result can be the same with hardware CRCCU, and
vice versa.

After SW CRC32 finished execution, record the current TCO counter value

temp_valuel = TC->TC_CHANNEL[0].TC CV ;

Output the measurement data consumed by SW CRC32 algorithm to console

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] 13
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ApplicationNote_AT13214_092015

7.2

7.3

14

Output of CRCCU and SW CRC32

Figure 7-1. Output of CRCCU and SW CRC32 Comparison Data

EP COMS1 - PuTTY

CRCCU Usage Benefits Compared with SW CRC32

Table 7-1. Comparison Data Between HW CRCCU and SW CRC32

ATSAM4SD32C @8MHz, CRCCU ATSAM4SD32C @8MHz, SW CRC32

Flash size
CPU cycles Cycles/bytes CPU cycles Cycles/bytes
11

32KB 73856 2.25 360448

In summary, the hardware CRCCU on SAMA4S is about five times faster than the optimized SW CRC32
algorithm.

The user can benefit from large performance improvement when using the hardware CRCCU component
instead of SW CRC32 algorithm.

AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] Atmel
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ ApplicationNote_AT13214_092015

8 Revision History

| 42534A | 09/2015 |Initia| document release. |

Atmel AT13214: Using Cyclic Redundancy Check Calculation Unit (CRCCU) on SAM4S [APPLICATION NOTE] 15
Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ ApplicationNote_AT13214_092015

CONNECTED

AtmeL Enabling Unlimited Possibilities® l] D m w

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com
© 2015 Atmel Corporation. / Rev.: Atmel-42534A-Using-Cyclic-Redundancy-Check-Calculation-Unit-CRCCU-on-SAM4S_ ApplicationNote_AT13214_092015.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in conne ction with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel
products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not
designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive -grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Introduction
	Features
	Table of Contents
	1 CRCCU Block Diagram
	2 Product Dependencies
	2.1 Power Management
	2.2 Interrupt Source

	3 CRCCU Functional Description
	3.1 CRC Calculation Unit
	3.2 CRC Calculation Unit Operation

	4 Registers Memory Mapping
	5 CRCCU Polling Mode
	5.1 Define Flash Start Address and Flash Size to be Checked
	5.2 Define the CRCCU Descriptor
	5.3 Enable CRCCU Clock
	5.4 System Clock Configuration
	5.5 Configure and Run CRCCU
	5.6 Output of CRCCU Polling Mode

	6 CRCCU Callback Mode
	6.1 CRCCU Callback Interrupt Definition
	6.2 CRCCU Callback Interrupt Setup
	6.3 Configure and Run CRCCU
	6.4 Output of CRCCU Callback Mode

	7 CRCCU Compared with the Optimized Software CRC Algorithm
	7.1 Run Hardware CRCCU and SW CRC32
	7.2 Output of CRCCU and SW CRC32
	7.3 CRCCU Usage Benefits Compared with SW CRC32

	8 Revision History

