
 TB3261
 PIC1000: Getting Started with Writing C-Code for PIC16

and PIC18

Introduction

Authors: Cristian Săbiuţă, Cristina Ionescu, Microchip Technology Inc.

This technical brief provides the steps recommended to successfully program a PIC16 or PIC18 microcontroller and
defines coding guidelines to help write more readable and reusable code.

High-level programming languages are a necessity due to imposed short development time and high-quality
requirements. These languages make it easier to maintain and reuse code due to better portability and readability
than the low-level instructions specific for each microcontroller architecture.

Programming language alone does not ensure high readability and reusability, but good coding style does. Therefore,
the PIC® peripherals, header files and drivers are designed according to this presumption.

Since the most widely used high-level programming language for PIC microcontrollers is C, this document will focus
on C programming. To ensure compatibility with most PIC C compilers, the code examples in this document are
written using ANSI C coding standard.

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 1

Table of Contents

Introduction ..1

1. Data Sheet Module Structure and Naming Conventions.. 3

1.1. How to Find the Data Sheet .. 3
1.2. Pin Description... 3
1.3. Modules Description...4
1.4. Naming Conventions..6
1.5. PIC® Configuration Bits..8

2. Modules Representation in Header Files.. 9

2.1. Registers Representation in Header Files..9
2.2. Bit Masks and Bit Field Masks... 10
2.3. Bit Positions..12

3. Writing Bare Metal C-Code for PIC... 13

3.1. Set, Clear and Read Register Bits... 13
3.2. Register Initialization.. 15
3.3. Change Register Bit Field Configurations.. 18
3.4. Setting Configuration Bits...19

4. Application Example Showing Alternative Ways of Writing Code... 21

4.1. Turn ON an LED on a Button Press using Bit Unions.. 21
4.2. Turn ON an LED on a Button Press using Bit Masks...21
4.3. Turn ON an LED on a Button Press using Bit Positions...22

5. Further Steps.. 23

5.1. MPLAB® X and XC8 Compiler... 23
5.2. Application Notes and Technical Briefs.. 23

6. Conclusion.. 24

7. References..25

The Microchip Website...26

Product Change Notification Service..26

Customer Support.. 26

Microchip Devices Code Protection Feature.. 26

Legal Notice... 26

Trademarks.. 27

Quality Management System... 27

Worldwide Sales and Service...28

 TB3261

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 2

1. Data Sheet Module Structure and Naming Conventions
The first step in writing C-code for a microcontroller is knowing and understanding the type of information found in the
data sheet of the device used for programming. The data sheet contains information about the features, memories,
core and peripheral modules of the microcontroller. Also included in the data sheet are the functional descriptions and
base addresses of the peripheral modules, the names and addresses of the registers and other functional and
electrical characteristics.

1.1 How to Find the Data Sheet
The data sheet for the PIC16F and PIC18F microcontroller families can be found at:

• PIC16F1779
• PIC16F18846
• PIC16F18877
• PIC18F45Q43
• PIC18F47Q10
• PIC18F47K42

Any documentation related to Microchip products can be found at:
• Microchip Data Sheet page

Or by searching the respective part number on:
• www.microchip.com

1.2 Pin Description
The pin description can be found in any device data sheet. The pinout is contained in the data sheet’s Pin Diagrams
chapter, which covers various devices depending on the pin or package specifications. The TQFP pinout of the
PIC18-Q10 44-pin devices is presented in Figure 1-1.

 TB3261
Data Sheet Module Structure and Naming ...

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 3

https://www.microchip.com/wwwproducts/en/PIC16F1779
https://www.microchip.com/wwwproducts/en/PIC16F18446
https://www.microchip.com/wwwproducts/en/PIC16F18877
https://www.microchip.com/wwwproducts/en/PIC18F45Q43
https://www.microchip.com/wwwproducts/en/PIC18F47Q10
https://www.microchip.com/wwwproducts/en/PIC18F47K42
https://www.microchip.com/doclisting/TechDoc.aspx?type=datasheet
http://www.microchip.com

Figure 1-1. PIC18-Q10 44-Pin TQFP Pinout

Filename: 00-000044A.vsd
Title: 44-pin TQFP
Last Edit: 11/6/2017
First Used: N/A
Notes: Generic 44-pin TQFP diagram

40 39

RA6
RA7

RE1
RE0
RA5
RA4

R
C

1
R

C
2

R
C

3

R
D

1
R

D
0

RE2

NC

VSS

VDD

R
D

2
R

D
3

R
C

4
R

C
5

R
C

6

38 37 36 35 34

33
32
31

12 13 14 15 16 17 18 19 20 21 22
23
24
25
26
27
28
29
30

10
9
8
7
6
5
4
3
2
1

R
A3

R
A2

R
A1

V
P

P/
M

C
LR

/R
E3

R
A0

IC
S

P
D

A
T/

R
B7

IC
S

P
C

LK
/R

B6
R

B5
R

B4
RB3

RC7
RD4

VDD

RB0
RB1
RB2

VSS

RD5
RD6
RD7

11

44 43 42 41

N
C

N
C

N
C

RC0

The Pin Allocation Tables chapter from the PIC18F27/47Q10 data sheet contains information about the pre-
established pin functions. These functionalities that can be configured for each I/O pin are usually input or output of
peripheral modules instances. This information varies depending on the device number of pins. If an evaluation board
is used, such as the PIC18F47Q10 Curiosity Nano Development Platform, the routing of the pins on the specific
board must be known. The information is available at PIC18F47Q10 Curiosity Nano page.

1.3 Modules Description
A PIC microcontroller is comprised of several building blocks: a PIC CPU core, SRAM, Flash, EEPROM, and various
peripheral modules called module types. Throughout this document, all peripheral modules will be referred to as
modules.

Newer PIC families of microcontrollers can have one or more instances of a given module type. All instances of a
module have the same features and functions. There can be some modules that are a subset of other module types
and inherit some of their features. The inherited features are fully compatible with the respective module type. For
example, the subset module for a timer can have fewer compare and capture channels than a full timer module.

 TB3261
Data Sheet Module Structure and Naming ...

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 4

http://ww1.microchip.com/downloads/en/DeviceDoc/40002043D.pdf
https://www.microchip.com/Developmenttools/ProductDetails/DM182029

Figure 1-2. Module Types, Instances, Registers and Bits

A module type can be the Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART), while
the module instance is, for example, ‘EUSART1’, where the ‘1’ suffix indicates that the instance is ‘EUSART number
1’. For simplicity, a module instance will be referred to as a module throughout this document, unless there is a need
to differentiate.

Each module has several registers that contain control or status bits. All modules of a given type contain the same
set or subset of registers. All of these registers contain the same set or subset of control and status bits.

All of the registers corresponding to a module have a fixed address in the I/O memory map. This way, each register
will be available at an absolute address specified by the data sheet.

Every module has a dedicated chapter that presents the features of the module, a functional description of the
module and the specific signals and guidelines on how to configure a certain mode of operation with all the
terminology explained. At the end of a module chapter, the Register Definitions subchapter contains the scope of
every register, the reset values of the registers, and whether or not it is readable or writable. It also provides the
position of every configurable/accessible bit of a register.

All the registers, their addresses, and the bit names and positions are described in the Register Summary section for
each module. The register summary for the ADC module is presented in Figure 1-3.

 TB3261
Data Sheet Module Structure and Naming ...

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 5

Figure 1-3. Register Summary for ADC Peripheral

Address Name Bit Pos.

0x00
...

0x0F50
Reserved

0x0F51 ADACT 7:0 ADACT[4:0]
0x0F52 ADCLK 7:0 ADCS[5:0]
0x0F53 ADREF 7:0 ADNREF ADPREF[1:0]
0x0F54 ADCON1 7:0 ADPPOL ADIPEN ADGPOL ADDSEN
0x0F55 ADCON2 7:0 ADPSIS ADCRS[2:0] ADACLR ADMD[2:0]
0x0F56 ADCON3 7:0 ADCALC[2:0] ADSOI ADTMD[2:0]
0x0F57 ADACQ 7:0 ADACQ[7:0]
0x0F58 ADCAP 7:0 ADCAP[4:0]
0x0F59 ADPRE 7:0 ADPRE[7:0]
0x0F5A ADPCH 7:0 ADPCH[5:0]
0x0F5B ADCON0 7:0 ADON ADCONT ADCS ADFM

0x0F5C ADPREV
7:0 ADPREVL[7:0]
15:8 ADPREVH[7:0]

0x0F5E ADRES
7:0 ADRESL[7:0]
15:8 ADRESH[7:0]

0x0F60 ADSTAT 7:0 ADAOV ADUTHR ADLTHR ADMATH ADSTAT[2:0]
0x0F61 ADRPT 7:0 ADRPT[7:0]
0x0F62 ADCNT 7:0 ADCNT[7:0]

0x0F63 ADSTPT
7:0 ADSTPTL[7:0]
15:8 ADSTPTH[7:0]

0x0F65 ADLTH
7:0 ADLTHL[7:0]
15:8 ADLTHH[7:0]

0x0F67 ADUTH
7:0 ADUTHL[7:0]
15:8 ADUTHH[7:0]

0x0F69 ADERR
7:0 ADERRL[7:0]
15:8 ADERRH[7:0]

0x0F6B ADACC
7:0 ADACCL[7:0]
15:8 ADACCH[7:0]

0x0F6D ADFLTR
7:0 ADFLTRL[7:0]
15:8 ADFLTRH[7:0]

ADGO

For examples on how to access the ADGO bit from the ADCON0 register, refer to section 2.1.1. Register Unions

1.4 Naming Conventions
This section describes the register and bit naming conventions that can be found in the device data sheet.

1.4.1 Register Naming Conventions
Registers are divided into Control (CON), Status (STA) and Data registers with their naming reflecting this. A general
purpose control register of a module has the control identifier named CON. If multiple general purpose control
registers exist in a module, they have a suffix number identifier. In this case, the control registers will be named
CON0, CON1, CON2 and so on. For example, see ADCON0, ADCON1, ADCON2 and ADCON3 registers in Figure
1-3.

When there are multiple instances of the same peripheral in a device, the name of the peripheral control registers will
be depicted as the concatenation of the peripheral identifier, the peripheral instance number and the control identifier.
Therefore, all the register names of PIC microcontrollers are unique. For example, in Figure 1-4, observe the
RC2STA (Receive Status and Control Register) for EUSART peripheral instance 2.

For registers that have a specific function, their name reflects this functionality. For example, BAUD2CON is the Baud
Rate Control Register for the second instance of the EUSART peripheral.

 TB3261
Data Sheet Module Structure and Naming ...

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 6

Figure 1-4. Register Summary for EUSART Peripheral

Address Name Bit Pos.

0x00
...

0x0E93
Reserved

0x0E94 RC2REG 7:0 RCREG[7:0]
0x0E95 TX2REG 7:0 TXREG[7:0]

0x0E96 SP2BRG
7:0 SPBRGL[7:0]
15:8 SPBRGH[7:0]

0x0E98 7:0 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
0x0E99 TX2STA 7:0 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D
0x0E9A 7:0 ABDOVF RCIDL SCKP BRG16 WUE ABDEN
0x0E9B

...
0x0F97

Reserved

0x0F98 RC1REG 7:0 RCREG[7:0]
0x0F99 TX1REG 7:0 TXREG[7:0]

0x0F9A SP1BRG
7:0 SPBRGL[7:0]
15:8 SPBRGH[7:0]

0x0F9C RC1STA 7:0 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
0x0F9D TX1STA 7:0 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D
0x0F9E BAUD1CON 7:0 ABDOVF RCIDL SCKP BRG16 WUE ABDEN

RC2STA

BAUD2CON

Since the PIC data bus width is 8 bits, larger registers are implemented using several 8-bit registers. For a 16-bit
register, the high and low bytes are accessed by appending ‘H’ and ‘L’ respectively to the register name. For
example, the ADC Result Register is named ADRES and the two bytes are ADRESL and ADRESH.

After the Register Summary section in the device data sheet, each register has a Register Definition section, which
fully describes the functionality of each bit and bit field in the register. The Register Definitions section shows one
instance of all the register names with an ‘x’ in place of the peripheral instance number. An example is presented in
Figure 1-5.

1.4.2 Bit Naming Conventions
Register bits in the data sheet are named by combining a bit function abbreviation with the peripheral abbreviation.
This format, also called a Long Bit Name, is used in both the register summary and register definition sections of the
data sheet. For example, SPEN is the name for the Serial Port Enable bit, as shown in Figure 1-5.
Figure 1-5. RCxSTA – Receive Status and Control Register

Name:  RCxSTA
Address:  0xF9C,0xE98

Receive Status and Control Register

Bit 7 6 5 4 3 2 1 0
RX9 SREN CREN ADDEN FERR OERR RX9D

Access R/W R/W R/W R/W R/W RO R/HC R/HC
Reset 0 0 0 0 0 0 0 0

Value Description
1 Serial port enabled
0 Serial port disabled (held in Reset)

SPEN

Bit 7 – SPEN Serial Port Enable bit

Since the prefix for the peripheral module type is unique, each bit name described in the data sheet is unique.

The device header file offers some register bits a Short Bit Name alternative consisting of only the bit function
abbreviation. Since this is defined in the context of a bit union for a specific register, the bit access remains unique.
For further details on how to access a bit using the short or long naming convention, refer to 2.1.1 Register Unions.

 TB3261
Data Sheet Module Structure and Naming ...

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 7

1.4.3 Register and Bit Naming Exceptions

1.4.3.1 Status, Interrupt, and Mirror Bits
Status, Interrupt Enable, Interrupt Flag, and Mirror bits are contained in registers that span across more than one
peripheral. In these cases, the bit name shown is unique, and there is no prefix or short name variant.

1.4.3.2 Legacy Peripherals
There are some peripherals that do not strictly adhere to this naming convention. These are the peripherals that have
existed for many years and are present in almost every device. These exceptions were necessary to limit the adverse
impact of the new conventions on legacy code. Peripherals that do adhere to the new convention will include a table
in the register section indicating the long name prefix for each peripheral instance. Peripherals that fall into the
exception category will not have this table. These peripherals include, but are not limited to the following:

• Enhanced Universal Asynchronous Receiver Transceiver (EUSART)
• Master Synchronous Serial Port (MSSP)

1.5 PIC® Configuration Bits
Configuration bits are a collection of specialized bits that can only be modified at program time. Configuration bits are
read during reset and enable or disable hardware features in the microcontroller. The features controlled by the
configuration bits include, but are not limited to, the clock source, the Watchdog Timer (WDT), the Brown-Out
Detector (BOD), and the Memory Read protection. Configuration bits are not executable code. Essentially, they are
fuses located in the program memory space.

Each PIC microcontroller has its own set of configuration bits. The Device Configuration section of the individual data
sheets contains the definition for each of the bits. See below an example from the PIC16F18446 data sheet.

Figure 1-6. Register Summary for Configuration Words

Offset Name Bit Pos.

0x8007 CONFIG1
7:0 RSTOSC[2:0] FEXTOSC[2:0]
13:8 FCMEN CSWEN CLKOUTEN

0x8008 CONFIG2
7:0 BOREN LPBOREN PWRTS[1:0] MCLRE

13:8 DEBUG STVREN PPS1WAY ZCDDIS BORV

0x8009 CONFIG3
7:0 WDTE[1:0] WDTCPS[4:0]

13:8 WDTCCS[2:0] WDTCWS[2:0]

0x800A CONFIG4
7:0 WRTAPP SAFEN BBEN BBSIZE[2:0]
13:8 LVP WRTSAF WRTD WRTC WRTB

0x800B CONFIG5
7:0 CP
13:8

For further details on how to set the Configuration Bits consult the 3.4 Setting Configuration Bits section.

 TB3261
Data Sheet Module Structure and Naming ...

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 8

http://ww1.microchip.com/downloads/en/DeviceDoc/40001985B.pdf

2. Modules Representation in Header Files
A dedicated header file is available for each PIC device. If the target device is specified in the project settings, the
MPLAB® XC8 Compiler will automatically include the correct header file if the device file is included as shown below:

#include <xc.h>

All of the required register macro definitions can be found in the header file along with bit masks, bit field masks, bit
positions and union definitions for the registers. The macros and struct definitions which are already defined in the
device specific header file can be used instead of using a register's address.

This is useful for devices that contain the same module and where the header file definitions for that module are
identical.

2.1 Registers Representation in Header Files
The I/O memory map is laid out so that all registers for a given peripheral module are placed in one continuous
memory block. Registers belonging to different modules are not mixed up, where the registers macros are defined as
below:

#define LATA LATA
extern volatile unsigned char LATA __at(0xF82);
#define LATB LATB
extern volatile unsigned char LATB __at(0xF83);
#define LATC LATC
extern volatile unsigned char LATC __at(0xF84);

2.1.1 Register Unions
Each register has a union declared in the header file for the individual bits in that register. This allows access to an
individual bit/bit field from the register using the union declaration.

typedef union {
 struct {
 unsigned ADGO :1;
 unsigned :1;
 unsigned ADFM :1;
 unsigned :1;
 unsigned ADCS :1;
 unsigned :1;
 unsigned ADCONT :1;
 unsigned ADON :1;
 };
 struct {
 unsigned GO :1;
 unsigned :1;
 unsigned ADFM0 :1;
 };
} ADCON0bits_t;
extern volatile ADCON0bits_t ADCON0bits __at(0xF5B);

 TB3261
Modules Representation in Header Files

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 9

The union declaration of the ADCON0 register is shown in the code listing above. This register can be accessed as a
whole using the macro declaration or as an individual bit/bit field from the register using the union declaration. Here is
an example:

ADCON0 = 0x01; /* using macro declaration */
ADCON0bits.GO = 1; /* using bit unions with short bit name convention */
ADCON0bits.ADGO = 1; /* using bit unions with long bit name convention */

The convention used when accessing a bit or a bit field from a register using the union declaration of register is
presented in Figure 2-1.
Figure 2-1. Access Register Unions Convention

ADCON0bits.ADGO

Register name
ADC Control

Register 0

Bit name
ADC Conversion

Status bit

‘bits’ suffix

For further details on unions, consult Microchip Developer - Unions.

2.1.2 Multibyte Registers
Some registers are used in conjunction with other registers to represent 16-bit values. These registers can be
accessed as a whole using the register macro or by accessing the low/high bytes using the ‘L’/’H’ suffixes attached to
the register macro. For example, the 16-bit ADC Result register has the following declaration in the header file:

#define ADRES ADRES
extern volatile unsigned short ADRES __at(0xF5E);
#define ADRESL ADRESL
extern volatile unsigned char ADRESL __at(0xF5E);
#define ADRESH ADRESH
extern volatile unsigned char ADRESH __at(0xF5F);

2.2 Bit Masks and Bit Field Masks
Register bits can be manipulated using predefined masks, or bit positions. The predefined bit masks from the header
file are either related to individual bits, called a bit mask, or related to a bit field, called a bit field mask.

A bit mask is used both when setting and clearing individual bits. A bit field mask is mainly used when clearing
multiple bits in a bit field.

For the ADCON2 register, the bit fields, bit names, bit positions, and bit masks of this register, see the table below.

Table 2-1. Bit Fields, Bit Names, Bit Positions, and Bit Masks in the ADCON2 Register

Bit Field - ADCRS - ADMD

Bit Name ADPSIS ADCRS2 ADCRS1 ADCRS0 ADACLR ADMD2 ADMD1 ADMD0

Bit Position 7 6 5 4 3 2 1 0

 TB3261
Modules Representation in Header Files

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 10

https://microchipdeveloper.com/tls2101:unions

...........continued
Bit Field - ADCRS - ADMD

Bit Mask 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x01

2.2.1 Bit Masks
The bit masks are predefined in the device header file. For example, the bit mask for the ADPSIS bit is defined as
below.

#define _ADCON2_ADPSIS_MASK 0x80

The naming convention adopted for the predefined bit masks in the header file is presented in Figure 2-2 with an
example for the ADPSIS bit in the ADCON2 register.

Figure 2-2. Naming Convention of Bit Masks

_ADCON2_ADPSIS_MASK

Register name
ADC Control Register 2

Bit name
ADC Previous Sample

Input Select bit

‘MASK’ suffix

Note:  The register name, bit name, bit field name, the ‘MASK’ suffix are separated with ‘_’ and the entire macro
name begins with ‘_’.

2.2.2 Bit Field Masks
Many functions are controlled by a bit field. For example, ADCRS[2:0] and ADMD[2:0] in the ADCON2 register are
grouped bits. The value of the bits in a field selects a specific configuration.

When changing bits in a bit field, it is not enough to set the bits for the desired configuration. It is also required to
clear the bits from the old configuration before assigning a new value. To facilitate this, a bit field mask is defined.

The field masks are predefined in the device header file. For example, the field mask for the ADMD bit field is defined
below.

#define _ADCON2_ADMD_MASK 0x7

The naming convention adopted for the predefined bit field masks in the header file is presented in the Figure 2-3
with an example for the ADMD bit field in the ADCON2 register.

 TB3261
Modules Representation in Header Files

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 11

Figure 2-3. Naming Convention of Bit Field Masks

Register name
ADC Control Register 2

Bit field name
ADC Operating

Mode Selection bits

_ADCON2_ADMD_MASK

‘MASK’ suffix

The bits from a bit field can be accessed as individual bits. To differentiate between these bits, a suffix (index of each
bit in the bit field) is appended to the bit field name. The masks for the bits in a bit field are defined below.

#define _ADCON2_ADMD0_MASK 0x1
#define _ADCON2_ADMD1_MASK 0x2
#define _ADCON2_ADMD2_MASK 0x4

For further details on bit fields, consult Microchip Developer - Bit Fields.

2.3 Bit Positions
It is possible to use bit positions as an alternative to set or clear bits. A bit position within a register is defined using
the same naming convention used at the bit masks, with the ‘_POSITION’ suffix instead of ‘_MASK’. There is also
another definition for the bit positions in the header file. This bit position definition has the same functionality, but the
suffix is ‘_POSN’. This is implemented for compatibility reasons.

The naming convention adopted for the predefined bit positions in the header file is presented in the Figure 2-4 with
an example for the ADPSIS bit position in the ADCON2 register.
Figure 2-4. Naming Convention of Bit Positions

_ADCON2_ADPSIS_POSITION

Register name
ADC Control Register 2

Bit name
ADC Previous Sample

Input Select bit

‘POSITION’ suffix

The bit position definition for the ADPSIS bit from the header file is shown below.

#define _ADCON2_ADPSIS_POSN 0x7
#define _ADCON2_ADPSIS_POSITION 0x7

The bit positions are included for compatibility reasons. They are also needed when programming in assembly for
instructions that use a bit number.

 TB3261
Modules Representation in Header Files

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 12

https://microchipdeveloper.com/tls2101:bit-fields

3. Writing Bare Metal C-Code for PIC
The following section focuses on how to write C-code for the PIC16 and PIC18 microcontroller families. The
examples describe how to make the code highly readable and portable between different PIC16 and PIC18 devices.
The examples can also be used as a guideline on how to write code that is easy to verify and maintain.

PIC registers are located in dedicated and continuous blocks in the memory space and can be seen as encapsulated
units. This reflects on the way that the registers are accessed when coding in C. Registers are encapsulated using C
unions, in which all the bits and bit fields are encapsulated using C structs. A register can be accessed as a whole
using the macro declaration of the register or it can be accessed using the union declaration of the register. A bit field
can be accessed similarly to the register.

This document introduces a naming convention and register access method that is compliant with the PIC header
files. This provides readability and portability to the codes written in C-code.

3.1 Set, Clear and Read Register Bits
Setting and clearing register bits are fundamental operations used in embedded programming. Applications are
based on this technique.

The Read-Modify-Write (RMW) operations are a class of atomic operations that both read a memory location and
write a new value to it simultaneously, either with a completely new value or some part of the previous value.

Since it has a wide applicability, reading the value of a bit is mainly used in conditional expressions (e.g. if
statement) and as a condition in loop expressions (e.g. while statement). A common use case of this technique is
polling on an interrupt flag (reading the value of the bit and executing a set of instructions if the bit is set/clear).

Note:  For further details on binary arithmetic see Bitwise Operators.

3.1.1 Set, Clear and Read Register Bits using Bit Unions
The recommended coding style to set or clear a specific bit in a register is to use the union declaration of the register
from the header file.

The example below shows how to set and clear the Enable bit from the ADCON0 register using the recommended
coding style.

ADCON0bits.ADON = 1; /* the ADC Enable bit is set */
ADCON0bits.ADON = 0; /* the ADC Enable bit is cleared */

The value of a register bit can be tested as follows. The code listing below shows how to poll the ADGO bit, waiting
until it is cleared:

/* wait while the ADGO bit is set */
while(ADCON0bits.ADGO)
{
 /* wait */
}

Note:  Setting the ADGO bit in the ADC´s ADCON0 register starts an ADC conversion. This bit is then cleared by
hardware when the conversion is complete.

The code listing below shows how to read the value of a PORT pin using bit unions and execute a set of instructions
if that pin is low.

/* if pin 0 of the PORTA is clear execute a set of instructions */
if(!PORTAbits.RA0)
{

 TB3261
Writing Bare Metal C-Code for PIC

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 13

https://microchipdeveloper.com/tls2101:bitwise-operators

 /* set of instructions */
}

3.1.2 Set, Clear and Read Register Bits using Bit Masks
There are alternative ways to set and clear register bits by using bit masks or bit positions.

In order to set a bit from a register using bit masks, the binary OR operator will be applied between the register and
the bit mask. Using the binary OR operator will ensure that the other bit settings made inside the register will remain
the same and unaffected by this operation.

ADCON0 |= _ADCON0_ADON_MASK; /* the ADC Enable bit is set */

In order to clear a bit from a register using bit masks, the binary AND operator will be applied between the register
and the negated value of the bit mask. This operation also keeps the other bit settings unchanged.

ADCON0 &= ~_ADCON0_ADON_MASK; /* the ADC Enable bit is cleared */

The bit mask for the ADC Enable bit (ADON) has the following declaration in the header file.

#define _ADCON0_ADON_MASK 0x80

The code listing below shows how to read the value of a PORT pin using bit masks and execute a set of instructions
if that pin is low.

if(PORTA & _PORTA_RA0_MASK)
{
 /* set of instructions */
}

3.1.3 Set, Clear and Read Register Bits using Bit Positions
In order to set a bit from a register using bit positions, the binary OR operator will be applied between the register and
the value resulting from shifting ‘1’ with the value of the bit position. To clear a bit using bit positions the binary AND
operator is used with the negated value of the shifting result.

ADCON0 |= (1 << _ADCON0_ADON_POSITION); /* the ADC Enable bit is set */
ADCON0 &= ~(1 << _ADCON0_ADON_POSITION); /* the ADC Enable bit is cleared */

Note:  The bit position for the ADC Enable bit (ADON) has the following declaration in the header file.

#define _ADCON0_ADON_POSITION 0x7

The code listing below shows how to read the value of a PORT pin using bit positions and execute a set of
instructions if that pin is low.

if(PORTA & (1<< _PORTA_RA0_POSITION))
{
 /* set of instructions */
}

 TB3261
Writing Bare Metal C-Code for PIC

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 14

3.2 Register Initialization
In order to initialize a register, the user must find the desired configuration of the register to achieve the expected
functionality by consulting the device data sheet and setting or clearing register bits, so that the value in the register
matches the desired configuration.

Register initialization is most often performed as part of device initialization after reset, when the register is in a
known state of '0'. This is a special use-case, since:

• The register value may be 0x00
• Various bits and bit fields need to be configured at once

Read-modify-write operations are not needed, when working with bit masks or bit positions, if the reset value of the
register is 0x00 and the register configures in a single line.

Note:  For most PIC registers, the reset value for all bits and bit fields is ‘0’, but there are exceptions. For example,
the Peripheral Interrupt Priority Register 3 has several bits with the reset value ‘1’. In this case, the user has to
explicitly set the desired configuration without relying on the fact that usually bits reset values are 0. The reset value
for all bits and bit fields in a register are shown in the figure below.

Figure 3-1. Peripheral Interrupt Priority Register 3 – Reset Value

Name:  IPR3
Address:  0xEB8

Peripheral Interrupt Priority Register 3

Bit 7 6 5 4 3 2 1 0
RC2IP TX2IP RC1IP TX1IP BCL2IP SSP2IP BCL1IP SSP1IP

Access R/W R/W R/W R/W
Reset 0 0 0 0

R/W R/W
1 1

R/W R/W
1 1

The following example will apply the various methods of configuring a register (T0CON0 – Timer 0 Control Register
0), shown in the figure below.

Note:  For the register in this example (T0CON0), all bits and bit fields are ‘0’ after reset.

 TB3261
Writing Bare Metal C-Code for PIC

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 15

Figure 3-2. Timer 0 Control Register 0 – Configuration

Name:  T0CON0
Address:  0xFD4

Timer0 Control Register 0

Bit 7 – T0EN TMR0 Enable
Value Description
1 The module is enabled and operating
0 The module is disabled

Bit 5 – T0OUT TMR0 Output

Bit 4 – T016BIT TMR0 Operating as 16-Bit Timer Select
Value Description
1 TMR0 is a 16-bit timer
0 TMR0 is an 8-bit timer

Bits 3:0 – T0OUTPS[3:0] TMR0 Output Postscaler (Divider) Select
Value Description
1111 1:16 Postscaler
1110 1:15 Postscaler
1101 1:14 Postscaler
1100 1:13 Postscaler
1011 1:12 Postscaler
1010 1:11 Postscaler
1001 1:10 Postscaler
1000 1:9 Postscaler
0111 1:8 Postscaler
0110 1:7 Postscaler
0101 1:6 Postscaler
0100 1:5 Postscaler
0011 1:4 Postscaler
0010 1:3 Postscaler
0001 1:2 Postscaler
0000 1:1 Postscaler

Bit 7 6 5 4 3 2 1 0
T0EN T0OUT T016BIT T0OUTPS[3:0]

Access R/W R R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Here is the desired configuration:
• Enable the timer - T0EN = 1
• Select 8-bit mode - T016BIT = 0 (default)
• Select a 1:10 postscaler - T0OUTPS = 1001 (changed in 3.3 Change Register Bit Field Configuration to 0111)

The resulting value can be directly written to the register:

T0CON0 = 0b1000 1001; /* binary */
T0CON0 = 0x89; /* hexadecimal */
T0CON0 = 137; /* decimal */

However, to improve the readability (and potentially the portability) of the code, it is recommended to use the device
defines, which are shown in the upcoming sections.

 TB3261
Writing Bare Metal C-Code for PIC

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 16

3.2.1 Register Initialization using Bit Unions
Register initialization using bit and bit field unions will always need to be done in several lines of code, if configuring
more than one bit or bit field.

The example below shows the recommended way of initializing a register, by using the union declaration of the
register from the header file.

T0CON0bits.T0EN = 1; /* Enable TMR0 */
T0CON0bits.T016BIT = 0; /* Select 8-bit operation mode */
T0CON0bits.T0OUTPS = 0x9; /* Select 1:10 postscaler */

3.2.2 Register Initialization using Bit Masks
Read-modify-write operations are not needed, when working with bit masks or bit positions, if the reset value of the
register is 0x00 and the register configures in a single line.

The example below shows how to achieve the same configuration using bit masks.

T0CON0 = _T0CON0_T0EN_MASK /* Enable TMR0 */
 | _T0CON0_T0OUTPS0_MASK /* Select 1:10 postscaler */
 | _T0CON0_T0OUTPS3_MASK; /* 8-bit operation mode selected by default */

Note:  The bit wise OR (‘|’) operator on the register side of the assignment is left out. In most cases, device and
peripheral initialization routines are written in this way.

CAUTION
The above initialization of the register must be done in a single line of C code. Writing as follows, the bit
mask used in the second and third line would clear the bits set in the previous lines.

/* incorrect initialization of the T0CON0 register */
T0CON0 = _T0CON0_T0EN_MASK;
T0CON0 = _T0CON0_T0OUTPS0_MASK;
T0CON0 = _T0CON0_T0OUTPS3_MASK;

Note:  Bit Masks can only set bits in a single line of code, so configurations which require bits to be cleared are left
out since they are correctly configured by their reset value.

In this example, no mask is used to explicitly configure the timer in the 8-bit mode. This is possible because the reset
value of the T016BIT is '0' which corresponds to the 8-bit mode. To emphasize the configuration of this bit as 0, the
user could explicitly select the desired 8-bit mode by using a read-modify-write operation. However, this would need
to be a separate line of code and would leave the register unchanged:

T0CON0 = _T0CON0_T0EN_MASK /* Enable TMR0 */
 | _T0CON0_T0OUTPS0_MASK /* Select 1:10 postscaler */
 | _T0CON0_T0OUTPS3_MASK;
T0CON0 &= ~_T0CON0_T016BIT_MASK; /* Select 8-bit operation mode explicitly */

3.2.3 Register Initialization using Bit Positions
Read-modify-write operations are not needed, when working with bit masks or bit positions, if the reset value of the
register is '0' and the register configures in a single line.

The code listing below shows how to initialize a register using bit positions.

T0CON0 = (1 << _T0CON0_T0EN_POSITION) /* Enable TMR0 */
 | (0 << _T0CON0_T016BIT_POSITION) /* A placeholder to select 16-bit mode*/

 TB3261
Writing Bare Metal C-Code for PIC

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 17

 | (1 << _T0CON0_T0OUTPS0_POSITION)
 | (1 << _T0CON0_T0OUTPS3_POSITION); /* Select 1:10 postscaler */

Note:  The (0 << _T0CON0_T016BIT_POSITION) line does nothing here, but it can be used as a placeholder to
quickly change bit settings.

3.3 Change Register Bit Field Configurations
This section covers considerations when updating a register bit field using various header file defines. The following
bit field will be used as an example, where an update is needed, compared to the initialization configuration covered
in 3.2. Register Initialization section.

T0OUTPS[3:0] TMR0 Output Postscaler Select:
• Select a 1:10 postscaler - T0OUTPS: 1001 (previous setting)
• Select a 1:8 postscaler - T0OUTPS: 0111 (new setting)

3.3.1 Change Register Bit Field Configurations using Bit Unions
The union declaration of the registers offers access to register bits and bit fields without affecting the rest of the
register.

/* using a hex value */
T0CON0bits.T0OUTPS = 0x7; /* Select 1:10 postscaler */
/* using a binary value */
T0CON0bits.T0OUTPS = 0b0111; /* Select 1:10 postscaler */

This is the recommended way of updating bit field register configurations, which is simpler than the alternative
options.

3.3.2 Change Register Bit Field Configurations using Bit Masks
When updating only a bit field in a register, a read-modify-write must be used, to keep the other settings unaffected.
Therefore, in order to change the configuration of a register bit field, it is recommended to first clear the bit field and
then set a new configuration. However, in order to avoid putting the register in an unintended state between the clear
and setting the new configuration, this should be done in a single line of code. For simplicity, the steps are first
covered individually.

The bit field masks can be used to clear a bit field before assigning a new configuration. In the example, the
T0OUTPS bit field mask is used to clear bit field.

/* The T0OUTPS bit field is cleared (Selecting a postscaler of 1:1 (T0OUTPS = 0)) */
T0CON0 &= ~_T0CON0_T0OUTPS_MASK;
/* Selecting new configuration (0b0111) of the T0OUTPS bit field */
T0CON0 |= _T0CON0_T0OUTPS2_MASK | _T0CON0_T0OUTPS1_MASK | _T0CON0_T0OUTPS0_MASK;

The bit field mask for the TMR0 Output Postscaler Select (T0OUTPS) has the following declaration in the header file.

#define _T0CON0_T0OUTPS_MASK 0xF

These steps must be implemented in a single line to avoid putting the microcontroller in an unintended state.

T0CON0 = (T0CON0 & ~_T0CON0_T0OUTPS_MASK) | _T0CON0_T0OUTPS2_MASK
 | _T0CON0_T0OUTPS1_MASK
 | _T0CON0_T0OUTPS0_MASK;

 TB3261
Writing Bare Metal C-Code for PIC

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 18

Note:  If the code is implemented as two separate lines, the first line of code will select for a short time, a postscaler
of 1:1 (T0OUTPS = 0).

CAUTION
Even though it may seem easier to split the code into two separate lines of code, one to clear the old
configuration and another to set the desired configuration. It is recommended to use a single line to
achieve this, as presented in the code listing.

3.3.3 Change Register Bit Field Configurations using Bit Positions
The example below shows how to update a register bit field using bit positions to set the new configuration. Similar to
the process of updating a register configuration using bit masks, the current configuration must be cleared and the
new configuration set, in a single line of code.

/* Changing a bit field configuration with bit positions */
T0CON0 = (T0CON0 & ~_T0CON0_T0OUTPS_MASK) | (0 << _T0CON0_T0OUTPS3_POSITION)
 | (1 << _T0CON0_T0OUTPS2_POSITION)
 | (1 << _T0CON0_T0OUTPS1_POSITION)
 | (1 << _T0CON0_T0OUTPS0_POSITION);

Note:  The (0 << _T0CON0_T0OUTPS3_POSITION) line is added simply for readability, but it can be removed.

T0CON0 = (T0CON0 & ~_T0CON0_T0OUTPS_MASK) | (1 << _T0CON0_T0OUTPS2_POSITION)
 | (1 << _T0CON0_T0OUTPS1_POSITION)
 | (1 << _T0CON0_T0OUTPS0_POSITION);

3.4 Setting Configuration Bits
It is unlikely that a new C program will run properly on the device, even though the program is valid. All Microchip 8-
bit devices must be configured to ensure correct operation. Some configuration settings affect fundamental operation
of the device, such as those for the instruction clock.

CAUTION
• Not setting the Configuration Bits can prevent even blinking an LED. Even if the TRIS register is set

up and a value is written to the port, there are several things that can prevent such seemingly simple
program from working.

• Ensure that the device's Configuration registers are set up correctly. Also, the user must make sure
that every bit in these registers is explicitly specified, not leaving them in their default state. All the
configuration features are described in the device data sheet. If the Configuration Bits that specify the
oscillator source are wrong, for example, the device clock cannot be running.

• For more information, refer to the MPLAB XC8 C Compiler User’s Guide.

3.4.1 Accessing XC8 Configuration Bits Examples
To configure the device using MPLAB X Integrated Development Environment (IDE), the user must use configuration
pragmas. More information about the compiler and the configuration bits of the desired device can be found by
accessing the Compiler Help, the blue question mark from the MPLAB X IDE project dashboard, as presented in the
figure below.

 TB3261
Writing Bare Metal C-Code for PIC

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 19

http://ww1.microchip.com/downloads/en/devicedoc/50002053g.pdf

Figure 3-3. Accessing Compiler Help

Example configurations can be found for specific devices under the Configuration Settings Reference section. An
example for the PIC16F18446 is shown below.

Figure 3-4. PIC16F18446 Example Configuration

3.4.2 MPLAB® X IDE Support for Setting Configuration Bits
The easiest way to complete the pragmas that are required to configure the device is to use the Configuration Bits
Window, a feature of MPLAB X IDE.

Follow these steps to get the information to complete the pragmas:

• Open the Configuration Bits Window (Window > Target Memory Views > Configuration Bits or Production > Set
Configuration Bits).

• Review every setting in the Configuration Bits Window.
• Generate the pragma derivatives that implement the chosen settings by clicking the Generate Source Code to

Output button.
• Copy the generated code from this window to a source file.

For more details, see the following references:
• Consult the MPLAB XC8 Getting Started Guide, Specifying Device Configuration Bits section.
• Microchip Developer Help: View and Set Configuration Bits.
• Consult the video MPLAB X IDE Advanced Debugging - Event Breakpoints.

 TB3261
Writing Bare Metal C-Code for PIC

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 20

http://ww1.microchip.com/downloads/en/devicedoc/50002173a.pdf
https://microchipdeveloper.com/mplabx:view-and-set-configuration-bits
https://www.youtube.com/watch?v=Vvv_QTTHI3M

4. Application Example Showing Alternative Ways of Writing Code
The example below demonstrates how to configure the microcontroller to turn on an LED when a user button is
pressed. To achieve this, the user needs to identify the pins of the microcontroller routed to the user LED and to the
user button. This example is developed for the PIC18F47Q10 Curiosity Nano development board. The user LED is
routed to the pin 0 of the PORTE. The user button is routed to the pin 2 of the PORTE.

4.1 Turn ON an LED on a Button Press using Bit Unions
The code below provides the described functionality following the recommended coding style by using the union
declaration of the registers from the data sheet.

#include <xc.h>

void main(void)
{
 /* setting pin RE0 as output (LED) */
 TRISEbits.TRISE0 = 0;
 /* setting pin RE2 as input (button) */
 TRISEbits.TRISE2 = 1;
 /* enable digital input buffer for pin RE2 (button) */
 ANSELEbits.ANSELE2 = 0;
 /* enable internal pull-up for pin RE2 (button) */
 WPUEbits.WPUE2 = 1;

 /* main program loop */
 while(1)
 {
 /* if button is pressed (pin RE2 high) */
 if(PORTEbits.RE2)
 {
 /* turn on the LED (pin RE0 high) */
 LATEbits.LATE0 = 1;
 }
 else
 {
 /* turn off the LED (pin RE0 low) */
 LATEbits.LATE0 = 0;
 }
 }
}

4.2 Turn ON an LED on a Button Press using Bit Masks
The code below provides the same functionality using bit masks.

#include <xc.h>

void main(void)
{
 /* setting pin RE0 as output (LED) */
 TRISE &= ~_TRISE_TRISE0_MASK;
 /* setting pin RE2 as input (button) */
 TRISE |= _TRISE_TRISE2_MASK;
 /* enable digital input buffer for pin RE2 (button) */
 ANSELE &= ~_ANSELE_ANSELE2_MASK;
 /* enable internal pull-up for pin RE2 (button) */
 WPUE |= _WPUE_WPUE2_MASK;

 /* main program loop */
 while(1)
 {
 /* if button is pressed (pin RE2 high) */
 if(PORTE & _PORTE_RE2_MASK)

 TB3261
Application Example Showing Alternative Wa...

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 21

https://www.microchip.com/Developmenttools/ProductDetails/DM182029

 {
 /* turn on the LED (pin RE0 high) */
 LATE |= _LATE_LATE0_MASK;
 }
 else
 {
 /* turn off the LED (pin RE0 low) */
 LATE &= ~_LATE_LATE0_MASK;
 }
 }
}

4.3 Turn ON an LED on a Button Press using Bit Positions
The code below provides the same functionality using bit positions.

#include <xc.h>

void main(void)
{
 /* setting pin RE0 as output (LED) */
 TRISE &= ~(1 << _TRISE_TRISE0_POSITION);
 /* setting pin RE2 as input (button) */
 TRISE |= (1 << _TRISE_TRISE2_POSITION);
 /* enable digital input buffer for pin RE2 (button) */
 ANSELE &= ~(1 << _ANSELE_ANSELE2_POSITION);
 /* enable internal pull-up for pin RE2 (button) */
 WPUE |= (1 << _WPUE_WPUE2_POSITION);

 /* main program loop */
 while(1)
 {
 /* if button is pressed (pin RE2 high) */
 if(PORTE & (1 << _PORTE_RE2_POSITION))
 {
 /* turn on the LED (pin RE0 high) */
 LATE |= (1 << _LATE_LATE0_POSITION);
 }
 else
 {
 /* turn off the LED (pin RE0 low) */
 LATE &= ~(1 << _LATE_LATE0_POSITION);
 }
 }
}

 TB3261
Application Example Showing Alternative Wa...

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 22

5. Further Steps
The purpose of this section is to direct the user to the IDE installation guides and tutorials, the available application
notes and the technical briefs.

5.1 MPLAB® X and XC8 Compiler
The XC compilers are comprehensive solutions for the project’s software development. The MPLAB XC8 compiler
supports all 8-bit PIC microcontrollers and is available as a free and unrestricted use download. When combined with
the MPLAB X IDE, the front end provides editing errors and breakpoints that match corresponding lines in the source
code. Single stepping through C source code inspects variables and structures at critical points.

Step-by-step instructions on how to set up a bare metal project for PIC is found in the MPLAB XC8 Getting Started
Guide. For further details on the XC8 compiler, consult MPLAB XC8 C Compiler User’s Guide.

An introduction in the MPLAB X environment and an installation guide is found in the Getting Started - MPLAB X IDE
Essentials - 01: Installation and Ecosystem. More information on Microchip’s MPLAB X IDE is found at MPLAB X IDE
User’s Guide.

5.2 Application Notes and Technical Briefs
Additionally, there are many application notes and technical briefs available online that describe module functioning
or introduce important features of a module. For example, the 5-Bit Digital-to-Analog Converter Technical Brief
describes the DAC peripheral as relevant for the PIC16F and PIC18F microcontroller families.

Another example is the PIC16/PIC18 ADC2 Technical Brief. Other application notes and technical briefs can be found
at Browse Application Notes - Microchip.

 TB3261
Further Steps

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 23

http://ww1.microchip.com/downloads/en/devicedoc/50002173a.pdf
http://ww1.microchip.com/downloads/en/devicedoc/50002173a.pdf
http://ww1.microchip.com/downloads/en/devicedoc/50002053g.pdf
https://www.youtube.com/watch?v=62ivl8CZN8k&feature=youtu.be&list=PL9B4edd-p2ajDUQ62CSZAneouz0wW-kSV
https://www.youtube.com/watch?v=62ivl8CZN8k&feature=youtu.be&list=PL9B4edd-p2ajDUQ62CSZAneouz0wW-kSV
http://ww1.microchip.com/downloads/en/DeviceDoc/50002027D.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/50002027D.pdf
http://ww1.microchip.com/downloads/en/Appnotes/90003238A.pdf
http://ww1.microchip.com/downloads/en/Appnotes/PIC16-PIC18-ADC2-90003194A.pdf
https://www.microchip.com/wwwcategory/taxonomysearch/

6. Conclusion
The main purpose of this technical brief is to introduce the user to a preferred coding style for programming the PIC
microcontrollers. After reviewing this document, users will understand the type of information the data sheet is
providing, macro definitions, variable declarations and data type definitions provided by the header files. The goals
are to use an easily maintainable, portable and readable coding style; to become familiar with the naming
conventions for the PIC registers and bits; and to prepare for further steps in developing a project using these
microcontrollers.

This document provides information on specific data sheets, naming conventions, guidance on how to write C-code
for PIC microcontrollers and further steps in developing a project.

While the C-code writing methods suggested here are not mandatory, one can consider the numerous advantages.
The larger the project and the more features the device has, the greater the benefit of C-code utilization.

 TB3261
Conclusion

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 24

7. References
1. PIC18F27/47Q10 Data Sheet
2. MPLAB XC8 Getting Started Guide
3. MPLAB XC8 C Compiler User’s Guide
4. Microchip Developer - Fundamentals of the C Programming Language

 TB3261
References

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 25

http://ww1.microchip.com/downloads/en/DeviceDoc/40002043D.pdf
http://ww1.microchip.com/downloads/en/devicedoc/50002173a.pdf
http://ww1.microchip.com/downloads/en/devicedoc/50002053g.pdf
https://microchipdeveloper.com/tls2101:start

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

 TB3261

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 26

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6166-1

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 TB3261

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 27

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. Technical Brief DS90003261A-page 28

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Data Sheet Module Structure and Naming Conventions
	1.1. How to Find the Data Sheet
	1.2. Pin Description
	1.3. Modules Description
	1.4. Naming Conventions
	1.4.1. Register Naming Conventions
	1.4.2. Bit Naming Conventions
	1.4.3. Register and Bit Naming Exceptions
	1.4.3.1. Status, Interrupt, and Mirror Bits
	1.4.3.2. Legacy Peripherals

	1.5. PIC® Configuration Bits

	2. Modules Representation in Header Files
	2.1. Registers Representation in Header Files
	2.1.1. Register Unions
	2.1.2. Multibyte Registers

	2.2. Bit Masks and Bit Field Masks
	2.2.1. Bit Masks
	2.2.2. Bit Field Masks

	2.3. Bit Positions

	3. Writing Bare Metal C-Code for PIC
	3.1. Set, Clear and Read Register Bits
	3.1.1. Set, Clear and Read Register Bits using Bit Unions
	3.1.2. Set, Clear and Read Register Bits using Bit Masks
	3.1.3. Set, Clear and Read Register Bits using Bit Positions

	3.2. Register Initialization
	3.2.1. Register Initialization using Bit Unions
	3.2.2. Register Initialization using Bit Masks
	3.2.3. Register Initialization using Bit Positions

	3.3. Change Register Bit Field Configurations
	3.3.1. Change Register Bit Field Configurations using Bit Unions
	3.3.2. Change Register Bit Field Configurations using Bit Masks
	3.3.3. Change Register Bit Field Configurations using Bit Positions

	3.4. Setting Configuration Bits
	3.4.1. Accessing XC8 Configuration Bits Examples
	3.4.2. MPLAB® X IDE Support for Setting Configuration Bits

	4. Application Example Showing Alternative Ways of Writing Code
	4.1. Turn ON an LED on a Button Press using Bit Unions
	4.2. Turn ON an LED on a Button Press using Bit Masks
	4.3. Turn ON an LED on a Button Press using Bit Positions

	5. Further Steps
	5.1. MPLAB® X and XC8 Compiler
	5.2. Application Notes and Technical Briefs

	6. Conclusion
	7. References
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

