
Application Note

AT91SAM ARM-based Embedded MPU

Using Low-power Modes on SAMA5D3 Series
1. Introduction
The SAMA5D3 series is a member of the Atmel® 32-bit microprocessor family which is
based on the ARM® Cortex™-A5 processor core.

Low-power consumption is an essential consideration in a wide range of applications.
This Application Note introduces the Low-power modes embedded on SAMA5D3
Series.

The document is organized in four main sections. The first two sections describe the
Power Management Controller and the Low-power modes embedded on SAMA5D3
Series.

The last two sections introduce the Power Management in Linux OS and provide
details on the implementation of the Low-power modes in Linux OS based on the
SAMA5D3-EK board.

2. Associated Documentation
Before going further into this document, please refer to the latest documentation for the
corresponding SAMA5D3 devices avai lab le on the Atmel ® web s i te a t
http//:www.atmel.com:

SAMA5D3 Series Datasheet: lit° 11121
SAMA5D3-EK User Guide: lit° 11180
Documentation/Power/ in Linux distribution
 11185A–ATARM–30-Jan-13

3. SAMA5D3 Power Management Controller (PMC)

3.1 Overview
The Power Management Controller (PMC) optimizes power consumption by controlling all system and user peripheral
clocks. The PMC enables/disables the clock inputs to many of the peripherals and the Core.

The Power Management Controller provides the following clocks:
MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating frequency of the device.
It is available to the modules running permanently.
Processor Clock (PCK), must be switched off when entering the processor in Sleep Mode.
The USB Device HS Clock (UDPCK)
The Software Modem Clock (SMDCK)
Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SSC, SPI, TWI, TC, HSMCI,
etc.) and independently controllable. In order to reduce the number of clock names in a product, the Peripheral
Clocks are named MCK in the product datasheet.
Programmable Clock Outputs can be selected from the clocks provided by the clock generator and driven on the
PCKx pins.
2Using Low-power Modes on SAMA5D3 Series [APPLICATION NOTE]
11185A–ATARM–30-Jan-13

3.2 Block Diagram

Figure 3-1. General Clock Block Diagram

UHP48M

UHP12M

MCK

int

PCK

/1 /2 /3 /4

pck[..]

ON/OFF

USB

 OHCI
USBDIV+1

/4

USB

 EHCI

USBS

Divider

X /1 /1.5 /2

Divider

PLLACK

UPLLCK

UPLLCK

SLCK
MAINCK

SLCK
MAINCK

Master Clock Controller

2x MCK

Programmable Clock Controller

Periph_clk[..]

Prescaler
/1,/2,/4,...,/64

Prescaler
/1,/2,/3,/4,...,/64

Peripherals
Clock Controller

ON/OFF

Processor
Clock

Controller

DDRCK/2
3Using Low-power Modes on SAMA5D3 Series [APPLICATION NOTE]
11185A–ATARM–30-Jan-13

3.3 Master Clock Controller
The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is the clock provided to all
the peripherals and the memory controller.

The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting the Slow Clock provides
a Slow Clock signal to the whole device. Selecting the Main Clock saves power consumption of the PLLs.

The Master Clock Controller is made up of a clock selector and a prescaler. It also contains a Master Clock divider which
allows the processor clock to be faster than the Master Clock.

The Master Clock selection is made by writing the CSS field (Clock Source Selection) in PMC_MCKR (Master Clock
Register). The prescaler supports the division by a power of 2 of the selected clock between 1 and 64, and the division
by 6. The PRES field in PMC_MCKR programs the prescaler.

Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in PMC_SR. It reads 0 until
the Master Clock is established. Then, the MCKRDY bit is set and can trigger an interrupt to the processor. This feature
is useful when switching from a high-speed clock to a lower one to inform the software when the change is actually done.

Figure 3-2. Master Block Diagram

3.4 Processor Clock Controller
The PMC features a Processor Clock Controller (PCK) that implements the Processor Idle Mode. The Processor Clock
can be disabled by writing the System Clock Disable Register (PMC_SCDR). The status of this clock (at least for debug
purpose) can be read in the System Clock Status Register (PMC_SCSR).

The Processor Clock PCK is enabled after a reset and is automatically re-enabled by any enabled interrupt. The
Processor Idle Mode is achieved by disabling the Processor Clock, which is automatically re-enabled by any enabled fast
or normal interrupt, or by the reset of the product.

When the Processor Clock is disabled, the current instruction is finished before the clock is stopped, but this does not
prevent data transfers from other masters of the system bus.

3.5 DDR2/LPDDR/LPDDR2 Clock
The Power Management Controller controls the clocks of the DDR memory.

The DDR clock can be enabled and disabled with the DDRCK bit respectively in the PMC_SCER and PMC_SDER
registers. At reset, the DDR clock is disabled to save power consumption.

3.6 Peripheral Clock Controller
The Power Management Controller controls the clocks of each embedded peripheral by the way of the Peripheral Clock
Controller. The user can individually enable and disable the clock on the peripherals and select a division factor from
MCK. This is done with the help of the Peripheral Control Register (PMC_PCR). The peripheral clocks can be enabled
and/or disabled via the PMC_PCER and PMC_PCDR registers.

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are automatically disabled
after a reset.

In order to stop a peripheral, it is recommended that the system software wait until the peripheral has executed its last
programmed operation before disabling the clock. This is to avoid data corruption or erroneous behavior of the system.

SLCK

Master Clock
Prescaler MCK

PRESCSS

MAINCK

PLLACK

UPLLCK
To the Processor
Clock Controller (PCK)

PMC_MCKR PMC_MCKR
4Using Low-power Modes on SAMA5D3 Series [APPLICATION NOTE]
11185A–ATARM–30-Jan-13

3.7 Programmable Clock Output Controller
The PMC controls 2 signals to be outputs on external pins PCKx. Each signal can be independently programmed via the
PMC_PCKx registers.

Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of PMC_SCER and
PMC_SCDR, respectively. Status of the active programmable output clocks are given in the PCKx bits of PMC_SCSR
(System Clock Status Register).

3.8 Programming Sequence
The Programming sequence is as follows:

1. Enabling the 12 MHz Main Oscillator
2. Setting PLLA and Divider
3. Setting Bias and High-speed PLL(UPLL) for UTMI
4. Selecting Master Clock and Processor Clock
5. Selecting Programmable Clocks
6. Enabling Peripheral Clocks
5Using Low-power Modes on SAMA5D3 Series [APPLICATION NOTE]
11185A–ATARM–30-Jan-13

4. SAMA5D3x Low-power Modes
The SAMA5D3x low-power modes include Backup Mode, Ultra Low-power Mode and Idle Mode.

4.1 Backup Mode
The purpose of Backup Mode is to achieve the lowest power consumption possible in a system, which is performing
periodic wake-ups to perform tasks but not requiring fast startup time. Total current consumption is 1.2 μA typical.

The Zero-power Power-on Reset, RTC, Backup registers and 32 kHz Oscillator (RC or Crystal Oscillator selected by
software in the Supply Controller) are running. The core supply is off.

The system can be awakened from this mode through the WKUP0 pin or an RTC wake-up event.

Backup Mode is entered into with the help of the Shutdown Controller that asserts the SHDN output pin. The SHDN pin is
to be connected to the Enable of the VDDCORE regulator.

Exit from Backup Mode happens if one of the following enable wake-up events occurs:
WKUP0 pin (level transition, configurable debouncing)
RTC alarm

The system will restart for a reset event.

4.2 Ultra Low-power Mode
The purpose of Ultra Low-power Mode is to reduce the power consumption of the device to the minimum without
removing VDDCORE power supply. It is a combination of very low frequency operations and Idle Mode.

This mode is entered via the following steps:
1. Set the DDR in Self Refresh Mode
2. Reduce the system clock (PCK and MCK) to the minimum with the help of the PMC:

PCK and MCK configuration is to be defined regarding the expected power consumption and wake-up time.
Please refer to Table 4-1 for details
PLLs are disabled. CKGR_PLLAR (eventually CKGR_PLLBR) is set to 0x3f00. CKGR_UCKR is set to 0.
Main Oscillator is disabled. MOSCXTEN is set to 0 in CKGR_MOR.
Eventually 12 MHz RC Oscillator is disabled. MOSCRCEN is set to 0 in CKGR_MOR.

3. Enter into Wait for Interrupt (WFI) mode and disable the PCK clock.

The processor can be awakened from an interrupt.

Once woken up, the system must reprogram the system clocks (OSC, PLL,PCK, MCK, DDRCK) to recover the previous
state. Data is maintained in the external memory.

4.3 Idle Mode
The purpose of Idle Mode is to optimize power consumption of the device versus response time. In this mode, only the
core clock is stopped. The peripheral clocks, including the DDR Controller clock, can be enabled. The current
consumption in this mode is application dependent.

This mode is entered via the Wait for Interrupt (WFI) instruction and PCK disabling.

The processor can be awakened from an interrupt. The system will resume where it was before entering into WFI mode.
6Using Low-power Modes on SAMA5D3 Series [APPLICATION NOTE]
11185A–ATARM–30-Jan-13

4.4 Low Power Summary Table
The modes detailed above are the main low-power modes. Each part can be set to ON or OFF separately and wake-up
sources can be individually configured. Table 4-1 below shows a summary of the configurations of the low-power modes.

Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started,
the device works with the Main Oscillator. The user has to add the PLL start-up time if it is needed in the sys-
tem. The wake-up time is defined as the time taken for wake up until the first instruction is fetched.

2. The external loads on PIOs are not taken into account in the calculation.
3. Total Current consumption.
4. Depends on MCK frequency.

Table 4-1. Low-power Mode Configuration Summary

Mode

32K RC,
12 MHz RC,,
32 kHz Osc,

RTC,
Backup

Registers,
POR

(Backup
Region)

VDDCORE
Regulator

Core
Memory

Peripherals
Mode
Entry

Potential
Wake-Up
Sources

Core at
Wake Up

PIO State
while in Low
Power Mode

PIO State at
Wake Up Consumption(2) Wake-Up Time(1)

Backup ON OFF
OFF
(Not
powered)

Shutdown
Controller

WKUP0 pin
RTC alarm Reset Reset Inputs with

pull-ups 1.2 µA typ(3) Start-up time

Idle ON ON Powered
(Not clocked) WFI Any

interrupt

Clocked
back at
full speed

Previous
state saved Unchanged

19 mA on
VDDCORE
@ 133 MHz
5 - 8 mA for each
PLL(4)

350 ns @
133 MHz

Ultra
Low-
power

ON ON Powered
(Not clocked)

DDR
in Self
Refresh
PMC
WFI

Any
interrupt

Clocked
back at
previous
one

Previous
state saved Unchanged

1780 µA @ 12 MHz
520 µA @ 750 kHz
455 µA @ 187 kHz
432 µA @ 32 kHz
429 µA @ 512 Hz

3.9 µs @ 12 MHz
60 µs @ 750 kHz
230 µs @ 187 kHz
1.4 ms @ 32 kHz
89 ms @ 512 Hz
7Using Low-power Modes on SAMA5D3 Series [APPLICATION NOTE]
11185A–ATARM–30-Jan-13

5. Power Management in Linux OS
Power management in Linux is performed by the PM core implemented in the OS. The Linux kernel supports three power
management states generically, which include Standby state, Suspend-to-RAM state and Suspend-to-disk state.

5.1 Standby State
This state offers minimal but real power savings while providing a very low-latency transition back to the working system.
No operating state is lost (the CPU retains powered), so the system easily starts up from where it was left off. The
devices are set up in a low-power state, which also offers low-power savings with low resume latency.

A transition from the Standby state to the On state takes about 1-2 seconds.

5.2 Suspend-to-RAM State
This state offers significant power savings as everything in the system is set up into a low-power state, except for
memory, which is set in self-refresh mode to retain its contents.

System and device state is saved and kept in memory. All devices are suspended and set up into the low-power state. In
many cases, all peripheral buses lose power when entering the Suspend-to-RAM state; thus, devices must be able to
handle the transition back to the On state.

A transition from the Suspend-to-RAM state to the On state takes about 3-5 seconds.

5.3 Suspend-to-Disk State
This state offers the greatest power savings, and can be used even in the absence of a low-level platform support for
power management. This state operates similarly to the Suspend-to-RAM state, but includes a final step of writing the
memory content to disk. On resume, the memory content is read and the memory is restored to its pre-suspend state.

A transition from the Suspend-to-Disk state to the On state takes about 30 seconds; however, it's typically a bit more with
the current implementation.
8Using Low-power Modes on SAMA5D3 Series [APPLICATION NOTE]
11185A–ATARM–30-Jan-13

6. Example of Low-power Implementation based on SAMA5D3x-EK
This section presents an example of Low-power Mode implementation in Linux OS, based on the SAMA5D3x-EK board.
Te following Linux low-power modes are mainly implemented on SAMA5D3x:

Standby mode
Suspend-to-RAM mode

6.1 Implementation Sample Code
The Implementation Sample code is located at: http://lxr.linux.no/linux+v2.6.39/arch/arm/mach-at91/pm.c#L206.
Note: The SAM9N12 Linux code is temporarily used here as the Sample code, since the SAMA5D3x Linux code is still

not available and the Low-power code is similar for both devices.
Before entering in any low-power modes, the user can print out debug information on all the key conditions, such as
GPIOs, interrupts, etc.

For all the GPIOs and interrupts, enable those that are marked as 'wakeup' event sources, and suspend those that are
not marked as 'wakeup' event sources.

Example code:
at91_gpio_suspend();
at91_irq_suspend();

6.1.1 Standby Mode

At Standby Mode, all the drivers are suspended. The system ignores the interrupts that are not marked as 'wakeup' event
sources and reduces DRAM power.

Each enabled peripheral increases power consumption. Print out status information of all the peripheral clocks. Disable
the clock of the peripheral that is not needed before the system enters into low-power modes, and enable it after the
system wakes up.

Sample code:
case PM_SUSPEND_STANDBY:

/*
* NOTE: the Wait-for-Interrupt instruction needs to be
* in icache so no SDRAM accesses are needed until the
* wakeup IRQ occurs and self-refresh is terminated.
* For ARM 926 based chips, this requirement is weaker
* as at91sam9 can access a RAM in self-refresh mode.
*/

printk("PMC_PCSR: 0x%x\n", at91_sys_read(AT91_PMC_PCSR));

at91_sys_write(AT91_PMC_PCDR, 1 << AT91SAM9N12_ID_ADC);
at91_sys_write(AT91_PMC_PCDR, 1 << AT91SAM9N12_ID_SSC);
at91_sys_write(AT91_PMC_PCDR, 1 << AT91SAM9N12_ID_UHPFS);
at91_sys_write(AT91_PMC_PCDR, 1 << AT91SAM9N12_ID_TCB);

at91_sys_write(AT91_PMC_SCDR, AT91SAM926x_PMC_UHP);
asm volatile ("mov r0, #0\n\t"

"b 1f\n\t"
".align 5\n\t"
"1: mcr p15, 0, r0, c7, c10,

4\n\t"
: /* no output */
: /* no input */
: "r0");
9Using Low-power Modes on SAMA5D3 Series [APPLICATION NOTE]
11185A–ATARM–30-Jan-13

saved_lpr = sdram_selfrefresh_enable(); // Set the DDR in Self Refresh Mode
my_arch_idle(); // Disable the Processor clock and enter into WFI Mode
sdram_selfrefresh_disable(saved_lpr); //Once woken up, exit from Self Refresh

Mode

at91_sys_write(AT91_PMC_SCER, AT91SAM926x_PMC_UHP);

at91_sys_write(AT91_PMC_PCER, 1 << AT91SAM9N12_ID_ADC);
at91_sys_write(AT91_PMC_PCER, 1 << AT91SAM9N12_ID_SSC);
at91_sys_write(AT91_PMC_PCER, 1 << AT91SAM9N12_ID_UHPFS);
at91_sys_write(AT91_PMC_PCER, 1 << AT91SAM9N12_ID_TCB);

my_sleep(10000);
break;

6.1.2 Suspend-to-RAM Mode

Suspend-to-RAM mode combines Standby mode and Slow Clock mode: the drivers are suspended more deeply and
only the main oscillator may be used by the master clock.

Sample code:
case PM_SUSPEND_MEM:

/*
* Ensure that clocks are in a valid state.
*/
if (!at91_pm_verify_clocks())

goto error;

/*
* Enter slow clock mode by switching over to clk32k and
* turning off the main oscillator; reverse on wakeup.
*/
if (slow_clock) {

#ifdef CONFIG_AT91_SLOW_CLOCK
/* copy slow_clock handler to SRAM, and call it */

 memcpy(slow_clock, at91_slow_clock, at91_slow_clock_sz);
#endif
 slow_clock();

break;
} else {

pr_info("AT91: PM - no slow clock mode enabled ...\n");
 /* FALLTHROUGH leaving master clock alone */

}

10Using Low-power Modes on SAMA5D3 Series [APPLICATION NOTE]
11185A–ATARM–30-Jan-13

Revision History

In the table that follows, the most recent version of the document appears first.

“rfo” indicates changes requested during the document review and approval loop.

Doc. Rev Comments
Change Request
Ref.

11185A First issue.
11Using Low-power Modes on SAMA5D3 Series [APPLICATION NOTE]
11185A–ATARM–30-Jan-13

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1) (408) 441-0311
Fax: (+1) (408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg
1-6-4 Osaki, Shinagawa-ku
Tokyo 141-0032
JAPAN
Tel: (+81) (3) 6417-0300
Fax: (+81) (3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 11185A–ATARM–30-Jan-13

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. ARM®, ARMPowered® logo, Cortex™ are registered trademarks or trademarks of ARM Ltd.Other terms and product names may be trademarks of
others.

	1. Introduction
	2. Associated Documentation
	3. SAMA5D3 Power Management Controller (PMC)
	3.1 Overview
	3.2 Block Diagram
	3.3 Master Clock Controller
	3.4 Processor Clock Controller
	3.5 DDR2/LPDDR/LPDDR2 Clock
	3.6 Peripheral Clock Controller
	3.7 Programmable Clock Output Controller
	3.8 Programming Sequence

	4. SAMA5D3x Low-power Modes
	4.1 Backup Mode
	4.2 Ultra Low-power Mode
	4.3 Idle Mode
	4.4 Low Power Summary Table

	5. Power Management in Linux OS
	5.1 Standby State
	5.2 Suspend-to-RAM State
	5.3 Suspend-to-Disk State

	6. Example of Low-power Implementation based on SAMA5D3x-EK
	6.1 Implementation Sample Code
	6.1.1 Standby Mode
	6.1.2 Suspend-to-RAM Mode

	Revision History

