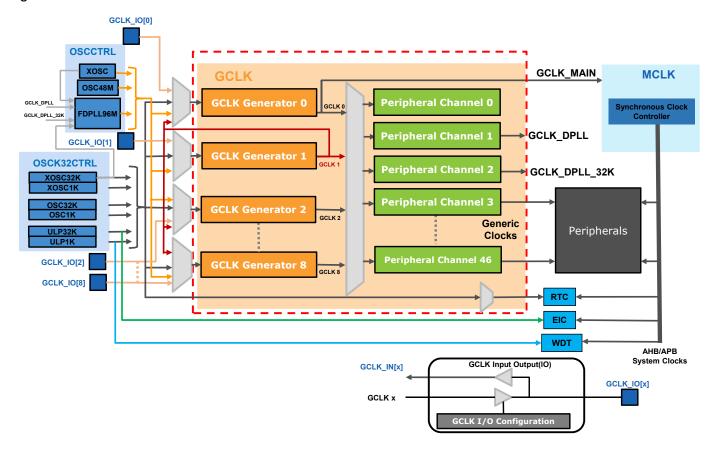
Clock System Configuration and Usage on SAM C2x (Cortex M0+) Devices

TB3227



Introduction

The SAM C2x family of microcontrollers (MCUs) contains a sophisticated clock distribution system designed to give maximum flexibility to the user application. The clock system allows the tuning of the performance and power consumption of the device in a dynamic manner. This achieves the best trade-off between the two for an application.

The following figure illustrates the clock management diagram for the SAMC21N MCU.

Figure 1. SAMC21N Clock Distribution

Table of Contents

Inti	roduction	1
1.	Description	3
2.	Clock Synchronization	
3.	Power and Performance Considerations	5
4.	Configuring Clocks with MPLAB Harmony v3	
	4.1. Use Case Scenarios	6
5.	Resources	12
6.	Revision History	13
Mic	crochip Information	14
	The Microchip Website	14
	Product Change Notification Service	
	Customer Support	14
	Microchip Devices Code Protection Feature	
	Legal Notice	14
	Trademarks	15
	Quality Management System	16
	Worldwide Sales and Service	17

1. Description

The clock system of the SAMC21N MCU consists of the following blocks:

Clock Sources

The SAMC21N MCU has several clock sources. The supported clock source modules are as follows:

OSCCTRL: High-frequency clock sources.

- XOSC 0.4 MHz to 32 MHz External Oscillator
- OSC48M 48 MHz Internal Oscillator
- FDPLL96M 48 MHz to 96 MHz Fractional Digital Phase-Locked Loop Oscillator

OSCK32CTRL: Low-frequency clock sources.

- XOSC32K –32 kHz External Crystal Oscillator, provides both 32 kHz and 1 kHz output
- OSC32K 32 kHz Internal Oscillator, provides both 32 kHz and 1 kHz output
- OSCULP32K 32 kHz Internal Ultra-Low Power Oscillator, provides both 32 kHz and 1 kHz output

Generic Clock Controller (GCLK)

The GCLK provides Generic Clocks to various peripheral clock domains. The GCLK consists of nine GCLK Generators and 46 Peripheral channels. The Generic Clock Controller Input/Output (GCLK_IO) blocks act as a clock source to the GCLK generators.

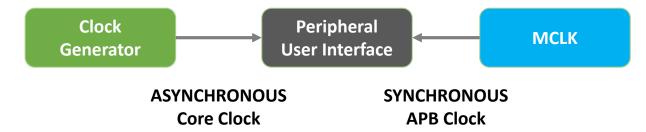
Note: GCLK_IO[x] - Generic Input/Output External Clock Signal.

GCLK1 is the output of the GCLK generator 1, and is one of the clock sources for all the GCLK generators except the GCLK generator 1. GCLK Generators consist of a programmable prescaler. The programmable prescaler scales down the input frequency (from one of the Clock Sources discussed above) to a slower rate for use in a peripheral.

The peripheral channels multiplex and gate various generator outputs to one or more peripherals within the device. This setup allows a single common generator to feed one or more peripheral channels, which can then be enabled or disabled individually as required.

Main Clock Controller (MCLK)

The MCLK, also known as the Synchronous Clock Controller, provides the synchronous clocks (CPU, bus (AHB, APB) clocks) to the system. The main clock GCLK_MAIN to the MCLK is fed from the GCLK Generator 0 through Peripheral Channel 0. The MCLK contains clock masks that can turn on or off the user interface of peripheral clocks and bus clocks, and contain prescalers to derive low-frequency CPU clocks.


2. Clock Synchronization

The peripherals on the SAM C21N MCU consists of the following two clock domain interfaces:

- Synchronous interface: It is connected to the AHB/APB bus running from the synchronous clock in the Main Clock (MCLK) domain. The CPU accesses the peripheral registers through the synchronous interface.
- Asynchronous interface: It is connected to the core peripheral running from the asynchronous peripheral Generic Clock (GCLK) domain. The core peripheral runs at the asynchronous peripheral generic clock.

Communication between these clock domains must be synchronized. This mechanism is implemented in the hardware through the SYNCBUSY peripheral status register. The synchronization process takes place even if the peripheral generic clock is running from the same clock source and on the same frequency as the bus interface.

Figure 2-1. Clock Synchronization

3. Power and Performance Considerations

In an application, the system and peripheral clock frequencies are configured based on the power and performance requirements of the application. The power consumption of a device is directly proportional to the frequency of operation. A device running at high speed consumes more power versus a device running at low speed.

For the SAM C21n MCU, refer to the chapter "Electrical Characteristics" of the device data sheet for power and performance values.

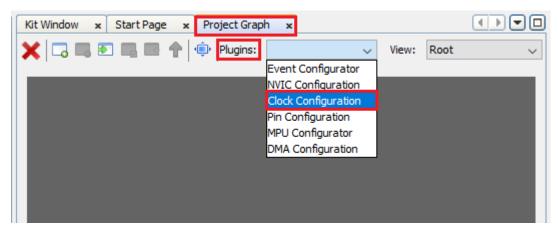
Each GCLK generator operates independently, enabling the GCLK generators to drive different clock frequencies for different peripherals, and to drive different clock frequencies for different instances of the same peripheral. This capability of GCLK generators enables power saving, hence only the necessary clocks are generated. In Power-Saving mode of the MCU, when a peripheral is not utilizing the peripheral clock, the GCLK generator will not source from the oscillator until the peripheral requests the clock.

As noted above, the peripherals on the SAM C2x devices run on the asynchronous clock domain. These asynchronous peripheral clocks are synchronized to the system clocks (CPU, AHB/APB) when the CPU accesses the peripheral registers. The synchronization time is an important factor in the overall response time of the system.

For example, running a peripheral with a low speed has lower active power consumption. However, at the same time, the synchronization to the synchronous clock domain is dependent on the peripheral clock speed. The slower peripheral clock can give a lower response time, and more time waiting for the synchronization to complete.

4. Configuring Clocks with MPLAB Harmony v3

MPLAB Harmony is a modular framework that provides interoperable firmware libraries for application development on 32-bit microcontrollers and microprocessors. It includes an easy to use Graphical User Interface (MPLAB Code Configurator) for selecting, configuring, and generating starter codes, peripheral libraries and middlewares (USB, TCP/IP, graphics and so on). The MCC provides an easy to use UI window, and a Clock Easy View window to configure the system and peripheral clocks.


For additional information on MPLAB Harmony v3, refer to: www.microchip.com/en-us/tools-resources/configure/mplab-harmony.

4.1 Use Case Scenarios

The following use case scenarios demonstrate how to use MCC Clock Configuration window to configure the clocks.

- 1. To launch Clock Easy View in MPLAB X IDE, click on the **Project Graph** tab.
- 2. From the Plugins drop-down item list, select **Clock Configuration**.

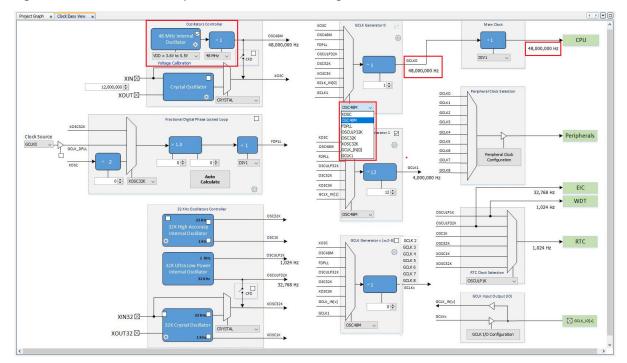
Figure 4-1. Selecting Clock Configuration

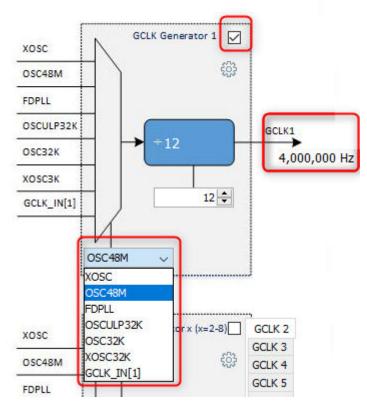
3. Click on the **Clock Easy View** tab. The Clock Easy View will be displayed within the MCC window.

Use Case Scenario 1

Configure the device to run at the maximum possible speed. Measure the frequency of the configured clock by routing the prescaled clock signal to a GPIO pin.

1. SAMC21N operates at 48 MHz maximum frequency. The OSC48M oscillator is configured and enabled to run the main clock at maximum frequency. The configured oscillator (OSC48M) is fed as input to the GCLK generator '0', and a suitable clock divider and masker must be selected to achieve a maximum frequency of 48 MHz. Refer to the following figure to configure the main clock.




Figure 4-2. SAMC21N Clock Easy View and Main Clock Configuration

Tip: Double-click on the **Clock Easy View** tab to maximize the window.

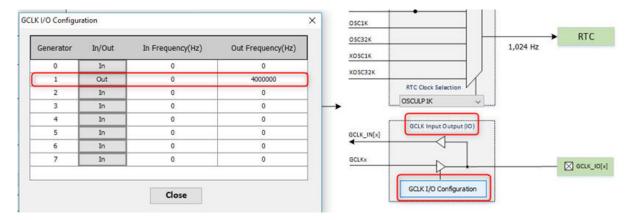

2. Enable the GCLK generator 1 and select the oscillator OSC48M as the generator input. The divider value of a generator will be used to derive the low-frequency clocks from the GCLK generator sourced clocks. Configure the divider value as 12 to achieve a 4 MHz clock frequency at the GCLK generator 1 output. Refer to the following figure to configure GCLK IO1. Refer to the data sheet for maximum clock frequency an I/O pin can operate at.

Figure 4-3. GCLK Generator 1 Configuration

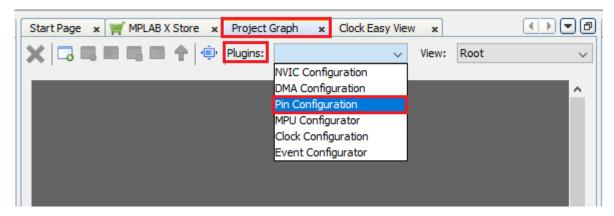
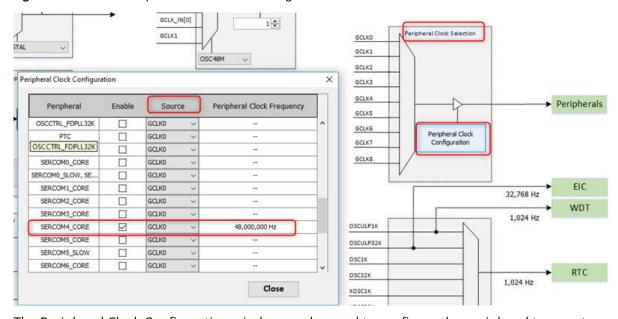

3. The output of the GCLK Generator 1 is used to measure the frequency and accuracy of the main clock. Click on the **GCLK I/O Configuration** to check the configured GCLK I/O [1] clock frequency as showin below.

Figure 4-4. GCLK I/O [1] Configuration

4. Configure the pin which maps to GCLK1 on the device. To configure clock signal GCLK1 to a pin, in MPLAB X IDE click **Project Graph** and from the Plugins drop-down item list, select **Pin Configuration**.

Figure 4-5. Pin Configuration



Use Case Scenario 2

To configure the SERCOM Peripheral Clock to run the SERCOM (as USART) peripheral, follow these steps:

- 1. Configure the main clock, as shown in "Step 1" of the 4.1. Use Case Scenario 1.
- 2. By default, MCC automatically enables the peripheral clock when a peripheral is added to the Project Graph. Click on the **Peripheral Clock Configuration** button to check the specific peripheral (SERCOM) clock. The SERCOM4 clock source is selected as GLCKO, which is set to 48 MHz, see figure below.

Figure 4-6. SERCOM Peripheral Default Clock Configuration

3. The Peripheral Clock Configuration window can be used to configure the peripheral to run at a frequency different from the default frequency of 48 MHz. A different clock source can be selected. Refer to the following figure to configure the SERCOM4 peripheral clock with a 12 MHz frequency by using the GCLK2 as the source.

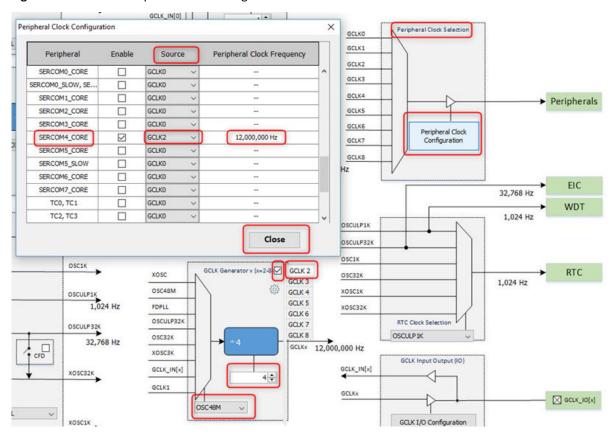


Figure 4-7. SERCOM Peripheral Clock Configuration with 12 MHz Clock Source

- 4. Configure the SERCOM (as USART) pins on the device. To configure the SERCOM pins, use the Pin Configuration option in the Project Graph.
- 5. To launch the Pin Configuration in MPLAB X IDE, click **Project Graph**, and from the Plugins drop-down item list, select **Pin Configuration**.

Use Case Scenario 3

Follow these steps to configure the RTC peripheral clock in Harmony v3 to run the RTC peripheral at low power.

- 1. Configure the main clock, as shown in "Step 1" of the 4.1. Use Case Scenario 1.
- 2. On SAMC21N, some of the peripherals, such as the RTC, WDT, and EIC will run directly with the 32 kHz oscillator controller outputs (OSC32K, OSC1K, OSCULP32K, OSCULP1K⁽³⁾, XOSC32K, XOSC1K).
- 3. From the drop-down list, select the **OSCULP1K** oscillator as the RTC peripheral clock input to run the RTC at low power. The OSCULP1K oscillator will provide 1 KHz clock frequency as the oscillator output by running at low power. Refer to the following figure to configure the RTC peripheral clock.

FIC 32,768 Hz WDT 1,024 Hz OSCULP1K OSCULP32K OSC1K RTC OSC32K 1,024 Hz XOSC1K XOSC32K RTC Clock Selection OSCULP1K OSCULP1K OSCULP32K OSC1K GCLK_IN[x] OSC32K XOSC1K **GCLK**x KOSC32K GCLK_IO[x] GCLK I/O Configuration

Figure 4-8. RTC Peripheral Clock Configuration

4. The RTC peripheral can be used for different applications, for example, the RTC used as a calendar requires an accurate clock source. When the RTC is used as a calendar, it uses an external accurate clock source. The external clock sources (XOSC1K or XOSC32K) can be configured through MCC.

Notes:

- 1. Advanced clock configuration options, such as RUN in STANDBY, ONDEMAND clock, DFLL COARSE, FINE and so on can be configured in the Clock Tree View window (Refer to the MCC *Project graph* > *System* > *Clock*).
- 2. In these use case scenarios above, the MCC UI screen shots are captured using MPLAB Code Configurator version 5.3.7 and repository Chip Support Package (CSP) version 3.18.0.
- 3. OSCULP1K is an Oscillator name used in MPLAB Code Configurator for 1.024 kHz output from 32 kHz internal Oscillator.

5. Resources

The Low-Power Training Module for SAMC21 Low-Power Application on SAMC2x (Arm® Cortex® M0+) MCUs Using MPLAB® Harmony v3 Peripheral Libraries: microchipdeveloper.com/xwiki/bin/view/software-tools/harmony/low-power-application-on-samc21/

For additional information on the clock system and low-power features, refer to the following documents:

- TB3183: What is Sleep Walking? How it Helps to Reduce Power Consumption: http:// ww1.microchip.com/downloads/en/DeviceDoc/90003183A.pdf
- AT13486: SAM C System Clock Management (SYSTEM CLOCK) Driver: ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42647-SAM-System-Clock-Management-SYSTEM-CLOCK-Driver_ApplicationNote_AT13486.pdf

For additional information about 32-bit Microcontroller Collaterals and Solutions, refer to:

 DS70005534: 32-bit Microcontroller Collateral and Solutions Reference Guide ww1.microchip.com/downloads/aemDocuments/ documents/MCU32/ProductDocuments/ReferenceManuals/32-bit-Microcontroller-Collateral-and-Solutions-Reference-Guide-DS70005534.pdf

For other relevant information, refer to the Microchip web site.

www.microchip.com/

6. Revision History

Revision B - January 2024

The following updates were incorporated for this revision:

Document	Minor changes of format. Changed MPLAB Harmony Configurator by MPLAB Code Configurator. Changed MHC by MCC.
4. Configuring Clocks with MPLAB Harmony v3	Updated some paragraphs in 4.1. Use Case Scenarios. Updated Figure 4-1 and Figure 4-2. Added Figure 4-5.
5. Resources	Added new references.

Revision A - August 2019

This is the initial released version of this document.

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable".
 Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure

that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2024, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-3848-3

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
handler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
el: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
ax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
echnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
ww.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Veb Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
ww.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
tlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
uluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
el: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
ax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
ustin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
el: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
oston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
estborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
el: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
hicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
asca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
el: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
ax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ddison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
l: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
x: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
ovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
el: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
ouston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
l: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
dianapolis	China - Xiamen		Tel: 31-416-690399
oblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
l: 317-773-8323	China - Zhuhai		Norway - Trondheim
x: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
l: 317-536-2380			Poland - Warsaw
s Angeles			Tel: 48-22-3325737
ssion Viejo, CA			Romania - Bucharest
l: 949-462-9523			Tel: 40-21-407-87-50
x: 949-462-9608			Spain - Madrid
el: 951-273-7800			Tel: 34-91-708-08-90
leigh, NC			Fax: 34-91-708-08-91
el: 919-844-7510			Sweden - Gothenberg
ew York, NY			Tel: 46-31-704-60-40
el: 631-435-6000			Sweden - Stockholm
in Jose, CA			Tel: 46-8-5090-4654
l: 408-735-9110			UK - Wokingham
l: 408-436-4270			Tel: 44-118-921-5800
nnada - Toronto			Fax: 44-118-921-5820
			147, 17110 321-3020